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ABSTRACT 

The internal program representation chosen for a 
software development environment plays a critical 
role in the nature of that enviromnent. A form 
should facilitate implementation and contribute to 
the responsiveness of the environment to the user. 
The program depe~dgnce_~raph (PDG) may he a 
suitable internal form. It allows programs to be 
sliced in linear time for debugging and for use by 
language-directed editors. The slices obtained are 
more accurate than those obtained with existing 
methods because I/O is accounted for correctly and 
irrelevant statements on multi-statement lines are 
not displayed. The PDG may be interpreted in a 
data driven fashion or may have highly optimized 
(including vectorized) code produced from it. It 
is amenable to incremental data flow analysis, 
improving response time to the user in an 
interactive environment and facilitating debugging 
through data flow anomaly detection. It may also 
offer a good basis for software complexity metrics, 
adding to the completeness of an environment based 
on it. 

Categories and Subject Descr iptors:  D . I . 2 ,  D.2 .2 ,  
D.2.5,  D.2.6,  D.2.8,  D.3.4 
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1. Introduct ion 

A software development epviro~ent is generally 
conceived of as an interactive system which 
supports program development in an integrated 
fashion [18]. The editors, compilers, linking 
loader, word processors, program data base system, 
run-time system, interactive debugger and other 
tools provide more assistance to the programmer in 
producing correct code quickly when they operate in 
a consistent framework that is knowledgeable about 
the syntax and semantics of the source languages 
and, if possible, knowledgeable about the problem 
being solved. 

The internal program representation chosen for a 
software development environment plays a critical 
role in the nature of that environment. The 
internal form is a major part of the nucleus of the 
system design, affecting potentially all tools. A 
form should facilitate implementation by permitting 
all environmental operations to be performed by 
easily programmed procedures. Further, the 
algorithms employed by those procedures should be 
fast in order to support the interactive nature of 
the environment. It is particularly important to 
note that the "environmental operations" under 
consideration consist of more than support for 
translation and editing functions. An internal 
representation should support debugging tools and 
the gathering of software complexity metrics as 
well. 

Each internal representation is most appropriate 
in specific contexts. Abstract syntax trees, ~or 
example, are perfect if the only concern is editing 
and the generation of straightforward code. Syntax 
trees can capture the structure and content of the 
entire source program so that the intermediate can 
be the only program representation extant during 
program manipulation. (That is, a separate source 
file need not be retained.) Syntax trees do not 
represent any data flow information~ however, and 
control information is not abstracted, as it mirrors 
the source. They are thus unsuitable for 
optimization and a variety of other tasks. 

~he program dependence ~raph (PDG) [13] has a 
number of advantages as an internal form in a 
software development environment. It can support 
editing, translation, debugging and program 
metrics. The PDG may be interpreted or it may have 
highly optimized (and vectorized [31]) code 
generated from it if desired [13]. It is thus 
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suitable for an environment supporting both 
execution models. In addition, the PDG is amenable 
to incremental data flow update, an important 
feature in an interactive enviromnent in which it 
is helpful to report data flow anomalies as they 
occur in order to aid in debugging [21]. Finally, 
the PDG appears useful for the gathering of 
software complexity metrics. 

The remainder of this paper will address each of 
these issues in turn: the PDG, a debugging tool 
known as "slicing", execution models, incremental 
graph updating, software complexity metrics and 
practical considerations. 

2. The Program Dependence Graph 

It is necessary for the internal program 
representation in a software development 
environment to capture as much data and control 
dependence information as possible in order to 
effectively support the types of environmental 
operations suggested in the introduction. Much 
related work has been performed over the past nine 
years in this area of dependence-based program 
forms. Dennis" work [8] opened up the field of 
dala flo__.w computation [9]. Most representations in 
that area treat all dependences as data 
dependences, control dependences being converted as 
necessary. (Some forms, however, do treat control 
differently [30].) The program plans [33] of the 
Programmer's Apprentice project [32] represent 
control and data dependences in a modularized form 
in which loops have been converted to recursion. 
The goals there involve program understanding to 
aid modification. The ~ata dependence ~raphs used 
in the Illinois vectorizer [24] are designed to 
hierarchically analyze dependence relations in 
programs. Further work involving the ideas of 
dependence depth and loop carried dependence [2,3] 
for vectorizing transformations has been carried 
out at Rice University. IFI [27] is a proposed 
intermediate for applicative languages, but offers 
too compartmentalized a view to support major 
program restructuring. The ~ata flow .graph 
[23,22], conceived with program optimization in 
mind, represents global data dependence at the 
operator level. Transformations which involve both 
control and data dependence cannot be specified in 
a consistent manner with this form, however, since 
control is represented by a conventional control 
flow graph. The extended dais ~low Rraph [12] 
represents control dependence consistently with 
data dependence, but can only represent 
"structured" programs. The program dependence 
graph [13] eliminates this restriction on control 
flow. It is the abstraction of control dependence 
in these latter two forms which makes them so 
suitable for constructing program slices (discussed 
in the next section) and for performing major 
restructuring optimizations [12,13]. 

Figure 2(a) gives the usual control flow graph 
for the program fragment in Figure I, annotated to 
indicate the locations of the blocks of program 
statements. Figure 2(b) gives the control 
dependence subgraph of the PDG for the same 
program. "Entry" is the condition for execution of 
the program, and is a distinguished node in every 
PDG. Predicates define regions, labeled Ri. All 
operators (statements) in a region are successors 

of a region node. 

Note the difference in structure between these 
two graphs. The PDG subgraph shows that the two 
loops and final statement may be independent of 
each other. As far as control information is 
concerned, this may b~ the case. Data dependences 
might, and in this example will, actually impose a 
sequencing on these regions. The PDG subgraph does 
not show statement block S1 as being in a loop. 
From a Control dependence standpoint, S1 is loop 
invariant: it is the data dependence cycle on I 
which determines that S1 is loop dependent. The 
implied organization given by the conventional 
control flow graph is limiting to optimization 
(because it hinders the rearrangement of large 
sections of code as done in [12]). It is also 
limiting to slicing, as we shall describe in the 
next section. 

Figure 3 shows the PDG for this example. The 
solid edges represent data dependence and dashed 
edges represent control dependence. (We only 
illustrate the PDG through this example. The 
definition appears in [12] and allows for the 
various forms of dependence described in [24].) 
Figure 3 is not quite accurate in that there should 
be only one node for each program constant. This 
is relaxed here to increase the clarity of the 
figure. The update operator takes as input an 
array, an index and a value and produces an updated 
array as its value. Near the top of the figure, 
the initialization of the array A is performed with 
an .~_a/~_operator. The node a which is an input 
to the ~pdate represents the set of reaching 
definitions for the array ~. Select retrieves the 
value of a given element from an array. The 
objects input and out~ represent file descriptors 
and are thus updated when operations are performed 
on them. (File descriptors are both inputs and 
outputs of most I/O procedures.) The two read 
operators used here would be merged into one 
operator in the actual PDG since they reside in the 
same predicate region. They remain distinct here 
to permit us to illustrate the importance of making 
the implicit input file explicit in the 
intermediate form as an aid to slicing. 

3. Sl i c ing  with the FIE 

Slicine is the abstraction of sets of statements 
which influence the value of a variable at a 
particular program location [35,36]. An experiment 
by Weiser [36] indicated that programmers use 
slices when debugging and could therefore benefit 
from the development of a tool to provide slicing 
information automatically. A potential environment 
using slicing could allow the user to edit a 
program using slice membership as the basis for 
inclusion in a window rather than syntactic 
structure alone. A debugger could display the 
offending slice in a window on an error condition 
or breakpoint rather than the entire syntactic 
context. (We assume a display routine which would 
provide automatic eliding of deeply nested 
statements, as is done in LISPEDIT [1,20]. Partial 
slices, without elision, are displayed for COBOL 
programs by [29].) 

The computation of slices is based on ~ata 
dependence as well as control dependenc_e. A 
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computation which affects the value of a variable 
at a desired observation point may be under the 
influence of a predicate (i.e., executed only when 
a predicate has a particular truth-value). Those 
statements which make up the control structure 
using the predicate must be included in the slice 
along with all statements in the data dependence 
subgraph which determine value flow to the 
observation point. 

Explicit data and control dependence make the 
PDG ideal for constructing program slices. The PDG 
must be augmented with source text indicators such 
as (file, line pointer) pairs. The source text 
must be stored in an augmented form where each 
token points to the node in the PDG which 
represents it. (When common subexpression 
elimination is enabled, this mapping will not be 
one to one.) Some tokens, such as  parentheses and 
block delimiters, which merely state precedence 
conditions will have no corresponding PDG node, but 
can be inferred from the PDG structure. 

Since we are interested in walking back through 
the graph (and not forward), we can reverse the 
direction of the pointers in the physical PDG. Our 
pointers, therefore, tell us where data came from 
rather than where it is flowing. (This 
implementation is in fact sufficient for many 
optimization and code generation algorithms 
[22,23J; however, some optimizations as well as 
interpretation require forward flow information 
also, necessitating a doubly-linked implement- 
ation.) 

How is a slice built? Suppose a user selects a 
variable, expression or statement in a program and 
wants the slice which is relevant to all variables 
in that object. The augmented source file points 
to the corresponding PDG nodes. A linear-time 
graph walk is made backwards from each of these 
nodes, building up a set containing the source text 
line indicators for all visited nodes. The walk 
terminates at either inputs, c o n s t a n t s ,  or 
already-visited nodes. The slice set is then used 
to retrieve the relevant source lines for display. 
A source line may contain several statements, 
though, with only some being in the slice. The 
augmented source file allows us to delete these 
irrelevant statements since we can examine each 
token to see if its corresponding PDG node was 
visited in the walk. 

Consider Figures 1 and 3. To construct the 
slice for a~last] in the final write!n, we start at 
the left and bottom-most select operator and walk 
backwards on all paths. Marking the immediate 
control predicates of included lines allows the 
determination of when to include precedence tokens 
such as benin-end. We thus obtain: 

for i := 1 to last do 
a[i] := 0; 

while not eof do 
begin 

read (code, value); 
read (dummy); 
if code = "a" then 

a[value] := a[value] + 1 
end; 

w r i t e l n  (a[last], b[last]); 

The representation of I/0 with explicit file 
descriptors in the PDG caused the statement read 
~dummy) to be included in the slice. If it were 
not included, the programmer would be hard-pressed 
to find an input file sequencing bug. (A11 related 
I/0 statements are not included in Weiser's 
slices.) 

This slice could not have been as readily 
obtained were a conventional control flow graph 
part of the representation. ~ssume arbitrary 
control flow between the two loops in Figures 1 and 
2(a). As long as no data values in that region 
affect the data values in our slice, none of that 
structure would ever be seen during our walk of the 
PDG. With a control flow graph, however, we would 
have to determine t h a t  none of t h e  control-related 
computations on that path affected the computation. 
Weiser's algorithm for doing this is O(n e!p~e) 
where n is the number of nodes in the control flow 
graph and e is the number of edges. In debugging, 
one is apt to find the slicing tool most helpful 
when the portions of the slice are dispersed widely 
throughout the program. It is precisely in this 
situation that analyzing the control flow would be 
slow. But, traversing the PDG remains linear in 
time and is proportional to the amount of 
information in the slice. 

This discussion on using the PDG to obtain 
slicing information has assumed that we are dealing 
with an untransformed PDG. In order to obtain 
slices from a PDG transformed by optimization 
algorithms, additional information must be posted 
to the graph. For example, when a common 
subexpression is eliminated by replacing a 
dependence edge from one computation with an edge 
from another, a marker node must be inserted along 
the new edge to retain the correct source line 
information. In other cases, nothing special need 
be done since some optimizations lead to more 
accurate slices. Invariant code motion causes loop 
independent computations to be moved outside of 
loops, maintaining safety by moving any guarding 
predicates as necessary [12]. If a slice includes 
a computation which is loop invariant, the loop 
control structure is irrelevant and should not be 
presented to the programmer. 

4. RxecutionModels 

The method of program execution chosen for an 
environment is important in determining an 
appropriate internal form. Some forms may be more 
suited to interpretation than the generation of 
object code or vice versa. The PDG is amenable to 
both execution models. 

The PDG has been designed with the idea of 
producing highly optimized code for a variety of 
architectures, including parallel ones [ 1 3 ] .  
Zellweger's work deals with some of the problems of 
using optimization in a programming environment 
supporting an interactive debugger [37]. Hennessy 
addresses the difficulty of this issue [16]. 

A PDG can be interpreted, but not by 
conventional methods. It is a highly parallel form 
with no linear sequencing of operators. It is thus 
convenient to interpret it in a pseudo-parallel 
fashion which is both control and data driven. We 
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maintain a list of nodes for which all data and 
control inputs are available, Nodes are removed 
from the list, interpreted, and the resulting value 
is transmitted to successors. Each successor is 
examined at once and is added to the execution list 
if it does not require any additional inputs. The 
virtual machine which our interpreter implements, 
then, is a form of data flow machine [9]. Unlike 
those machines, side-effects are not precluded here 
since, e.g., arrays may be implemented either 
functionally or using a memory model. 

Every PDG or slice has the distinguished 
predicate entry which must be "evaluated" before 
anything else in the graph may be. The execution 
list is thus initialized to contain the node entry, 
given the simple evaluation rule: entry --> true. 
For consistency and efficiency, all values may be 
passed through the graph during interpretation by 
copying pointers. No separate storage allocation 
phase is required, as storage may be allocated and 
freed dynamically during interpretation. 

5. Incremental Update 

The internal representation could be constructed 
completely each time a user stops editing and wants 
to ask a question about the program or to execute 
it. In most situations, it might be preferable to 
update the internal form while the user is editing 
the source to minimize response time delays. Since 
the PDG represents all data and control flow 
information explicitly, this means that incremental 
flow analysis techniques must be employed to avoid 
complete PDG reconstruction. (An incremental 
analysis attempts to propagate the new information 
without reexamining the entire program.) 

Incremental analysis is needed when new 
definitions are added, old ones removed or the 
control flow changed. It is not required when new 
references to existing objects are added. But, to 
support the modification of the PDG in this case, 
it is necessary to retain the basic data flow 
information for each basic block. When the data 
flow analysis is performed to originally construct 
the PDG, we have information on all definitions 
which reach each statement. Only the information 
on definitions used is retained in the resulting 
PDG. Yet, retaining those original sets of 
definitions allows us to immediately determine if 
there are any definitions for a new reference to a 
variable. 

A new incremental method for updating data and 
control dependences when a branch is removed or a 
loop unrolled is sketched in [13] and will be 
detailed elsewhere. This method needs to examine 
only the PDG. We suspect that some other update 
problems can be solved in a similar manner. Most 
update problems may best be attacked with the 
methods of Ryder [25] and Wegman [34]. 

We assume throughout this paper that data flow 
information (if not the entire PDG) is retained in 
all libraries referenced by a module under 
development so that interprocedural flow analysis 
will not require reanalysis of existing modules. 

6.  Program Complexity Metrics 

A software development environment should aid in 
the construction of understandable, maintainable 
code. As Curtis points out [7], the measurement of 
the psychological complexity of software is of 
increasing interest because of the rising 
proportion of overall system costs attributable to 
software. Measurements of software under 
development can provide important information to 
the programmer and perhaps permit some automatic 
restructuring. We feel that a metric based on the 
PDG and/or slicing would provide a step forward in 
this area and could be an effective tool in an 
integrated environment. 

Much of the previous work in this area has been 
based on counts of some physical attributes of the 
source program. Measurements such as McCabe's 
cyclomatic metric [19] and Schneidewind and 
Hoffman's teachability metric [26] are based on 
graph theory considerations and measure 
characteristics of the control flow graph of the 
program. ~alstead's [15] metrics are based on 
counts of operators and operands. Although 
reported research [4,5,6,14,17] has shown 
correlations between these metrics and attributes 
of the program that are considered related to 
program understandability, this type of metric can 
be easily criticized for oversimplification. 
Borrowing from linguistics terminology, we might 
say that these metrics consider surface 
characteristics of the program. We are, however, 
more interested in characteristics related to the 
"deep structure" of a program. The argument is 
that it is not just the number of operators and 
operands, the number or depth of conditionals, 
measure of the control flow graph, etc. that 
affect the clarity of a program. The nature of 
information flow must be considered. 

Some complexity metrics have attempted to better 
account for the information flow in a program. An 
example is the information flow metric defined by 
Henry [17] which is based on the number of data 
values flowing into a procedure combined with the 
number of data values flowing out of the procedure. 
Although not described as a complexity metric, 
Dunsmore and Gannon had previously used a measure 
based on the number of variables that might 
potentially be accessed at a particular statement 
[ i o ] .  

Weiser [35] has suggested several metrics based 
on slicing. These include: (I) coverage, a measure 
of the length of slices vgrsus the length of the 
program; (2) overlap, a measure of the number of 
statements in a slice which belong to no other 
slice; (3) clustering, the degree to which slices 
are reflected in the original code layout; (4) 
parallelism, the number of slices with few 
statements in common; and (5) tightness, the number 
of statements in every slice. A PDG, augmented 
with line numbers, can be used to compute these 
metrics efficiently. 

The experiments performed by Weiser [35,36], as 
well as work by Soloway [11,28], has shown that 
programmers tend to group statements in ways based 
on other than sequential relationships when 
attempting to understand programs. In general, the 
criteria used for the groupings is related to data 
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and control flow. Since this information is 
explicit in the PDG, this class of complexity 
metric may be most easily and accurately measured 
with the PDG. 

Much of the difficulty in understanding a 
program, it could be hypothesized, is due to the 
difference between the groupings of statements that 
a programmer uses to understand the program (along 
with the effort required to obtain that grouping) 
and the groupings of statements that the sequential 
source program listing or programming environment 
presents. If one hypothesizes that programmers do 
use slices when debugging [36], then Weiser"s third 
metric, clustering, appears to be of prime 
interest. In particular, a measure of the 
complexity of the slice along with its relationship 
to the original source code has appeal. Of course, 
many questions need to be answered to be able to 
define this metric. These include defining a 
measure of the complexity of a slice, describing 
the reflection of the slice in the code and 
combining the slice complexities to form an overall 
complexity metric for the program. 

The feedback given to a programmer may help in 
the manual production of code which is easier to 
understand. It may even be possible to 
automatically transform the original code to reduce 
its psychological complexity by using a complexity 
metric and the PDG. 

7 .  P r a c t i c a l  C o n s i d e r a t i o n s  

The amount of space required to represent a PDG 
is the dominating practical consideration for this 
work. Unfortunately, we cannot give very good 
estimates on anticipated space consumption since 
the size of the graph is related to the dependence 
structure, rather than to any easily measured 
surface feature of a program. We expect that: the 
PDG for a given program will consume approximately 
three times as much space as a corresponding 
representation which represents each basic block as 
a DAG and in addition retains for each block data 
flow hit vectors for reaching definitions and live 
variables. 

8 .  C o n c l u s i o n s  

We have sketched some of the issues surrounding 
the use of the program dependence graph in a 
programming environment. In addition to supporting 
editing and translation tasks, a prime benefit is 
ease in generating accurate slices. Slices are 
obtained in linear time and are more accurate than 
those obtained with existing methods both because 
I/O is accounted for correctly and because 
irrelevant statements on multi-statement lines are 
not displayed. In addition, the form is 
advantageous because it can be interpreted or 
optimized, it is amenable to incremental data flow 
analysis, can he used to detect data flow anomalies 
when debugging and supports new software complexity 
metrics. Future work should include implementation 
of the ideas presented here as well as the 
exploration of other uses of the representation in 
a software development environment. 
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c o n s t  
last = i0; 

beg  i n  
for i ::= I to last do 

b e g i n  
a[i] := 0; 
b[i] := 0 

end ;  

w h i l e  n o t  e o f  do 
b e g i n  

read (code, value); 
r e a d  (dummy) ; 
i f  code = "a" t h e n  

a[value] := a[value] + 1 
e l s e  if code : "b" t h e n  

b[value] := b[value] - I 
end; 

writeln (a[last], b[last]) 
e n d .  

Figure 1 - A Program Fragment 
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