AFL Fuzzing Algorithm

M. Raveendra Kumar (
K.V. Raghavan (raghavan@iisc.ac.in)

e

mailto:raveendra.kumar@tcs.com

Given: Instrumented program P, and a set of valid seed inputs S.

Data structures:

1
2.

1)

Q= 0. currQ=null. // Working queue of test cases
Q,=® // Queue of crashed and hanging test cases

G = Table with 21 entries, each entry bein€8bit5 (one byte), initialized to OxFF // A zero at k'™ bit position
in a table entry G[bp] indicates that in some run seen so far roundOff(visit count of branch-
pair bp) = 2%, where 0<k<7. This structure persists across all runs of P.

Shm = Table with 21° entries, each entry being one byte, initalized to zero // Shared memory table. Shared
with the Br‘ogr‘am P. Is re-initialized tor each run of P. Shm[bp] contains (rounded off) visit
count to branch pair bp by the current run.

R = Table with 216 entries, each entry initalized tonull // Each table entry R[bp] contains a preferred
test input for that branch pair bp. Persists across all runs.

cycle =0 // Number of processing cycles of Q@

G, = Table with 2® entries, each entry being 8 bits (one byte), initialized to 0xFF // This structure maintains
the information exactly the same way as G, but only for crashed or hanged runs of P.

main:

for allt, € seed set S do

reinitialize Shm to all zeroes
Shm = execute(P,t;) // Execute P with t; as input
roundOff(Shm)

addToQueue(t,, Shm) // Add test case to the queue
end for

AFL-fuzz - main (continued)
curr@ = head of

repeat
Qpr = prioritize(Q) // Prioritize test cases
t = chooseNext(Q, Q) // Select a test case from queue
Qn= 0 // List of new mutants
if tisnotfuzzed so far then
Q,, += mutateDeterministically(t) // Add deterministically fuzzed ones
endif
N = assignFuzzingEnergy(t) // Determine number of non-deterministic
// mutants to produce
Q,, += mutateNonDet (¢, N) // Mutate t non-deterministically N times

forallt' € Q,,do
reinitialize Shm to all zeroes

Shm = execute(P,t")
if (P crashes or hangs) them // Is t' causing a crash or a hang of P?
if isUniqueCrashOrHang(t’, Shm) then
add t' to Q, // Store it as crashing input
endif
else if isInterestingTestCase(t’,Shm) then // Is t of interest?
addToQueue(t’,Shm) // If yes, add it to queue
endif

end for
until user stops fuzzing // run this until user stops it

AFL-fuzz - addToQueue

2) addToQueue(t',Shm):
Create metadata m for t’' // metadata m: size of t’, exec_time of P with ¢, cycle and depth at which ¢’
is discovered, and number of bps covered by ¢’
append (t’,m) to end of Q
updateCoverage(G,Shm,t’) // update G and R using t’
fori=1tosizeOf(G) do
if Shm[i] #0then // If test input t' visited branch pair i
if R[i] # null and score(R[i]) = score(t’) then // For any test input t,score(t) = size(t)*exec_time(t)

Rli] =1t
endif
endif // Shm[i] #0

end for

3) updateCoverage(G,Shm,t'):
fori=1tosizeOf(G)do
if Shmli] # 0 and G[i] == 255 then
Rl[i]=t'
endif
if Shmli] & G[i] > 0 then //Does Shm[i] have a new visit count never seen before by other test inputs?
G[i] = G[i] & ~Shm[i] // zero the corresponding visited bit in G
endif
end for

AFL-fuzz - prioritize

4) prioritize(Q):

Qpr = 0
forteQdo
if 3i.R[i] =tandt & Q,, then
add t to Qp
endif
end for

return Qp,

AFL-ftuzz - chooseNext

5) chooseNext(Q, Q,,):
while(true)

Advance currQ to next element of @ (to head of @ 1n case currQ already at last element)

if currQ wrapped around in previous step, then cycle = cycle + 1

Let t be the test case in Q at currQ
Let b = random(100)
if b < 95then
if t € Q- or tisnotfuzzed so far then
returnt
endif
else

returnt

endif
end while

AFL-fuzz - assignFuzzingEnegry

6) assignFuzzingEnergy(t):
Let N = 100.
Let N; be the N X a factor inversely proportional to t's execution time.
Let N, be N; X a factor based on number of branch pairs covered by t.
Let N; be N, X a factor based on cycle of t's discovery
Let N, be N; X a factor based on depth of t's discovery.

return N,

AFL-fuzz - isInterestingTestCase

7) isInterestingTestCase(t, Shm):
roundOff(Shm) // rounds of every element in Shm to a power of 2
for i = 0to SizeOf(G) do
if Gli] == 255 and Shm[i] # 0 or
(G[i] # 255 and Shm[i] & G[i] > 0) then // Is there any new visit bit in Shm[i] relative to G[i]?

return

endif
end for
return false

8) roundOff (Shm):
for i =0to SizeOf(Shm) do

if Shmli] == 0 then Shm[i] = 0 // all bits set to zero
elseif Shm[i] == 1 then Shm[i] = 1 // 0000 0001

else if Shm[i] == 2 then Shm[i] = 2 // 0000 0010

elseif Shm|i] == 3 then Shim[i] = // 0000 0100

else if Shmli] = 4 and Shm[i] < 7 then Shm|i] = // 0000 1000

elseif Shm[i] = 8 and Shm|[i] < 15 then Shm|i] // 0001 0000

else if Shmli] = 16 and Shm|[i] < 31 then Shm|[i] = // 0010 0000

elseif Shm[i] = 32 and Shm[i] < 127 then Shm]i] // 0100 0000

else Shm[i] = 128 // 1000 0000

end for

AFL-fuzz — isUniqueCrashOrHang

9) isUniqueCrashOrHang(t, Shm):
uniqueCrashOrHangFlag = false

roundOff(Shm) // rounds of every element in Shm to a power of 2
for i =0to SizeOf(G,.) do

if (G.li] == 255 and Shm[i] # 0) or
(G [i] # 255 and Shmli] & G_[i] > 0) then // Is there any new visit bit in Shm[i] relative to G_[i]?

G.li] =G.li] & ~Shm|i] // zero the corresponding visited bit in G_
uniqueCrashOrHangFlag = true
endif
end for

return uniqueCrashOrHangFlag

