Polymorphic type inference

K. V. Raghavan

Indian Institute of Science, Bangalore

The term language

Term language

e :=
$$Var \mid e \mid \lambda Var \cdot e \mid$$

 $let Var = e in \mid e \mid letrec Var \mid e \mid n \mid e$
 $true \mid false \mid Int \mid if \mid e then \mid e \mid e \mid e \mid e$

Operational semantics

let
$$v = e$$
 in $e1 \rightarrow (\lambda v.e1)$ e

$$\frac{\text{e1} \rightarrow \text{e1'}}{(\text{let v} = \text{e in e1}) \rightarrow (\text{let v} = \text{e in e1'})}$$

f occurs free in e1 (letrec
$$f = e$$
 in e1) \rightarrow (letrec $f = e$ in $[f \mapsto e]e1$)

f does not occur free in e1 (letrec
$$f = e$$
 in e1) \rightarrow e1

$$\begin{array}{c} \text{e1} \rightarrow \text{e1'} \\ \hline \text{(letrec v = e in e1)} \rightarrow \text{(letrec v = e in e1')} \end{array}$$

Values

$$v := true | false | Int | \lambda x.e$$

Illustration of letrec

Let's and Latrec's - example

letrec fact =
$$2n \cdot if (n = 1)$$
 then 1 else

 $1 \cdot if (act (n-1))$ in $(fact 2) \rightarrow if$

letrec fact = \dots in

 $(2 \cdot if (n-1))$ then 1 else $(n \cdot if (n-1))$ $if (2 \cdot if (n-1))$

Illustration of letrec - II

```
letrec fact = ... in
      (()n. if (n=1) then 1 else (n* (fact (n-1)))) 1)
letrec fact = ... in 2 * (if (1=1) Then 1 else (1 * (fact 0)))
 Letrec fact = ... in 2 * 1 \longrightarrow 2 * 1 \rightarrow 2
```

ML-style polymorphic type checking

How is this different from STLC?

- Programmer does not annotate types of variables. System checks well-typedness without annotations.
- Supports polymorphic function definitions, and even polymorphic recursive function definitions.
 - A polymorphic term is one that can be assigned many different types.
- System checks whether the (unannotated) term is well-typed, and if yes, infers a principal type (most general type) for it.

Examples

- Consider λ -calculus extended with "let"s. In STLC, we would need to write separate functions
 - $idBool = \lambda x:Bool. \ x$
 - idNat = λx :Nat. x

etc.

- These functions all have the same operational semantics.
 Hence, a redundancy!
- To fix this issue, we extend the language of types:

 $\mathsf{Type} \quad := \quad \forall \ \mathsf{TVar} \ . \ \mathsf{Type} \mid \mathsf{UType}$

 $\mathsf{UType} \;\; := \;\; \mathsf{Nat} \; | \; \mathsf{Bool} \; | \; \mathsf{UType} \to \mathsf{UType} \; | \; \mathsf{TVar}$

TVar $:= A, B, C, \dots$

Note: 'Type' is the domain of polymorphic types. UType is the domain of monomorphic types. We use T_1 , T_2 , etc. to denote poly types, and U_1 , U_2 , etc., to denote mono types.

• id = $\lambda x.x$ is well-typed, because it is possible to annotate it (in many ways, in fact) to yield a well-typed STLC term.

Polymorphic types

- An instance of a type $T_1 = \forall v. T_2$ is a type $T_3 = [v \mapsto U_1]T_2$, where U_1 is some mono type. We say T_1 is more general than T_3 .
- Intuitively
 - Any polytype represents a family of monotypes, which are all (direct or transitive) instances of the polytype
 - If t: T, and T is a polytype, it is as if t is of every type in the family of T
- A principal type or most general type for an expression e is a type T such that every possible mono type U for e is an instance of T.
- Therefore, principal type for id is $\forall A.A \rightarrow A$.

Typing rules

(Note: T's are Types, U's are UTypes, and A's are TVars)
$$v:T \in \Gamma$$

$$T \vdash v:T$$

$$\Gamma \vdash e1:U1 \rightarrow U2, \\ \Gamma \vdash e2:U1$$

$$T \vdash (e1 \ e2):U2$$

$$\Gamma,v:U1 \vdash e:U$$

$$T \vdash (\lambda v.e):U1 \rightarrow U$$

$$\Gamma \vdash e1:U1, \Gamma \vdash e2:U2$$

$$T \vdash e1:U1, \Gamma \vdash e2:U2$$

$$T \vdash e1:U1, \Gamma \vdash e2:U2$$

$$T \vdash e1:U1, \Gamma \vdash e2:U2$$

 $\Gamma \vdash (e1, e2): (U1, U2)$

$Typing\ rules-continued$

$$\Gamma \vdash e1:T, \ \Gamma, \ v:T \vdash e:U$$

$$\Gamma \vdash (let \ v=e1 \ in \ e):U$$
[T-Let]

Note: Unlike in T-ABS, in T-LET we type-check the body e in an environment where v may have a polymorphic type T (derived from the inferred type of e1 using T-GEN).

 Therefore, different occurrences of v in e can have different types.

$Typing\ rules-continued$

$$\Gamma \vdash e: U, A_1, \dots, A_n \notin FV(\Gamma)$$

$$\Gamma \vdash e: \forall A_1 \dots \forall A_n. U$$

$$\Gamma \vdash e: \forall A_1 \forall A_2 \dots \forall A_n. U,$$

$$FV(U_1) \cap (FV(\Gamma) \cup \{A_2 \dots A_n\}) = \phi$$

$$\Gamma \vdash e: \forall A_2 \dots \forall A_n. [A_1 \mapsto U_1] U$$
[T-INST]

Illustration 1

$$\frac{\int : Nd \Rightarrow A \vdash \int : Nat \Rightarrow A, 3 : Nat}{\int : Nd \Rightarrow A \vdash (13) : A} + \frac{\int -App}{\int -App}$$

$$A \vdash (\lambda f. (13)) : (Nd \Rightarrow A) \Rightarrow A$$

$$+ (\lambda f. (13)) : \forall A. (Nd \Rightarrow A) \Rightarrow A$$

$$+ (\lambda f. (13)) : \forall A. (Nd \Rightarrow A) \Rightarrow A$$

Illustration 2

```
FV(Nat) \cap FV(q:4A.(Nat=A)=A)= \phi
                            g:..,n:Nath (n+1):Nat Toplus
g: \A. (Not > A) > A F
g: \A. (Not > A) > A
                              g. & A. (Nat -> A) > A +
                                                                              9:...
      g: (Nat 7 A) 7 A F
g: (Nat 7 Nat) 3 pNat,
                                                     9: (Not = P) = A - Not - Bool, Not - Bool
                              (In.n+1): Nat > Nat
                                  _____T-app
                          9. XA. (Not >A) ->A -
                                                           q: XA.(Nat >A)>A +
                         (9 (7n.n+1)): Nat
                                                             (9 (7n.n>4)): Bool
 See previous slide T-gen g: XA.(Not > A) > A [

(75.(33)): XA.(Not > A) > A ((9 (2n.n>4))): (Not, Bool)
                                                ARE(AE toN).AK:p
  Het g = 78. (8 3) in
        ((g(\lambda n.n+1)), (g(\lambda n.n > 4))):(Nat, Book)
```

An ill-typed lambda abstraction

Consider df = λ f.((f 3), (f true)). What is its type?

- It is not $(Nat \rightarrow A) \rightarrow (A, A)$,
 - '(f true)' has invalid argument.
- nor (Bool $\rightarrow A$) $\rightarrow (A, A)$,
- nor even $(B \rightarrow A) \rightarrow (A, A)$
 - Unquantified variables are implicitly existentially quantified.
 Think of the above type as being equivalent to
 ∃A∃B.(B → A) → (A, A). This is not the right type for df.
- What if it is $\forall A \forall B.(B \rightarrow A) \rightarrow (A, A)$?
 - $(\lambda f.((f 3), (f true))) (\lambda n.n+1)$ type checks!
 - Reason: $(Nat \rightarrow Nat) \rightarrow (Nat, Nat)$ is an instance of $\forall A \forall B. (B \rightarrow A) \rightarrow (A, A)$, and is applicable to $\lambda n. n+1$.
- What if it is $\forall A.(\forall B.B \rightarrow A) \rightarrow (A,A)$?
 - Would have worked, except that it is a "deep" type, which the current type system does not support (deep type = all ∀'s are not at the outermost level).
 - An example of valid argument to df under this typing:

An ill-typed lambda abstraction

Consider df = λ f.((f 3), (f true)). What is its type?

- It is not $(Nat \rightarrow A) \rightarrow (A, A)$,
 - '(f true)' has invalid argument.
- nor (Bool $\rightarrow A$) $\rightarrow (A, A)$,
- nor even $(B \rightarrow A) \rightarrow (A, A)$
 - Unquantified variables are implicitly existentially quantified.
 Think of the above type as being equivalent to
 ∃A∃B.(B → A) → (A, A). This is not the right type for df.
- What if it is $\forall A \forall B.(B \rightarrow A) \rightarrow (A, A)$?
 - $(\lambda f.((f 3), (f true))) (\lambda n.n+1)$ type checks!
 - Reason: $(Nat \rightarrow Nat) \rightarrow (Nat, Nat)$ is an instance of $\forall A \forall B. (B \rightarrow A) \rightarrow (A, A)$, and is applicable to $\lambda n. n+1$.
- What if it is $\forall A.(\forall B.B \rightarrow A) \rightarrow (A,A)$?
 - Would have worked, except that it is a "deep" type, which the current type system does not support (deep type = all ∀'s are not at the outermost level).
 - An example of valid argument to df under this typing: $\lambda x.5$
 - There exists no shallow type for df!
- Therefore, we declare df to be ill-typed.

A closer look at T-ABS

T-ABS is able to declare df ill-typed because ...

- It type checks the body of $\lambda v.e$ in an environment where v is monomorphic (v:U1), as opposed to (v: $\forall A_1 ... A_n.$ U1).
- Therefore, all occurrences of v in e are required to have the same type (the types of the different occurrences cannot be instantiated to different types).
- Therefore, df fails to type check.

How to work around this problem?

- If we knew the type of the argument df is being applied to, we could use this to type-check df.
- However, we will not always know the type of the argument while type-checking df. Example: $((\lambda f. (f (\lambda x.x))))$ df).
- The way to make the type of the argument known is to use a "let":
 - "let $f = \lambda x.x$ in ((f 3), (f true))" will type-check.
 - "let $f = \lambda n.n+1$ in ((f 3), (f true))" will not type-check.
 - In other words, df can be type-checked whenever its argument is hard-coded (via a "let"). In this scenario df essentially does not need the first argument (i.e., f), and hence does not need a deep type.

A closer look at T-GEN

Need for the pre-condition $A \notin FV(\Gamma)$ in T-GEN:

- Consider $t = "\lambda f$. let g = f in ((g 3), (g true))". Say, in the T-ABS rule we guess a type $f:B \to A$, this typing to the environment, and then proceed to type-check the sub-term "let g = f in ((g 3), (g true))".
- Term t1 = "((g 3), (g true))" would type-check if we generalized the type of g to $\forall B.B \rightarrow A$ while type-checking t1.
- However, this would implicitly force the type of t to become $\forall A.(\forall B.B \rightarrow A) \rightarrow (A,A)$, which is a deep type.
- Therefore, we include the pre-condition, which forces t1 to be type-checked under an environment wherein the type of f is monomorphic (i.e., $B \rightarrow A$), which in causes t1 to be called ill-typed.

Typing rule for letrec

Note:

- v's type is taken to be monomorphic while type-checking e1.
- v's type is taken to be polymorphic while type-checking e.
- This makes the type-system decidable.

Illustration 3

Summary of polymorphic type system

- It is sound. That is, no term that can be given a type according to the type rules can ever reduce to a non-value normal form.
- It is incomplete. That is, there exist terms that can never reduce to a non-value form that are not typable.
- Every well-typed term has a unique principal type.
- The type system is decidable. That is, there exists an algorithm that can identify the principal type of every well-typed term.