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Abstract

Supply chain networks are formed out of complex in-
teractions amongst several companies whose aim is to pro-
duce and deliver goods to the customers at the time and
place specified by them. Computing the total lead time for
customer orders entering such a complex network of com-
panies is an important exercise. In this paper, we present
analytical models for evaluating the average lead times of
make-to-order supply chains. In particular, we illustrate the
use of fork-join queueing networks to compute the mean
and variance of the lead time.The existing literature on ap-
proximate methods of analysis of fork-join queueing sys-
tems assume heavy traffic and require tedious computa-
tions.We present two applications of a tractable approxi-
mate analytical method for lead time computations in a class
of fork-join queueing systems. For the case where the ar-
rivals are deterministic and service times are normally dis-
tributed, we present an easy to use approximate method.
Specifically, we illustrate the use of the above method in set-
ting service levels in assemble-to-order type supply chains.

1 Supply Chain Networks

Supply chain networks (SCNs) are formed out of
complex interconnections amongst various manufacturing
companies and service providers such as raw material ven-
dors, original equipment manufacturers (OEMs), logistics
operators, warehouse operators, distributors, retailers and
customers (see Figure 1). One can succinctly define supply
chain management(SCM) as the coordination or integration
of the activities of all the companies involved in procur-
ing, producing, delivering and maintaining products and
services to customers located in geographically different
places. Traditionally, each company performed marketing,
distribution, planning, manufacturing and purchasing activ-
ities independently, optimizing their own functional objec-
tives. SCM is a process-oriented approach to coordinating
all organizations and all functions involved in the delivery
process. The product moving through the SCN transits sev-
eral organizations and each time a transition is made, lo-
gistics is involved. Also since each of the organizations is
under independent control, there are interfaces between or-
ganizations and material and information flows depend on
how these interfaces are managed. We define interfaces
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Figure 1: The supply chain network

as the procedures and vehicles for transporting information
and materials across functions or organizations such as ne-
gotiations, approvals (so called paper work), decision mak-
ing, and finally inspection of components/assemblies, etc.
For example, the interface between a supplier and manufac-
turer involves procurement decisions such as price, delivery
frequencies and nature of information sharing at the strate-
gic level and the actual order processing and delivery at the
operational level. The coordination of the SCN plays a big
role in the over all functioning of the SCP. In most cases,
there is an integrator for the network, who could be an origi-
nal equipment manufacturer, coordinating the flow of orders
and materials through out the network. Modeling and anal-
ysis of such a complex system is crucial for performance
evaluation and for comparing competing supply chains. In
this paper, we view a supply chain as a probabilistic network
and present a modeling approach to compute performance
measures such as lead time and work in process inventory.
In particular, we investigate the use of queueing network
models for computing the lead time and other performance
measures. In the rest of this section we review the types
of supply chain networks and the different order-fulfilment
policies.

1.1 Operational Models
An important aspect of the supply chain operation is

the supply chain planning and control methodology (SPC).
A customer order for a product triggers a series of activities
in the supply chain facilities, and these have to be synchro-
nized so that the end customer order is satisfied. The SPC
specifies the business model and hence determines the paths
for the information and material flow in the supply chain.
There are three broad models followed in practice: Make-
to-stock (MTS), Make-to-order (MTO), Assemble-to-order
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(ATO).

The crucial issues of when to order and how much
to order define these policies. For instance in base stock
policies, one unit (alternatively, a stock keeping unit, SKU)
of inventory is replenished as soon as a unit of goods held at
the facility is depleted. On the other hand, if the facility is
following a reorder point based policy, it replenishes items
as soon as a preset reorder level is reached, ordering each
time such that a targeted level of inventory is reached. For a
detailed discussion, refer [12].

1.2 Modeling of Supply Chains
Supply chain networks are discrete event dynamical

systems (DEDS) in which the evolution of the system de-
pends on the complex interaction of the timing of various
discrete events such as the arrival of components at the sup-
plier, the departure of the truck from the supplier, the start of
an assembly at the manufacturer, the arrival of the finished
goods at the customer, payment approval by the seller, etc.
The state of the system changes only at discrete events in
time. Over the last two decades, there has been a tremen-
dous amount of research interest in this area. There are
several classes of models that are useful in this context.
These models can be used for either qualitative or quanti-
tative analysis. Qualitative analysis yields results on sta-
bility and deadlock analysis. Quantitative methods, on the
other hand, highlight the determination of system perfor-
mance measures such as throughput and lead time. Series-
Parallel graphs, Petri nets and queuing networks are fun-
damental models for DEDS. Discrete event simulation is a
very general method and is widely followed. System dy-
namic models are also widely used for supply chain prfor-
mance evaluation [10].

1.3 Models for Lead Time Computation
The lead time of an order entering the supply chain

is the total time it spends in the supply chain and is a cru-
cial performance measure. All the models discussed above
can be used to arrive at the total expected supply chain lead
time and its variance. An estimate of the mean and vari-
ance of the supply chain lead time can help one in quoting
reliably the delivery time for a given customer order. In
this paper, we treat the lead time computation problem for
a class of make-to-order supply chains as multi-class open
generalized queueing networks. We utilize the existing effi-
cient approximation algorithms for computing the expected
supply chain lead time and variance. This is the subject mat-
ter of Section 2. We remark that existing literature on ap-
proximate methods of analysis of fork-join queueing (FJQ)
systems assume heavy traffic [9] and require tedious com-
putations. For a class of fork-join queueing systems, we
present in Section 3, a new approximate method of analysis
which we use in the analysis of supply chains. For the case
of deterministic arrivals and normally distributed process-
ing times, we present an easy to use approximate method,
based on results of Clarke [3]. We report encouraging re-

sults for this class of fork-join systems, with some possible
applications in the supply chain context. We conclude this
paper in Section 4.

2 Approximate Analysis of Fork-Join Queueing
Networks

In this section, we present an approximate method for
the performance analysis of certain make-to-order supply
chains. Consider the following supply chain:

� There is one end product or a product group that is
made to order. Thus we can handle a single product
or all products belonging to a particular family.

� This product (family) is manufactured from two ma-
jor sub-assemblies supplied by two different suppli-
ers. The inbound logistics is managed by the suppli-
ers themselves.

� The sub-assemblies are then joined at a manufactur-
ing plant. There is a synchronization delay at this
manufacturing plant, for both the sub-assemblies to
arrive.

� Since the end item is made-to-order, there is forking
at the supplier end i.e. orders for the sub-assemblies
are placed simultaneously with the suppliers. This is
a structural feature that simplifies the analysis of the
underlying FJQ system.

� The assembled end product (family) is then delivered
to distributors.

We model such a SCN by a queueing network as shown in
Figure 3. Observe that this queueing network has fork-join
structure preceding a generalized queueing network. Once
we analyze the fork-join structure, we can easily further the
analyze using well known approximations [2]. We are inter-
ested in computing the end-to-end delay, or the total mean
supply chain lead time. It is well known (see [5]) that FJQ
systems are difficult to analyse exactly. Hence many ap-
proximations have been proposed in the literature (see the
references in [6, 1]). Exact results are available only for the
case where the arrivals are Poisson, with exponential ser-
vice times and just two joining nodes. See [4, 8] for details.
Most of the approximate methods assume the following:

� The processing times at the servers belong to the ex-
ponential family of distributions (exponential or Er-
langian or Hyper-exponential).

� The buffer sizes at the various queues are all bounded.

� Studying the mean cycle time alone is sufficient.
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Figure 2: The fork-join structure

Since in the case of supply chains, it is common to en-
counter more general distributions, it is necessary to include
general service times in the analysis. Also, the buffer sizes
need not necessarily be bounded. Though mean cycle times
capture the steady state behaviour, it is necessary to com-
pute the variance of the cycle times too. Before we go
into the complete analysis of the supply chain, we describe
our approach for the fork-join structure with normally dis-
tributed service times and deterministic inter-arrival times.
In the approximation that we will be developing in this sec-
tion, we assume that the joining nodes have Gaussian ser-
vice time distributions with their means at least thrice the
standard deviation and in real life supply chains, this as-
sumption is found to be adequate and reasonable [7].

2.1 Computing the SCV of Inter-departure Time
Consider two servers with general service times and

infinite buffer sizes as shown in Figure 2. Let the arrival
process to these be generally distributed, with a fork on ev-
ery arrival. Let there be a join immediately after the two
servers complete service. We are interested in computing
the approximate departure process after the join, by its first
two moments. Observe that the departure process from the
join station is the arrival process to any downstream server.
Once the moments of the above departure process are com-
puted, the analysis of the remaining part of the queueing
network is at hand. In Table 1 we detail the notation used.
The average values will be denoted by IE [:]. Under condi-
tions of stability, it is worth noting that when the fork-join
structure is under steady-state, the departure rate out of the
join node will be equal to the arrival rate at the fork node.
Hence it is enough if we get an approximation for the vari-
ance of the departure process from the join node. In order
to compute the second moment of D1 . . .DK , we analyse
servers S1 . . .SK as independent GI/G/1 queues, with the
same arrival rates as the given external arrival rate, prior to
forking. This analysis would give us the mean and SCV of
inter departure times from each server. Towards this end,
we use the first approximation for the mean cycle time and
SCV, given in [2], pp-75. We ignore the effect of blocking
of servers and make the (first) assumption that the mean in-
ter departure rate is same as the mean inter arrival rate for
each server. Thus, when there is a fork to the two servers,

� and C2
a The mean rate and SCV of the arrival process

�i The mean service rate at server Si, i = 1;K

C2
si

The SCV of service time at server Si, i = 1;K

�i Utilization of node i, i = 1;K

Ti The sojourn time at server Si , i = 1;K

T �

i
The maximal value (order statistic) of Ti, i = 1;K

Di The departure process from server Si, i = 1;K

�2
Di

Variance of Di , i = 1;K

C2

Di
SCV of Di, i = 1;K

D The departure process after the join node
T The sojourn time in the fork-join structure
� and �2 Mean and variance of D

Table 1: Notation for the approximation method

D1 and D2 will have the same expected values. We use:

C2

Di
= (1� �2i )

C2

a � �2
i
C2

si

1 + �2
i
C2
si

+ �2iC
2

si
; i = 1::K:(1)

�i =
�

�i
; i = 1::K: (2)

By our first assumption, IE [D1] = : : : = IE [DK ] =
1

�
. On

an average, it is the server (say, ek) with the greatest mean
flow time (= maxi Ti) which is expected to delay the other
jobs. Thus the server with the greatest average processing
time contributes most to the variance of the inter departure
process after the join node. Hence, we computeC 2

Di
; i = ek

and choose this value as an approximation for the SCV of
the inter departure process after the join node, i.e., C 2

D
=

C2

D
ek

. Thus the departure process after the join, viz., D is

computed by its first two moments. We are now ready for
the next stage of our aggregated approximate analysis of the
entire supply chain.

2.2 Mean Waiting Time for the Fork-Join Structure
We know that T1 . . .TK can be computed by their

first two moments using standard GI/G/1 analysis (see [2]).
Thus the mean waiting time for the fork-join construct is
given by max(T1; : : : TK). Recently, some interpolation
and diffusion approximations are available for symmetric
fork-join systems with generally distributed arrival and ser-
vice processes (see [11, 9]). We note that such methods
again involve tedious numerical computations and are valid
only under heavy traffic conditions. For the case where the
joining servers have service times which are normally dis-
tributed, and when the arrival pattern is deterministic, we
proceed as follows. We assume that the waiting times are
independent of each other, and that they are normally dis-
tributed with the mean and standard deviation as computed.
The first two moments of the maximum of n independent
normally distributed random variables can be obtained us-
ing the approximation detailed in [3]. We use the same here
and obtain the mean flow time at the fork-join stage. We re-
produce Clarke’s result for the two random variables case:

IE [D] = IE [D1]�(�) + IE [D2]�(��) + a�(�) (3)
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Figure 3: The supply chain network (FJQN) considered for study

PSi
i=1..K, Mean processing times (secs): 200 to 380 in steps of 20

Standard deviation of processing times: 1
4

of mean
Squared coefficient of variation of all processing times: 0.0625
Mean inter-arrival time seconds: 760, 475, and 422.2

Table 2: Input parameters (Case A) for the supply chain of Figure
3

IE2 [D] = (IE [D1]
2
+ �2D1

)�(�)

+ (IE [D2]
2
+ �2D2

)�(��)

+ (IE [D1] + IE [D2])a�(�) (4)

� =
1

a
(IE [D1]� IE [D2]) (5)

a2 = �2D1
+ �2D2

� 2�D1
�D2

% (6)

In the above equations, � is the standard normal density
function and � is the corresponding cumulative distribution
function. Also, % is the coefficient of correlation between
the variables D1 and D2, which is assumed to be 0 in our
case, owing to the independence assumption. The above
formulae can be easily extended for the n independent nor-
mal random variables case. Observe that max(a, b, c) =
max(a, max(b, c)).

2.3 Numerical Results
For purposes of validation, we very briefly present the

results of using our approximation on two single stage sys-
tems, one containing two servers and the other containing
ten servers.

In order to test our approximation for the SCV of the
departure process after the join node, and the mean flow
time at the fork join structure, the input cases are illustrated
in Table 2. In the table, the mean inter-arrival time is speci-
fied for varying utilization values of the server with the max-
imum service time of 380 seconds. The utilizations consid-
ered were 50, 80, and 90% respectively at the server with
the maximum mean service time.

In this table, Case B refers to the case where the
servers are identical with service times equal to 380 sec-
onds, for both two and ten server systems. Case C refers to
non-identical servers with same mean service times as Case
A, but their standard deviations decrease from 50 seconds
(for the server with mean service time 200s) to 5 seconds

Mean flow time at FJ stage in seconds
N � (%) Case A Case B

Exact Approximation Exact Approximation
50 382.96 382.07 433.04 433.58

2 80 394.30 385.26 449.70 437.15
90 444.88 414.78 514.31 476.16
50 450.15 460.00 526.05 524.77

10 80 461.50 460.80 550.73 528.80
90 498.21 477.68 670.85 587.52

Case C Case D
50 380.00 381.6 459.36 447.48

10 80 380.14 381.6 461.62 448.00
90 380.30 381.6 474.49 450.53

Table 3: Validation results for single stage fork-join queueing
systems; N: Number of servers, �: Utilization

(for the server with mean service time 380s) in steps of 5s.
Case D is similar to Case C, but the service time standard
deviations now decrease from 150s to 60s in steps of 10s
as in Case C. The results are tabulated in Table 3. The
maximum absolute error percentage from the table shown
is found to be 12. We note that this occurs for Case B (with
ten identical servers) and when the utilization value is 90%.
Also, Clarke [3] showed that the approximation for the max-
imum value of n normally distributed random variables is
error prone especially when the random variables consid-
ered have the same mean and variance. This is precisely
the case when we consider identical servers in the fork-join
stage.

On an average, the approximation was found to give
absolute error percentages of less than 4%. The absolute
error percentage was computed as difference of the approx-
imated flow time from that computed from simulation, di-
vided by the latter.

2.4 Setting Service Levels in a Two Echelon Assemble-
to-order System

The approximation that we have developed, can also
aid in computing the total costs in certain assemble-to-order
supply chains, in the process ’determine’ the service levels,
which is defined as 1-fprobability of stockoutg. The two
main cost components in such supply chains are the inven-
tory and the delay costs. We present a simple illustration
for this case. Consider the supply chain in Figure 3 which
shows a two echelon supply chain with suppliers at the first
echelon and the OEM as the second. Now, let us assume
that the system is operated in a assemble-to-order fashion,
rather than the make-to-order type which was considered in
the earlier discussion. This would mean that we will have
inventories of components bought from suppliers S1 and S2,
that are assembled at M and sold to end customers on order.
In the ensuing discussion, we omit the warehouses from the
analysis. Name the components bought from S1 and S2 as
A and B respectively. Let C be the finished goods. Let us
assume that the components are ordered when M is out of
stock. We associate probabilities of stock outs for A and
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B. Let us assume that the suppliers manage the inbound lo-
gistics, and that the processing times of individual compo-
nents at these suppliers are known, along with the logistics
times. We can thus aggregate these two along with any in-
terfaces present, by the servers S1+L1 and S2+L2 of Figure
3. For ease of exposition, let us assume that the probabili-
ties of stock outs of A and B are the same, and equal to p.
Also p2 be the probability that M is out of stock of A and
B simultaneously. This is usually a management set param-
eter, and hence a decision variable. (Our analysis is easily
extendable to the case when A and B have different prob-
abilities of stock outs.) The target inventories of A and B
at M (respectively, IA and IB) are set based on the stock
out probabilities. For instance, see [12] on how this can be
done. This requires an assumption that the lead times from
the suppliers (including processing at their factories, logis-
tics and interface times) are normally distributed, to make
matters tractable. Let D1 and D2 denote the waiting times
from S1 and S2, respectively, whose mean and variance can
be computed using GI/G/1 analysis of S1 and S2, with ar-
rival rate equal to the external demand rate. Let D3 be the
waiting time at M. The following cases can occur:

� M is out of stock of A,

� M is out of stock of B, or,

� M is out of stock of both A and B.

Thus the total average lead time for arriving orders is ob-
tained as:

D = pfD1 +D2 + p � IE [max(D1; D2)]g

+D3 (7)

Similarly, the total average inventory in the system is given
by:

I = (1� p)(IA + IB) + pfL1 + L2 +

p(L1 + L2)g+ L3; (8)

where L1, L2, and L3 are the steady state average WIP
at S1, S2, and M respectively, which are computed us-
ing GI/G/1 analysis of the respective servers. Observe that
max(D1; D2) is at hand, thanks to Clarke’s method. All
other values are calculable using simple approximate solu-
tions of GI/G/1 queues. Hence one can, in principle, per-
form a total cost analysis as follows. Let H1 be the holding
costs of inventory and H2 the delay costs. Thus the total
cost of operating the supply chain in the assemble-to-order
fashion, is given as

TC = H1 � I +H2 �D (9)

For varying values of H2

H1

, one can then compute the total
cost, thus enabling the setting of the stock out probability p,
in turn, the target inventories of A and B at M. We note here
that, although H1 is assumed to be the same for inventories

� and C2
a 10/day, 0.5

�S1 and �S2 15/day, 20/day
C2
s1

and C2
s2

(0.8, 0.4)
�M and C2

M
30/day, 0.2

Table 4: Input parameters for the assemble-to-order supply chain

of the components and the finished goods, in practice, it is
possible to have the holding costs of finished goods to be,
say, 20% higher than those of the components. Similarly for
the delay costs H2. This can be easily incorporated into our
analysis by altering the total cost function suitably, although
we dont do that here. The input case considered is shown
in Table 4. As discussed above, the various variables are
computed for the given input parameters, and we get the
following expression for the total cost:

TC = H1[0:370+ (1� p)(IA + IB) + 2:169p]

+2:169p2 +H2[0:037 + 0:217p+ 0:174p2] (10)

The above equation can be used to determine the total cost
given p. Alternatively, if p is a decision variable, we enu-
merate for various values of p and get the least cost solution.
We know that

p = IP (DDLTi � Ii); i = A;B; (11)

where DDLT is the demand during lead time (i.e., the orders
for finished goods that arrived even when the required com-
ponents are on order) which is a random variable. This is
obtained as the product of the arrival rate and the lead time
for replenishment. Assuming now, that each arriving order
for finished goods C requires one component each of A and
B, we compute the following:

DDLTi = � �Di; i = A;B (12)

C2

DDLTi
= C2

Di
; i = A;B (13)

We now make the assumption that the DDLT computed
above, is a Gaussian random variable. Using the definition
of p above, we can easily determine IA and IB . For var-
ious values of the stock out probability p, and the ratio of
H2

H1

, we computed the total costs, the same being presented
in Figures 4–5. The trend shown in the graphs is expected,
because, as the probability of stock outs is allowed to de-
crease, the inventories go up and vice versa. The minimal
total cost can thus be traced to an appropriate value for p,
although it requires exhaustive enumeration.

3 Conclusions

Performance modeling intended for decision making
in supply chains is a critical issue. In this paper, we have
presented queueing network based models for analysing
supply chain networks in a dynamic and stochastic setting.
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Specifically, we considered fork-join queueing systems and
presented an approximate method for performance analy-
sis. We presented a potential application of this method
in setting service levels in certain assemble-to-order supply
chains.
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