
THE PROGRAM DEPERDE~E GRAPH
IN A SOFTWAeR DEVELOP~dst ERVIRO~u~st

Karl J. Ottenstein
Linda M. Ottenstein

Dept. of Mathematical and Computer Sciences
Michigan Technological University

Houghton, Michigan 49931

ABSTRACT

The internal program representation chosen for a
software development environment plays a critical
role in the nature of that enviromnent. A form
should facilitate implementation and contribute to
the responsiveness of the environment to the user.
The program depe~dgnce_~raph (PDG) may he a
suitable internal form. It allows programs to be
sliced in linear time for debugging and for use by
language-directed editors. The slices obtained are
more accurate than those obtained with existing
methods because I/O is accounted for correctly and
irrelevant statements on multi-statement lines are
not displayed. The PDG may be interpreted in a
data driven fashion or may have highly optimized
(including vectorized) code produced from it. It
is amenable to incremental data flow analysis,
improving response time to the user in an
interactive environment and facilitating debugging
through data flow anomaly detection. It may also
offer a good basis for software complexity metrics,
adding to the completeness of an environment based
on it.

Categories and Subject Descr iptors: D . I . 2 , D.2 .2 ,
D.2.5, D.2.6, D.2.8, D.3.4

Additional Key Words and Phrases: internal program
representation, data flow, control flow, code
optimization, program slice, interpreter,
debugging, software complexity metrics

Partial support for the authors was provided by the
National Science Foundation under Grant No.
MCS-8203487.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

©1984 ACM 0-89791-131-8/84/0400/0177500.75

1. Introduct ion

A software development epviro~ent is generally
conceived of as an interactive system which
supports program development in an integrated
fashion [18]. The editors, compilers, linking
loader, word processors, program data base system,
run-time system, interactive debugger and other
tools provide more assistance to the programmer in
producing correct code quickly when they operate in
a consistent framework that is knowledgeable about
the syntax and semantics of the source languages
and, if possible, knowledgeable about the problem
being solved.

The internal program representation chosen for a
software development environment plays a critical
role in the nature of that environment. The
internal form is a major part of the nucleus of the
system design, affecting potentially all tools. A
form should facilitate implementation by permitting
all environmental operations to be performed by
easily programmed procedures. Further, the
algorithms employed by those procedures should be
fast in order to support the interactive nature of
the environment. It is particularly important to
note that the "environmental operations" under
consideration consist of more than support for
translation and editing functions. An internal
representation should support debugging tools and
the gathering of software complexity metrics as
well.

Each internal representation is most appropriate
in specific contexts. Abstract syntax trees, ~or
example, are perfect if the only concern is editing
and the generation of straightforward code. Syntax
trees can capture the structure and content of the
entire source program so that the intermediate can
be the only program representation extant during
program manipulation. (That is, a separate source
file need not be retained.) Syntax trees do not
represent any data flow information~ however, and
control information is not abstracted, as it mirrors
the source. They are thus unsuitable for
optimization and a variety of other tasks.

~he program dependence ~raph (PDG) [13] has a
number of advantages as an internal form in a
software development environment. It can support
editing, translation, debugging and program
metrics. The PDG may be interpreted or it may have
highly optimized (and vectorized [31]) code
generated from it if desired [13]. It is thus

177

suitable for an environment supporting both
execution models. In addition, the PDG is amenable
to incremental data flow update, an important
feature in an interactive enviromnent in which it
is helpful to report data flow anomalies as they
occur in order to aid in debugging [21]. Finally,
the PDG appears useful for the gathering of
software complexity metrics.

The remainder of this paper will address each of
these issues in turn: the PDG, a debugging tool
known as "slicing", execution models, incremental
graph updating, software complexity metrics and
practical considerations.

2. The Program Dependence Graph

It is necessary for the internal program
representation in a software development
environment to capture as much data and control
dependence information as possible in order to
effectively support the types of environmental
operations suggested in the introduction. Much
related work has been performed over the past nine
years in this area of dependence-based program
forms. Dennis" work [8] opened up the field of
dala flo__.w computation [9]. Most representations in
that area treat all dependences as data
dependences, control dependences being converted as
necessary. (Some forms, however, do treat control
differently [30].) The program plans [33] of the
Programmer's Apprentice project [32] represent
control and data dependences in a modularized form
in which loops have been converted to recursion.
The goals there involve program understanding to
aid modification. The ~ata dependence ~raphs used
in the Illinois vectorizer [24] are designed to
hierarchically analyze dependence relations in
programs. Further work involving the ideas of
dependence depth and loop carried dependence [2,3]
for vectorizing transformations has been carried
out at Rice University. IFI [27] is a proposed
intermediate for applicative languages, but offers
too compartmentalized a view to support major
program restructuring. The ~ata flow .graph
[23,22], conceived with program optimization in
mind, represents global data dependence at the
operator level. Transformations which involve both
control and data dependence cannot be specified in
a consistent manner with this form, however, since
control is represented by a conventional control
flow graph. The extended dais ~low Rraph [12]
represents control dependence consistently with
data dependence, but can only represent
"structured" programs. The program dependence
graph [13] eliminates this restriction on control
flow. It is the abstraction of control dependence
in these latter two forms which makes them so
suitable for constructing program slices (discussed
in the next section) and for performing major
restructuring optimizations [12,13].

Figure 2(a) gives the usual control flow graph
for the program fragment in Figure I, annotated to
indicate the locations of the blocks of program
statements. Figure 2(b) gives the control
dependence subgraph of the PDG for the same
program. "Entry" is the condition for execution of
the program, and is a distinguished node in every
PDG. Predicates define regions, labeled Ri. All
operators (statements) in a region are successors

of a region node.

Note the difference in structure between these
two graphs. The PDG subgraph shows that the two
loops and final statement may be independent of
each other. As far as control information is
concerned, this may b~ the case. Data dependences
might, and in this example will, actually impose a
sequencing on these regions. The PDG subgraph does
not show statement block S1 as being in a loop.
From a Control dependence standpoint, S1 is loop
invariant: it is the data dependence cycle on I
which determines that S1 is loop dependent. The
implied organization given by the conventional
control flow graph is limiting to optimization
(because it hinders the rearrangement of large
sections of code as done in [12]). It is also
limiting to slicing, as we shall describe in the
next section.

Figure 3 shows the PDG for this example. The
solid edges represent data dependence and dashed
edges represent control dependence. (We only
illustrate the PDG through this example. The
definition appears in [12] and allows for the
various forms of dependence described in [24].)
Figure 3 is not quite accurate in that there should
be only one node for each program constant. This
is relaxed here to increase the clarity of the
figure. The update operator takes as input an
array, an index and a value and produces an updated
array as its value. Near the top of the figure,
the initialization of the array A is performed with
an .~_a/~_operator. The node a which is an input
to the ~pdate represents the set of reaching
definitions for the array ~. Select retrieves the
value of a given element from an array. The
objects input and out~ represent file descriptors
and are thus updated when operations are performed
on them. (File descriptors are both inputs and
outputs of most I/O procedures.) The two read
operators used here would be merged into one
operator in the actual PDG since they reside in the
same predicate region. They remain distinct here
to permit us to illustrate the importance of making
the implicit input file explicit in the
intermediate form as an aid to slicing.

3. Sl i c ing with the FIE

Slicine is the abstraction of sets of statements
which influence the value of a variable at a
particular program location [35,36]. An experiment
by Weiser [36] indicated that programmers use
slices when debugging and could therefore benefit
from the development of a tool to provide slicing
information automatically. A potential environment
using slicing could allow the user to edit a
program using slice membership as the basis for
inclusion in a window rather than syntactic
structure alone. A debugger could display the
offending slice in a window on an error condition
or breakpoint rather than the entire syntactic
context. (We assume a display routine which would
provide automatic eliding of deeply nested
statements, as is done in LISPEDIT [1,20]. Partial
slices, without elision, are displayed for COBOL
programs by [29].)

The computation of slices is based on ~ata
dependence as well as control dependenc_e. A

~8

computation which affects the value of a variable
at a desired observation point may be under the
influence of a predicate (i.e., executed only when
a predicate has a particular truth-value). Those
statements which make up the control structure
using the predicate must be included in the slice
along with all statements in the data dependence
subgraph which determine value flow to the
observation point.

Explicit data and control dependence make the
PDG ideal for constructing program slices. The PDG
must be augmented with source text indicators such
as (file, line pointer) pairs. The source text
must be stored in an augmented form where each
token points to the node in the PDG which
represents it. (When common subexpression
elimination is enabled, this mapping will not be
one to one.) Some tokens, such as parentheses and
block delimiters, which merely state precedence
conditions will have no corresponding PDG node, but
can be inferred from the PDG structure.

Since we are interested in walking back through
the graph (and not forward), we can reverse the
direction of the pointers in the physical PDG. Our
pointers, therefore, tell us where data came from
rather than where it is flowing. (This
implementation is in fact sufficient for many
optimization and code generation algorithms
[22,23J; however, some optimizations as well as
interpretation require forward flow information
also, necessitating a doubly-linked implement-
ation.)

How is a slice built? Suppose a user selects a
variable, expression or statement in a program and
wants the slice which is relevant to all variables
in that object. The augmented source file points
to the corresponding PDG nodes. A linear-time
graph walk is made backwards from each of these
nodes, building up a set containing the source text
line indicators for all visited nodes. The walk
terminates at either inputs, c o n s t a n t s , or
already-visited nodes. The slice set is then used
to retrieve the relevant source lines for display.
A source line may contain several statements,
though, with only some being in the slice. The
augmented source file allows us to delete these
irrelevant statements since we can examine each
token to see if its corresponding PDG node was
visited in the walk.

Consider Figures 1 and 3. To construct the
slice for a~last] in the final write!n, we start at
the left and bottom-most select operator and walk
backwards on all paths. Marking the immediate
control predicates of included lines allows the
determination of when to include precedence tokens
such as benin-end. We thus obtain:

for i := 1 to last do
a[i] := 0;

while not eof do
begin

read (code, value);
read (dummy);
if code = "a" then

a[value] := a[value] + 1
end;

w r i t e l n (a[last], b[last]);

The representation of I/0 with explicit file
descriptors in the PDG caused the statement read
~dummy) to be included in the slice. If it were
not included, the programmer would be hard-pressed
to find an input file sequencing bug. (A11 related
I/0 statements are not included in Weiser's
slices.)

This slice could not have been as readily
obtained were a conventional control flow graph
part of the representation. ~ssume arbitrary
control flow between the two loops in Figures 1 and
2(a). As long as no data values in that region
affect the data values in our slice, none of that
structure would ever be seen during our walk of the
PDG. With a control flow graph, however, we would
have to determine t h a t none of t h e control-related
computations on that path affected the computation.
Weiser's algorithm for doing this is O(n e!p~e)
where n is the number of nodes in the control flow
graph and e is the number of edges. In debugging,
one is apt to find the slicing tool most helpful
when the portions of the slice are dispersed widely
throughout the program. It is precisely in this
situation that analyzing the control flow would be
slow. But, traversing the PDG remains linear in
time and is proportional to the amount of
information in the slice.

This discussion on using the PDG to obtain
slicing information has assumed that we are dealing
with an untransformed PDG. In order to obtain
slices from a PDG transformed by optimization
algorithms, additional information must be posted
to the graph. For example, when a common
subexpression is eliminated by replacing a
dependence edge from one computation with an edge
from another, a marker node must be inserted along
the new edge to retain the correct source line
information. In other cases, nothing special need
be done since some optimizations lead to more
accurate slices. Invariant code motion causes loop
independent computations to be moved outside of
loops, maintaining safety by moving any guarding
predicates as necessary [12]. If a slice includes
a computation which is loop invariant, the loop
control structure is irrelevant and should not be
presented to the programmer.

4. RxecutionModels

The method of program execution chosen for an
environment is important in determining an
appropriate internal form. Some forms may be more
suited to interpretation than the generation of
object code or vice versa. The PDG is amenable to
both execution models.

The PDG has been designed with the idea of
producing highly optimized code for a variety of
architectures, including parallel ones [1 3] .
Zellweger's work deals with some of the problems of
using optimization in a programming environment
supporting an interactive debugger [37]. Hennessy
addresses the difficulty of this issue [16].

A PDG can be interpreted, but not by
conventional methods. It is a highly parallel form
with no linear sequencing of operators. It is thus
convenient to interpret it in a pseudo-parallel
fashion which is both control and data driven. We

179

maintain a list of nodes for which all data and
control inputs are available, Nodes are removed
from the list, interpreted, and the resulting value
is transmitted to successors. Each successor is
examined at once and is added to the execution list
if it does not require any additional inputs. The
virtual machine which our interpreter implements,
then, is a form of data flow machine [9]. Unlike
those machines, side-effects are not precluded here
since, e.g., arrays may be implemented either
functionally or using a memory model.

Every PDG or slice has the distinguished
predicate entry which must be "evaluated" before
anything else in the graph may be. The execution
list is thus initialized to contain the node entry,
given the simple evaluation rule: entry --> true.
For consistency and efficiency, all values may be
passed through the graph during interpretation by
copying pointers. No separate storage allocation
phase is required, as storage may be allocated and
freed dynamically during interpretation.

5. Incremental Update

The internal representation could be constructed
completely each time a user stops editing and wants
to ask a question about the program or to execute
it. In most situations, it might be preferable to
update the internal form while the user is editing
the source to minimize response time delays. Since
the PDG represents all data and control flow
information explicitly, this means that incremental
flow analysis techniques must be employed to avoid
complete PDG reconstruction. (An incremental
analysis attempts to propagate the new information
without reexamining the entire program.)

Incremental analysis is needed when new
definitions are added, old ones removed or the
control flow changed. It is not required when new
references to existing objects are added. But, to
support the modification of the PDG in this case,
it is necessary to retain the basic data flow
information for each basic block. When the data
flow analysis is performed to originally construct
the PDG, we have information on all definitions
which reach each statement. Only the information
on definitions used is retained in the resulting
PDG. Yet, retaining those original sets of
definitions allows us to immediately determine if
there are any definitions for a new reference to a
variable.

A new incremental method for updating data and
control dependences when a branch is removed or a
loop unrolled is sketched in [13] and will be
detailed elsewhere. This method needs to examine
only the PDG. We suspect that some other update
problems can be solved in a similar manner. Most
update problems may best be attacked with the
methods of Ryder [25] and Wegman [34].

We assume throughout this paper that data flow
information (if not the entire PDG) is retained in
all libraries referenced by a module under
development so that interprocedural flow analysis
will not require reanalysis of existing modules.

6. Program Complexity Metrics

A software development environment should aid in
the construction of understandable, maintainable
code. As Curtis points out [7], the measurement of
the psychological complexity of software is of
increasing interest because of the rising
proportion of overall system costs attributable to
software. Measurements of software under
development can provide important information to
the programmer and perhaps permit some automatic
restructuring. We feel that a metric based on the
PDG and/or slicing would provide a step forward in
this area and could be an effective tool in an
integrated environment.

Much of the previous work in this area has been
based on counts of some physical attributes of the
source program. Measurements such as McCabe's
cyclomatic metric [19] and Schneidewind and
Hoffman's teachability metric [26] are based on
graph theory considerations and measure
characteristics of the control flow graph of the
program. ~alstead's [15] metrics are based on
counts of operators and operands. Although
reported research [4,5,6,14,17] has shown
correlations between these metrics and attributes
of the program that are considered related to
program understandability, this type of metric can
be easily criticized for oversimplification.
Borrowing from linguistics terminology, we might
say that these metrics consider surface
characteristics of the program. We are, however,
more interested in characteristics related to the
"deep structure" of a program. The argument is
that it is not just the number of operators and
operands, the number or depth of conditionals,
measure of the control flow graph, etc. that
affect the clarity of a program. The nature of
information flow must be considered.

Some complexity metrics have attempted to better
account for the information flow in a program. An
example is the information flow metric defined by
Henry [17] which is based on the number of data
values flowing into a procedure combined with the
number of data values flowing out of the procedure.
Although not described as a complexity metric,
Dunsmore and Gannon had previously used a measure
based on the number of variables that might
potentially be accessed at a particular statement
[i o] .

Weiser [35] has suggested several metrics based
on slicing. These include: (I) coverage, a measure
of the length of slices vgrsus the length of the
program; (2) overlap, a measure of the number of
statements in a slice which belong to no other
slice; (3) clustering, the degree to which slices
are reflected in the original code layout; (4)
parallelism, the number of slices with few
statements in common; and (5) tightness, the number
of statements in every slice. A PDG, augmented
with line numbers, can be used to compute these
metrics efficiently.

The experiments performed by Weiser [35,36], as
well as work by Soloway [11,28], has shown that
programmers tend to group statements in ways based
on other than sequential relationships when
attempting to understand programs. In general, the
criteria used for the groupings is related to data

180

and control flow. Since this information is
explicit in the PDG, this class of complexity
metric may be most easily and accurately measured
with the PDG.

Much of the difficulty in understanding a
program, it could be hypothesized, is due to the
difference between the groupings of statements that
a programmer uses to understand the program (along
with the effort required to obtain that grouping)
and the groupings of statements that the sequential
source program listing or programming environment
presents. If one hypothesizes that programmers do
use slices when debugging [36], then Weiser"s third
metric, clustering, appears to be of prime
interest. In particular, a measure of the
complexity of the slice along with its relationship
to the original source code has appeal. Of course,
many questions need to be answered to be able to
define this metric. These include defining a
measure of the complexity of a slice, describing
the reflection of the slice in the code and
combining the slice complexities to form an overall
complexity metric for the program.

The feedback given to a programmer may help in
the manual production of code which is easier to
understand. It may even be possible to
automatically transform the original code to reduce
its psychological complexity by using a complexity
metric and the PDG.

7 . P r a c t i c a l C o n s i d e r a t i o n s

The amount of space required to represent a PDG
is the dominating practical consideration for this
work. Unfortunately, we cannot give very good
estimates on anticipated space consumption since
the size of the graph is related to the dependence
structure, rather than to any easily measured
surface feature of a program. We expect that: the
PDG for a given program will consume approximately
three times as much space as a corresponding
representation which represents each basic block as
a DAG and in addition retains for each block data
flow hit vectors for reaching definitions and live
variables.

8 . C o n c l u s i o n s

We have sketched some of the issues surrounding
the use of the program dependence graph in a
programming environment. In addition to supporting
editing and translation tasks, a prime benefit is
ease in generating accurate slices. Slices are
obtained in linear time and are more accurate than
those obtained with existing methods both because
I/O is accounted for correctly and because
irrelevant statements on multi-statement lines are
not displayed. In addition, the form is
advantageous because it can be interpreted or
optimized, it is amenable to incremental data flow
analysis, can he used to detect data flow anomalies
when debugging and supports new software complexity
metrics. Future work should include implementation
of the ideas presented here as well as the
exploration of other uses of the representation in
a software development environment.

Acknowledgements

We thank Rick Longworth for reading a draft of
this paper. His use of a program developed in [23]
to construct limited slices inspired this paper.
Jeanne Ferrante'S comments on one section and Mark
Wegman's pointing us to the LISPEDIT papers are
appreciated.

I.

2.

3.

4.

5.

6.

7.

S.

9.

I0.

II.

Alberga, C. N.; Brown, A. L.; Leeman, G. B.,
Jr.; Mikelsons, M. and Wegman, M. N. A
program development tool. IBM J. of Res. &
Dev. 2~, 1 (Jan. 1984).

Allen, John Randal. Dependence analysis for
subscripted variables and its application to
program transformations. Ph.D. Thesis, Rice
University, Houston (April 1983) 181 pages.

Ailen, J.R.; Kennedy, Ken; Porterfield,
Carrie; and Warren, Joe. Conversion of
control dependence to data dependence. Conf.
Rec. IOth Ann. ACM Symp. o~ Princ, of Prog.
Lan~. Austin, Texas (Jan. 1983) 177-189.

Baker, Albert L. and Zweben, Stuart R. The
use of software science in evaluating
modularity concepts. IEEE T SE SE-5 m 2 (March
1979) 110-120.

Basili, Victor R. and Phillips, Tsai-¥un.
Evaluating and comparing software metrics in
the software engineering laboratory. Proc.
1981 ACM Workshop/Symp. on M e a s . and Eval.
of Software Quality published in ACM
SIGMETRIC8 per fprmance Evaluation RevieMl0~ 1
(Spring 1981) 95-106.

Curtis, Bill; Sheppard, S. B.; and Milliman,
P. Third time charm: stronger prediction of
programmer performance by software complexity
metrics. Proc. 4th IEEE Int. Conf. Soft.
En~. (1979) 356-360.

Curtis, Bill. Measurement and experimentation
in software engineering. P rot. of the IEEE
68, 9 (Sept. 1980) 1144-1157.

Dennis, Jack B. First version of a data flow
procedure language, revised Comv. Struc.
Group Memo 93 (MAC Tech. Memo 61), Lab. for
CS, MIT (May 1975) 21 pages.

Dennis, Jack B. Data flow supercomputers.
IEEE Comvuter 13jII (Nov. 1980) 48-56.

Dunsmore, H. E. and Gannon, J. D. Data
referencing: an empirical investigation. IEEE
Computer 12, 12 (Dec. 1979) 50-59.

Ehrlich, Kate and Soloway, Elliot. An
empirical investigation of the tacit plan
knowledge in programming. Research Report
936, Dept. of Computer Science, Yale Univ.
(April 1982).

181

12.

13.

14.

15.

16 .

17.

18.

19 .

20.

21.

22.

23.

24

25.

Ferrante, Jeanne and Ottenstein, Karl J. A
program form based on data dependency in
predicate regions, Conf. Rec. Tenth ACM

p~ .Princ. of Pros. Lang., Austin,
Texas (J a n . 24-26 , 1983) 217-236.

Ferrante, Jeanne; Ottenstein, Karl J.; and
Warren, Joe D. The program dependence graph
and its use in optimization. IBM Research
Report RC-i0208 (August 1983) I0 pages,
revision to appear in the Proc. Sixth
International S~np. on Programming, Toulouse,
France (April 1984), Springer-Verlag.
Detailed paper in preparation.

Peuer, Alan R. and Fowlkes, Edward B. Some
results from an empirical study of computer
software. Pro~. of t~ 4th ~nt. .Conf. on
sgf~. Eng., Munich, W. Germany, Sept. 17-19,
1979, pp. 351-355.

Halstead, M. M. Bleme~s o~ Spftware Science,
Elsevier North Holland, New York (1977).

Hennessy, J. L. Symbolic debugging of
optimized code. ACM TOPLAS 5, 3 (July 1982)
323-344 .

Henry, Sallie and Kafura, Dennis. Software
structure metrics based on information flow.
IEEE TSE SE~7, 5 (Sept. 1981) 510-518.

Howden, William E. Contemporary software
development environments. CACM 25j 5 (May
1982) 318-329.

McCabe, T. J. A complexity measure. IEEE TSE
SE-2 (1976) 308-320.

Mikelsons, M. Prettyprinting in an interactive
environment. Proc. ACM SIGPLAN/SIGOA S~np.
on Text Manipulation, Portland, OR (June 1981)
108-116, published as ACM SIGPLAN Notices.

Ottenstein, Karl J. and Ottenstein, Linda M.
High-level debugging assistance via optimizing
compiler technology (extended abstract), Proc.
ACM SIGSOFT/SIGPLAN Soft. En~. Symp. on
High-Level DebuKKinK (see [29] for full entry)
152-154.

Ottenstein, Karl J. An intermediate form
based on a cyclic data-dependency graph.
CS-TR 81-I, Math and Computer Sciences, Mich.
Tech. Univ. (October 1981) 91 pages, under
revision.

Ottenstein, Karl J. Data-flow graphs as an
intermediate program form. Ph,D. Thesis,
Computer Sciences, Purdue Univ. (August 1978)
283 pages.

Padua, David A.; Kuck, David J. and Lawrie,
Duncan H. High-speed multiprocessors and
compilation techniques. %EEE Trans. Comp.
TC-29, 9 (Sept. 1980) 763-776.

Ryder, Barbara G. Incremental data flow
analysis. Conf. Reg.. TgDtb ACM Symp. on
Princ. of ProK. LanK., Austin, Texas (Jan.
24-26, 1983) 167-176.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Schneidewind, N. F. and Hoffman, R. M. An
experiment in software error data collection
and analysis. IEEE TSE SE-5, 3 (May 1979)
276-286.

Skedzielewski, Stephen and Glauert, J.R.W.
IF1: An intermediate form for applicative
languages, draft 7, November 21, 1983,
Lawrence Livermore National Laboratory.

Soloway, Elliot; Ehrlich, Kate; Bonar,
Jeffrey; and Greenspan, Judith. What do
novices know about programming? Research
Report 218, Dept. of Computer Science, Yale
Univ. (Jan. 1982).

Tischler, Ron; Schaufler, Robin; Payne,
Charlotte. Static analysis of programs as an
aid to debugging. Proc.L ACM SIGSOFy/SI~PLAN
Sqf~. Eng. Svmp. on HiKh-Level DebuKgin&,
Pacific Grove, CA, March 20-23, 1983 published
as ACM Software EnKineerinK Notes 8. 4 (August
1983) and as ACE SIGPLAN Notices 18, 8 (August
1983) 155-158.

Treleaven, Philip C.; Hopkins, Richard P. and
Rautenbach, Paul W. Combining data flow and
control flow computing. The Computer Journal
25, 2 (1982) 208-217.

Warren, Joe D. A hierarchical basis for
reordering transformations. Conf. Rec. llth
ACE Svmp, Princ. ProK. LanK., Salt Lake
City, Utah (January 1984).

Waters, Richard C. The programmer's
apprentice: knowledge based program editing.
IEEE Trans. Soft. En£. SE-8. 1 (Jan. 1982)
1-12 .

Waters, Richard C. Automatic analysis of the
logical structure of programs. MIT AI-Lab
TR-492, available as NTIS AD-A084 818
(December 1978) 207 pages.

Wegman, Mark. Summarizing graphs by regular
expressions. Conf. Rec. Tenth ACM Symp. on
Princ. of ProK. LanK., Austin, Texas (Jan.
24-26, 1983) 203-216.

Weiser, Mark. Program slicing, Proc. 5th
Int. Conf. 9n Soft. Eng., San Diego, Calif.,
IEEE Computer Soc. Press (March 9-12, 1981)
439-449.

Weiser, Mark. Programmers use slices when
debugging. CACM 25, 2] (July 1982) 446-452.

Zellweger, Polle T. An interactive high-level
debugger for control-flow optimized programs,
Proc~ ACM SIGSOFT/SIGPLAN Soft. EnK. Symp~_.
o_n_Hi~h-Level DebuK~in~ (see [29] for full
entry) 159-171.

182

c o n s t
last = i0;

beg i n
for i ::= I to last do

b e g i n
a[i] := 0;
b[i] := 0

end ;

w h i l e n o t e o f do
b e g i n

read (code, value);
r e a d (dummy) ;
i f code = "a" t h e n

a[value] := a[value] + 1
e l s e if code : "b" t h e n

b[value] := b[value] - I
end;

writeln (a[last], b[last])
e n d .

Figure 1 - A Program Fragment

Q

s

I i
, T /

t ®

|

; t

~ J

/

t

\T

N \

(a) Control Flow Graph (b) PDG Control Subgraph

Figure 2 - Control Flow Representations

undefined i i0 ~

for • ;'"

iT 0 enInput *--" ° i • 0 : u_p .

da te ~ 1 ¢ ' / " ~ : ~ ' " , "-- j ~ , input*- ~

. * b l 0 : / ,I. ,' I
l, / not / : \ l , , / ,

I C u~dat9 i- "

/ \ -) l / ..e., . . ' / , / ~ " ~ ' / / ...-'" - / '

/ / ~i"" "'.. ~ I
[% read ", ~ I

/ t ~o~:~uT----.~:~.J
\ - - - "1 duly ',

. . - . , I / ' _ - - - " . . ' : ...% l - - ' - - - , ® ,
a ~ - - - - , , : b.~ 7'1 . .'

I I / ~e~eot ~--" / \ \ / ~e~e~t.- I i

I I t~ __.d \ \ \ 1 _./ !
I t k +i i I \ % ~ -ll

J i

\ "upA[e ~ " \ ue~<o . - -"~o Ore.Output ~ - - - - - ' d
\ - / q jo ~ 1 / - i i

~ \ / 1 / l ..J,
~ , i / ~ ~_ _ output d " - ---'" i

output i

Figure 3 - PDG for Program in Figure i

184

