Polymorphic type inference

K. V. Raghavan

Indian Institute of Science, Bangalore

The term language

® Term language
e = Var|ee|AVar. e]
let Var = e in e | letrec Var = e in e
true | false | Int | if e then e else e |
® Operational semantics
letv=-einel — (Av.el)e

el — el
(letv=-einel) = (letv=-einel)

f occurs free in el
(letrec f = e in el) — (letrec f = e in [f — e]el)

f does not occur free in el
(letrec f = e inel) — el

el — el
(letrec v = e in el) — (letrec v = e in el’)

® Values
v = true| false | Int | Ax.e

Illustration of letrec

Latlﬁ M]A I_J'r‘a.c, '5

— example

= . n = | en

"na:(fau:f‘ (n-1)) m

(fact 2

Wree fock = o

trec fac = m

= clse

* ac -

et rec afo\r_(_ ESE (2 A< ({:]f'aar L))

Lllustration of letrec - 11
L’i—rl.t o\fi— = -

]
hD |
—

4@,\—,1';(—6”—:—\%—5_—&—&—*—%”“%
{ 4 0 4 N
e 2l Sum = foy
ﬂ"_*_w_@%%_%ﬂ%qﬂ)»;
4
Arec bf'qd‘ = ... n

= 2 x 4

—> %4} > 2

ML-style polymorphic type checking

How is this different from STLC?
® Programmer does not annotate types of variables. System
checks well-typedness without annotations.

® Supports polymorphic function definitions, and even
polymorphic recursive function definitions.
® A polymorphic term is one that can be assigned many different

types.
e System checks whether the (unannotated) term is well-typed,
and if yes, infers a principal type (most general type) for it.

Eramples

Consider A-calculus extended with “let”s. In STLC, we would
need to write separate functions

® idBool = A\x:Bool. x
® idNat = Ax:Nat. x

etc.

These functions all have the same operational semantics.
Hence, a redundancy!

To fix this issue, we extend the language of types:

Type = V TVar . Type | UType
UType := Nat| Bool | UType — UType | TVar
TVar = A B C, ...

Note: ‘Type' is the domain of polymorphic types. UType is
the domain of monomorphic types. We use Ti, T, etc. to
denote poly types, and Ui, Us, etc., to denote mono types.

id = Ax.x is well-typed, because it is possible to annotate it
(in many ways, in fact) to yield a well-typed STLC term.

Polymorphic types

An instance of a type T1 =Vv.Ty is a type T3 = [v — U;] T,
where U; is some mono type. We say T is more general than
Ts.
Intuitively
® Any polytype represents a family of monotypes, which are all
(direct or transitive) instances of the polytype
® |f¢t:T,and T is a polytype, it is as if t is of every type in the
family of T
A principal type or most general type for an expression e is a
type T such that every possible mono type U for e is an
instance of T.

Therefore, principal type for id is VA.A — A.

Typing rules
(Note: T's are Types, U's are UTypes, and A’s are TVars)

viT erl
[T-VAR]
M=wv:T
M+ el:U1—U2,
I e2:U1
[T-App]
I (el e2):U2
Mv:UlkeU
[T-ABs]
I+ (Av.e):Ul1—U
M+el:Ul, T+ e2:U2
[T-PAIR]

Ik (el, e2): (U1, U2)

Typing rules — continued

M=el:T, T, v:TFeU

I+ (let v=el in e):U

[T-LET]

Note: Unlike in T-ABS, in T-

LET we type-check the body e

in an environment where v may

have a polymorphic type T (de-

rived from the inferred type of

el using T-GEN).

® Therefore, different

occurrences of v in e can
have different types.

Typing rules — continued

[-eU, Ap,...,A, 2 FV(I)

[T-GEN]
NFe:VA;....VA,.U
M eVAIVAS .. VA, U,
FV(Ul) N (FV(F) U {A2 .. A,,}) =¢
[T-INST]

I+ e:VAQ .. .VAn.[Al — Ul]U

Illustration 1

j'-Nﬁ*"?A - { Naf>A, 3.nat
foNa>a (4 3):
—T -Abs

A
grvl@) =060) e =mo8
(- (5 D) TR (Na>A)>A

Hlustration 2

Fy () (\ ————————Toplus
Fv(g%,p(mmmah) 4, g o (ne) e ok
%,‘J’A (NS =5F) A |- T-hbe

g -¥h. (N 2 8) 54 gbh (N>R AT

Tringt——— ' S
5 ey O vk, N %gw

g ¥R S A)SA - g ¥A e S A)SA -

(3 O+ 1) N (9 (n-n>4Y): Basd

T~ Pair
See grediowd clide T4 ¥AQ\{0~* %A}%A(—-

— ¢ (8 30 ‘Q‘A@\!a*eA}aA ((‘1 (77,«4,1)) (g (In.n>aN): (N, Bool)

T 2T

\"Lﬂj‘—a = S (f 3> AN
(Ca (%’Mm (4 (Am. 1> (N, Beod)

An ill-typed lambda abstraction
Consider df = M.((f 3), (f true)). What is its type?
e It is not (Nat— A)— (A, A),
® ‘(f true)’ has invalid argument.
nor (Bool— A)— (A, A),
nor even (B — A)— (A, A)
® Unquantified variables are implicitly existentially quantified.

Think of the above type as being equivalent to
JAIB.(B — A) — (A, A). This is not the right type for df.
What if it is VAVB.(B — A) — (A, A)?
® (AR.((f 3), (f true))) (An.n+1) type checks!
® Reason: (Nat—Nat)—(Nat,Nat) is an instance of
VAVB.(B — A) — (A, A), and is applicable to An.n+1.
What if it is VA.(VB.B — A) — (A, A)?
® Would have worked, except that it is a "deep” type, which the
current type system does not support (deep type = all V's are
not at the outermost level).
® An example of valid argument to df under this typing:

An ill-typed lambda abstraction
Consider df = M.((f 3), (f true)). What is its type?
e It is not (Nat— A)— (A, A),
® ‘(f true)’ has invalid argument.
nor (Bool— A)— (A, A),
nor even (B — A)— (A, A)
® Unquantified variables are implicitly existentially quantified.

Think of the above type as being equivalent to
JAIB.(B — A) — (A, A). This is not the right type for df.
What if it is VAVB.(B — A) — (A, A)?
® (AR.((f 3), (f true))) (An.n+1) type checks!
® Reason: (Nat—Nat)—(Nat,Nat) is an instance of
VAVB.(B — A) — (A, A), and is applicable to An.n+1.
What if it is VA.(VB.B — A) — (A, A)?
® Would have worked, except that it is a "deep” type, which the

current type system does not support (deep type = all V's are
not at the outermost level).

® An example of valid argument to df under this typing: Ax.5

® There exists no shallow type for df!

Therefore, we declare df to be ill-typed.

A closer look at T-ABS

T-ABS is able to declare df ill-typed because ...

® |t type checks the body of Av.e in an environment where v is
monomorphic (v:U1), as opposed to (v:VA; ... A,.Ul).

® Therefore, all occurrences of v in e are required to have the
same type (the types of the different occurrences cannot be
instantiated to different types).

® Therefore, df fails to type check.

How to work around this problem?

® |f we knew the type of the argument df is being applied to, we
could use this to type-check df.

® However, we will not always know the type of the argument
while type-checking df. Example: ((Mf. (f (Ax.x))) df).
® The way to make the type of the argument known is to use a
“let”:
® “let f = Ax.xin ((f 3), (f true))” will type-check.
“let f = An.n+1 in ((f 3), (f true))” will not type-check.
In other words, df can be type-checked whenever its argument
is hard-coded (via a “let”). In this scenario df essentially does
not need the first argument (i.e., f), and hence does not need
a deep type.

A closer look at T-GEN

Need for the pre-condition A ¢ FV(I) in T-GEN:

e Consider t = “Af. let g = fin ((g 3), (g true))". Say, in the
T-ABS rule we guess a type f:B — A, this typing to the
environment, and then proceed to type-check the sub-term
“let g =fin ((g 3), (g true))".

e Term t1 = “((g 3), (g true))” would type-check if we
generalized the type of g to VB.B — A while type-checking t1.

® However, this would implicitly force the type of t to become
VA.(VB.B — A) — (A, A), which is a deep type.

® Therefore, we include the pre-condition, which forces tl to be
type-checked under an environment wherein the type of f is
monomorphic (i.e., B — A), which in causes t1 to be called
ill-typed.

Typing rule for letrec

Nv:UlF el:U1, T, v:VA;... AUl F eU,
{A1... A} NFV(IN) = ¢
[T-LETREC]

I+ (letrec v=el in e):U

Note:
® v's type is taken to be monomorphic while type-checking el.
® v's type is taken to be polymorphic while type-checking e.
® This makes the type-system decidable.

Hlustration 3

o e o

fT-?aff
et XA NISR A
e (ﬂ |))@)
ok —B SR (@ Y, (9 O
Swf’%: (4 w0 Mo~ (g (”“&‘}?& i“a)"“ D 2 (oK, Bood)
e Tidvec

L Letves g= Am. Am- (5 " >0 Ahon (ﬁ@"“‘) M) ke W\) in
(@), (3 O) » (Nah; Bood)

Summary of polymorphic type system

It is sound. That is, no term that can be given a type
according to the type rules can ever reduce to a non-value
normal form.

It is incomplete. That is, there exist terms that can never
reduce to a non-value form that are not typable.

Every well-typed term has a unique principal type.

The type system is decidable. That is, there exists an
algorithm that can identify the principal type of every
well-typed term.

