
Polymorphic type inference

K. V. Raghavan

Indian Institute of Science, Bangalore

The term language
• Term language

e := Var | e e | λ Var . e |
let Var = e in e | letrec Var = e in e
true | false | Int | if e then e else e |

• Operational semantics
let v = e in e1 → (λv.e1) e

e1 → e1’
(let v = e in e1) → (let v = e in e1’)

f occurs free in e1
(letrec f = e in e1) → (letrec f = e in [f 7→ e]e1)

f does not occur free in e1
(letrec f = e in e1) → e1

e1 → e1’
(letrec v = e in e1) → (letrec v = e in e1’)

• Values
v := true | false | Int | λx.e

Illustration of letrec

Illustration of letrec - II

ML-style polymorphic type checking

How is this different from STLC?

• Programmer does not annotate types of variables. System
checks well-typedness without annotations.

• Supports polymorphic function definitions, and even
polymorphic recursive function definitions.

• A polymorphic term is one that can be assigned many different
types.

• System checks whether the (unannotated) term is well-typed,
and if yes, infers a principal type (most general type) for it.

Examples
• Consider λ-calculus extended with “let”s. In STLC, we would
need to write separate functions

• idBool = λx :Bool. x
• idNat = λx :Nat. x

etc.

• These functions all have the same operational semantics.
Hence, a redundancy!

• To fix this issue, we extend the language of types:
Type := ∀ TVar . Type | UType
UType := Nat | Bool | UType → UType | TVar
TVar := A, B, C, . . .

Note: ‘Type’ is the domain of polymorphic types. UType is
the domain of monomorphic types. We use T1,T2, etc. to
denote poly types, and U1,U2, etc., to denote mono types.

• id = λx .x is well-typed, because it is possible to annotate it
(in many ways, in fact) to yield a well-typed STLC term.

Polymorphic types

• An instance of a type T1 = ∀v .T2 is a type T3 = [v 7→ U1]T2,
where U1 is some mono type. We say T1 is more general than
T3.

• Intuitively
• Any polytype represents a family of monotypes, which are all

(direct or transitive) instances of the polytype
• If t : T , and T is a polytype, it is as if t is of every type in the

family of T

• A principal type or most general type for an expression e is a
type T such that every possible mono type U for e is an
instance of T.

• Therefore, principal type for id is ∀A.A → A.

Typing rules
(Note: T’s are Types, U’s are UTypes, and A’s are TVars)

v:T ∈ Γ
[T-Var]

Γ ⊢ v:T

Γ ⊢ e1:U1→U2,
Γ ⊢ e2:U1

[T-App]
Γ ⊢ (e1 e2):U2

Γ,v:U1 ⊢ e:U
[T-Abs]

Γ ⊢ (λv.e):U1→U

Γ ⊢ e1:U1, Γ ⊢ e2:U2
[T-Pair]

Γ ⊢ (e1, e2): (U1, U2)

Typing rules – continued

Γ ⊢ e1:T, Γ, v:T ⊢ e:U
[T-Let]

Γ ⊢ (let v=e1 in e):U

Note: Unlike in T-Abs, in T-
Let we type-check the body e
in an environment where v may
have a polymorphic type T (de-
rived from the inferred type of
e1 using T-Gen).

• Therefore, different
occurrences of v in e can
have different types.

Typing rules – continued

Γ ⊢ e:U, A1, . . . ,An ̸∈ FV(Γ)
[T-Gen]

Γ ⊢ e : ∀A1. . . .∀An.U

Γ ⊢ e:∀A1∀A2 . . . ∀An.U,
FV(U1) ∩ (FV(Γ) ∪ {A2 . . .An}) = ϕ

[T-Inst]
Γ ⊢ e:∀A2 . . . ∀An.[A1 7→ U1]U

Illustration 1

Illustration 2

An ill-typed lambda abstraction
Consider df = λf.((f 3), (f true)). What is its type?

• It is not (Nat→ A)→ (A,A),
• ‘(f true)’ has invalid argument.

• nor (Bool→ A)→ (A,A),
• nor even (B → A)→ (A,A)

• Unquantified variables are implicitly existentially quantified.
Think of the above type as being equivalent to
∃A∃B.(B → A) → (A,A). This is not the right type for df.

• What if it is ∀A∀B.(B → A) → (A,A)?
• (λf.((f 3), (f true))) (λn.n+1) type checks!
• Reason: (Nat→Nat)→(Nat,Nat) is an instance of

∀A∀B.(B → A) → (A,A), and is applicable to λn.n+1.

• What if it is ∀A.(∀B.B → A) → (A,A)?
• Would have worked, except that it is a “deep” type, which the

current type system does not support (deep type = all ∀’s are
not at the outermost level).

• An example of valid argument to df under this typing:

λx .5

• There exists no shallow type for df!

• Therefore, we declare df to be ill-typed.

An ill-typed lambda abstraction
Consider df = λf.((f 3), (f true)). What is its type?

• It is not (Nat→ A)→ (A,A),
• ‘(f true)’ has invalid argument.

• nor (Bool→ A)→ (A,A),
• nor even (B → A)→ (A,A)

• Unquantified variables are implicitly existentially quantified.
Think of the above type as being equivalent to
∃A∃B.(B → A) → (A,A). This is not the right type for df.

• What if it is ∀A∀B.(B → A) → (A,A)?
• (λf.((f 3), (f true))) (λn.n+1) type checks!
• Reason: (Nat→Nat)→(Nat,Nat) is an instance of

∀A∀B.(B → A) → (A,A), and is applicable to λn.n+1.

• What if it is ∀A.(∀B.B → A) → (A,A)?
• Would have worked, except that it is a “deep” type, which the

current type system does not support (deep type = all ∀’s are
not at the outermost level).

• An example of valid argument to df under this typing: λx .5

• There exists no shallow type for df!

• Therefore, we declare df to be ill-typed.

A closer look at T-Abs

T-Abs is able to declare df ill-typed because . . .

• It type checks the body of λv.e in an environment where v is
monomorphic (v:U1), as opposed to (v:∀A1 . . .An.U1).

• Therefore, all occurrences of v in e are required to have the
same type (the types of the different occurrences cannot be
instantiated to different types).

• Therefore, df fails to type check.

How to work around this problem?

• If we knew the type of the argument df is being applied to, we
could use this to type-check df.

• However, we will not always know the type of the argument
while type-checking df. Example: ((λf. (f (λx.x))) df).

• The way to make the type of the argument known is to use a
“let”:

• “let f = λx.x in ((f 3), (f true))” will type-check.
• “let f = λn.n+1 in ((f 3), (f true))” will not type-check.
• In other words, df can be type-checked whenever its argument

is hard-coded (via a “let”). In this scenario df essentially does
not need the first argument (i.e., f), and hence does not need
a deep type.

A closer look at T-Gen

Need for the pre-condition A ̸∈ FV(Γ) in T-Gen:

• Consider t = “λf. let g = f in ((g 3), (g true))”. Say, in the
T-Abs rule we guess a type f:B → A, this typing to the
environment, and then proceed to type-check the sub-term
“let g = f in ((g 3), (g true))”.

• Term t1 = “((g 3), (g true))” would type-check if we
generalized the type of g to ∀B.B → A while type-checking t1.

• However, this would implicitly force the type of t to become
∀A.(∀B.B → A) → (A,A), which is a deep type.

• Therefore, we include the pre-condition, which forces t1 to be
type-checked under an environment wherein the type of f is
monomorphic (i.e., B → A), which in causes t1 to be called
ill-typed.

Typing rule for letrec

Γ,v:U1 ⊢ e1:U1, Γ, v:∀A1 . . .An.U1 ⊢ e:U,
{A1 . . .An} ∩ FV(Γ) = ϕ

[T-Letrec]
Γ ⊢ (letrec v=e1 in e):U

Note:

• v’s type is taken to be monomorphic while type-checking e1.

• v’s type is taken to be polymorphic while type-checking e.

• This makes the type-system decidable.

Illustration 3

Summary of polymorphic type system

• It is sound. That is, no term that can be given a type
according to the type rules can ever reduce to a non-value
normal form.

• It is incomplete. That is, there exist terms that can never
reduce to a non-value form that are not typable.

• Every well-typed term has a unique principal type.

• The type system is decidable. That is, there exists an
algorithm that can identify the principal type of every
well-typed term.

