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The Semantics of Program Slicing
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A slice of a program with respect to a program point p and variable x consists of all statements of the program that
might affect the value of x at point p. Slices can be extracted particularly easily from a program representation called a
dependence graph, originally introduced as an intermediate program representation for performing optimizing, vector-
izing, and parallelizing transformations. Such slices are of a slightly restricted form: rather than permitting a program
to be sliced with respect to program point p and an arbitrary variable, a slice must be taken with respect to a variable
that is defined at or used at p.

This paper concerns the relationship between the execution behavior of a program and the execution behavior of its
slices. Our main results are those stated as the Slicing Theorem and the Termination Theorem. The Slicing Theorem
demonstrates that a slice captures a portion of a program’s behavior in the sense that, for any initial state on which the
program halts, the program and the slice compute the same sequence of values for each element of the slice. The Ter-
mination Theorem demonstrates that if a program is decomposed into (two or more) slices, the program halts on any
state for which all the slices halt.

These results are used to provide semantic justification for a program-integration algorithm of Horwitz, Prins, and
Reps.

Categories and Subject Descriptors: D.2.7 [Software Engineering]: Distribution and Maintenance − enhancement, res-
tructuring, version control; D.2.9 [Software Engineering]: Management − programming teams, software
configuration management; D.3.4 [Programming Languages]: Processors − compilers, interpreters, optimization; E.1
[Data Structures] graphs

General Terms: Theory

Additional Key Words and Phrases: control dependence, data dependence, data-flow analysis, dependence graph, pro-
gram slice, program integration, semantics, termination
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1. INTRODUCTION

The slice of a program with respect to program point p and variable x consists of all statements and predi-
cates of the program that might affect the value of x at point p [16]. Program slicing can be used to isolate
individual computation threads within a program, which can help a programmer understand complicated
code. Program slicing is also used by the algorithm for automatically integrating program variants
described in [5] and [12]; slices are used to compute a safe approximation to the computation threads that
have changed between a program P and a modified version of P, and to help determine whether two dif-
ferent modifications to P interfere.
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This work was supported in part by the National Science Foundation under grant DCR-8552602, by the Defense Advanced Research
Projects Agency, monitored by the Office of Naval Research under contract N00014-88-K-0590, as well as by grants from IBM, DEC,
and Xerox.

Authors’ address: Computer Sciences Department, University of Wisconsin, 1210 W. Dayton St., Madison, WI 53706.

UW Madison Technical Report #777



- 2 -

The original algorithm given for program slicing was expressed as a sequence of data flow analysis
problems [16]. An alternative (and more practical) approach was put forward in [10], where it was pointed
out that the slice of a program with respect to an initial set of vertices could be computed by walking back-
wards over the edges of the program dependence graphs being proposed as the internal representation of
programs in a program development environment. The kind of slicing that can be performed using a pro-
gram dependence graph is, however, somewhat restricted: rather than permitting a program to be sliced
with respect to program point p and an arbitrary variable, a slice must be taken with respect to a variable
that is defined at or used at p. It is this restricted kind of slice that is studied here.

This paper presents results that characterize the relationship between the execution behavior of a pro-
gram and the execution behavior of its slices. Our main results on slicing are those stated as the Slicing
Theorem and the Termination Theorem. The Slicing Theorem demonstrates that a slice captures a portion
of a program’s behavior in the sense that, for any initial state on which the program halts, the program and
the slice compute the same sequence of values for each element of the slice. The Termination Theorem
demonstrates that if a program is decomposed into (two or more) slices, the program halts on any state for
which all the slices halt.

These theorems are then used to provide semantic justification for the program-integration algorithm
presented in [512]; the integration algorithm presented there either merges two program versions with a
base version of the program or determines that the variants incorporate interfering changes. In the algo-
rithm, slicing is used to determine which elements from the base program and its variants should be incor-
porated in the integrated program. The integrated program is created by (1) finding slices that represent the
changed computation threads of the variant programs as well as the computation threads of the base pro-
gram that are preserved in both variants, (2) combining these slices to form the merged graph, and (3) test-
ing for interference by checking whether the slices that were combined to form the merged graph are
preserved (as slices of the merged graph). (A prototype implementation of an integration tool based on this
algorithm has been embedded in a program editor created using the Synthesizer Generator [1113].)

The Slicing and Termination Theorems are used to prove a theorem, the Integration Theorem, that
characterizes the execution behavior of the integrated program in terms of the behaviors of the base pro-
gram and the two variants; the Integration Theorem demonstrates that the integrated program produced by
a successful integration preserves the changed behaviors of both variants as well as the behavior of the
base program that is unchanged in both variants.

The rest of the paper is organized as follows: Section 2 defines program dependence graphs and the
operation of slicing a program dependence graph. Section 3 presents the proof of the Feasibility Lemma.
Section 4 presents the proof of the Slicing Theorem. Section 5 presents the proof of the Termination
Theorem. In Section 6, the Slicing Theorem and the Termination Theorem are used to prove the Integra-
tion Theorem. Section 7 discusses the relation of the work described to previous work.

2. TERMINOLOGY AND NOTATION

We are concerned with a restricted programming language with the following characteristics: expressions
contain only scalar variables and constants; statements are either assignment statements, conditional state-
ments, while loops, or a restricted kind of “output statement” called an end statement, which can only
appear at the end of a program. An end statement names one or more of the variables used in the program.
Thus a program is of the form:
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program id
stmt_list

end(id *)

Our discussion of the language’s semantics is in terms of the following informal model of execution.
We assume a standard operational semantics for sequential execution of the corresponding flowchart (con-
trol flow graph): at any moment there is a single locus of control; the execution of each assignment state-
ment or predicate passes control to a single successor; the execution of each assignment statement changes
a global execution state. An execution of the program on some initial state also yields a (possibly infinite)
sequence of values for each predicate and assignment statement in the program; the i th element in the
sequence for program element e consists of the value computed when e is executed for the i th time. The
variables named in the end statement are those whose final values are of interest to the programmer; when
execution terminates, the final state is defined on only those variables in the end statement.

The abstract syntax of the language is defined as the terms of the types id, exp, stmt, stmt_list, and pro-
gram constructed using the operators Assign, While, IfThenElse, StmtList, and Program. The five operators
of the abstract syntax have the following definitions:

Assign : id × exp → stmt
While : exp × stmt_list → stmt
IfThenElse : exp × stmt_list × stmt_list → stmt
StmtList : stmt+ → stmt_list

Program : id × stmt_list × id * → program

In operator Program, the initial id represents the program name, and the id * component represents the vari-
ables named in the end statement.

We also introduce an overloaded constant, Null, which is used to represent null trees of type id, exp,
stmt, and stmt_list:

Null : → id
Null : → exp
Null : → stmt
Null : → stmt_list

Null is introduced solely for technical reasons, and is never an element of a program’s abstract syntax tree.

Henceforth, we use “program” and “abstract syntax tree” synonymously.

2.1. The Program Dependence Graph

Different definitions of program dependence representations have been given, depending on the intended
application; they are all variations on a theme introduced in [7, 14, 8, 9], and share the common feature
of having an explicit representation of data dependences (see below). The “program dependence graphs”
defined in [3] introduced the additional feature of an explicit representation for control dependences (see
below). Although the definition of program dependence graph given below covers only the restricted
language described earlier, and hence is less general than the one given in [3], the structures we define
share the feature of representing both control and data dependences and we will refer to them as “program
dependence graphs,” borrowing the term from [3].

The program dependence graph (or PDG) for a program P, denoted by GP, is a directed graph whose
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vertices are connected by several kinds of edges.1 The vertices of GP represent the assignment statements
and control predicates that occur in program P. In addition, GP includes three other categories of vertices:

1) There is a distinguished vertex called the entry vertex.

2) For each variable x for which there is a path in the standard control-flow graph for P on which x is
used before being defined (see [1]), there is a vertex called the initial definition of x. This vertex
represents an assignment to x from the initial state. The vertex is labeled “x := InitialState (x).”

3) For each variable x named in P’s end statement, there is a vertex called the final use of x. This vertex
represents an access to the final value of x computed by P, and is labeled “FinalUse (x).”

The edges of GP represent dependences between program components. An edge represents either a con-
trol dependence or a data dependence. Control dependence edges are labeled either true or false, and the
source of a control dependence edge is always the entry vertex or a predicate vertex. A control dependence
edge from vertex v 1 to vertex v 2, denoted by v 1 →c v 2, means that during execution, whenever the predi-
cate represented by v 1 is evaluated and its value matches the label on the edge to v 2, then the program
component represented by v 2 will be executed (although perhaps not immediately). A method for deter-
mining control dependence edges for arbitrary programs is given in [3]; however, because we are assuming
that programs include only assignment, conditional, and while statements, the control dependence edges of
GP can be determined in a much simpler fashion. For the language under consideration here, the control
dependence edges reflect a program’s nesting structure; a program dependence graph contains a control
dependence edge from vertex v 1 to vertex v 2 of GP iff one of the following holds:

i) v 1 is the entry vertex, and v 2 represents a component of P that is not subordinate to any control
predicate; these edges are labeled true.

ii) v 1 represents a control predicate, and v 2 represents a component of P immediately subordinate to the
control construct whose predicate is represented by v 1. If v 1 is the predicate of a while-loop, the
edge v 1 →c v 2 is labeled true; if v 1 is the predicate of a conditional statement, the edge v 1 →c v 2

is labeled true or false according to whether v 2 occurs in the then branch or the else branch, respec-

tively.2

A data dependence edge from vertex v 1 to vertex v 2 means that the program’s computation might be
changed if the relative order of the components represented by v 1 and v 2 were reversed. In this paper,
hhhhhhhhhhhhhhhhhhhhhhhhhhhhh
1We make use of the following graph terminology:

1) A directed graph G consists of a set of vertices V (G) and a set of edges E (G), where E (G) ⊆ V (G) ×V (G). Each edge
(b, c) ∈ E (G) is directed from b to c; we say that b is the source and c the target of the edge.

2) A multi-graph is a graph with a bag of edges (i.e. duplicate edges may exist in the graph).

3) Given directed graphs A = (VA, EA) and B = (VB, EB), that may or may not be disjoint, the union of A and B is defined as:

A ∪ B = (VA ∪ VB, EA ∪ EB)

4) Given a directed graph A = (V, E), a path from vertex a to vertex b is a sequence of vertices, [v 1 , v 2 , ..., vk], such that: a =v 1 ,
b =vk, and { (vi, vi +1) | i =1, ..., k −1 } ⊆ E.

5) Given a directed graph A = (V, E) and a set of vertices V ′ ⊆ V, the projection of A onto V ′ is the graph (V ′, E ′), where E ′ =
{(v, w) | v,w ∈ V ′ and there exists a path [v = v 1 , v 2 , ..., vk = w] such that v 2 , ..., vk −1 ∈/ V ′}. (That is, the projection of A onto
V ′ has an edge from v ∈ V ′ to w ∈ V ′ when there exists a path from v to w in A that does not pass through any other elements of
V ′.)

2In other definitions that have been given for control dependence edges, there is an additional edge for each predicate of a while state-
ment − each predicate has an edge to itself labeled true. By including the additional edge, the predicate’s outgoing true edges consist
of every program element that is guaranteed to be executed (eventually) when the predicate evaluates to true. This kind of edge turns
out to be unnecessary for our purposes and hence is left out of our definition.
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program dependence graphs contain two kinds of data-dependence edges, representing flow dependences
and def-order dependences.

A program dependence graph contains a flow dependence edge from vertex v 1 to vertex v 2 iff all of the
following hold:

i) v 1 is a vertex that defines variable x.

ii) v 2 is a vertex that uses x.

iii) Control can reach v 2 after v 1 via an execution path along which there is no intervening definition of
x. That is, there is a path in the standard control-flow graph for the program [1] by which the
definition of x at v 1 reaches the use of x at v 2. (Initial definitions of variables are considered to occur
at the beginning of the control-flow graph, and final uses of variables are considered to occur at its
end.)

A flow dependence that exists from vertex v 1 to vertex v 2 will be denoted by v 1 →f v 2.

Flow dependences are further classified as loop independent or loop carried. A flow dependence
v 1 →f v 2 is carried by loop L, denoted by v 1 → lc (L) v 2, if in addition to i), ii), and iii) above, the follow-
ing also hold:

iv) There is an execution path that both satisfies the conditions of iii) above and includes a backedge to
the predicate of loop L; and

v) Both v 1 and v 2 are enclosed in loop L.

A flow dependence v 1 →f v 2 is loop independent, denoted by v 1 →li v 2, if in addition to i), ii), and iii)
above, there is an execution path that satisfies iii) above and includes no backedge to the predicate of a
loop that encloses both v 1 and v 2. It is possible to have both v 1 → lc (L) v 2 and v 1 → li v 2.

A program dependence graph contains a def-order dependence edge from vertex v 1 to vertex v 2 iff all of
the following hold:

i) v 1 and v 2 both define the same variable.

ii) v 1 and v 2 are in the same branch of any conditional statement that encloses both of them.

iii) There exists a program component v 3 such that v 1 →f v 3 and v 2 →f v 3.

iv) v 1 occurs to the left of v 2 in the program’s abstract syntax tree.

A def-order dependence from v 1 to v 2 is denoted by v 1 → do (v 3) v 2.

Note that a program dependence graph is a multi-graph (i.e. it may have more than one edge of a given
kind between two vertices). When there is more than one loop-carried flow dependence edge between two
vertices, each is labeled by a different loop that carries the dependence. When there is more than one def-
order edge between two vertices, each is labeled by a vertex that is flow-dependent on both the definition
that occurs at the edge’s source and the definition that occurs at the edge’s target.

Example. Figure 1 shows an example program and its program dependence graph. The boldface arrows
represent control dependence edges; dashed arrows represent def-order dependence edges; solid arrows
represent loop-independent flow dependence edges; solid arrows with a hash mark represent loop-carried
flow dependence edges.

The data-dependence edges of a program dependence graph are computed using data-flow analysis. For
the restricted language considered in this paper, the necessary computations can be defined in a syntax-
directed manner (see [4]).
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program Main
sum := 0;
x := 1;
while x < 11 do

sum := sum + x ;
x := x + 1

od
end(x, sum)

ENTRY

sum := 0 x := 1 while x < 11

sum := sum + x x := x + 1

FinalUse (sum)FinalUse (x)

T T T

T T

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 1. An example program, which sums the integers from 1 to 10 and leaves the result in the variable sum, and its
program dependence graph. The boldface arrows represent control dependence edges, dashed arrows represent def-
order dependence edges, solid arrows represent loop-independent flow dependence edges, and solid arrows with a hash
mark represent loop-carried flow dependence edges.

The relationship between a program’s PDG and the program’s execution behavior has been addressed in
[6]. In particular, it is shown in [6] that if the PDGs of two programs are isomorphic then the programs
have the same behavior. The concept of “programs with the same behavior” is formalized as the concept
of strong equivalence, defined as follows:

DEFINITION. Two programs P and Q are strongly equivalent iff for any state σ, either P and Q both
diverge when initiated on σ or they both halt with the same final values for all variables. If P and Q are not
strongly equivalent, we say they are inequivalent.

The term “divergence” refers to both non-termination (for example, because of infinite loops) and abnor-
mal termination (for example, because of division by zero or the use of an out-of-bounds array index).

The main result of [6] is the following theorem: (the symbol ≈ denotes isomorphism between program
dependence graphs).

THEOREM. (EQUIVALENCE THEOREM). If P and Q are programs for which GP ≈ GQ, then P and Q are
strongly equivalent.

Restated in the contrapositive the theorem reads: inequivalent programs have non-isomorphic program
dependence graphs. (We prove a stronger form of this theorem in Section 4.2.)

2.2. Program Slices

For a vertex s of a PDG G, the slice of G with respect to s, written as G / s, is a graph containing all vertices
on which s has a transitive flow or control dependence (i.e. all vertices that can reach s via flow or control
edges): V(G / s) = { w | w ∈ V(G) w →*

c, f s }. We extend the definition to a set of vertices S =
i

∪ si as

follows: V(G / S) = V(G / (
i

∪ si)) =
i

∪ V(G / si). It is useful to define V (G / v) = ∅ for any v ∈/ G.
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The edges in the graph G / S are essentially those in the subgraph of G induced by V(G / S), with the
exception that a def-order edge v → do (u) w is only included if, in addition to v and w, V (G / S) also con-
tains the vertex u that is directly flow dependent on the definitions at v and w. In terms of the three types of
edges in a PDG we have:

E(G / S) = { (v →f w) | (v →f w) ∈ E (G) v, w ∈ V(G / S) }
∪ { (v →c w) | (v →c w) ∈ E(G) v, w ∈ V(G / S) }
∪ { (v → do (u) w) | (v → do (u) w) ∈ E (G) u, v, w ∈ V(G / S) }

Example. Figure 2 shows the graph resulting from taking a slice of the program dependence graph from
Figure 1 with respect to the final-use vertex for x.

The following lemma demonstrates a useful property of program slicing.

LEMMA. (Decomposition Lemma). For any collection
i

∪ si of program points, we have

i
∪ (G / si) = G /

i
∪ si .

PROOF. The graph
i

∪ G / si consists of vertices
i

∪ V(G / si) and edges
i

∪ E(G / si).

1) By the definition of the vertex set of a slice,
i

∪ V(G / si) = V(G /
i

∪ si).

2) (a) For each edge u →w ∈
i

∪ E(G / si) we have u →w ∈ E(G / si) for some i. Because

{ si } ⊆
i

∪ si , u →w ∈ E(G /
i

∪ si), so
i

∪ E(G / si) ⊆ E(G /
i

∪ si).

(b) For each control or flow edge u → c, f w ∈ E(G /
i

∪ si) we have w ∈ V(G /
i

∪ si) =
i

∪ V(G / si).

Hence w ∈ V(G / si) for some i. Since u → c, f w we must have u ∈ V(G / si) as well, so

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

program Main
x := 1;
while x < 11 do

x := x + 1
od

end(x)

ENTRY

x := 1 while x < 11

x := x + 1

FinalUse (x)

T T

T

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 2. The graph that results from slicing the example from Figure 1 with respect to the final-use vertex for x.
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u → c, fw ∈ E(G / si) ⊆
i

∪ E(G / si).

By the definition of the edge set of a slice, for each def-order edge u → do (t) w ∈ E(G /
i

∪ si) we

have t ∈ V(G /
i

∪ si) =
i

∪ V(G / si). Hence t ∈ V(G / si) for some i. Since u →f t and w →f t we

have t,u,w ∈ V(G / si), so u → do (t) w ∈ E(G / si) ⊆
i

∪ E(G / si).

Since G contains only flow, control and def-order edges, we have E(G /
i

∪ si) ⊆
i

∪ E(G / si).

Combining (a) and (b) we have
i

∪ E(G / si) = E(G /
i

∪ si).

Combining (1) and (2) we have
i

∪ (G / si) = G /
i

∪ si . `

3. THE FEASIBILITY LEMMA

Our first result concerns a syntactic property of slices: we say that a graph G is a feasible program depen-

dence graph iff G is (isomorphic to3) the program dependence graph of some program P (i.e. G ≈ GP). We
now show that for any program P and vertex set S, the slice GP / S is also a feasible PDG; the proof
proceeds by showing that GP / S corresponds to the program obtained by restricting the syntax tree of P to
just the statements and predicates in V(GP / S).

LEMMA. (FEASIBILITY LEMMA). For any program P, if GQ is a slice of GP (with respect to some set of
vertices), then GQ is a feasible PDG.

PROOF. We construct a new program Q ′ from P and GQ as follows: the elements (statements and predi-
cates) of Q ′ correspond to the vertices of GQ; each element of Q ′ is subordinate to the same element that it
is subordinate to in P; the elements of Q ′ occur in the same relative order as they do in P. The variables
that appear in the end statement of Q ′ are those variables whose final-use vertices are in GQ. We use GQ ′

to denote the program dependence graph of Q ′.

Because each element of Q ′ is subordinate to the same element that it is subordinate to in P, and because
elements of Q ′ occur in the same order as they occur in P, the control flow graph for program Q ′ is the pro-
jection of the control flow graph for program P onto the elements of Q ′. That is, if a and b are elements of
Q ′, the projection of any path from a to b in the control flow graph of P onto the set of elements of Q ′ is a
path in the control flow graph of Q ′. Furthermore, every path from a to b in the control flow graph of Q ′ is
the projection of some path from a to b (and possibly several such paths) in the control flow graph of P.

>From the construction of Q ′, the only possible differences between the vertex sets of GQ and GQ ′ is in
their initial-definition vertices. By the definition of the vertex set of a slice, if there is an initial-definition
vertex a for variable x in V (GQ), there must be a flow edge a →f b in E (GQ), where b is not an initial-def
vertex. Since a →f b ∈ E (GQ), it must be that a →f b ∈ E (GP). This means that there is a path from the
beginning of the control flow graph of P to b that is free of any definition to x. The projection of this path
onto the elements of Q ′ is a path in Q ′ from the beginning of the control flow graph of Q ′ to b and contains
no definition to x. Consequently, V (GQ ′ ) must contain an initial-definition vertex for x, which corresponds
to vertex a in V (GQ).

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
3For brevity, when two graphs are related by some mapping (for example, an isomorphism or an embedding) we frequently blur the
distinction between corresponding elements of the two graphs; strictly speaking, we should refer to “elements that correspond under
the mapping.”
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Arguing in the other direction, suppose there is an initial-definition vertex a for variable x in V (GQ ′ ) and
a flow edge a →f b that occurs in E (GQ ′ ) but not in E (GQ). Since b ∈ V (GQ) but a →f b ∈/ E (GQ), by
the definition of the edge set of a slice, a →f b cannot be in E (GP). Therefore, along each path from the
entry vertex to b in P there must be a redefinition of x. Along each such path p, let cp be the last
redefinition site. Since cp →f b is in E (GP) and b is in V (GQ), cp →f b is in E (GQ); the vertex cp itself
must be in V (GQ) and hence in Q ′. Because every path from the entry vertex to b in the control flow graph
of Q ′ is a projection of a path p from the entry vertex to b in the control flow graph of P, there must be a
redefinition of x on each path from the entry vertex to b in Q ′. This means that a →f b cannot be in E (Q ′),
which is a contradiction, hence there does exist a flow edge a →f b in E (GP) where a is the initial-
definition vertex for x in P. Because b ∈ V (GQ ′ ) and b itself is not an initial-definition vertex, by the con-
struction of Q ′ it must be that b ∈ V (GQ). Consequently, by the definition of the vertex set of a slice,
a ∈ V (GQ) and a →f b ∈ E (GQ).

We have shown above that GQ and GQ ′ have isomorphic vertex sets, what remains to be shown is that
GQ and GQ ′ have isomorphic edge sets.

Sub-proof 1. If the edge (a, b) ∈ E (GQ), then (a, b) ∈ E (GQ ′ ).

1) By the definition of the edge set of a slice, if a →c b is a control edge in E (GQ), then a →c b is a
control edge in E (GP), which means that b is subordinate to a in program P. Because an element in
program Q ′ is subordinate to the same element that it is subordinate to in P, a →c b is in E (GQ ′ ), as
well.

2) By the definition of the edge set of a slice, if a →f b is a flow edge in E (GQ), then a →f b is in
E (GP), which means that there is a path in the control flow graph of P from a to b without any
redefinition to the target variable of a. The projection of this path onto the elements of Q ′ is a path in
Q ′ that contains no redefinition to the target variable of a; thus, a →f b is in E (GQ ′ ).

3) By the definition of the edge set of a slice, if a → do (c)b is a def-order edge in E (GQ), then there are
flow edges a →f c and b →f c in E (GQ). >From the argument in (2), the edges a →f c and b →f c
also occur in E (GQ ′ ). Because a occurs to the left of b in P’s abstract syntax tree, a occurs to the left
of b in the abstract syntax tree of Q ′. Therefore, a → do (c)b is in E (GQ ′ ).

Sub-proof 2. If edge (a, b) ∈ E (GQ ′ ), then (a, b) ∈ E (GQ).

1) If a →c b is a control edge in E (GQ ′ ), then b is subordinate to a in Q ′, hence b is subordinate to a in
P. Therefore, a →c b is a control edge in E (GP) and, by the definition of the edge set of a slice, the
control edge a →c b is a member of E (GQ).

2) Suppose a →f b is a flow edge that occurs in E (GQ ′ ) but not in E (GQ). Since a, b ∈ V (GQ) but
a →f b ∈/ E (GQ), by the definition of the edge set of a slice, a →f b cannot be in E (GP). Therefore,
along each path from a to b in P there must be a redefinition of the target variable of a.

Along each such path p, let cp be the last redefinition site. Since cp →f b is in E (GP) and b is in
V (GQ), cp →f b is in E (GQ); the vertex cp itself must be in V (GQ) and hence in Q ′. Because every
path from a to b in the control flow graph of Q ′ is a projection of a path p from a to b in the control
flow graph of P, there must be a redefinition of the target variable of a on each path from a to b in
Q ′. This means that a →f b cannot be in E (Q ′), which is a contradiction; therefore, a →f b is a
flow edge in E (GQ).

3) If a → do (c)b is a def-order edge in E (GQ ′ ), then a →f c and b →f c are in E (GQ ′ ). >From the
argument in (2), the edges a →f c and b →f c are in E (GP) and E (GQ), as well. Because
a → do (c)b is in E (GQ ′ ) a occurs to the left of b in Q ′, hence a occurs to the left of b in P and
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therefore a → do (c)b is in E (GP). Now a, b, and c are all in V (GQ); thus, by the definition of the
edge set of a slice, a → do (c)b is in E (GQ).

We have shown that GQ is isomorphic to GQ ′ and hence corresponds to program Q ′. Therefore, the slice
of a feasible PDG is always a feasible PDG. `

Note that there may be programs other than Q ′ whose program dependence graph is isomorphic to GQ. By
the Equivalence Theorem, all such programs are strongly equivalent to Q ′ [6].

Since a slice of a feasible program dependence graph is feasible, and programs with isomorphic program
dependence graphs are strongly equivalent, we can speak of “a slice of a program” as well as “a slice of a
program dependence graph.” We say program Q is a slice of program P with respect to a set of program
points, S, when GQ ≈ (GP / S), and write this as P / S.

4. THE SEMANTICS OF PROGRAM SLICING

We now turn to the relationship between the execution behaviors of a program and a slice of the program.
Because of the way a program slice is derived from a program, it is not unreasonable to expect that the pro-
gram and the slice exhibit similar execution behavior. However, because a diverging computation may be
“sliced out,” a program and a slice of the program do not necessarily exhibit identical execution behaviors;
in particular, a slice may produce a result on some initial states for which the original program diverges.
For example, the program shown below on the left always diverges, whereas the program on the right,
obtained by slicing the left-hand-side program with respect to variable x at the program’s end statement,
always converges:

program Main program Main
x := 1; x := 0
while true do end(x)

x := x + 1
od;
x := 0

end(x)

The main result of this section is the following theorem, which asserts that a slice captures a portion of
the program’s behavior in the sense that, for any initial state on which the program halts, the program and
the slice compute the same sequence of values for each element of the slice. (In our case a program point
may be (1) an assignment statement, (2) a control predicate, or (3) a final use of a variable in an end state-
ment. By “computing the same sequence of values” at each corresponding point we mean: (1) for any
assignment statement the same sequence of values are assigned to the target variable; (2) for a predicate the
same sequence of boolean values are produced; and (3) for each final use the same value for the variable is
produced.)

THEOREM. (SLICING THEOREM). Let Q be a slice of program P with respect to a set of vertices. If σ is a
state on which P halts, then for any state σ′ that agrees with σ on all variables for which there are initial-
definition vertices in GQ: (1) Q halts on σ′, (2) P and Q compute the same sequence of values at each pro-
gram point of Q, and (3) the final states agree on all variables for which there are final-use vertices in GQ.

(The third clause of the theorem’s conclusion is implied by the second clause; it is stated explicitly to
emphasize what the theorem says about programs viewed as state-transformers.)

The proof of the Slicing Theorem relies on a lemma, the Subtree Slicing Lemma, which is stated and
proven in Section 4.3.
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4.1. Additional Terminology and Results

The subgraph induced by the control dependences of program dependence graph GP forms a tree that is
closely related to the abstract syntax tree for program P. The control dependence subtree is rooted at the
entry vertex of GP, which corresponds to the Program node at the root of P’s abstract syntax tree. Each
predicate vertex v of GP corresponds to an interior node of the abstract syntax tree; the node is a While
node or an IfThenElse node depending on whether v is labeled with while or if, respectively. Each assign-
ment vertex of GP corresponds to an Assign node of the abstract syntax tree.

The control dependence subtree rooted at a vertex v of GP corresponds to the subtree of the abstract syn-
tax tree that is rooted at the control construct that corresponds to v. Because of this correspondence, for
brevity we use phrases, such as “the flow edges whose source is in subtree T,” which are, strictly speaking,
not correct when T is a subtree of the abstract syntax tree. What “T” refers to is the subgraph induced by T
in GP’s control dependence subgraph.

Imported and exported variables

Our goal is to show that a slice of a program exhibits a portion of the program’s behavior in the sense that
they are equivalent state transformers with respect to certain variables. In making this argument, it is
necessary to discuss the state-transforming properties of subtrees. The state-transforming properties of a
subtree are characterized in terms of the subtree’s imported and exported variables.

DEFINITION. The outgoing flow edges of a subtree T consist of all the loop-independent flow edges
whose source is in T but whose target is not in T, together with all the loop-carried flow edges for which the
source is in T and the edge is carried by a loop that encloses T. Note that the target of an outgoing loop-
carried flow edge may or may not be in T. The variables exported from a subtree T are the variables
defined at the source of an outgoing flow edge.

DEFINITION. The incoming flow edges of a subtree T consist of all the loop-independent flow edges
whose target is in T but whose source is not in T, together with all the loop-carried flow edges for which the
target is in T and the edge is carried by a loop that encloses T. Note that the source of an incoming loop-
carried flow edge may or may not be in T. The incoming def-order edges of a subtree T consist of all the
def-order edges whose target is in T but whose source is not in T. The variables imported by a subtree T
are the variables defined at the source of an incoming flow edge or at the source of an incoming def-order
edge.

Note that there are loop-independent flow edges to all final-use vertices of a program dependence graph;
thus, the exported variables of a program P consist of all the variables that occur in P’s end statement.
Similarly, there are loop-independent flow edges from all of the initial-definition vertices; thus, the
imported variables of a program P consist of those variables that may get their values from the initial state.

The Self-Equivalence Lemma

The Self-Equivalence Lemma, proved in [6], shows that the definitions of imported and exported variables
are consistent with each other and can be used to characterize the state-transforming properties of a sub-
tree.

LEMMA. (SELF-EQUIVALENCE LEMMA). Let T be a subtree of program P. Then T is strongly equivalent
to T relative to T’s imported and exported variables (as defined in the context given by P).
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Corresponding subtrees

Let Q be a slice of P with respect to a set of program points. There is natural correspondence between sub-
trees in P and subtrees in Q, defined as follows:

DEFINITION. Let Q be a slice of P with respect to some set of program points. For each subtree U of Q
with root u, U corresponds to the subtree of P whose root is u. For each subtree T of P, if the root t of T
occurs in Q, T corresponds to the subtree of Q rooted at t; if t does not occur in Q, T corresponds to the tree
Null.

Thus, for each subtree of Q, there is always a corresponding subtree of P, and vice versa, although for a
subtree of P the corresponding subtree of Q may be the tree Null.

Note that the “corresponds to” relation respects the hierarchical structure of programs: children of roots
of corresponding subtrees are the roots of corresponding subtrees.

4.2. A Strong Form of the Equivalence Theorem

The Equivalence Theorem, which states that programs with isomorphic program dependence graphs are
strongly equivalent with respect to the imported and exported variables, was proven in [6]. To prove the
Slicing Theorem, we need a stronger form of the Equivalence Theorem, which states that, when initiated
on the same state, programs with isomorphic program dependence graphs are not only strongly equivalent
but actually compute the same sequence of values at each corresponding program point.

In [6] the Equivalence Theorem follows as a corollary of the following lemma:

LEMMA. (EQUIVALENCE LEMMA). Suppose that P and Q are programs for which GP ≈ GQ. Then for
any subtrees T in P and U in Q that correspond, T and U are strongly equivalent relative to their imported
and exported variables.

In this section, we first prove the Subtree Equivalence Lemma, which is a strong form of the
Equivalence Lemma; it states that for two programs with isomorphic program dependence graphs their
corresponding subtrees compute the same sequence of values at each corresponding program point when
they both terminate on a state. The strong form of the Equivalence Theorem then follows as a corollary of
the Subtree Equivalence Lemma.

4.2.1. The Subtree Equivalence Lemma

LEMMA. (SUBTREE EQUIVALENCE LEMMA). Suppose that P and Q are programs for which GP ≈ GQ.
Let T be a subtree of P and U be the corresponding subtree of Q. If σ is a state on which T halts, then for
any state σ′ that agrees with σ on their imported variables, (1) U halts on σ′, (2) T and U compute the
same sequence of values at each corresponding program point, and (3) the final states agree on their
exported variables.

Note that corresponding subtrees of P and Q have isomorphic program dependence graphs and the same
imported and exported variables because P and Q have isomorphic program dependence graphs.

PROOF. By the Equivalence Lemma, T and U are strongly equivalent relative to their imported and
exported variables, i. e., when the executions of T and U are initiated on σ and σ′, respectively, which
agree on the imported variables, either they both diverge or they both halts with the same final values for
all exported variables. Thus, (1) and (3) are simply a restatement of the Equivalence Lemma. We need to
prove (2).

The proof is by structural induction on the abstract syntax of the programming language. The proof
splits into five cases based on the abstract-syntax operator that appears at the root of T.
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Throughout the proof, we use Imp and Exp to denote the imported and exported variables of T, respec-
tively (T and U have the same imported and exported variables); we use σ1 and σ1 ′ to denote states that
agree on the imported variables, Imp. We use σi to denote a sequence of states in the execution of T ini-
tiated on σ1, and we use σi ′ to denote the corresponding sequence of states in the execution of U initiated
on σ1 ′.

Case 1. The operator at the root of T is the Assign operator. Note that T = U in this case and that T
assigns to variable x as a function of variables {yj}; Imp is either {yj} or {yj}∪ {x} (Imp is {yj}∪ {x} when
T is the target of a def-order edge). Since the value of the exp is a function of {yj}; and {yj} ⊆ Imp,
evaluating exp in both σ1 and σ1 ′ yields the same value because they agree on Imp. Thus, T and U com-
pute the same (sequence of) values.

Case 2. The operator at the root of T is the While operator. Since T halts, we may assume the execution
of T halts after the j th iteration, for some j. It is sufficient to show that (1) U also halts after the j th itera-
tion, and (2) in each iteration, T and U compute the same sequence of values at each corresponding pro-
gram point.

We use Imp exp and Exp exp to denote the imported and exported variables of the exp component, respec-
tively; we use Impstmt_list and Expstmt_list to denote the imported and exported variables of the stmt_list com-
ponent, respectively. We use σi and σi ′ to denote the execution states before executing the i th iterations of
the loops of T and U starting from two states that agree on Imp, σ1 and σ1 ′, respectively.

Because for a loop Exp ⊆ Imp,4 it suffices to show that if σi and σi ′ agree on Imp then either T and U
both halt in the states σi and σi ′, respectively, or else the i th iterations compute the same sequence of
values at each corresponding program point and result in the states σi +1 and σi +1 ′ that agree on Imp.

First, we show that Imp = Imp exp ∪ Impstmt_list . It is clear that we could have written this with ⊆ , noting
that Impstmt_list can include a variable x that is used at the target t of a loop-carried flow dependence edge
where the dependence is carried by the loop. However, there then has to exist an incoming loop-
independent flow edge to t, which implies that v ∈ Imp.

Let σi and σi ′ be states that agree on Imp. Therefore they agree on Imp exp . Evaluating the condition
(the exp component) in σi and σi ′ yields the same value. Hence, T and U compute the same (sequence of)
values at the control predicate of the loop in the i th iteration. If the condition evaluates to false, then both
executions terminate in the states σi and σi ′, respectively.

Now suppose the condition evaluates to true. Let σi and σi ′ be states that agree on Imp; therefore they
agree on Impstmt_list . Now Tstmt_list and Ustmt_list are corresponding subtrees. By the induction hypothesis of
the structural induction, Tstmt_list and Ustmt_list compute the same sequence of values at each corresponding
program point of the stmt_list in the i th iteration and the final states, σi +1 and σi +1 ′, agree on Expstmt_list .
We need to show that σi +1 and σi +1 ′ agree on Imp. If σi +1 and σi +1 ′ do not also agree on Imp, then let
x ∈ Imp be a variable on which they disagree (so x ∈/ Expstmt_list ). Now, by assumption, σi and σi ′ agree on
Imp; therefore, at least one of the two executions of Tstmt_list and Ustmt_list , respectively, executed an assign-
ment statement a that assigned a value to x and reached the end of the stmt_list. There are two cases to
consider:

hhhhhhhhhhhhhhhhhhhhhhhhhhhhh
4If x ∈ ExpU , then U contains an assignment a to x with an outgoing flow edge a →f b. Because the loop may execute zero times, the
assignment to x must be the target of a def-order edge . . .→ do (b) a, hence x ∈ ImpU .
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(1) One possibility is that x ∈ Imp because x is used in a condition or statement b that is the target of an
incoming flow edge If this were the case, then there must be an outgoing loop-carried flow edge
a → lc (T) b or a → lc (U) b, depending on whether Tstmt_list or Ustmt_list executed a. However, in either
case, x ∈ Expstmt_list , which contradicts our previous assumption.

(2) The other possibility is that x ∈ Imp because there is an incoming def-order edge . . . → do (c) d in the
stmt_list. However, this implies that there is an outgoing flow edge a →f c from Tstmt_list or Ustmt_list ,
depending on whether Tstmt_list or Ustmt_list executed a. In either case, however, x ∈ Expstmt_list , which
contradicts our previous assumption.

We conclude that σi +1 and σi +1 ′ agree on Imp. Therefore, U halts after exactly the j th iteration and dur-
ing each iteration T and U compute the same sequence of values at each corresponding program point.

Case 3. The operator at the root of T is the IfThenElse operator. Note that T and U have the same exp
component. Because σ1 and σ1 ′ agree on Imp and Imp exp ⊆ Imp, evaluating the condition (the exp com-
ponent) in σ1 and σ1 ′ yields the same value; thus, T and U compute the same (sequence of) values at the
control predicate of the IfThenElse statement. Without loss of generality, assume that the condition evalu-
ates to true.

We use Ttrue , Tfalse , Utrue and Ufalse to denote the respective branches of T and U. Note that Ttrue and
Utrue are corresponding subtrees and Tfalse and Ufalse are corresponding subtrees. We use Imptrue and
Exptrue to denote the imported and exported variables of Ttrue , respectively; we use Impfalse and Expfalse to
denote the imported and exported variables of Tfalse , respectively.

When execution is initiated in state σ1, T terminates in σ2; consequently Ttrue also terminates in σ2.
Since σ1 and σ1 ′ agree on Imp and Imptrue ⊆ Imp, σ1 and σ1 ′ agree on Imptrue . Because Ttrue and Utrue are
corresponding subtrees, the induction hypothesis tell us that, when execution is initiated in state σ1 ′, (1)
Utrue terminates in state σ2 ′ (hence U terminates in state σ2 ′), and (2) Ttrue and Utrue compute the same
sequence of values at each corresponding program point of the true branch (hence T and U compute the
same sequence of values at each corresponding program point.)

Case 4. The operator at the root of T is the StmtList operator. Let T 1, T 2, . . . , Tn denote the immediate
subtrees of T. Note that all loop-independent flow edges and def-order edges from one subtree to another
go from left to right; that is, if there is a loop-independent flow edge or a def-order edge from a vertex in a
subtree Ti to a vertex in a different subtree Tj then i < j. Let U 1, U 2, . . . , Un denote the immediate sub-
trees of U in the order as they occur in program Q. Each Ti corresponds to some subtree U π(i) that is an
immediate subtree of U, and vice versa, where the mapping π is is a permutation over the interval 1 . . n.
Let π−1 denote the inverse permutation of π.

We use σi and σπ(i) ′ to denote the execution states before executing Ti and U π(i) , respectively; we use
Impi and Expi to denote the imported and exported variables, respectively, of Ti (hence of U π(i)). By the
Equivalence Lemma, Ti is strongly equivalent to U π(i) relative to Impi and Expi .

The proof of this case is by induction over i. We want to show that for all i, 1 ≤ i ≤ n, if σ1 and σ1 ′ agree
on Imp and T halts on σ1, then σi and σπ(i) ′ agree on Impi and Ti and U π(i) compute the same sequence of
values at each corresponding program point. Note that, by the induction hypothesis of the structural induc-
tion, if σi and σπ(i) ′ agree on Impi then Ti and U π(i) either both diverge or both halt and compute the same
sequence of values at each corresponding program point. Thus, we will concentrate on proving that σi and
σπ(i) ′ agree on Impi , for all i, 1 ≤ i ≤ n,

Base case. i = 1. First we show that σ1 ′ and σπ(1) ′ agree on Imp 1. (Note that Imp 1 is the set of the
imported variables of T 1 and hence of U π(1) .) If σ1 ′ and σπ(1) ′ do not agree on Imp 1, let x ∈ Imp 1 be a
variable on which they disagree. The execution of the initial subsequence U 1, U 2, . . . , U π(1)−1 executed
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an assignment statement to x and reached the beginning of U π(1) . Let the assignment statement a be in Uk .
Since x is an imported variable of U π(1) , U π(1) has an incoming loop-independent flow edge or an incoming
def-order edge a → . . ., whose source is in Uk . Since T and U have isomorphic program dependence
graphs, there is a corresponding loop-independent flow edge or a corresponding def-order edge from a ver-
tex in Tπ−1(k) to a vertex in T 1. Therefore, π−1(k) < 1, which is a contradiction because T 1 is the first
immediate subtree of T. We conclude that σ1 ′ and σπ(1) ′ agree on Imp 1.

Because σ1 and σ1 ′ agree on Imp and Imp 1 ⊆ Imp, σ1 and σ1 ′ agree on Imp 1. Because σ1 and σ1 ′ agree
on Imp 1 and σ1 ′ and σπ(1) ′ agree on Imp 1, σ1 and σπ(1) ′ agree on Imp 1. By the induction hypothesis of the
structural induction, T 1 and U π(1) compute the same sequence of values at each corresponding program
point on σ1 and σπ(1) ′, respectively.

Induction step. The induction hypothesis is: if σ1 and σ1 ′ agree on Imp and T halts on σ1, then σj and
σπ(j) ′ agree on Impj and Tj and U π(j) compute the same sequence of values at each corresponding program

point, for 1 ≤ j ≤ i. Thus, if σ̂1 and σ̂1 ′ are arbitrary states that agree on Imp and T halts on σ̂1, we need to

show that σ̂i +1 and σ̂π(i +1) ′ agree on Impi +1 and Ti +1 and U π(i +1) compute the same sequence of values at
each corresponding program point.

First we show that σ̂i +1 and σ̂π(i +1) ′ agree on Impi +1. (Note that Impi +1 is the set of the imported vari-

ables of Ti +1 and hence of U π(i +1) .) If σ̂i +1 and σ̂π(i +1) ′ do not agree on Impi +1, let x ∈ Impi +1 be a variable
on which they disagree. There are now two cases to consider:

(1) If there is no assignment statement to x in the initial subsequence T 1, T 2, . . . , Ti , then σ̂1 and σ̂i +1

agree on x. Note that x ∈ Imp because x ∈ Impi +1 and there is no assignment statement to x in the

initial subsequence T 1, T 2, . . . , Ti . Since σ̂1 and σ̂1 ′ agree on Imp, σ̂1 and σ̂1 ′ agree on x. Thus,

σ̂i +1 and σ̂1 ′ agree on x. Since σ̂i +1 and σ̂π(i +1) ′ do not agree on x, σ̂1 ′ and σ̂π(i +1) ′ do not agree on x.
Thus the execution of the initial subsequence U 1, U 2, . . . , U π(i +1)−1 executed an assignment state-
ment to x and reached the beginning of U π(i +1) . Let the assignment statement a be in Uk . Since x is
an imported variable of U π(i +1) , U π(i +1) has an incoming loop-independent flow edge or an incoming
def-order edge a → . . ., whose source is in Uk . Since T and U have isomorphic program depen-
dence graphs, there is a corresponding loop-independent flow edge or a corresponding def-order
edge from a vertex in Tπ−1(k) to a vertex in Ti +1. Therefore, π−1(k) < i +1. Because Uk has an assign-
ment statement, a, to x, Tπ−1(k) has a corresponding assignment statement to x, which contradicts a
previous assumption that there is no assignment statement to x in the initial subsequence
T 1, T 2, . . . , Ti .

(2) Suppose there are assignment statements that assign to x in the initial subsequence T 1, T 2, . . . , Ti .
Let m be the largest number in 1, 2, . . . , i such that Tm contains an assignment statement to x.
Because x is an imported variable of Ti +1, Ti +1 has an incoming loop-independent flow edge or an
incoming def-order edge whose source is in Tm. Since T and U have isomorphic program depen-
dence graphs, there is a corresponding loop-independent flow edge or a corresponding def-order

edge from a vertex in U π(m) to a vertex in U π(i +1) and hence π(m) < π(i +1). Note that σ̂m +1 and σ̂i +1

agree on x because there is no assignment statement to x in the subsequence Tm +1, Tm +2, . . . , Ti .
Note also that x ∈ Expm because Tm has an outgoing loop-independent flow edge whose source is an
assignment statement to x.

Since m ≤ i, by the induction hypothesis, σ̂m and σ̂π(m) ′ agree on Impm. Because σ̂m and σ̂π(m) ′ agree
on Impm and Tm and U π(m) are corresponding subtrees, by the Equivalence Lemma, the execution

states after executing Tm and U π(m) , σ̂m +1 and σ̂π(m)+1 ′, agree on Expm, and hence they agree on x.

Thus, σ̂i +1 and σ̂π(m)+1 ′ agree on x.
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Because σ̂i +1 and σ̂π(i +1) ′ do not agree on x, σ̂π(m)+1 ′ and σ̂π(i +1) ′ do not agree on x. Thus the execu-
tion of the subsequence U π(m)+1, U π(m)+2, . . . , U π(i +1)−1 executed an assignment statement to x and
reached the beginning of U π(i +1) . Let the assignment statement a be in Uk , where
π(m) < k < π(i +1). Since x is an imported variable of U π(i +1) , U π(i +1) has an incoming loop-
independent flow edge or an incoming def-order edge a → . . ., whose source is in Uk .

Since T and U have isomorphic program dependence graphs, there is a corresponding loop-
independent flow edge or a corresponding def-order edge from a vertex in Tπ−1(k) to a vertex in Ti +1.
Therefore, π−1(k) < i +1. Note that π(m) < k < π(i +1) and both assignment statements to x in U π(m)

and Uk can reach U π(i +1) . Hence Uk has an incoming def-order edge whose source is in U π(m) .
Since T and U have isomorphic program dependence graphs, Tπ−1(k) has a corresponding def-order
edge whose source is in Tm. Therefore, m < π−1(k). Thus, m < π−1(k) < i +1. Because there is an
assignment statement to x in Uk and Uk and Tπ−1(k) are corresponding subtrees, there is an assignment
statement to x in Tπ−1(k) , which contradicts a previous assumption that m is the largest number in
1, 2, . . . , i such that Tm contains an assignment statement to x.

We conclude that σ̂i +1 and σ̂π(i +1) ′ agree on Impi +1. By the induction hypothesis of the structural induc-
tion, Ti +1 and U π(i +1) compute the same sequence of values at each corresponding program point.

This completes the induction, so we conclude that T and U compute the same sequence of values at each
corresponding program point.

Case 5. The operator at the root of T is the Program operator. Because Imp = Impstmt_list , the proposition
that T and U compute the same sequence of values at each corresponding program point follows directly
from the induction hypothesis. `

4.2.2. A Strong Form of the Equivalence Theorem

The Strong Form of the Equivalence Theorem follows as a corollary of the Subtree Equivalence Lemma; it
is simply the Subtree Equivalence Lemma specialized to the case when subtree T is the entire program P.

THEOREM. (STRONG FORM OF THE EQUIVALENCE THEOREM). Suppose that P and Q are programs for
which GP ≈ GQ. If σ is a state on which P halts, then for any state σ′ that agrees with σ on all variables for
which there are initial-definition vertices in GP: (1) Q halts on σ′, (2) P and Q compute the same sequence
of values at each corresponding program points, and (3) the final states agree on all variables for which
there are final-use vertices in GP.

PROOF. Immediate from the Subtree Equivalence Lemma. `

Note that the differences among programs with isomorphic program dependence graphs are the order in
which the statements occur in the program. The strong form of the Equivalence Theorem tells us that we
may choose any one among those programs with isomorphic program dependence graphs as the “represen-
tative” of them. Therefore, in proving other theorems, such as the Slicing Theorem, we may assume the
statements of the program appear in some particular order as needed to make the proof more tractable.

4.3. The Subtree Slicing Lemma

The Subtree Slicing Lemma characterizes the relationship between a subtree and a slice of the subtree in
terms of the slice’s imported and exported variables. The Lemma asserts that, for certain initial states,
corresponding subtrees of a program and a slice of the program compute the same sequence of values at
common program points.
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LEMMA. (SUBTREE SLICING LEMMA). Let Q be a slice of program P with respect to a set of vertices.
Let T be a subtree of program P and U be the corresponding subtree of Q. If σ is a state on which T halts,
then (1) U halts on σ′ where σ and σ′ agree on U’s imported variables (as defined in the context given by
Q), (2) T and U compute the same sequence of values at each program point of U, and (3) the final states
agree on U’s exported variables (as defined in the context given by Q).

PROOF. By the Strong Form of the Equivalence Theorem, all programs with isomorphic PDGs compute
the same sequence of values at each corresponding program point. We choose Q to be the version of the
slice whose statements are in the same order as in P.

The proof is by structural induction on the abstract syntax of the programming language. The proof
splits into five cases based on the abstract-syntax operator that appears at the root of T.

Throughout the proof, we use σ1 and σ1 ′ to denote states that agree on U’s imported variables, ImpU.
We use σi to denote a sequence of states in the execution of T initiated on σ1, and we use σi ′ to denote the
corresponding sequence of states in the execution of U initiated on σ1 ′.

Case 1. The operator at the root of T is the Assign operator. Because T is a single assignment statement,
either U is the tree Null or U = T. If U is Null, then ImpU = ExpU = ∅ . Hence U always halts and the final
states agree on ExpU (since ExpU is empty).

Now suppose U = T and that U assigns to variable x as a function of variables {yj}. The set ImpU is
either {yj} or {yj}∪ {x}. (ImpU is {yj}∪ {x} when U is the target of a def-order edge.) Since the value of
the exp is a function of {yj}; and {yj} ⊆ ImpU, evaluating exp in both σ1 and σ1 ′ yields the same value
because they agree on ImpU. ExpU is either ∅ or {x}. For any combination of these possibilities, σ2 and
σ2 ′ agree on x, and hence they agree on ExpU.

Case 2. The operator at the root of T is the While operator. If the vertex corresponding to T’s exp com-
ponent is not in U, then U is the tree Null. If U is Null, then ImpU = ExpU = ∅ . Hence U always halts and
the final states agree on ExpU.

We use Imp exp and Exp exp to denote the imported and exported variables of U’s exp component, respec-
tively; ImpUstmt_list

and ExpUstmt_list
denote the imported and exported variables of U’s stmt_list component,

respectively. We use σi and σi ′ to denote the execution states before executing the i th iterations of the
loops of T and U starting from two states that agree on ImpU, σ1 and σ1 ′, respectively.

Suppose the vertex corresponding to T’s exp component is in U. Since T halts we may assume the exe-
cution of T halts after the j th iteration, for some j. It is sufficient to show that (1) U also halts after the j th

iteration, (2) in each iteration, T and U compute the same sequence of values at each program point of U,

and (3) the final states, σj +1 and σj +1 ′ agree on ExpU. Because for a loop ExpU ⊆ ImpU,5 it suffices to
show that if σi and σi ′ agree on ImpU then either T and U halt in the states σi and σi ′, respectively, or the
i th iterations compute the same sequence of values at each program point of U and result in the states σi +1

and σi +1 ′ that agree on ImpU.

First, we show that ImpU = Imp exp ∪ ImpUstmt_list
. It is clear that we could have written this with ⊆ , noting

that ImpUstmt_list
can include a variable x that is used at the target t of a loop-carried flow dependence edge

where the dependence is carried by U. However, there then has to exist an incoming loop-independent
hhhhhhhhhhhhhhhhhhhhhhhhhhhhh
5If x ∈ ExpU , then U contains an assignment a to x with an outgoing flow edge a →f b. Because the loop may execute zero times, the
assignment to x must be the target of a def-order edge . . .→ do (b) a, hence x ∈ ImpU .
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flow edge to t, which implies that v ∈ ImpU.

Let σi and σi ′ be states that agree on ImpU. Therefore they agree on Imp exp . Evaluating the condition
(the exp component of U) in σi and σi ′ yields the same value. Hence, T and U compute the same (sequence
of) values at the control predicate of the loop in the i th iteration. If the condition evaluates to false, then
both executions terminate in the states σi and σi ′, which agree on ExpU.

Now suppose the condition evaluates to true. Let σi and σi ′ be states that agree on ImpU; therefore they
agree on ImpUstmt_list

. Now Tstmt_list and Ustmt_list are corresponding subtrees. Since T halts on σi , Tstmt_list also

halts on σi . By the induction hypothesis, (1) Ustmt_list halts on σi ′, (2) during the i th iteration Tstmt_list and
Ustmt_list compute the same sequence of values at each program point of Ustmt_list , and (3) the final states,
σi +1 and σi +1 ′, agree on ExpUstmt_list

. If σi +1 and σi +1 ′ do not also agree on ImpU, then let x ∈ ImpU be a vari-

able on which they disagree (so x ∈/ ExpUstmt_list
). Now, by assumption, σi and σi ′ agree on ImpU; therefore,

at least one of the two executions of Tstmt_list and Ustmt_list , respectively, executed an assignment statement a
that assigned a value to x and reached the end of the stmt_list. There are two cases to consider:

(1) One possibility is that x ∈ ImpU because x is used in a condition or statement b that is the target of an
incoming flow edge If this were the case, then there must be a loop-carried flow edge a → lc (T) b or
a → lc (U) b, depending on whether Tstmt_list or Ustmt_list executed a. However, in either case, a is in U
because b is in U; therefore, a is in Ustmt_list and x ∈ ExpUstmt_list

, which contradicts our previous

assumption.

(2) The other possibility is that x ∈ ImpU because the Ustmt_list has an incoming def-order edge
. . . → do (c) d. However, this implies that there is an outgoing flow edge a →f c from Tstmt_list or
Ustmt_list , depending on whether Tstmt_list or Ustmt_list executed a. In either case, however, a must be in
U because c is in U; therefore, a is in Ustmt_list and x ∈ ExpUstmt_list

, which contradicts our previous

assumption.

We conclude that σi +1 and σi +1 ′ agree on ImpU. Therefore U halts after the j th iteration, during each
iteration T and U compute the same sequence of values at each program point of U, and σj +1 and σj +1 ′
agree on ExpU.

Case 3. The operator at the root of T is the IfThenElse operator. If the vertex corresponding to T’s exp
component is not in U, then U is the tree Null. If U is Null, ImpU = ExpU = ∅ . Therefore, U always halts
and the final states agree on ExpU.

Suppose the vertex corresponding to T’s exp component is in U. Evaluating the condition (the exp com-
ponent of U) in σ1 and σ1 ′ yields the same value. Therefore, T and U compute the same (sequence of)
values at the control predicate of the IfThenElse statement.

Without loss of generality, assume that the condition evaluates to true. We use Ttrue , Tfalse , Utrue , and
Ufalse to denote the respective branches of T and U.

When execution is initiated in state σ1, T terminates in σ2; consequently Ttrue also terminates in σ2.
Since σ1 and σ1 ′ agree on ImpU and ImpUtrue

⊆ ImpU, σ1 and σ1 ′ agree on ImpUtrue
. Because Ttrue and Utrue

are corresponding subtrees, the induction hypothesis tells us that, when execution is initiated in state σ1 ′,
(1) Utrue terminates in state σ2 ′ (hence U terminates in σ2 ′), (2) Ttrue and Utrue compute the same sequence
of values at each program point of Utrue (hence T and U compute the same sequence of values at each pro-
gram point of U), and (3) σ2 and σ2 ′ agree on ExpUtrue

.

Note that ExpU = ExpUtrue
∪ ExpUfalse

so what remains to be shown is that σ2 and σ2 ′ agree on ExpUfalse
. If

σ2 and σ2 ′ do not also agree on ExpUfalse
, then let x ∈ ExpUfalse

be a variable on which they disagree (so
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x ∈/ ExpUtrue
). Because x ∈ ExpUfalse

, there is an assignment statement a in the false branch of U that assigns

to x and is the source of an outgoing flow edge from that branch (say a →f b).

We must consider whether it is possible that x ∈/ ImpU. By assumption, x ∈/ ExpUtrue
. Consider an execu-

tion path p, from the beginning of the program to the beginning of statement U, that does not include the
back-edges of any loops. Let c be the last assignment statement that assigns to x along p, or, if no such
statement exists, let c be the initial-definition vertex for x. Because we can extend path p to first follow the
true branch of U and then continue from the join point of U via the path by which a reaches b, we deduce
that there is a dependence c →f b. By construction, vertex c occurs to the left of a, hence c → do (b) a. We
conclude that x ∈ ImpU.

Since x ∈ ImpU, σ1 and σ1 ′ agree on x. Because σ2 and σ2 ′ disagree on x, at least one of the two execu-
tions of the true branches of T and U, respectively, executed an assignment statement d that assigned a
value to x and reached the end of the true branch. But this implies the existence of a flow edge d →f b in
either T or U, depending on whether Ttrue or Utrue executed the assignment to x. In either case, the flow
edge d →f b is in Q since b is in Q, and hence d is in Utrue . Therefore, x ∈ ExpUtrue

, which contradicts a

previous assumption. We conclude that σ2 and σ2 ′ agree on ExpUfalse
. This, together with the fact that σ2

and σ2 ′ agree on ExpUtrue
, means that they agree on ExpU.

Case 4. The operator at the root of T is the StmtList operator. Let T 1, T 2, . . . , Tn denote the immediate
subtrees of T and U 1, U 2, . . . , Un denote the corresponding subtrees of U. (Note that some of the Ui may
be the tree Null.) We use σi and σi ′ to denote the execution states before executing Ti and Ui , respectively;
we use ImpUi

and ExpUi
to denote the imported and exported variables, respectively, of Ui; and we use

ImpU1 . . i
and ExpU1 . . i

to denote the imported and exported variables, respectively, of the initial subsequence

U 1, U 2, . . . , Ui . (Although the imported and exported variables for subsequences were not part of the
definition in Section 4.1, we intend the obvious extension: the imported variables of a subsequence are
defined in terms of incoming edges whose targets are inside the subsequence; the exported variables of a
subsequence are defined in terms of outgoing edges whose sources are inside the subsequence).

The proof of this case is by induction over the initial subsequences of U. We want to show that for all i,
1 ≤ i ≤ n, if σ1 is a state on which T halts and σ1 and σ1 ′ agree on ImpU1 . . i

, then T 1 . . i and U 1 . . i terminate in

σi +1 and σi +1 ′, respectively, and T 1 . . i and U 1 . . i compute the same sequence of values at each program
point of U 1 . . i and σi +1 and σi +1 ′ agree on ExpU1 . . i

.

Base case. n = 1. The proposition follows immediately from the induction hypothesis of the structural
induction.

Induction step. The induction hypothesis is: if σ1 and σ1 ′ agree on ImpU1 . . i
and T halts on σ1, then

(1) T 1 . . i and U 1 . . i terminate in σi +1 and σi +1 ′, respectively, (2) T 1 . . i and U 1 . . i compute the same

sequence of values at each program point of U 1 . . i , and (3) σi +1 and σi +1 ′ agree on ExpU1 . . i
. Thus, if σ̂1 and

σ̂1 ′ are arbitrary states that agree on ImpU1 . . i +1
and T halts on σ̂1, we need to show that T 1 . . i +1 and U 1 . . i +1

terminate in σ̂i +2 and σ̂i +2 ′, respectively, and T 1 . . i +1 and U 1 . . i +1 compute the same sequence of values at

each program point of U 1 . . i +1 and σ̂i +2 and σ̂i +2 ′ agree on ExpU1 . . i +1
.

Note that ImpU1 . . i
⊆ ImpU1 . . i +1

, which means that σ̂1 and σ̂1 ′ agree on ImpU1 . . i
, and thus, by the induction

hypothesis, (1) T 1 . . i and U 1 . . i terminate in σ̂i +1 and σ̂i +1 ′, respectively, (2) T 1 . . i and U 1 . . i compute the

same sequence of values at each program point of U 1 . . i , and (3) σ̂i +1 and σ̂i +1 ′ agree on ExpU1 . . i
.

First, we must show that σ̂i +1 and σ̂i +1 ′ agree on ImpUi +1
. Any variable x ∈ ImpUi +1

on which σ̂i +1 and

σ̂i +1 ′ disagree must be in ImpU1 . . i +1
(if not, x would be in ExpU1 . . i

on which σ̂i +1 and σ̂i +1 ′ agree). By
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assumption, σ̂1 and σ̂1 ′ agree on ImpU1 . . i +1
; consequently, at least one of the two executions of T 1 . .i and

U 1 . . i performed an assignment statement, a, that assigned to x and reached the end of Ti or Ui , depending
on whether T 1 . .i or U 1 . . i performed the assignment. There are now two cases to consider:

(1) One possibility is that x ∈ ImpUi +1
because x is used in a condition or statement b that is the target of

one of Ui +1’s incoming flow edges. In this case, there is a flow edge: a →f b in T or U, depending
on whether T or U performed the assignment. In either case, a is in U because b is in U. Therefore,

this edge must be in U. This implies that x ∈ ExpU1 . . i
, so σ̂i +1 and σ̂i +1 ′ must agree on x, which con-

tradicts our assumption that they disagree on x.

(2) The other possibility is that x ∈ ImpUi +1
because there is an incoming def-order edge, . . . → do (d) c, to

Ui +1. However, this implies that there is an outgoing flow edge of : a →f d in T or U depending
whether T or U performed the assignment, a. In either case, a is in U because d is in Q. Therefore,

this flow edge a →f d is in Q. As in the previous case, this implies that x ∈ ExpU1 . . i
, so σ̂i +1 and

σ̂i +1 ′ must agree on x, which contradicts our assumption that they disagree on x.

We conclude that σ̂i +1 and σ̂i +1 ′ agree on ImpUi +1
.

Because T terminates on σ̂1, Ti +1 must terminate on σ̂i +1. Because σ̂i +1 and σ̂i +1 ′ agree on ImpUi +1
, the

induction hypothesis of the structural induction tells us (1) the execution of Ui +1 on σ̂i +1 ′ halts, (2) Ti +1 and

Ui +1 compute the same sequence of values at each program point of Ui +1 and σ̂i +2, and (3) σ̂i +2 ′ agree on
ExpUi +1

.

The final step is to show that σ̂i +2 and σ̂i +2 ′ agree on ExpU1 . . i +1
. Note that ExpU1 . . i +1

⊆ ExpU1 . . i
∪ ExpUi +1

.

Now suppose there is a variable x ∈ ExpU1 . . i +1
on which σ̂i +2 and σ̂i +2 ′ disagree (in particular, x ∈/ ExpUi +1

).

Therefore, x ∈ ExpU1 . . i
. By the induction hypothesis, σ̂i +1 and σ̂i +1 ′ agree on ExpU1 . . i

, so at least one of the

two executions of Ti +1 and Ui +1 performed an assignment statement, a, that assigned to x and reached the
end of Ti +1 or Ui +1, depending on whether Ti +1 or Ui +1 performed the assignment. If Ti +1 performed the
assignment, since x ∈ ExpU1 . . i +1

⊆ ExpT 1 . . i +1
, there must also be an outgoing flow edge a →f . . . from Ti +1.

Since U 1 . . i +1 is a slice of T 1 . . i +1 and x ∈ ExpU1 . . i +1
, therefore the flow edge a →f . . . is in U 1 . . i +1. This

implies that x ∈ ExpUi +1
, so σ̂i +2 and σ̂i +2 ′ must agree on x, which contradicts our assumption that they

disagree on x. If Ui +1 performed the assignment, since x ∈ ExpU1 . . i +1
, there must also be an outgoing flow

edge a →f . . . from Ui +1. This implies that x ∈ ExpUi +1
, so σ̂i +2 and σ̂i +2 ′ must agree on x, which contrad-

icts our assumption that they disagree on x.

This completes the induction, so we conclude that U terminates on σ1 ′, T and U compute the same
sequence of values at each program point of U, and σn +1 and σn +1 ′ agree on ExpU.

Case 5. The operator at the root of T is the Program operator. Because ImpU = ImpUstmt_list
and

ExpU = ExpUstmt_list
, we conclude from the induction hypothesis that U terminates on σ′, T and U compute the

same sequence of values at each program point of U, and σ2 and σ2 ′ agree on ExpU. `

4.4. The Slicing Theorem

The Slicing Theorem follows as a corollary of the Subtree Slicing Lemma; it is simply the Subtree Slicing
Lemma specialized to the case when subtree T is the entire program P.

THEOREM. (SLICING THEOREM). Let Q be a slice of program P with respect to a set of vertices. If σ is a
state on which P halts, then for any state σ′ that agrees with σ on all variables for which there are initial-
definition vertices in GQ: (1) Q halts on σ′, (2) P and Q compute the same sequence of values at each
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program point of Q, and (3) the final states agree on all variables for which there are final-use vertices in
GQ.

PROOF. Immediate from the Subtree Slicing Lemma. `

5. THE TERMINATION THEOREM

The Slicing Theorem tells us that if a program terminates on some initial state then (on sufficiently similar
initial states) the program’s slices also terminate. The Termination Theorem looks at this relationship from
the opposite point of view; it tells us that if a program is decomposed into two slices, the termination of the
slices on some states implies the termination of the program on a similar state. (It is straightforward to
generalize the theorem to the case where the program is decomposed into more than two slices.)

5.1. The Subtree Termination Lemma

As in the Slicing Theorem, the proof of the Termination Theorem relies on a lemma about subtrees. The
Subtree Termination Lemma states that if a program is decomposed into two slices, a subtree of the pro-
gram will terminate on a state when the corresponding subtrees of the two slices terminate on some similar
states.

LEMMA. (SUBTREE TERMINATION LEMMA). Let P be a program. Suppose X and Y are sets of vertices
such that GP = GP / X ∪ GP / Y. Let T be a subtree of program P and U and V be the corresponding subtrees
of P / X and P / Y, respectively. Suppose σU is a state on which U halts, and σV is a state on which V halts.
Then for any state σ, where σ and σU agree on U’s imported variables and σ and σV agree on V’s
imported variables, T halts on σ.

PROOF. By the Equivalence Theorem, all programs with isomorphic program dependence graphs are
strongly equivalent. We choose P / X and P / Y to be the versions of the slices whose statements are in the
same order as in P.

The proof is by structural induction on the abstract syntax of the programming language. The proof
splits into five cases based on the abstract-syntax operator that appears at the root of T.

Case 1. The operator at the root of T is the Assign operator. Since GP = GP / X ∪ GP / Y, T = U or T = V.
Without loss of generality, suppose T = U. Because σ and σU agree on U’s imported variables and U halts
on σU, by the Self-Equivalence Lemma T halts on σ.

Case 2. The operator at the root of T is the While operator. Since GP = GP / X ∪ GP / Y, if U is a Null
tree, then T = V. Similarly, if V is a Null tree, then T = U. Without loss of generality, suppose T = U.
Because σ and σU agree on U’s imported variables and U halts on σU, by the Self-Equivalence Lemma T
halts on σ.

Now suppose both U and V are not Null trees. Since U halts on σU, we may assume that the execution of
U halts after the j th iteration, for some j. We prove that T and V halt on σ and σV, respectively, after
exactly j iterations. Because for a loop ExpU ⊆ ImpU, it suffices to show that if σ and σU agree on U’s
imported variables and σ and σV agree on V’s imported variables, then either T, U, and V halt in the states
σ, σU, and σV, respectively, or T, U, and V successfully finish one iteration and the execution states that
result after one iteration of the loops (σ′, σU ′, and σV ′, respectively) are ones such that σ′ and σU ′ agree on
U’s imported variables and σ′ and σV ′ agree on V’s imported variables.

We use Tstmt_list , Ustmt_list , and Vstmt_list to denote the stmt_list components of T, U, and V, respectively.
Note that Tstmt_list , Ustmt_list , and Vstmt_list are corresponding subtrees of P, P / X, and P / Y, respectively.
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Because σ and σU agree on U’s imported variables, evaluating the control predicates in σ and σU yields
the same value. Because σ and σV agree on V’s imported variables, evaluating the control predicates in σ
and σV yields the same value. If the control predicate evaluates to false, then T, U, and V halt in the states
σ, σU, and σV, respectively.

Now suppose the control predicate evaluates to true. Because σ and σU agree on U’s imported variables
and the imported variables of Ustmt_list are a subset of U’s imported variables, σ and σU agree on the
imported variables of Ustmt_list . Similarly, σ and σV agree on the imported variables of Vstmt_list . Note that
Tstmt_list , Ustmt_list , and Vstmt_list are corresponding subtrees of P, P / X, and P / Y, respectively. Because
Ustmt_list and Vstmt_list halt on σU and σV, respectively, by the induction hypothesis, Tstmt_list halts on σ.
Therefore, T, U, and V successfully finish one iteration. Let σ′, σU ′, and σV ′ denote the execution states of
T, U, and V after one iteration of the loop, respectively. By the Subtree Slicing Lemma, σ′ and σU ′ agree
on U’s exported variables and σ′ and σV ′ agree on V’s exported variables. By the same argument as in the
proof of the Subtree Slicing Lemma, Case 2, σ′ and σU ′ agree on U’s imported variables. Similarly, σ′ and
σV ′ agree on V’s imported variables. We conclude that T, U, and V halt on σ, σU, and σV, respectively,
after the j th iteration.

Case 3. The operator at the root of T is the IfThenElse operator. Since GP = GP / X ∪ GP / Y, if U is a
Null tree, then T = V. Similarly, if V is a Null tree, then T = U. Without loss of generality, suppose T = U.
Because σ and σU agree on U’s imported variables and U halts on σU, by the Self-Equivalence Lemma T
halts on σ.

Now suppose both U and V are not Null trees. Because σ and σU agree on U’s imported variables,
evaluating the control predicates in σ and σU yields the same value. Because σ and σV agree on V’s
imported variables, evaluating the control predicates in σ and σV yields the same value. Without loss of
generality, we may assume the control predicate evaluates to true.

We use Ttrue , Tfalse , Utrue , Ufalse , Vtrue , and Vfalse to denote the respective branches of T, U, and V, respec-
tively. Note that Ttrue , Utrue , and Vtrue are corresponding subtrees of P, P / X, and P / Y, as are Tfalse , Ufalse ,
and Vfalse .

When execution is initiated in state σU, U terminates; consequently, Utrue also terminates. Similarly,
when execution is initiated in state σV, V terminates; consequently, Vtrue also terminates. Because σ and
σU agree on U’s imported variables and the imported variables of Utrue are a subset of U’s imported vari-
ables, σ and σU agree on the imported variables of Utrue . Similarly, σ and σV agree on the imported vari-
ables of Vtrue . Because Ttrue , Utrue , and Vtrue are corresponding subtrees of P, P / X, and P / Y, respectively,
the induction hypothesis tells us that the Ttrue halts on σ. Hence, T halts on σ.

Case 4. The operator at the root of T is the StmtList operator. Let T 1, T 2, . . . , Tn denote the immediate
subtrees of T, U 1, U 2, . . . , Un denote the corresponding subtrees of U, and V 1, V 2, . . . , Vn denote the
corresponding subtrees of V. Let T 1 . . i , U 1 . . i , and V 1 . . i denote the initial subsequences T 1, T 2, . . . , Ti ,
U 1, U 2, . . . , Ui , and V 1, V 2, . . . , Vi , respectively.

The proof of this case is by induction over the initial subsequences of T. We want to show that for all i,
1 ≤ i ≤ n, if U 1 . . i and V 1 . . i halt on σU and σV, respectively, then T 1 . . i halts on σ where σ and σU agree on
the imported variables of U 1 . . i , and σ and σV agree on the imported variables of V 1 . . i .

Base case. n = 1. The proposition follows immediately from the induction hypothesis of the structural
induction.

Induction step. The induction hypothesis is: if U 1 . . i and V 1 . . i halt on σU and σV, respectively, then
T 1 . . i halts on σ where σ and σU agree on the imported variables of U 1 . . i , and σ and σV agree on the

imported variables of V 1 . . i . Thus, if σ̂U and σ̂V are arbitrary states on which U 1 . . i +1 and V 1 . . i +1 halt,
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respectively, we need to show that T 1 . . i +1 halts on σ̂ where σ̂ and σ̂U agree on the imported variables of

U 1 . . i +1, and σ̂ and σ̂V agree on the imported variables of V 1 . . i +1.

Note that the imported variables of U 1 . . i are a subset of the imported variables of U 1 . . i +1, which means

that σ̂ and σ̂U agree on the imported variables of U 1 . . i . Similarly, σ̂ and σ̂V agree on the imported vari-

ables of V 1 . . i . Thus, by the induction hypothesis, T 1 . . i halts on σ̂. Let σ̂′, σ̂U ′, and σ̂V ′ be the execution
states after executing the initial subsequences T 1 . . i , U 1 . . i , and V 1 . . i , respectively. By the Subtree Slicing

Lemma, σ̂′ and σ̂U ′ agree on the exported variables of U 1 . . i . By the same argument as in the proof of the

Subtree Slicing Lemma, Case 4, σ̂′ and σ̂U ′ agree on the imported variables of Ui +1. Similarly, σ̂′ and σ̂V ′
agree on the imported variables of Vi +1. Note that Ti +1, Ui +1, and Vi +1 are corresponding subtrees of P,

P / X, and P / Y, respectively. Because Ui +1 and Vi +1 halt on σ̂U ′ and σ̂V ′, respectively, by the induction

hypothesis of the structural induction, Ti +1 halts on σ̂′. Now we have proved that T 1 . . i halts on σ̂, resulting

in σ̂′, and Ti +1 halts on σ̂′. Therefore, T 1 . . i +1 halts on σ̂.

This completes the induction, so we conclude that T halts on σ.

Case 5. The operator at the root of T is the Program operator. Because the imported variables of U are
the same as the imported variables of Ustmt_list and the imported variables of V are the same as the imported
variables of Vstmt_list , by the induction hypothesis of the structural induction, T halts on σ. `

5.2. The Termination Theorem

The Termination Theorem follows as a corollary of the Subtree Termination Lemma; it is simply the Sub-
tree Termination Lemma specialized to the case when subtree T is the entire program P.

THEOREM. (TERMINATION THEOREM). Let P be a program. Suppose X and Y are sets of vertices such
that GP = GP / X ∪ GP / Y. If P / X and P / Y halt on a state σ, then P halts on σ as well.

PROOF. Immediate from the Subtree Termination Lemma. `

Note that the Termination Theorem and clause (1) of Slicing Theorem are complementary: clause (1) of
the Slicing Theorem asserts that if a program terminates then each slice also terminates; the Termination
Theorem asserts that when a program can be decomposed into two slices, if each slice terminates then the
program terminates. We can then apply clause (2) of the Slicing Theorem to conclude that the two slices
(collectively) compute the same sequence of values as the entire program.

The following Corollary generalizes the Termination Theorem to the case when the program is decom-
posed into three slices. It is used in the proof of the Integration Theorem that is given in the next section;
the integrated program that is the subject of the proof is formed by taking the union of three slices.

COROLLARY. Let P be a program. Suppose X, Y, and Z are sets of vertices such that
GP = GP / X ∪ GP / Y∪ GP / Z. If P / X, P / Y, and P / Z halt on a state σ, then P halts on σ as well.

PROOF. >From the Decomposition Lemma, we have GP / X ∪ GP / Y = GP / ( X ∪ Y ). Let P / ( X ∪ Y )
denote a program whose program dependence graph is (isomorphic to) GP / ( X ∪ Y ). Since P / X and P / Y
halt on σ, by the Subtree Termination Lemma, P / ( X ∪ Y ) halts on σ. Similarly,
GP = GP / X ∪ GP / Y∪ GP / Z = GP / ( X ∪ Y )∪ GP / Z. Since P / ( X ∪ Y ) and P / Z halt on σ, P halts on σ. `

6. THE SEMANTICS OF PROGRAM INTEGRATION

An algorithm for integrating several related, but different variants of a base program (or determining
whether the variants incorporate interfering changes) has been presented in [512]. The algorithm presented
there, called Integrate, takes as input three programs A, B, and Base, where A and B are two variants of
Base. As we show below, whenever the changes made to Base to create A and B do not “interfere” (in the
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sense defined below), Integrate produces a program M that exhibits the changed execution behavior of A
and B with respect to Base as well as the execution behavior preserved in all three versions.

The first step of Integrate determines slices that represent a safe approximation to the changed computa-
tion threads of A and B and the computation threads of Base preserved in both A and B; the second step
combines these slices to form the merged graph GM; the third step tests GM for interference.

Step 1: Determining changed and preserved computation threads

If the slice of variant GA at vertex v differs from the slice of GBase at v, then GA and GBase may compute
different values at v. In other words, vertex v is a site that potentially exhibits changed behavior in the two
programs. Thus, we define the affected points of GA with respect to GBase , denoted by APA, Base , to be the
subset of vertices of GA whose slices in GBase and GA differ
APA, Base = { v | v ∈ V (GA) (GBase / v ≠ GA / v) }. We define APB, Base similarly. It follows that the slices
GA / APA, Base and GB / APB, Base capture the respective computation threads of A and B that differ from
Base.

The preserved computation threads of Base in A correspond to the slice GBase / AP
hhh

A, Base , where AP
hhh

A, Base

is the complement of APA, Base: AP
hhh

A, Base = V(GA) − APA, Base . We define AP
hhh

B, Base similarly. Thus, the
unchanged computation threads common to both A and B are captured by the following slice:

GBase / (AP
hhh

A, Base∩AP
hhh

B, Base).

Step 2: Forming the merged graph

The merged program dependence graph, GM , is formed by unioning the three slices that represent the
changed and preserved computation threads of the two variants:

GM = (GA / APA, Base)∪ (GB / APB, Base)∪ (GBase / (AP
hhh

A, Base∩AP
hhh

B, Base)).

Step 3: Testing for interference

There are two possible ways by which the graph GM may fail to represent a satisfactory integrated pro-
gram; both types of failure are referred to as “interference.” The first interference criterion is based on a
comparison of slices of GA, GB, and GM . The slices GA / APA, Base and GB / APB, Base represent the changed
computation threads of programs A and B with respect to Base. A and B interfere if GM does not preserve
these slices; that is, there is interference of this kind if either GM / APA, Base ≠ GA / APA, Base or
GM / APB, Base ≠ GB / APB, Base .

The final step of the integration method involves reconstituting a program from the merged program
dependence graph. However, it is possible that there is no such program; that is, the merged graph may be
an infeasible program dependence graph. This is the second kind of interference that may occur. (The
reader is referred to [5] for a discussion of reconstructing a program from the merged program dependence
graph and the inherent difficulties of this problem.)

If neither kind of interference occurs, one of the programs that corresponds to the graph GM is returned
as the result of the integration operation.

6.1. The Integration Theorem

The Slicing and Termination Theorems, together with the definition of the merged graph GM can be used to
prove a theorem that characterizes the execution behavior of the integrated program in terms of the
behaviors of the base program and the two variants:
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THEOREM. (INTEGRATION THEOREM). If A and B are two variants of Base for which integration
succeeds (and produces program M), then for any initial state σ on which A, B, and Base all halt, (1) M
halts on σ, (2) if x is a variable defined in the final state of A for which the final states of A and Base
disagree, then the final state of M agrees with the final state of A on x, (3) if y is a variable defined in the
final state of B for which the final states of B and Base disagree, then the final state of M agrees with the
final state of B on y, and (4) if z is a variable on which the final states of A, B, and Base agree, then the
final state of M agrees with the final state of Base on z.

Restated less formally, M preserves the changed behaviors of both A and B (with respect to Base) as well
as the unchanged behavior of all three.

The merged program dependence graph, GM , is formed by unioning the three slices GA / APA, Base ,

GB / APB, Base , and GBase / (AP
hhh

A, Base∩AP
hhh

B, Base). Because the premise of the theorem is that integration
succeeds, we know that GM / APA, Base = GA / APA, Base and GM / APB, Base = GB / APB, Base . One detail that
must be shown is that, in testing GM for interference, it is unnecessary to test whether

GBase / (AP
hhh

A, Base∩AP
hhh

B, Base) = GM / (AP
hhh

A, Base∩AP
hhh

B, Base).

This matter is addressed by the Preserved Behavior Lemma, stated and proven below, which shows that,
regardless of whether or not the integration algorithm detects interference, the slice

GBase / (AP
hhh

A, Base∩AP
hhh

B, Base) is always preserved in GM .

LEMMA. If w ∈ APA, Base , then w ∈/ GBase / AP
hhh

A, Base .

PROOF. >From the definition, APA, Base = { v ∈ V (A) | (GBase / v ≠ GA / v) }, so

AP
hhh

A, Base = { v ∈ V (A) | (GBase / v = GA / v) }. Using the Decomposition Lemma, we have:

GBase / AP
hhh

A, Base = GBase / { v ∈ V (A) | (GBase / v = GA / v) }

=
v ∈ V (A) | (GBase / v = GA / v)

∪ GBase / v

But if for some v, w ∈ V (GBase / v), then GBase / w ⊆ GBase / v; because GBase / w ≠ GA / w, GBase / v ≠ GA / v.

Hence w ∈/ GBase / AP
hhh

A, Base . `

LEMMA (PRESERVED BEHAVIOR LEMMA). Let

GM = (GA / APA, Base)∪ (GB / APB, Base)∪ (GBase / (AP
hhh

A, Base∩AP
hhh

B, Base)). Then

GBase / (AP
hhh

A, Base∩AP
hhh

B, Base) = GM / (AP
hhh

A, Base∩AP
hhh

B, Base).

PROOF. Let PRE = GBase / (AP
hhh

A, Base∩AP
hhh

B, Base) and PRE ′ = GM / (AP
hhh

A, Base∩AP
hhh

B, Base). Suppose
PRE ≠ PRE ′. Because GM is created by unioning PRE with GA / APA, Base and GB / APB, Base , and the slices

that generate PRE and PRE ′ are both taken with respect to the same set, AP
hhh

A, Base∩AP
hhh

B, Base , it must be that
PRE ⊂ PRE ′.

Thus, there are three cases to consider: either PRE ′ contains an additional vertex, an additional control
or flow edge (in the latter case either loop independent or loop carried), or an additional def-order edge.

Case 1. PRE ′ contains an additional vertex. Because the slices that generate PRE and PRE ′ are both

taken with respect to the set, AP
hhh

A, Base∩AP
hhh

B, Base , PRE ′ can only contain an additional vertex v if there is an
additional control or flow edge v → c, fw whose target w is an element of both PRE and PRE ′. Thus, this
case reduces to the one that follows, in which PRE ′ contains an additional flow edge.

Case 2. PRE ′ contains an additional control or flow edge. The slice operation is a backward closure;
because the slices that generate PRE and PRE ′ are both taken with respect to the same set, namely

AP
hhh

A, Base∩AP
hhh

B, Base , if PRE ′ were to contain control or flow edges not in PRE, then there is at least one
such edge whose target vertex occurs in both PRE and PRE ′. That is, there is at least one edge e: v →w,
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where e ∈ E (PRE ′), v, w ∈ V (PRE ′), w ∈ V (PRE), and v ∈/ V (PRE).

Because GM is created by a graph union, e must occur in E (GA / APA, Base), E (GB / APB, Base), or both.
Without loss of generality, assume that e ∈ E (GA / APA, Base), so that e ∈ E (GA).

The slice operation is a backward closure, so e ∈/ E (PRE) and w ∈ V (PRE) imply e ∈/ E (GBase). Taking
this together with the previous observation that e ∈ E (GA), we conclude, from the definition of APA, Base ,
that w ∈ V (APA, Base).

This yields a contradiction as follows. By the previous lemma, w ∈ V (APA, Base) implies that

w ∈/ V (GBase / AP
hhh

A, Base). However, GBase / (AP
hhh

A, Base∩AP
hhh

B, Base) ⊆ GBase / AP
hhh

A, Base , which means that
w ∈/ V (PRE).

Case 3. PRE ′ contains an additional def-order edge. Suppose E (PRE ′) contains a def-order edge
e: v → do (u) w that does not occur in E (PRE). By the definition of the edge set of a slice, there must exist
flow edges v →f u and w →f u in E (PRE ′); by case (2), these edges must occur in both E (PRE) and
E (PRE ′) (implying that u, v, w ∈ V (PRE), V (PRE ′)).

Because GM was created by a graph union, e must occur in E (GA / APA, Base), E (GB / APB, Base), or both.
Without loss of generality, assume that e ∈ E (GA / APA, Base), so that e ∈ E (GA).

The slice operation is a backward closure, so e ∈/ E (PRE) and u ∈ V (PRE) imply e ∈/ E (GBase); by the
definition of APA, Base , we conclude that u ∈ V (APA, Base).

This yields a contradiction analogous to the one that arose in case (2): by the lemma, u ∈ V (APA, Base)

implies that u ∈/ V (GBase / AP
hhh

A, Base). However, GBase / (AP
hhh

A, Base∩AP
hhh

B, Base) ⊆ GBase / AP
hhh

A, Base , which
means that u ∈/ V (PRE).

We conclude that PRE and PRE ′ cannot differ; that is, even if variants A and B interfere with respect to

base program Base, the slice GBase / (AP
hhh

A, Base∩AP
hhh

B, Base) is preserved in GM . `

The base program, the two variants, and the merged program share common slices; thus, the next matter
to address is the relationship between the execution behaviors of two programs when they share a common
slice. An immediate consequence of the Slicing Theorem is that two programs that share a slice agree on
all variables for which there are final-use vertices in the slice.

SLICING COROLLARY. Let P and Q be two programs that share a slice with respect to a set of program
points S (i.e. P / S is isomorphic to Q / S). Then, for any initial state σ on which both P and Q halt, the final
states produced by P and Q agree on all variables for which there are final-use vertices in S.

PROOF. Immediate from the Slicing Theorem. `

Using the Slicing Corollary, the definition of the merged graph GM , and Preserved Behavior Lemma, we
can now characterize the execution behavior of the integrated program in terms of the behaviors of the base
program and the two variants. In particular, the Integration Theorem asserts that the program M that results
from successfully integrating variants A and B with base program Base exhibits the changed behaviors of
both A and B (with respect to Base) as well as the unchanged behavior of all three.

THEOREM. (INTEGRATION THEOREM). If A and B are two variants of Base for which integration
succeeds (and produces program M), then for any initial state σ on which A, B, and Base all halt, (1) M
halts on σ, (2) if x is a variable defined in the final state of A for which the final states of A and Base
disagree, then the final state of M agrees with the final state of A on x, (3) if y is a variable defined in the
final state of B for which the final states of B and Base disagree, then the final state of M agrees with the
final state of B on y, and (4) if z is a variable on which the final states of A, B, and Base agree, then the
final state of M agrees with the final state of Base on z.
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Note that there may be some variables which do not fall into the categories of (2), (3), and (4) above.

PROOF. We use A / APA, Base , B / APB, Base , and Base / (AP
hhh

A, Base∩AP
hhh

B, Base) to denote programs whose

program dependence graphs are GA / APA, Base , GB / APB, Base , and GBase / (AP
hhh

A, Base∩AP
hhh

B, Base), respectively.

Since the integration succeeds, GA / APA, Base = GM / APA, Base and GB / APB, Base = GM / APB, Base . By

the Preserved Behavior Lemma, GBase / (AP
hhh

A, Base∩AP
hhh

B, Base) = GM / (AP
hhh

A, Base∩AP
hhh

B, Base). Therefore,

GM = GA / APA, Base ∪ GB / APB, Base ∪ GBase / (AP
hhh

A, Base∩AP
hhh

B, Base) = GM / APA, Base ∪ GM / APB, Base ∪
GM / (AP

hhh
A, Base∩AP

hhh
B, Base).

Since A halts on σ, by the Slicing Theorem A / APA, Base also halts on σ. Similarly, B / APB, Base and

Base / (AP
hhh

A, Base∩AP
hhh

B, Base) halt on σ, as well. Note that A / APA, Base B / APB, Base , and

Base / (AP
hhh

A, Base∩AP
hhh

B, Base) are programs whose program dependence graphs are GM / APA, Base ,

GM / APB, Base , and GM / (AP
hhh

A, Base∩AP
hhh

B, Base), respectively. Since A / APA, Base B / APB, Base , and

Base / (AP
hhh

A, Base∩AP
hhh

B, Base) halt on σ, by the Corollary of the Termination Theorem, M halts on σ. (This
demonstrates clause (1) of the Integration Theorem.)

Let x be a variable defined in the final state of A on which the final states of A and Base disagree. Let v
be the final-use vertex of x, so v ∈ V (GA). By the Slicing Theorem, GBase / v≠GA / v. Therefore,
v ∈ APA, Base . Since v ∈ APA, Base and GA / APA, Base = GM / APA, Base , by the Slicing Corollary the final
state of M agrees with the final state of A on x. (This demonstrates clause (2) of the Integration Theorem.)
Similarly, if y is a variable defined in the final state of B on which the final states of B and Base disagree,
then the final state of M agrees with the final state of B on y. (This demonstrates clause (3) of the Integra-
tion Theorem.)

What remains to be shown is that if z is a variable on which the final states of A, B, and Base agree, then
the final state of M agrees with the final state of Base on z. Let v be the final-use vertex of z. If
v ∈ APA, Base , since GA / APA, Base = GM / APA, Base , by the Slicing Corollary, the final state of M agrees with
the final state of A on z, which means the final state of M agrees with the final state of Base on z. Similarly,
if v ∈ APB, Base , since GB / APB, Base = GM / APB, Base , by the Slicing Corollary, the final state of M agrees
with the final state of B on x, which means the final state of M agrees with the final state of Base on x.

Finally, since v is a final-use vertex of GM , if v ∈/ APA, Base and v ∈/ APB, Base , then v ∈ AP
hhh

A, Base∩AP
hhh

B, Base .

Because GBase / (AP
hhh

A, Base∩AP
hhh

B, Base) = GM / (AP
hhh

A, Base∩AP
hhh

B, Base), by the Slicing Corollary the final state
of M agrees with the final state of Base on x. (This demonstrates clause (4) of the Integration Theorem.) `

7. RELATION TO PREVIOUS WORK

This paper continues the study of program dependence graphs and program semantics begun in [6]. The
Equivalence Theorem proven in [6] addresses the relationship between isomorphic PDGs; the Equivalence
Theorem shows that if the program dependence graphs of two programs are isomorphic then the programs
are strongly equivalent (i.e. given the same initial state, either both diverge or both halt in the same final
state). By contrast, the Slicing and Termination Theorems proven in this paper concern non-isomorphic
PDGs. For example, the Slicing Theorem relates the execution behavior of a program to the execution
behavior of one of its slices; it demonstrates that a slice captures a portion of a program’s behavior (in the
sense that, for any initial state on which the program halts, the program and the slice compute the same
sequence of values for each element of the slice).

Earlier work on program slicing includes [15], [16], and [10]. All of this previous work imposes the
condition that a slice be a program whose statements are in the same relative order that they are in the ori-
ginal program. The notion of a slice presented in this paper is a more liberal one: the slice of a program P
with respect to a set of program points S is any program Q whose PDG is isomorphic to GP / S. In
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particular, the relative order of Q’s statements is not necessarily the same as in P. This generalization is
justified by the Equivalence Theorem from [6] together with the Feasibility Lemma from this paper.

A version of the Slicing Theorem (for the more limited notion of slice described above) was demon-
strated in [15]; it applies to a different algorithm for extracting slices, based on solving a sequence of data-
flow problems, rather than the one studied here, which is based on walking backwards over the edges of a
program dependence graph.

The idea of extracting a program slice by walking backwards over dependence edges appears in [10],6

although that paper gives no justification for the operation. The Feasibility Lemma proven in this paper,
(which demonstrates that any slice of a feasible program dependence graph is itself a feasible graph),
together with the Slicing Theorem provide the necessary syntactic and semantic justifications, respectively,
for this method of extracting slices.

When def-order dependences are used in program dependence graphs, larger classes of strongly
equivalent programs have isomorphic program dependence graphs than when output dependences are used
[6]. Thus, our use of def-order dependences in place of the more usual output dependences increases the
number of programs that are an acceptable outcome for a given slicing operation. (For instance, the fol-
lowing programs are examples of two strongly equivalent programs whose PDGs are isomorphic if def-
order dependences are used, but are not isomorphic if output dependences are used:

program Main program Main
x := 0; x := 1;
a := x; b := x;
x := 1; x := 0;
b := x; a := x;
x := 2 x := 2

end(a, b, x) end(a, b, x)

The program dependence graphs for these programs have the same (empty) set of def-order dependences,
but have different sets of output dependences.)

This paper also provides semantic justification for the program-integration algorithm presented in [512];
the integration algorithm either merges two variant programs with a base program or determines that the
variants incorporate interfering changes. In Section 6, the Slicing and Termination Theorems are used to
show that the program that results from a successful integration operation preserves the changed behaviors
of the two variants as well as the unchanged behavior of the base program.

Both this paper and [6] make use of the programming language’s operational semantics to relate pro-
gram dependence graphs to program semantics. Both papers start with the definition of program depen-
dence graph as a given; the theorems that are proven, the Equivalence Theorem and the Slicing Theorem,
relate certain program dependence graphs via the standard (operational) semantics of the programs that
correspond to these graphs.

A different approach, using the language’s denotational semantics, has been developed by Felleisen and
Cartwright in [2]. Through a sequence of steps that restructure the language’s semantic equations, Fel-
leisen and Cartwright decompose the meaning function into two subsidiary functions: one that constructs (a
structure similar to) a program dependence graph, and one that interprets these graphs. Their proof of the
hhhhhhhhhhhhhhhhhhhhhhhhhhhhh
6As pointed out earlier, the kind of slicing that can be performed using a program dependence graph is more restricted than the kind
that can be performed with Weiser’s algorithm [16]: rather than permitting a program to be sliced with respect to program point p and
an arbitrary variable, a slice must be taken with respect to a variable that is defined at or used at p.
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transformations’ correctness leads directly to an analogue of the Equivalence Theorem.

It should be pointed out that there is a difference in philosophy between this paper and [2] concerning
program termination. The semantics developed by Felleisen and Cartwright (as well as the corresponding
dependence graph that they derive) incorporates the notion that an “. . . assignment makes no sense if a
previous assignment to the variable aborts” [2]. This is in contrast with the semantics of slices obtained
with our definitions of program dependence graphs and program slicing; because a diverging computation
may be “sliced out” of a program, a program slice may converge on some initial states for which the origi-
nal program diverges. This is illustrated by the following example (repeated from the beginning of Section
4):

program Main program Main
x := 1; x := 0
while true do end(x)

x := x + 1
od;
x := 0

end(x)

The program shown above on the left always diverges, whereas the program on the right, obtained by slic-
ing the left-hand-side program with respect to variable x at the program’s end statement, always converges.
For this phenomenon to be captured with techniques like the ones used by Felleisen and Cartwright, a dif-
ferent “demand semantics” than the one presented in [2] is required.
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