
HADOOP – HDFS 
AND YARN

Prasad M Deshpande



Design goals of batch processing 
systems
■ Fast processing

– Data ought to be in primary storage, or even better, RAM
■ Scalable

– Should be able to handle growing data volumes
■ Reliable

– Should be able to handle failures gracefully

■ Ease of programming
– Right level of abstractions to help build applications

■ Low cost

Ø Need a whole ecosystem



How to scale?

3
80 passengers

40 passengers

80 passengers

Vertical 
Scaling

Horizontal 
Scaling

Requirements

Speed

Scalability

Reliability

Ease of programming

Low cost



Ways to Scale

■ To scale horizontally (or scale out) means to add more 
nodes to a system, such as adding a new computer to a 
distributed software application. 

■ To scale vertically (or scale up) means to add resources 
to a single node in a system, typically involving the 
addition of CPUs or memory to a single computer. 

4

What are the advantages and disadvantages?



What is Hadoop?

■ Hadoop is an open source framework, from the Apache foundation, capable of 
processing large amounts of heterogeneous data sets in a distributed fashion 
across clusters of commodity computers and hardware using a simplified 
programming model. 

■ The Hadoop framework is based closely on the following principle:

In pioneer days they used oxen for heavy pulling, and when one ox couldn't budge a log, they didn't try to 
grow a larger ox. We shouldn't be trying for bigger computers, but for more systems of computers.
~Grace Hopper



Hadoop Timeline

Hadoop has its origins in Apache Nutch, an open source web search engine, itself a part 
of the Lucene project.



Hardware

Rack

■ The rack contains multiple mounting 
slots called bays

■ A single rack can contain multiple 
servers stacked one above the 
other, consolidating network 
resources and minimizing the 
required floor space.

■ The rack server configuration also 
simplifies cabling among 
network components.

Switch

■ A switch, in the context of networking 
is a high-speed device that receives 
incoming data packets and redirects 
them to their destination on a local 
area network (LAN).

■ Essentially, switches are the traffic 
cops of a simple local area network

■ Switch is limited to node-to-node 
communication on the same network.



Hub & Spoke Hardware

Aggregation switch

Rack switch



Hadoop Characteristics

■ Distribute data initially
– Let processors / nodes work on local data
– Minimize data transfer over network
– Replicate data multiple times for increased availability

■ Write applications at a high level
– Programmers should not have to worry about network programming, low level 

infrastructure, etc

■ Minimize talking between nodes (share-nothing)

Requirements

Speed

Scalability

Reliability

Ease of programming

Low cost



Eco-system



HDFS design goals

Designed for

■ Very large files (petabytes)

■ Write once, read many times

■ Append only

■ Fault tolerance

Not good for

■ Low latency data acess

■ Small files

■ Update intensive workloads

HDFS is an open-source implementation of Google file system (GFS) 



Design decisions

■ Break files in very large blocks (128 MB) 
– compare with 1024 bytes in a Linux file system

■ Fault tolerance
– Replicate the blocks (x3)
– Replica placement
– Periodic status - heartbeat and block report messages

■ Two types of nodes – NameNode and DataNode



HDFS



NameNode

■ Metadata in Memory
– The entire metadata is in main memory

■ Types of metadata
– List of files
– List of Blocks for each file
– List of Data Nodes for each block
– File attributes, e.g. creation time, replication factor

■ A Transaction Log
– Records file creations, file deletions etc



Block Replica Placement

■ Current Strategy
– One replica on local node
– Second replica on a remote rack
– Third replica on same remote rack
– Additional replicas are randomly placed

■ Clients read from nearest replicas

■ Policy is pluggable



Heartbeat and Rebalancing

■ Heart beats
– Data Nodes send heart beat to the Name Node
– Once every 3 seconds
– Name Node uses heartbeats to detect Data Node failure

■ Rebalancing: % disk full on Data Nodes should be similar
– Usually run when new Data Nodes are added
– Cluster is online when Rebalancer is active
– Rebalancer is throttled to avoid network congestion
– Command line tool



■ Any problems you foresee wrt the design we have seen so far?

■ Memory requirement
– Rule of thumb – 1000 MB per Million Blocks of file storage

■ Example:
– 24 TB Disk, 200 node cluster
– 200 * 24,000,000 MB / [128MB * 3] ~ 12 million blocks



HDFS 2.0: Name Node Federation 
Elaborated

■ Multiple independent Namenodes and Namespace Volumes in a cluster

– Namespace Volume = Namespace + Block Pool

■ Block Storage as generic storage service
– Set of blocks for a Namespace Volume is called a Block Pool

– DNs store blocks for all the Namespace Volumes – no partitioning

Datanode	1 Datanode	2 Datanode	m... ... ...

NS1
... ...

NS	k

Block		Pools
Pool		nPool		kPool		1

NN-1 NN-k NN-n

Common	Storage
Bl

oc
k 

St
or

ag
e

N
am

es
pa

ce



HDFS 2.0: High Availability Elaborated

Re
fe

re
nc

e:
 H

ad
oo

p 
Su

m
m

it 
20

12
 |

 H
D

FS
 H

ig
h 

Av
ai

la
bi

lit
y 

ta
lk



Failover

■ In order to provide a fast failover, it is also necessary that the 
Standby node have up-to-date information regarding the location of 
blocks in the cluster. 

■ In order to achieve this, the DataNodes are configured with the 
location of both NameNodes, and send block location information and 
heartbeats to both.



Zookeeper

The ZKFailoverController (ZKFC) is a ZooKeeper client that also monitors and 
manages the state of the NameNode. 

Each of the hosts that run a NameNode also run a ZKFC. 

The ZKFC is responsible for Health monitoring of Namenode

- the ZKFC contacts its local NameNode on a periodic basis with a health-check 
command. So long as the NameNode responds promptly with a healthy status, 
the ZKFC considers the NameNode healthy. 

- If the NameNode has crashed, frozen, or otherwise entered an unhealthy state, 
the health monitor marks it as unhealthy.



HDFS 2.0: High Availability, Federated

ht
tp
:/
/p
e-
ka
y.b
lo
gs
po
t.i
n/
20
16
/0
2/
co
nf
ig
ur
in
g-
fe
de
ra
te
d-
hd
fs
-c
lu
st
er
-w
ith
.h
tm
l



HDFS interface – CLI 

■ Similar to other file system commands

■ E.g.
– hadoop fs -copyFromLocal input/docs/quangle.txt

hdfs://localhost/user/tom/quangle.txt
– hadoop fs -copyToLocal quangle.txt quangle.copy.txt



HDFS Interface – Java FileSystem

Reading Data
■ public static FileSystem get(URI uri, Configuration conf) throws IOException
■ public FSDataInputStream open(Path f) throws IOException

■ public class FSDataInputStream extends DataInputStream implements Seekable, 
PositionedReadable

Writing Data

■ public FSDataOutputStream create(Path f) throws IOException
■ public FSDataOutputStream append(Path f) throws IOException
■ public class FSDataOutputStream extends DataOutputStream implements Syncable



File read flow



File write flow



YARN – Resource Manager

■ Yet Another Resource Negotiator

■ Replaces Job Tracker and Task Tracker architecture in MR1

■ YARN designed to scale up to 10,000 nodes and 100,000 tasks.

■ Under YARN, there is no distinction between resources available for maps and 
resources available for reduces – all resources are available for both; the notion of 
slots has been discarded

■ Resources are now configured/allocated in terms of amounts of memory (in 
megabytes) and CPU



Enables non-MapReduce tasks to work within a Hadoop installation



Data and compute distribution

CLIENT

HDFS 2

Name Node

Distributed Data

CLIENT

I want to run some large job on 
data that’s already there. Please 

give me the processors & memory I 
need.

YARN

Resource
ManagerDistributed 

Processing



YARN Architecture



Resource Manager

§ acts as the sole arbitrator of cluster resources. 

§ ultimate authority that arbitrates resources among all the applications.

§ responsible for optimizing cluster utilization



Node Manager

§ per-machine slave [daemon]

§ responsible for launching the applications’ containers, 

§ monitoring their resource usage (CPU, memory, disk, network)

§ reports to the ResourceManager

§ provides logging and other auxiliary services



Application Master

■ per application

■ negotiates appropriate resource containers with RM

■ works with the NMs to execute and monitor the containers and their resource 
consumption

■ monitors progress

■ The YARN system (RM and NM) needs to protect itself from faulty or malicious AMs 
and resources granted to them



Container

■ Container is the resource allocation [container ID, Node Manager], which is 
the successful result of the RM granting a specific ResourceRequest from 
AM

■ RM responds to a resource request by granting a container, which satisfies 
the requirements laid out by the AM in the initial ResourceRequest.

■ A ResourceRequest format:
<resource-name, priority, resource-requirement, number-of-containers> 

– Resource requirements: CPU and Memory



Launching the tasks

■ AM presents the Container to the NM managing the host, on which the container 
was allocated, to use the resources for launching its tasks

■ The Container launch specification API is platform agnostic and contains:
– Command line to launch the process within the container.
– Environment variables
– Local resources necessary on the machine prior to launch, such as jars, 

shared-objects, auxiliary data files etc



Sequence of actions



MR on YARN



Reading list

■ Hadoop The Definitive Guide, Tom White (https://grut-
computing.com/HadoopBook.pdf)

– Chapter 3 – The design of HDFS, HDFS Concepts, The Java Interface (details 
can be skipped), Data Flow

– Chapter 4, except Scheduling in YARN

https://grut-computing.com/HadoopBook.pdf

