HADOOP - HDFS
AND YARN

Prasad M Deshpande

Design goals of batch processing
systems

m Fast processing
- Data ought to be in primary storage, or even better, RAM

m Scalable
— Should be able to handle growing data volumes

m Reliable
— Should be able to handle failures gracefully

m Ease of programming
- Right level of abstractions to help build applications

m Low cost

» Need a whole ecosystem

How to scale?

Speed

T ——
Scalability
' Reliability

Ease of programming

Low cost

tf 40 passengers %1

%]:DD QQQQQ
Serlie QD L ooes
0 0 O

80 passengers 80 passengers

Horizontal
Scaling

Ways to Scale

m [0 scale horizontally (or scale out) means to add more
nodes to a system, such as adding a new computer to a
distributed software application.

m [0 scale vertically (or scale up) means to add resources
to a single node in a system, typically involving the

addition of CP
What are t

Us or memory to a single computer.

ne advantages and disadvantages?

What is Hadoop?

m Hadoop is an open source framework, from the Apache foundation, capable of
processing large amounts of heterogeneous data sets in a distributed fashion
across clusters of commodity computers and hardware using a simplified

programming model.

m The Hadoop framework is based closely on the following principle:

4)
In pioneer days they used oxen for heavy pulling, and when one ox couldn't budge a log, they didn't try to
grow a larger ox. We shouldn't be trying for bigger computers, but for more systems of computers.

~Grace Hopper

- J

Hadoop Timeline

YaHoO!
Fastest sort of a TB, 3.5mins
over 910 nodes

ot
Doug Cutting adds DFS & 4

_ Distributed Storage MapReduce support to Nutch

HDFS - Reliable Shared Storage Fastest sortofa T8

- m 62secs over 1,460 nodes

. . NY Times converts 4TB of Sorted a PBin 16.25hours
MapReduce - Distributed Computation Doug Cutting & Mike Cafarella
: image archives over 100 EC2s over 3,658 nodes
it Parallel processing : started working on Nutch £ I T
— } >

2009

Google publishes GFS &

MapReduce papers Yahoo! hires Cutting, cloudera .D_OUSJU‘;'"S
C le Hadoop spins out of Nutch Founded Joins Cloudera
e U AErbnp

Facebooks launches Hive:
A 4
SQL Support for Hadoop Hadoop Summit 2009,

m 750 attendees

Hadoop has its origins in Apache Nutch, an open source web search engine, itself a part
of the Lucene project.

Hardware

Rack Switch

m The rack contains multiple mounting m A switch, in the context of networking

slots called bays

A single rack can contain multiple
servers stacked one above the
other, consolidating network
resources and minimizing the
required floor space.

The rack server configuration also
simplifies cabling among
network components. ‘

is a high-speed device that receives
incoming data packets and redirects
them to their destination on a local
area network (LAN).

Essentially, switches are the traffic
cops of a simple local area network

Switch is limited to node-to-node
communication on the same network.

Hub & Spoke Hardware

Aggregation switch

<+—» 8 gigabit
. <—» 1 gigabit
Rack switch

Hadoop Characteristics

Speed
Scalability
Reliability
m Distribute data initially Ease of programming
- Let processors / hodes work on local data Low cost

- Minimize data transfer over network
- Replicate data multiple times for increased availability

m Write applications at a high level

- Programmers should not have to worry about network programming, low level
infrastructure, etc

m Minimize talking between nodes (share-nothing)

Eco-system

Parallel Computing Flink, Map-Reduce, MR2, Spark, Hama

\\\\\\\\\\\\\\\\\\

Resource Management (0S) YARN

STORAGE (Persistence)

I:II:II:II:II:II:IEIEII:II:IDI:II:II:I

i ‘INGESTION
' Sqoop, Flume, Chukwa

HDFS design goals

Designed for Not good for

m Very large files (petabytes) m Low latency data acess

m Write once, read many times m Smallfiles

m Append only m Update intensive workloads
m Fault tolerance

HDFS is an open-source implementation of Google file system (GFS)

Design decisions

m Break files in very large blocks (128 MB)
- compare with 1024 bytes in a Linux file system

m Fault tolerance
- Replicate the blocks (x3)
- Replica placement
— Periodic status - heartbeat and block report messages

m [wo types of nodes - NameNode and DataNode

HDFS

FS/ nawmespoce/ meto ops

: Secondary
%(—»\ NameNode NameNode }
\ \

Nawmespoce backunp

DataNode ‘ } DataNode | | DataNode | | DataNode I . DataNode |

2eea 0. oa. |

”@”W*i A T

- _— ’

NameNode

m Metadata in Memory
— The entire metadata is in main memory

m [ypes of metadata
- List of files
— List of Blocks for each file
— List of Data Nodes for each block
— File attributes, e.g. creation time, replication factor

m A Transaction Log
- Records file creations, file deletions etc

Block Replica Placement

m Current Strategy
- One replica on local node
- Second replica on a remote rack
— Third replica on same remote rack
- Additional replicas are randomly placed

m Clients read from nearest replicas

m Policy is pluggable

Heartbeat and Rebalancing

m Heart beats
— Data Nodes send heart beat to the Name Node
- Once every 3 seconds
- Name Node uses heartbeats to detect Data Node failure

m Rebalancing: % disk full on Data Nodes should be similar
— Usually run when new Data Nodes are added
— Cluster is online when Rebalancer is active
- Rebalancer is throttled to avoid network congestion
- Command line tool

m Any problems you foresee wrt the design we have seen so far?

m Memory requirement
— Rule of thumb - 1000 MB per Million Blocks of file storage

m Example:
- 24 TB Disk, 200 node cluster
- 200 * 24,000,000 MB / [128MB * 3] ~ 12 million blocks

HDFS 2.0: Name Node Federation

Elaborated &1 wwa 7 fw DT e
' | . L i
% NS1 NS k
Z y
o |\ | E*E'
I Block Pools J

Block Storage

v Common Storage

m Multiple independent Namenodes and Namespace Volumes in a cluster

- Namespace Volume = Namespace + Block Pool

m Block Storage as generic storage service

- Set of blocks for a Namespace Volume is called a Block Pool

- DNs store blocks for all the Namespace Volumes - no partitioning

HDFS 2.0: High Availability Elaborated

Leader election

Failover ™. Failover ™.
Controller | Controller
. Active > Standby
——- Cmds | edltlog) By
Monitor Health Monitor Health
editlogs
(fencing) NN
Actlve Standby

y

\ Block Reports/
\ /~
\

Cloudera 5 Get in touch

Reference: Hadoop Summit 2012 | HDFS High Availability talk

Faillover

m In order to provide a fast failover, it is also necessary that the
Standby node have up-to-date information regarding the location of
blocks in the cluster.

m In order to achieve this, the DataNodes are configured with the

location of both NameNodes, and send block location information and
heartbeats to both.

/ookeeper

The ZKFailoverController (ZKFC) is a ZooKeeper client that also monitors and
manages the state of the NameNode.

Each of the hosts that run a NameNode also run a ZKFC.
The ZKFC is responsible for Health monitoring of Namenode

- the ZKFC contacts its local NameNode on a periodic basis with a health-check
command. So long as the NameNode responds promptly with a healthy status,
the ZKFC considers the NameNode healthy.

- If the NameNode has crashed, frozen, or otherwise entered an unhealthy state,
the health monitor marks it as unhealthy.

HDFS 2.0: High Availability, Federated

sales namespace

Active

Namenode

Standby
Namenode

Block Pool for Sales Namespace

analytics namespace

|

-

—1

Active
Namenode

< |

Standby

Namenode

| Block Pool for Analytics Namespace

4

\\

|

Datanodel

Datanode2

Datanode N

Common Storage Layer

http://pe-kay.blogspot.in/2016/02/configuring-federated-hdfs-cluster-with.html

HDFS interface — CLI

m Similar to other file system commands

m EZ

— hadoop fs -copyFromLocal input/docs/quangle.txt
hdfs://localhost/user/tom/quangle.txt

— hadoop fs -copyToLocal quangle.txt quangle.copy.txt

HDFS Interface - Java FileSystem

Reading Data
m public static FileSystem get(URI uri, Configuration conf) throws IOException
m public FSDatalnputStream open(Path f) throws IOException

m public class FSDatalnputStream extends DatalnputStream implements Seekable,
PositionedReadable

Writing Data

m public FSDataOutputStream create(Path f) throws |OException

m public FSDataOutputStream append(Path f) throws |OException

m public class FSDataOutputStream extends DataOutputStream implements Syncable

File read flow

2: get block locati
== |1 Ik AN |\ 2N ode
client
namenode
client JYUM
client node
4 readg
v

DataNode DataNode DataNode

datanode datanode datanode

File write flow

1: creat Distributed Lot

- create N oo A

HDFS e FileSystem 7 complete NameNode
client 3: WI'Ite B B T P PP PP

A FSData namenode
6: close ‘
cient JVM :

A

client node
4: write packet 5: ack packet
v
Pipeline of DataNode i DataNode
datanodes

datanode datanode datanode

YARN - Resource Manager

m Yet Another Resource Negotiator
m Replaces Job Tracker and Task Tracker architecture in MR1
m YARN designed to scale up to 10,000 nodes and 100,000 tasks.

m Under YARN, there is no distinction between resources available for maps and
resources available for reduces - all resources are available for both; the notion of
slots has been discarded

m Resources are now configured/allocated in terms of amounts of memory (in
megabytes) and CPU

HADOOP 1.0

MapReduce

(cluster resource management
& data processing)

HADOOP 2.0

MapReduce

(data processing)

Others

(data processing)

|
A _J

YARN

(cluster resource management)

\\ |

Al

Enables non-MapReduce tasks to work within a Hadoop installation

Data and compute distribution

HDFS 2

Distributed Data

YARN

Distributed
Processing

YARN Architecture

Node
| Manager

~4._
M Resource =
@ - --$-"| Manager

MapReduce Status ————»

Job Submission

Node Status
Resource Request

Resource Manager

= acts as the sole arbitrator of cluster resources.
= ultimate authority that arbitrates resources among all the applications.

= responsible for optimizing cluster utilization

Node Manager

= per-machine slave [daemon]

= responsible for launching the applications’ containers,

= monitoring their resource usage (CPU, memory, disk, network)
= reports to the ResourceManager

= provides logging and other auxiliary services

Application Master

m per application
m negotiates appropriate resource containers with RM

m works with the NMs to execute and monitor the containers and their resource
consumption

m monitors progress

m The YARN system (RM and NM) needs to protect itself from faulty or malicious AMs
and resources granted to them

Container

m Container is the resource allocation [container ID, Node Manager], which is
the successful result of the RM granting a specific ResourceRequest from
AM

m RM responds to a resource request by granting a container, which satisfies
the requirements laid out by the AM in the initial ResourceRequest.

m A ResourceRequest format:

<resource-name, priority, resource-requirement, number-of-containers>
- Resource requirements: CPU and Memory

Launching the tasks

m AM presents the Container to the NM managing the host, on which the container
was allocated, to use the resources for launching its tasks

m The Container launch specification APl is platform agnostic and contains:
- Command line to launch the process within the container.
- Environment variables

- Local resources necessary on the machine prior to launch, such as jars,
shared-objects, auxiliary data files etc

Sequence of actions

Application

4

client

client node

1: submit

YARN

NodeManager

2b: Iaunchl

Container

-
I |
I I
: »| ResourceManager :
| |

|

|

application 1 resource manager node
4 (-

Application
process

node manager node

I 4a:start

| container :

NodeManager

4b: Iaunchl

Container

Application
process

MR on YARN

Job submission

-

-
-
..... —— S—
....
- B
= -
T -

NodeManaj er EUITRIITINTY NodeManager

: _ = = “Request
| M'pneduce | m T Map Task N

Application s31) "C8didination
Master i X

Reduce Task M

Reduce Task 1

Reading list

m Hadoop The Definitive Guide, Tom White (
)

— Chapter 3 - The design of HDFS, HDFS Concepts, The Java Interface (details
can be skipped), Data Flow

— Chapter 4, except Scheduling in YARN

https://grut-computing.com/HadoopBook.pdf

