BATCH PROCESSING WITH MAP REDUCE

Prasad M Deshpande

Patterns in processing

Synchronous vs Asynchronous

Synchronous

- Request is processed and response sent back immediately
- Client blocks for a response

Asynchronous

- Request is sent as an event/message
- Client does not block
- Event is put in a queue/file and processed later
- Response is generated as another event
- Consumer of response event can be a different service

Data at rest Vs Data in motion

■ At rest:

- Dataset is fixed (file)
- bounded
- can go back and forth on the data

■ In motion:

- continuously incoming data (queue)
- unbounded
- too large to store and then process
- need to process in one pass

Batch processing

- Problem statement :
 - Process this entire data
 - give answer for X at the end

- Characteristics
 - Access to entire data
 - Split decided at the launch time.
 - Capable of doing complex analysis (e.g. Model training)
 - Optimize for Throughput (data processed per sec)
- Example frameworks : Map Reduce, Apache Spark

Stream processing

- Problem statement :
 - Process incoming stream of data
 - to give answer for X at this moment.

Characteristics

- Results for X are based on the current data
- Computes function on one record or smaller window.
- Optimizations for latency (avg. time taken for a record)
- Example frameworks: Apache Storm, Apache Flink, Amazon Kinesis, Kafka, Pulsar

Batch vs Streaming

- Find stats about group in a closed room
- Analyze sales data for last month to make strategic decisions

- Finding stats about group in a marathon
- Monitoring the health of a data center

When to use Batch vs Streaming

- Batch processing is designed for 'data at rest'. 'data in motion' becomes stale; if processed in batch mode.
- Real-time processing is designed for 'data in motion'. But, can be used for 'data at rest' as well (in many cases).

	Simple	Complex Iterative
Real time	Stream	Stream/ Batch
Non real time	Stream/ Batch	Batch

Design goals of batch processing systems

- Fast processing
 - Data ought to be in primary storage, or even better, RAM
- Scalable
 - Should be able to handle growing data volumes
- Reliable
 - Should be able to handle failures gracefully
- Ease of programming
 - Right level of abstractions to help build applications
- Low cost
- > Need a whole ecosystem

Batch processing flows

- flow of work through a directed, acyclic graph
- different operators for coordinating the flow
- Lets look at some common patterns

Copier

- Duplicate input to multiple outputs
- Useful when different independent processing steps need to be done on same input

Filter

- Select a subset of the input items
- Usually based on a predicate on the input attribute values

Splitter

- Split input set into two or more different output sets
- Partitioning vs copy
- Usually based on some predicate different processing to be done for each partition

Sharding

- Split based on some sharding function
- Same processing for all parititions
- Reasons for sharding
 - To distribute load among multiple processors
 - Resilience to failures

Merge

- Combine multiple input sets into a single output set
- A simple union

Join

- Barrier synchronization
- Ensures that previous step is complete before starting the next step
- Reduces parallelism

Reduce

- Group and merge multiple input items into a single output item
- Usually, some form of aggregation
- Need not wait for all input to be ready

A simple problem

- Find transactions with sale >= 10
- Which patterns will you use?
- How will you parallelize?

Product	Sale
P1	10
P2	15
P1	5
P2	40
P5	15
P1	55
P2	10
P5	30
P3	25
P3	15

Copy, Filter, Split, Shard, Merge, Join, Reduce Copy, Filter, Split, Shard, Merge, Join, Reduce

A simple problem - extended

- Find total sales by category for transactions with sale >= 10
- Which patterns will you use?
- How to parallelize?

e.g.: PC1, 105

Category	Product
PC1	P1, P3
PC2	P2, P4, P5

Product	Sale
P1	10
P2	15
P1	5
P2	40
P5	15
P1	55
P2	10
P5	30
Р3	25
P3	15

Copy, Filter, Split, Shard, Merge, Join, Reduce Copy, Filter, Split, Shard, Merge, Join, Reduce

Challenges in parallelization

- How to break a large problem into smaller tasks?
- How to assign tasks to workers distributed across machines?
- How to ensure that workers get the data they need?
- How to coordinate synchronization across workers?
- How to share partial results from one worker to another?
- How to handle software errors and hardware faults?

Programmer should not be burdened with all these details => need an abstraction

Map-reduce

Abstraction

Two processing layers/stages

- map: $(k1, v1) \rightarrow [(k2, v2)]$
- reduce: $(k2, [v2]) \rightarrow [(k3, v3)]$

Revisiting the problem

```
public class ProductMapper extends
Mapper<LongWritable, Text, Text, IntWritable> {
  @Override
  public void map(LongWritable key, Text value,
Context context)
       throws IOException, InterruptedException {
    String line = value.toString();
    String parts[] = line.split(",");
    String product = parts[0];
    Integer sale = Integer.valueOf(parts[1]);
    if (sale >= 10) {
       String category = getCategory(product);
       context.write(new Text(category), new
IntWritable(sale));
```

```
public class ProductReducer extends
ReducerReducer<Text, IntWritable, Text, IntWritable> {
  @Override
  public void reduce(Text key, Iterable < IntWritable >
values, Context context)
       throws IOException, InterruptedException {
    int total = 0:
    for (IntWritable val : values) {
       total += val:
    context.write(key, new IntWritable(total));
```

Processing stages

Scaling out

Multiple reduce tasks

Our example

- Map Tasks →
 - Mapper task 1 : P1 [key], 10[sale value]; P2, 15; P1, 5
 - Output: PC1, 10; PC2, 15; PC1, 5
 - Mapper task 2 : P2, 40; P5, 15; P1, 55; P2, 10
 - Output: PC2, 40; PC2, 15; PC1, 55; PC2, 10
 - Mapper task 3 : P5, 30; P3, 25; P3, 15
 - Output: PC2, 30; PC1, 25; PC1, 15

Partitions	[reducers]	→ hy	/ product	category
i ai uuons	li caacci s		pidauct	category

Category	Product
PC1	P1, P3
PC2	P2, P4, P5

Shuffle, sort and partition

Data from Mappers:

- PC1, 10; *PC2, 15;*
- *PC2, 40*; PC2, 15; PC1, 55; PC2, 10
- PC2, 30; PC1, 25; PC1, 15

- PC1, 10
- PC1, 55
- PC1, 25
- PC1, 15
- PC2, 15
- PC2, 40
- PC2, 15
- PC2, 10
- PC2, 30;

Partition [reducer] 1 → PC1, 105

Partition [reducer] 2→???

Can it be optimized further?

Data from Mappers:

- PC1, 10; *PC2, 15;*
- *PC2, 40*; PC2, 15; PC1, 55; PC2, 10
- PC2, 30; PC1, 25; PC1, 15

Combiner

- Runs on the output of mapper
- No guarantee on how many times it will be called by the framework
- Calling the combiner function zero, one, or many times should produce the same output from the reducer.
- Contract for combiner same as reducer
 - $(k2, [v2]) \rightarrow [(k3, v3)]$
- Reduces the amount of data shuffled between the mappers and reducers

Combiner example

Data from Mappers:

- PC1, 10; *PC2,* 15;
- *PC2, 40*; PC2, 15; PC1, 55; PC2, 10
- PC2, 30; PC1, 25; PC1, 15

After combining:

- PC1, 10; *PC2,* 15;
- **■** *PC2,* **65**; PC1, 55
- PC2, 30; PC1, 40

Framework design

- So where should execution of mapper happen?
- And how many map tasks?

"Where to execute?": Data Locality

- Move computation close to the data rather than data to computation".
- A computation requested by an application is much more efficient if it is executed near the data it operates on when the size of the data is very huge.
- Minimizes network congestion and increases the throughput of the system
- Hadoop will try to execute the mapper on the nodes where the block resides.
 - In case the nodes [think of replicas] are not available, Hadoop will try to pick a node that is closest to the node that hosts the data block.
 - It could pick another node in the same rack, for example.

Data locality

Data-local (a), rack-local (b), and offrack (c) map tasks

How many mapper tasks?

Number of mappers set to run are completely dependent on:

1) File Size and

2) Block [split] Size

Internals

- Mapper writes the output to the local disk of the machine it is working.
 - This is the temporary data. Also called intermediate output.
- As mapper finishes, data (output of the mapper) travels from mapper node to reducer node. Hence, this movement of output from mapper node to reducer node is called **shuffle**.
- An output from mapper is partitioned into many partitions;
 - Each of this partition goes to a reducer based on some conditions

Map Internals

InputSplits are created by InputFormat. Example formats – FileInputFormat, DBInputFormat

RecordReader's responsibility is to keep reading/converting data into key-value pairs until the end; which is sent to the mapper.

Number of map tasks will be equal to the number of InputSplits

Mapper on any node should be able to access the split → need a distributed file system (HDFS)

Intermediate output is written to local disks

Same with Output Formats and Record Writers

MR Algorithm design

```
1: class Mapper
      method Map(docid a, doc d)
           for all term t \in \text{doc } d do
3:
               Emit(term t, count 1)
4:
1: class Reducer
       method Reduce(term t, counts [c_1, c_2, \ldots])
2:
           sum \leftarrow 0
3:
           for all count c \in \text{counts } [c_1, c_2, \ldots] do
4:
5:
               sum \leftarrow sum + c
           Emit(term t, count sum)
6:
```

Pseudo-code for a basic word count algorithm

Improvement – local within document aggregation

```
1: class Mapper
2: method Map(docid a, doc d)
3: H \leftarrow \text{new AssociativeArray}
4: for all term t \in \text{doc } d do
5: H\{t\} \leftarrow H\{t\} + 1 \triangleright Tally counts for entire documen
6: for all term t \in H do
7: E \text{MIT}(\text{term } t, \text{count } H\{t\})
```

Local across document aggregation

```
1: class Mapper
2: method Initialize
3: H \leftarrow \text{new AssociativeArray}
4: method Map(docid a, doc d)
5: for all term t \in \text{doc } d do
6: H\{t\} \leftarrow H\{t\} + 1 \triangleright Tally counts across documents
7: method Close
8: for all term t \in H do
9: Emit(term t, count H\{t\})
```

No longer pure functional programming – state maintained across function calls!

Do we still need combiners?

- Limitations of in-mapper combining
 - State needs to be maintained
 - Scalability size of the state can grow without bounds
- Keep bounded state
 - Write intermediate results
 - Use combiners

Summary

- MR powerful abstraction for parallel computation
- Framework handles the complexity of distribution, data transfer, coordination, failure recovery

Reading list

- Designing Distributed Systems, Brendan Burns
 - Chapters 11 and 12, except Hands on sections
- Distributed and cloud computing, Kai Hwang, Geoffrey C Fox, Jack J Dongarra
 - Sections 6.2.2 except 6.2.2.7
- Optional reading
 - Data-Intensive Text Processing with MapReduce
 - Sections 2.1 to 2.4