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Achieving Sharp Deliveries in Supply Chains
through Variance Pool Allocation

Dinesh Garg, Y. Narahari, N. Viswanadham

Abstract| In this paper, our objective is to come up
with a sound methodology to design supply chains with
outstanding delivery performance. As the �rst step to-
wards this objective, we consider supply chains with a
linear work
ow, which we call pipelined supply chains.
We de�ne a new index of delivery performance called
delivery sharpness which measures the precision as well
as the accuracy with which products are delivered to
the customers. The speci�c problem we solve is: given
the delivery sharpness to be achieved, how can we al-
locate variability across individual stages of the supply
chain in a cost-e�ective way. We call this the variance
pool allocation (VPA) problem. In formulating and
solving the VPA problem, we explore interesting rela-
tionships among process capability indices Cp, Cpk , and
Cpm , and generalize the notion of Motorola six sigma
performance. The VPA problem leads to a four step de-
sign methodology and the resulting optimization prob-
lem is solved using the method of Lagrange multipliers.
We present an interesting example of a supply chain in
the plastics industry and illustrate the di�erent steps
of our methodology.

Keywords| Supply chain lead time, Cycle time com-
pression, Delivery Probability (DP), Delivery Sharp-
ness (DS), Process Capability Indices, Variance Pool
Allocation (VPA), Generalized Motorola Six Sigma
(GMoSS) Concept

I. Introduction

A supply chain network can be viewed as a net-
work of facilities in which a customer order will 
ow
through internal business processes such as procure-
ment, production, inventory management, and logis-
tics, ultimately resulting in delivery of required prod-
ucts on time to customers. As one can imagine, when
the number of resources, operations, and organizations
increases, managing the supply chain can become very
complex. An entire supply chain could exist within
a single company or a supply chain can span multi-
ple enterprises. An important design objective in such
networks is to achieve a high probability of delivery of
�nished products to the customer in a customer spec-
i�ed delivery window. This entails perfect synchro-
nization among supply chain elements and individual
business processes embedded within the supply chain
process. This in turn requires variability reduction all
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along the supply chain. Variability reduction in supply
chains is the subject of several research papers (several
important references are listed in [1] and in [2]).

A. Variance Pool Allocation Problem

In this paper, we formulate and solve an important
problem in the design of synchronized supply chains.
We call this problem as the variance pool allocation
problem (VPA). We �rst observe that the supply chain
process is a superposition of individual business pro-
cesses each of which adds value to the product/service
desired by the customer. Given a supply chain and
the mean and standard deviation of the end-to-end
lead time for a certain product mix, the VPA prob-
lem seeks to optimally distribute the pool of variance
among individual business processes so as to minimize
cost and achieve outstanding delivery performance.
In this paper, we describe the delivery performance

of a supply chain in terms of two metrics. The �rst is a
traditional metric, delivery probability (DP), which is
the probability that a typical customer order is deliv-
ered during a customer-speci�ed window. We show in
the paper that the two popular process capability in-
dices, Cp and Cpk [3], [4] provide an appropriate vehi-
cle for computing the delivery probability. The second
metric is a new one that we propose, which we call
delivery sharpness (DS), which is a measure of how
close to the target (most desired) delivery date a cus-
tomer order is actually delivered. Note that a typical
customer-speci�ed window consists upper,lower speci-
�cation limit and a target value or most desirable value
of the delivery time. We are motivated by the Taguchi
capability index Cpm [5], [6], [4] in proposing delivery
sharpness and in fact in this paper, we use Cpm as a
measure of delivery sharpness.

B. Relevant Work

The Motorola six sigma program for design toleranc-
ing is described in [7], [8]. These reports also describe
the process capability indices Cp and Cpk . These and
other process capability indices are discussed in a com-
prehensive manner in [6], [4].
An attempt towards synchronizing the internal pro-

cesses in a supply chain network for better delivery
performance has been made by Narahari et al [9]. The
authors emphasize the use of Motorola Six Sigma ap-
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proach to analyze and design a given supply chain pro-
cess for six sigma delivery performance. Two design
problems are discussed in this paper: �nding nominal
pool and �nding a variance pool. The present paper
is a generalization of the above paper [9].

C. Contributions and Outline

This paper makes the following contributions.

� Describes the delivery performance of a supply chain
in terms of two metrics, delivery probability and deliv-
ery sharpness, and explains the connection of process
capability Cp, Cpk , and Cpm to these two metrics
� Generalizes the notion of Motorola six sigma quality
by adding an additional dimension of delivery sharp-
ness
� Formulates and solves the variance pool allocation
problem for linear or pipeline supply chains, which we
consider an important �rst step in designing synchro-
nized supply chains; the formulation uses all three pro-
cess capability indices in an ingenious way
� Illustrates the variance pool allocation problem for a
six stage linear pipeline of a real-world plastics supply
chain

This paper is organized as follows. Section 2 �rst
describes process capability indices and presents a re-
lationship among them. A new perspective based on
yield is presented in respect of the process capability
indices. The relation of these indices to delivery proba-
bility and delivery sharpness is presented. The section
also presents a generalization of the notion of Motorola
six sigma quality. In Section 3, we use the �ndings of
Section 2 in formulating the variance pool allocation
problem for linear or pipelined supply chains. In Sec-
tion 4, we present a four-step methodology for variance
pool allocation in supply chains. Finally in Section 5,
we describe a six stage supply chain in a plastics indus-
try and apply our design methodology. Implications
and future work constitute Section 6.

II. Process Capability Indices: A New
Perspective

Process capability indices have been applied in a
large scale by a variety of industries since early 1980s
for the purpose of analysis of capability of manufac-
turing processes where variability is an inherent e�ect.
This section discusses three important process capa-
bility indices Cp; Cpk ; andCpm show that these indices
are can be used to de�ne Delivery Probability (DP)
and Delivery Sharpness (DS).

TABLE I

Notation Used in the Definitions of PCIs

X Any general quality characteristic but in our case it
is lead time distribution of any business process
in the chain

� Mean of X
� Standard deviation of X
L Lower speci�cation limit of customer delivery window

speci�ed for the X
U Upper speci�cation limit of customer delivery window

speci�ed for the X
� Target value for lead time X, speci�ed by customer
T Tolerance for lead time X, speci�ed by customer
s j� � �j
p min(jU � �j; j�� Lj)

A. The Index Cp

The �rst process capability index, Cp, is de�ned as

Cp =

8>>>>>><
>>>>>>:

USL�LSL
6� Bilateral

USL��
3� Unilateral with USL known

��LSL
3� Unilateral with LSL known

From the above de�nition it is clear that a high value
of Cp is desirable and also Cp cannot be negative. It is
assumed later in this model that distribution of X is
normal and the target value of lead time � is the mid
point of USL and LSL for any business process. Hence
Cp can be expressed in following equivalent form.

Cp =
T

3�
(1)

where T = tolerance = USL�LSL
2

Cp does not specify anything about relative position
of � (mean of the lead time distribution) and � . As
long as the variability of the distribution �2 does not
change, the value of Cp would not change. It means
Cp measures only the potential of a business process to
deliver products within a customer speci�ed delivery
window (assuming the process is centered around the
target value). This potential can be expressed as:

potential = �

�
U � �

�

�
��

�
L� �

�

�

= 2

�
�

�
T

�

�
� 0:5

�
= 2� (3Cp)� 1 (2)
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Fig. 1. Potential of the Process vs Cp

where �(Z) is cumulative distribution function of
standard normal distribution. This function is plotted
in Figure 1.

B. The Index Cpk

The index Cp does not re
ect the impact that shift-
ing the process mean has on a process's ability to de-
liver product within speci�cation [5]. For this reason,
the Cpk index was developed. Cpk is de�ned as follows:

Cpk =
min(USL� �; �� LSL)

3�

=
� p

3�

�
(3)

Here p stands for the distance of the nearer speci�-
cation limit from the process mean.
While Cp measures the potential of the process, Cpk

helps measure the actual yield , i.e., when � 6= �. The
potential of the process becomes equal to the actual
yield of the process when � = � . So it can be written
without any loss of generality:

potential of process � actual yield of process (4)

In addition to potential and actual yield, we can
de�ne two other quantities: Upper Bound on process
yield and Lower Bound on process yield. These bounds
depend only on Cpk and the actual yield of the process
lies between these two values. These four quantities
represent areas of di�erent regions under probability
density function, fX(x), as shown in Figure 2
Table II summarizes the formulae for these four

quantities. A proof of these formulae is provided in
[10].

C. The Index Cpm

The index Cpm is de�ned as
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Fig. 2. Potential, Actual Yield, Upper and Lower Bound on
Yield of the Process

TABLE II

Formulae for Potential, Actual Yield, Upper and

Lower Bound on Process Yield

Quantity Formula
Potential 2� (3Cp)� 1

Actual Yield � (3Cpk) + � (6Cp � 3Cpk)� 1
Upper Bound 2� (3Cpk)
Lower Bound 2� (3Cpk )� 1

Cpm =
USL-LSL

6�

=
T

3
p
�2 + s2

(5)

Quantity E(L) = �2 + s2 is known as "Expected
Taguchi Loss" [6], [4]. By observing the de�nition of
Cpm , we see that it will properly model delivery sharp-
ness using the loss function approach. For example, if
the lead time variance increases (decreases), the de-
nominator will increase (decrease) and Cpm will de-
crease (increase). Also, if the mean lead time moves
away from (closer to) the target value, the denom-
inator will increase(decrease) and Cpm will decrease
(increase).

D. Relationship and Dependencies among Cp; Cpk ; Cpm

The following relations can be derived among
Cp; Cpk ; Cpm [10].

Cp � Cpk � 0 (6)

Cp � Cpm � 0 (7)

Cpk = Cp(1� k) (8)

1

9C2
pm

=
1

9C2
p

+

�
1� Cpk

Cp

�2

(9)
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where k = s

T
.

If we look at yield perspective of process capability
indices then it can be shown that for a given value
of actual yield � (say), there exhibit upper and lower
limits for the values of both Cp and Cpk . Table III
summarizes such bounds on Cp and Cpk . A detailed
proof for all these formulae is discussed in [10].

E. A Generalized View of Motorola Six Sigma Quality

The basic idea of the Motorola Six Sigma concept
[7], [8] is that it identi�es a \sigma (�) level" with each
value of number of defects per million opportunities
(npmo) which is the probability, expressed on a scale of
10�6, that a part is produced with the characteristicX
lying outside the speci�cation limits. In other words, a
sigma level is attached with each value of actual yield
of the process. As the actual yield increases the sigma
level also increases.
The Motorola six sigma program assumes that the

underlying distribution X is normal with mean � and
standard deviation �. Also it is assumed that tar-
get value of X is midpoint of upper speci�cation limit
(USL) and lower speci�cation limit (LSL). It assumes a
one-sided 1:5� shift in the process mean to model the
shift and drift in process mean. With this assump-
tion, if USL and LSL coincide with (� +�) and (� ��)
respectively then corresponding upper bound on yield
will be assigned the 1� level. Similar case is with 2�,
3� and others. if USL and LSL coincide with (� +6�)
and (� � 6�) respectively, we obtain six sigma level
of performance, which corresponds to a probability of
non-conformance of 3.4 parts per million.
It is possible to attach a unique pair of Cp and Cpk

with each � level of performance. For example for 6�
level of performance Cp = 2 and Cpk = 1:5.
Delivery probability (DP) can be expressed in terms

of sigma levels without any diÆculty. However, in
practice there are many occasions in which even if
there are no shifts and drifts in process mean and vari-
ance, yet the process mean (�) is not centered at target
value (�) or in other words there exists some bias (or
o�set) between � and � which we denote by s and is
given as:

s = j�� � j
In these situations, by six sigma quality we mean the
actual yield must be (1 � 3:4 � 10�6) � 100% which
is upper bound on process yield for 6� quality. Our
interest is to �nd out in how many di�erent ways the
bias and variance can be adjusted together without
disturbing actual yield. This leads to a generalized
view of six sigma quality, which we call GMoSS quality.
The concept of GMoSS quality is based on the idea

of upper and lower bounds on Cp and Cpk for a given
value of actual yield. In order to explain this idea let

us start with equation:

actual yield = � (3Cpk ) + � (6Cp � 3Cpk)� 1

If we �x the value of actual yield as � in above equation
then there will be two independent variable Cp; Cpk ,
hence solution set will be unbounded. It can be shown
that for a given actual yield �, Cpk and Cpk are
bounded in a certain interval. It means the feasible
solution set (Cpk ; Cp)of the equation

� = �(3Cpk ) + � (6Cp � 3Cpk )� 1 (10)

is bounded in following manner:

C�
pk
� Cpk � C�

pk

C�
p � Cp �1

If we substitute � = (1 � 3:4 � 10�6) and plot
the curve, then all the points lying on the curve are
(Cpk ; Cp) pairs that correspond to the 6� quality level,
the points which are lying above the curve correspond
to quality levels superior to 6� and similarly the points
which lie below correspond to quality levels inferior to
6� level.
The idea behind the concept of GMoSS quality is

presented in Figure 3 where we have plotted equation
10 on Cpk � Cp plane for 6�; 5�; 4�; 3� quality stan-
dards.
We can proceed one step further by looking at the

connection between delivery probability and delivery
sharpness in the light of the GMoSS notion. For this,
we consider the plots of � quality levels on Cpk � Cp
plane and then see how Cpm behaves on the same
plot. From a process design point of view, it can be
said that for a desired level of DS (i.e. Cpm) and
DP (i.e. Cp; Cpk ); this curve provides a set of 3-
tuples (Cp; Cpk ; Cpm) which all satisfy these two re-
quirements. The designer has to decide which one of
the triples to choose depending upon other limitations.
In order to plot such curves, we consider the iden-

tity relation among Cp; Cpk and Cpm (9) in a slightly
di�erent form:

Cpk = Cp

 
1�

s
1

9C2
pm

� 1

9C2
p

!

Now for a given constant value of Cpm (say C�

pm
)

above equation can be plotted on Cpk�Cp plane which
will be a contour of Cpm = C�

pm
on Cpk � Cp plane.

It can be shown easily that this equation represents a
hyperbola. Figure 3 shows some contours of Cpm on
Cpk � Cp plane.



5TABLE III

Bounds on PCIs for Actual Yield = �

Bound Formula Description

C�
p

1

3

�
��1

�
1 + �

2

�� If process's Cp is less than C�
p

then it's actual yield

can't be equal to � no matter how large Cpk is.

C�
pk

1

3

�
��1(�)

� If process's Cpk is less than C�pk then it's actual yield

can't be equal to � no matter how large the Cp is.

C�pk
1

3

�
��1

�
1 + �

2

�� If process's Cpk is greater than C�
pk

then it's actual
yield can't be less than or equal to � no matter how
small Cp is

C�
p

1

6

�
3C�

pk
+��1

�
1 + ���

�
3C�

pk

���
=1

For any value of Cp greater than or equal to C�
p
it is

possible to �nd a corresponding Cpk such that actual
yield of the process is �
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III. Variance Pool Allocation (VPA)
Problem

A. Linear Supply Chains: An Overview of Variation

in Lead Time

Let us consider a linear or pipelined supply chain
with n processes as shown in Figure 4. In this supply

σ1 σ2

µ2µ1 µ3 µ

<==>

σ

µ

PROCESS 1 PROCESS 2 PROCESS 3 PROCESS n EQUIVALENT  
PROCESS 

σ

n

nσ3

Fig. 4. A Pipelined Supply Chain Architecture

chain, material 
ows from process 1 to process n and
the end product is delivered to the end customer after
processing at process n. The end-to-end lead time of
each individual process (i.e. Xi; i = 1; 2; : : : ; n) is a
continuous random variable.

B. Assumptions on Nature of Business Process and

Customer Delivery Window

The design methodology proposed in this paper is
based upon the following assumptions:
1. End-to-end lead time Xi of each business process i
is normally distributed.
2. Each business process i is subjected to delivery re-
quirements on lead time imposed by the downstream
process in the chain. This delivery time requirement
is called as customer delivery window. A typical cus-
tomer delivery window for process i is of the form
(�i; Ti).
3. Individual lead times are mutually independent of
one another and also they are under statistical control.
4. There is no time elapsed between transforming the
material from process i to process i+1. Hence supply
chain lead time Y (which is equal to the total sojourn
time of material within chain ) is equal to the sum of
lead times of the individual processes.

Y =

nX
i=1

Xi (11)

It is easy to see that Y will be normally distributed
with � =

Pn

i=1 �i and �2 =
Pn

i=1 �
2
i as it is sum of n

independent normally distributed random variables.

C. Problem Description

In this section, we present a list of all known param-
eters, decision variables, and constraints for the VPA
problem.

C.1 Known Parameters

1. Customer delivery window for lead time of each pro-
cess i.e., (�i; Ti)8i.
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2. Customer delivery window for supply chain lead
time i.e., (�; T ).
3. Mean �i of random variable Xi 8i.
4. Cost of lead time per unit item produced, denoted
by Ci, for each process i. This cost is that part of
the total processing cost which is associated with lead
time. We take this as a polynomial of order 3 in Cpi
where Cpi is the process capability index for lead time
of process i.

Ci = ai0 + ai1Cpi + ai2C
2
pi
+ ai3C

3
pi

(12)

here ai0; ai1; ai2; ai3 are constants.
In most practical situations, cost of lead time per unit
for any process i increases as variance �i decreases be-
cause �i is constant here. On the other hand Cpi is
inversely proportional to �i. Hence any kind of func-
tion Ci = f(�i) can be expressed in terms of Cpi which
means Ci = f(�i) = g(Cpi).
We can invoke Taylor's theorem to approximate the
function g(Cpi) by a polynomial of order three in Cpi .

If we assume that g; g
0

; g
00

; g
000

are continuous in the in-
terval [0; Cpi ] and g

000

is di�erentiable on (0; Cpi) then
it immediately follows from the Taylor's theorem that
cost Ci can be approximated by a third order Taylor
polynomial which we have put in the form of equation
12. Conceptual and computational simplicity are the
motivation behind choosing a third order Taylor series.
Moreover, it is diÆcult to expect signi�cant e�ects of
greater than third order in situations such as these.
In general one can take polynomial of higher orders, if
computational simplicity is not a criterion.

C.2 Decision Variables and Constraints

In the VPA problem, the decision variables are vari-
ance values �i of lead time Xi of each process i in the
supply chain.

Following are the constraints in the VPA problem:

1. Standard deviation � of the supply chain lead time
Y depends on �is. This � will decide how many cus-
tomers are expected to receive the delivery within a
speci�ed time window ( which we have called as deliv-
ery probability or DP). Hence DP is directly a�ected
by �is. Thus the constraint is that the DP for supply
chain lead time should be at least at the level of 6� or
any speci�ed � level.
2. Taguchi loss for supply chain lead time depends
upon (�; �; �). But in the VPA problem, � and � are
�xed so it depends on only on � which in turn depends
on �is. Therefore, �is a�ect Cpm and hence delivery
sharpness (DS) also. Therefore, another constraint is
that DS should be at least at the level of C�

pm
.

IV. A Design Methodology for VPA Problem

A. Step 1: Problem Formulation

The �rst point to notice here is that although the
decision variables in VPA problem are (�1; �2; : : : ; �n),
our design methodology considers (Cp1 ; Cp2 ; : : : ; Cpn)
as decision variables because of three reasons:
� Cpi =

Ti
3�i

where Ti is given. Therefore, �i can be
expressed explicitly in terms of Cpi .
� Cost of processing time at process i (Ci) can be ex-
pressed in terms of Cpi .
� It is easy to formulate the constraints of VPA prob-
lem in terms of Cpis rather than �is.
The VPA problem can now be expressed in the form
of a nonlinear optimization problem as follows:
Objective Function:

Minimize

C =

nX
i=1

Ci

=
nX
i=1

ai0 +
nX
i=1

ai1Cpi +

nX
i=1

ai2C
2
pi
+

nX
i=1

ai3C
3
pi

(13)

Constraints:

1. DS for supply chain lead time � C�

pm

2. DP for supply chain lead time should be at least
at the level of 6�. This means that value of Cp and
Cpk should be chosen in such a way that the point
(Cpk ; Cp) lies on or above 6� curve in Cpk �Cp plane.
3. Cpi � 0 8i
B. Step 2: Formulation of Constraints in terms of De-

cision Variables

In step 1, the constraints, except constraint 3, are
not expressed in terms of decision variables (i.e. C 0

pi
s).

Therefore, the objective of this step is to express the
constraints explicitly in terms of decision variables. As
per assumptions made in Subsection 4.2, the variance
of supply chain lead time Y (i.e. �) can be expressed
in terms of variance (�i) of processing time of process
Xi. We will just reengineer this expression in order to
express the constraints in terms of decision variables.
Let us start with expression

�2 = �21 + �22 + : : :+ �2n

) T 2

9C2
p

=
p2

9C2
pk

=
T 2
1

9C2
p1

+
T 2
2

9C2
p2

+ : : :+
T 2
n

9C2
pn

(14)

Equation (14) states that once the pair (Cp; Cpk )
is chosen for supply chain lead time Y , the feasible
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solution set will get automatically �xed and it is the set
of all those n-tuples (Cp1 ; Cp2 ; : : : ; Cpn) which satisfy
this equation for the chosen value of Cp and Cpk .
The idea to get such a pair (Cp; Cpk ) is to choose the

pairs that satisfy both constraints (1) and (2) and use
it in equation (14) in order to get the desired constraint
in terms of decision variables. But again the problem
is that many such pairs may exist. In such a situation,
selection of the best pair is an important issue; we
consider this below.

C. Step 3: Fixing Values for Cp and Cpk

As pointed out in the last section, our problem is
to �nd a (Cp; Cpk) pair which satis�es constraints (1)
and (2) and also satis�es the following relation:

T 2

9C2
p

=
p2

9C2
pk

(15)

The above condition is because of equation (14). Re-
member that T and p are known parameters in the
VPA problem. This condition forces the desired
(Cp; Cpk ) pair to lie on the line Cpk =

p
T
Cp in Cpk�Cp

plane. On the other hand, constraint (1) forces it to
lie on or above the contour Cpm = C�

pm
and constraint

(2) forces it to lie on or above the 6� curve in the same
plane. Therefore, in the Cpk � Cp plane it is possible
to �nd a feasible region such that every point of the
region satis�es both constraint 1, 2 and also condi-
tion (15). Figure 5 shows di�erent cases of such kinds
of feasible regions depending upon relative positions
of Cpm = C�

pm
contour (in short Cpm curve) and 6�

curve (in short � curve). From Figure 5 it is clear
that feasible region in each case is the part of the line
Cpk =

p

T
Cp that intersects with the shaded region. We

have called it as line `OP'1. In every case, the point `E'
where the line `OP' enters into shaded region is taken
as the �nal desired (Cp; Cpk ) pair. The reason behind
choosing this point is that if we choose any other point
on the feasible region then the corresponding Cp value
will be high which will result in higher value of individ-
ual Cpi and hence higher delivery cost. Let us denote
this pair as (C�

p ; C
�

pk
). The point E(C�

p ; C
�

pk
) can be

computed in each case in following way.
Case 1 Observe that in this case there is no point
of intersection between Cpm curve and � curve. In
this case point `E' is the point of intersection of line
Cpk =

�
p

T

�
Cp and C�

pm
curve.2 Therefore solving the

corresponding equations results in following expres-
sions for C�

p and C�

pk
.

1For the sake of clarity of picture, we have not shown the line
`OP' in each case. It is shown only in case 1 but in other cases
it is understood
2If such a point doesn't exist, then we will stop and declare

that the problem doesn't have any feasible solution.

σCURVE σCURVE σCURVE

σCURVE σCURVE

Cpk>Cp Cpk>Cp Cpk>Cp
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CASE 2CASE 1 CASE 2

CASE 4CASE 3
Cp Cp Cp

CpCp

Cpk Cpk Cpk

Cpk Cpk
Q3

Q
Q

Q2
Q1 Q1 Q2

Fig. 5. All the possible con�gurations of Cpm curve, � curve
and line `OP' on Cpk � Cp Plane

C�

p =
1q

1
(C�

pm
)2 � 9

�
1� p

T

�2 (16)

C�

pk
=

� p
T

�
C�

p (17)

Case 2 Observe that in this case there is only one
point of intersection between � curve and Cpm curve.
Let us mark this point as Q = (Cpk1 ; Cp1). It can be
easily veri�ed that point E(C�

p ; C
�

pk
) will be the point

of intersection of line OP with Cpm curve or � curve de-
pending upon whether p

T
is less than or greater than

Cpk1
Cp1

respectively. If these two quantities are equal

then point Q will become point E. In any one of these
subcases, the point E can be found out by solving ap-
propriate equations.
Case 3 Observe that in this case there are two points
of intersection between the Cpmcurve and � curve. Let
us mark these points as Q1 =

�
Cpk1 ; Cp1

�
and Q2 =�

Cpk2 ; Cp2
�
where Cp1 < Cp2 . The point E can be

found out in the same way by comparing the p

T
with

Cpk1
Cp1

and
Cpk2
Cp2

, as discussed in case 2.

Case 4 This case can be handled exactly in the same
way as we did for case 3 except that here the points of
intersection between the two curves are three.

D. Step 4: Solving the Optimization Problem

Now the optimization problem which we presented
in step 1 can be rewritten as: Minimize cost C, given
by equation 13, subject to
1.

nX
i=1

T 2
i

C2
pi

=
T 2

C�
2

p

=
p2

C�
2

pk

(18)

2.

Cpi � 0 8i (19)
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The problem can be solved by using the method of
Lagrange multipliers [11]. The method is illustrated
in the example in the next section.

V. An Example

We now consider a supply chain for a plastics indus-
try (a certain anonymous �rm in the western state of
Maharashtra, India) and provide the basis for apply-
ing our design methodology. Figure 6 shows the supply
chain at an aggregate level. The supply chain has six
business processes namely Procurement, Sheet Fabri-
cation, Transportation, Manufacturing, Assembly, and
Delivery.

RAW MATERIAL
PROCUREMENT

SHEET
FABRICATION

INBOUND LOGISTIC MANUFACTURING ASSEMBLEY OUTBOUND LOGISTIC

Fig. 6. An Example of a Pipelined Supply Chain: A Typical
Plastic Industry Supply Chain

Let all the business processes in the chain satisfy the
assumptions mentioned in subsection 4.2. The prob-
lem here is to �nd out standard deviation �i of lead
time Xi of all the processes in the chain such that a de-
livery probability of 6� level is attained and also a des-
ignated level of delivery sharpness, say, Cpm = 1:42782
(arbitrarily chosen in this case), is achieved. The
known parameters are tabulated in Table IV. Let the
target value � of the end-to-end supply chain lead time
Y be 82 days and tolerance T be 6.5 days.
Steps 1 and 2: The objective function and constraints
can be given as:
Objective Function:

Minimize

C =

6X
i=1

Ci

= 6 +

6X
i=1

Cpi +

6X
i=1

C2
pi
+

6X
i=1

C3
pi

Constraints:

1.

6X
i=1

T 2
i

C2
pi

=
42:25

C�
2

p

=
30:25

C�
2

pk

(20)

2.

Cpi � 0 8 i = 1; 2; : : : ; 6 (21)

Step 3 If we draw the 6� curve, Cpm=C
�

pm
=1.42782

curve and line Cpk =
�
5:5
6:5

�
Cp on Cpk � Cp plane

then the situation will fall into case 2 of step 3 of our
methodology. Therefore point (C�

pk
; C�

p ) can be com-
puted with the help of equations (16) and (17). This
point comes out to be:

C�

p = 1:89832236

C�

pk
= 1:606272774

Step 4 Substituting the values of C�

p ; C
�

pk
in constraint

(20), we obtain following constraint to work with while
solving optimization problem.

6X
i=1

T 2
i

C2
pi

= 11:72429622

Now we will apply the Lagrange Multiplier Method in
order to solve this optimization problem.
1. Lagrange Function Lagrange function L(Cp1 ; : : : ; Cp6 ; �)
is given as:

L(Cp1 ; : : : ; Cp6 ; �) = C + �

 
6X
i=1

T 2
i

C2
pi

�11:72429622)
2. Necessary Condition for Stationary Points Let point
P� = (C�

p1
; : : : ; C�

p6
; ��) correspond to the optimal

point then this point must satisfy the following nec-
essary conditions:

2�� = 3C�
5

p1
+ 2C�

4

p1
+ C�

3

p1

18�� = 3C�
5

p2
+ 2C�

4

p2
+ C�

3

p2

2�� = 3C�
5

p3
+ 2C�

4

p3
+ C�

3

p3

18�� = 3C�
5

p4
+ 2C�

4

p4
+ C�

3

p4

8�� = 3C�
5

p5
+ 2C�

4

p5
+ C�

3

p5

2�� = 3C�
5

p6
+ 2C�

4

p6
+ C�

3

p6

11:72429622 =
2

C�
2

p1

+
18

C�
2

p2

+
2

C�
2

p3

+
18

C�
2

p4

+
8

C�
2

p5

+
2

C�
2

p6

Solving this system of equations by standard numerical
methods we get only one real solution:

C�

p1
= C�

p3
= C�

p6
= 1:005670

C�

p2
= C�

p4
= 1:645700
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Known Parameters for Plastic Industry Supply Chain Problem

Procurement
(X1)

Sheet
Fabrication

(X2)

Inbound
Logistics
(X3)

Manufacturing
(X4)

Assembly
(X5)

Outbound
Logistics
(X6)

�1 = 7 days �2 = 30 days �3 = 3 days �4 = 30 days �5 = 10 days �6 = 3 days
�1 = 6 days �2 = 28 days �3 = 3 days �4 = 28 days �5 = 7 days �6 = 2:5 days
T1 = 1 days T2 = 3 days T3 = 1 days T4 = 3 days T5 = 2 days T6 = 1 days
a10 = 1 a20 = 1 a30 = 1 a40 = 1 a50 = 1 a60 = 1
a11 = 1 a21 = 1 a31 = 1 a41 = 1 a51 = 1 a61 = 1
a12 = 1 a22 = 1 a32 = 1 a42 = 1 a52 = 1 a62 = 1
a13 = 1 a23 = 1 a33 = 1 a43 = 1 a53 = 1 a63 = 1

C�

p5
= 1:376280

�� = 3:074458

Under this operating condition cost of delivery is:

C� = 38:601998

It can be veri�ed easily by the suÆciency condition
that this point corresponds to the point of minimum.

VI. Implications of the Work

In our view, this research has several important im-
plications.
� It provides an elegant characterization for supply
chain delivery performance in terms of two metrics,
delivery probability and delivery sharpness, and three
well known process capability indices.
� The above metrics and capability indices will provide
a general framework for developing a design method-
ology for supply chains.
� The variance allocation problem is an important �rst
step in the design of synchronized supply chains.
The work has some limitations. First of all, only lin-

ear or pipelined supply chains have been considered.
Only normal distributions are allowed in our analy-
sis and formulations. Also, several assumptions have
been made in formulating and solving the variance al-
location problem. Many of these limitations can be
surmounted in due course of time and provide impor-
tant directions for further work.
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