A Dynamic Analysis to Support Object-Sharing Code
Refactorings

Girish Maskeri Rama’
Infosys Limited
girish_rama@infosys.com

ABSTRACT

Creation of large numbers of co-existing long-lived isomor-
phic objects increases the memory footprint of applications
significantly. In this paper we propose a dynamic-analysis
based approach that detects allocation sites that create large
numbers of long-lived isomorphic objects, estimates quan-
titatively the memory savings to be obtained by sharing
isomorphic objects created at these sites, and also checks
whether certain necessary conditions for safely employing
object sharing hold. We have implemented our approach as
a tool, and have conducted experiments on several real-life
Java benchmarks. The results from our experiments indicate
that in real benchmarks a significant amount of heap mem-
ory, ranging up to 37% in some benchmarks, can be saved by
employing object sharing. We have also validated the pre-
cision of estimates from our tool by comparing these with
actual savings obtained upon introducing object-sharing at
selected sites in the real benchmarks.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement; D.3.4 [Programming Languages|: Pro-
cessors

Keywords

Memory optimization; object caching

1. INTRODUCTION

The advent of large system memories has not vetted the
appetite for memory optimization tools for software. For
instance, various researchers have noted [15, 16, 25, 24] that
software commonly consumes unexpectedly high amounts
of memory, frequently due to programming idioms that are
used to make software more reliable, maintainable and un-
derstandable. In the case of modern object-oriented systems

>|<Currently pursuing part-time PhD in Indian Institute of
Science, Bangalore.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASE’14, September 15-19, 2014, Vasteras, Sweden.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3013-8/14/09 ...$15.00.
http://dx.doi.org/10.1145/2642937.2642992 .

Raghavan Komondoor
Indian Institute of Science, Bangalore
raghavan@csa.iisc.ernet.in

public CommonFont getFontProps(){

CommonFont commonFont =
new CommonFont (
fontFamily , fontSelectionStrategy ,
fontStretch , fontStyle, fontVariant,
fontWeight , fontSize, fontSizeAdjust);
return commonFont;

Listing 1: Creation of isomorphic objects

this problem is partly due creation of large numbers of co-
existing isomorphic objects. Intuitively, two objects are iso-
morphic if they are of the same type, have identical values in
corresponding primitive fields, and are such that correspond-
ing reference fields themselves point to isomorphic objects.
In other words, the portions of memory rooted at the two
objects are isomorphic shape-wise as well as values-wise.

1.1 Motivation

To illustrate this problem consider the example code in
Listing 1, adapted from the real program Apache FOP. This
code has been substantially simplified for ease of presenta-
tion. The getFontProps method in the code is used to cre-
ate a CommonFont object (to encode display properties) for
each FO (Formatting Objects) node in the input FO docu-
ment. Each CommonFont object (which we simply call font
object from here on) occupies 64 bytes in memory. For large
documents the number of such font objects created is very
large. However, in practice, because the fields of the Com-
monFont class can take on only a small number of distinct
values, e.g., Arial or TimesRoman for fontFamily and 10pt
or 12pt for fontSize, many of the font objects created are
isomorphic to each other. For instance, with a 104-page real
input document that we supplied as input, although the pro-
gram created 9079 font objects, 8943 (i.e., 98.5%) of these
objects belonged to only four distinct equivalence classes by
isomorphism. Furthermore, all font objects are long lived
(i.e., are live nearly until the end of execution of the pro-
gram). A significant reduction in heap usage can therefore
be achieved if the code is refactored to de-duplicate or share
common font objects whenever possible instead of always
creating distinct but possibly isomorphic objects. Such a
refactoring, which employs a cache to keep track of objects
created so far and to share them, is shown in Listing 2. We
have elided the equals and hashCode methods of the Com-
monFont class from the listing, which ensure that a cache

private Map<CommonFont, CommonFont> map =
new WeakHashMap<CommonFont, CommonFont>();

public CommonFont getFontProps(){

CommonFont commonFont =
new CommonFont (
fontFamily , fontSelectionStrategy ,
fontStretch , fontStyle, fontVariant,
fontWeight , fontSize, fontSizeAdjust);

if (map. get (commonFont) != null)
commonFont = map. get (commonFont) ;
// return cached isomorphic object
else
map . put (commonFont ,commonFont) ;
// insert mew object into cache
return commonFont;

Listing 2: Caching isomorphic objects

lookup using a newly created object as key is guaranteed to
return either null or an object that is isomorphic with the
new object. Note that whenever a cached object is found,
the newly created object implicitly becomes garbage and will
be collected by the GC, thus not occupying space in memory
that it otherwise would. Also, a WeakHashMap (rather than a
normal hash-map) is appropriate, because any (key, value)
pair gets automatically deleted from a weak hash-map when
there are no references to the key object from any other
location in memory. This ensures that any originally non-
long-living objects that might happen to get introduced into
the cache are not kept there any longer than they are needed,
hence avoiding inadvertent increases in heap usage.

As aresult of the above-mentioned refactoring, of the 9079
font objects, only 4 will be long living. This could potentially
result in a reduction of memory consumption of 567 KB
((9079 - 4) * 64 bytes) by the time all the font objects have
been created (ignoring space overheads due to the internal
structures of the cache).

We have observed that in several open-source projects, for
instance, Apache FOP, PDFBox, and GanttProject, there
were several allocation sites that create long-living objects
where sharing was not employed initially, but that were
refactored subsequently by programmers to employ sharing
by using a cache of some form. This is presumably in re-
sponse to memory bottlenecks that were observed after de-
ployment or usage of the initial (unoptimized) versions of
the applications. In fact, in the case of FOP, we have mea-
sured that sharing that has been introduced at 14 different
allocation sites by developers yields up to 11% reduction
in heap footprint on real inputs. Correspondingly, a limit
study on object duplication [15] has found that if an oracle
could be used to eliminate all instances of isomorphic co-
existing objects by resorting to object-sharing, then up to
60% reduction in peak heap usage can be achieved.

1.2 Challenges in introducing object sharing

However, once it has been recognized that an application
suffers from high heap memory usage, there are many chal-
lenges in identifying object allocation sites that are good
candidates for employing object sharing. A good alloca-
tion site is one that would give good memory reduction after
a cache is introduced, and where it is safe to introduce a

cache. Good memory reduction occurs if the site creates
a reasonably large number of objects, with relatively few
equivalence classes among these objects wrt isomorphism
(thus increasing the scope for sharing), and with most of
these objects being long-living objects. The need for the
last condition mentioned above is as follows: If a site cre-
ates mostly short-lived (aka temporary) objects, then the
portion of heap memory occupied by objects from this site
will in general be low, because the garbage collector will col-
lect most of the extant objects that were created at this site
whenever it runs. Therefore, the savings in memory usage
due to a cache at this site will also be low.

We now discuss the safety aspect. Introducing object
sharing at a site is safe, intuitively, only if objects created
at the site or reachable from these objects right after they
are created are never modified in the rest of the program’s
execution (in any execution), and if the rest of execution
is behaviorally independent of the actual addresses of these
objects. Safety is a real concern. For instance, in the open-
source project PDFBox (version 0.73) developers had em-
ployed a cache for object-sharing at the allocation site in
line 106 in file PDFFontFactory.java. However, a user de-
tected and reported a bug (Bug ID 610) on version 0.8.0 of
the software, which was subsequently fixed in version 1.7.0.
The bug fix involved disabling the cache, with the fix de-
scription mentioning that unsafe sharing was the cause of
the bug.

Since real applications can have thousands of object al-
location sites, locating good candidate sites among these is
proverbially like looking for needles in a haystack.

Related research in the area of refactoring programs by
leveraging isomorphism opportunities is primarily focused
on reusing short-lived data structures after they are dead
rather than re-create new instances of these data structures
repeatedly [3, 21, 17]. The objective of such a refactoring
is primarily to reduce the GC overhead, and also to reduce
the running time required to re-create and re-initialize data
structures repeatedly. At an intuitive level these approaches
look for sites such that (1) they create many short-lived ob-
jects with disjoint lifetimes, and (2) there is much isomor-
phism among these objects, so that a few representative ob-
jects can be saved in a cache and reused whenever required.
While we share requirement (2) above, we actually have the
converse of requirement (1): We need to find sites that cre-
ate mostly long-lived objects, so that sharing can be intro-
duced among these objects to reduce memory consumption.
Another key difference is that reuse of a dead object does
not introduce any risk of changing the program’s behavior.
In contrast, since we are looking to share live objects, we
face the additional challenge of somehow checking whether
a proposed refactoring to introduce sharing is safe or not.

1.3 Our approach and contributions

Our main contribution is a dynamic analysis technique for
estimating for the allocation sites in a program, for a given
input, the reduction in heap memory usage (in bytes, or as
a percentage) to be obtained by employing object sharing at
this site, as well as the safety of doing so. The quantitative
estimates produced by our technique of a user-observable
benefit (i.e., actual memory savings) make it easier for de-
velopers to select sites to refactor. In contrast, previous ap-
proaches [21, 17] compute a metric between 0 and 1 for each
site, indicating the extent of isomorphism at the site. This

metric can be used to rank sites heuristically, but does not
directly indicate the extent of observable run-time benefit
to be expected from eliminating isomorphism.

Computing a precise memory savings estimate for every
allocation site in a program can be prohibitively expensive.
Checking the safety of employing object-sharing at each site
is also very expensive. At the same time, if imprecision in
the estimates is high or if safety is not checked carefully then
the utility of the approach will become compromised. The
solution that we propose, therefore, is a two-phase analysis,
both of which involve an instrumented run of the program
on the given input (with different instrumentation in the two
phases). The responsibility of the first phase is to identify
unsafe sites and remove them from consideration as soon as
possible during the run, and also to remove sites that are
possibly unprofitable as early as possible. The profitability
of each site is approximately encoded by a metric that is
similar to the one used by Xu et al. [21]. The metric for
each site is updated each time the site is visited. Once a
site is removed from consideration during the run, visits to
the site in the remaining part of the run are not analyzed
in any way. In this way, the set of sites under consideration
shrinks monotonically over the run.

The allocation sites that remain under consideration at
the end of the first phase are the sites to be tracked in the
second phase. The responsibility of this phase is to precisely
partition the objects created at each of these tracked sites
into equivalence classes wrt isomorphism. At the end of the
run, for each tracked site, its equivalence classes are used to
calculate a memory-savings estimate, as illustrated earlier in
Section 1.1. A heuristic is employed during this calculation
to eliminate from consideration non-long-lived objects in the
equivalence classes. In our approach we estimate savings at
the end of the run only, and not at other preceding points.
We discuss why this is justified in Section 5 of the paper.

Reverting to the notion of safety of introducing object-
sharing at a site, it is noteworthy that although our safety
characterization for refactoring a site (as discussed in Sec-
tion 1.2) basically insists on behavior preservation in all
runs of the program, our current dynamic analysis approach
checks for safety only in the given run of the program.

We have implemented our approach as a tool, Object
Caching Advisor (OCA). A key aspect of our tools is that
it is based purely on running an instrumented version of the
program, with no modifications required to the underlying
JVM. This increases the applicability of our approach in
practice. We have experimented with our tool on a range of
real Java programs, including the DaCapo 2006 benchmarks.
Some of the key findings of our experiments include:

e Nearly all applications have potential for reduction of
memory usage by object sharing, with up to 37% esti-
mated reduction in heap footprint in the best case.

e Our tool was able to detect that the unsafe site in
PDFBox that the developers had originally introduced
sharing at is indeed an unsafe site.

e We considered an application, FOP, where develop-
ers had manually introduced object-sharing caches at
14 allocation sites, and ran our analysis on modified
versions of these applications wherein we disabled the
caching. We found that our tool placed 10 of these
14 sites within the top 27 ranks in its report of sites

private Map<T,T> cache=

.. = new WeakHashMap<T,T>();

T v = void m() {

new C(al,a2)
; T v = new C(al,a2);

void m() {

L T w = cache.get(v);
} if (w I= null)
v = w;
else

cache.put(v,v);

Figure 1: Caching using hash consing.

sorted by descending order of the estimated saving.
Furthermore, we found that developers had not em-
ployed sharing at several sites that the tool reported
and that would give good savings if sharing were to be
employed at them.

The rest of this paper is organized as follows. Section 2
introduces the object-sharing refactoring in generic terms.
Section 3 introduces key notation and terminology that we
use. The sufficient conditions for safely introducing caching
at a site are presented in Section 4. Section 5 discusses some
conceptual issues about when to estimate heap savings in a
run. We describe our actual dynamic analysis approach,
as well as our implementation of the approach, in Section
6. In Section 7 we discuss empirical results from our tool.
Section 8 discusses certain limitations of our approach and
experiments. Related work is presented in Section 9, while
Section 10 concludes the paper.

2. THE REFACTORING PROBLEM

Given an allocation site s of the form “v = new

C(ai,...,a;)” in a method ‘m’ of a program, the problem
that we address is to refactor the code around the allocation
site to employ object sharing via the use of an object cache.
In the rest of this paper we will use the phrase introduce a
cache at s to denote this refactoring.

We spell out the code refactoring that our approach pri-
marily supports using the templates shown in Figure 1, with
the left side showing original code and the right side show-
ing refactored code. This style of object sharing has been
called hash consing in the literature. With hash-consing,
after a new object is allocated, the cache of existing objects
is searched for an object that is isomorphic to the new one.
If an existing one is found a reference to it is used in place
of the new one, thus allowing the new object to be garbage
collected. Hash consing has been employed in compilers or
run-time environments to save memory, in the context of
languages such as Lisp [10] and ML [2], and even with Java
(in the form of string interning). However, we are addressing
the scenario of introducing hash-consing at the source-code
level as a refactoring.

There is another style of object sharing, called memoiza-
tion, in which an attempt is made to discover before each
object is created whether an existing object is available in
the cache that would be isomorphic to the new object if it
were to be created. If such an object is found the new object
need not be created at all. This style of object sharing puts

less pressure on the GC than the hash-consing style. How-
ever, it is less generally applicable than the hash-consing
style. In particular, the key to be used for the cache lookup
needs to be in terms of the parameters to the constructor
corresponding to the allocation site where the object is to be
created. Also, this constructor needs to be side-effect free,
else the behavior of the program can change if calls to it
are elided. While our memory savings estimation approach
for a given allocation site is as precise for the memoization
style as it is for the hash-consing style, we currently have
not implemented the check for the side-effect freedom of the
constructor. Therefore, the total savings estimates across all
sites that we report in Section 7 include savings from sites
that are potentially amenable only to hash-consing but not
to memoization.

3. NOTATION AND TERMINOLOGY

In this section we present some notation and terminology
that we will use throughout this paper. We say that two
objects o, and os are isomorphic at an instant of time ¢ in
a run, if the values of all corresponding primitive fields of
or and o5 are equal at that instant, and the objects referred
to by the corresponding reference fields of o, and os are
themselves isomorphic at the instant ¢. We say that an
object o; is reachable from an object o; at some instant in
a run, denoted as o; € Reach(o;), if either o; is o; itself or
o; is reachable from o; at that instant by following one or
more reference fields. We omit the instant ¢ in the notation
above as it will be obvious from the context of usage.

We say that an object o is a value object at an instant ¢
in a run if object o as well as each object in the heap that
is reachable from it at the instant ¢ has the following two
properties: (1) the object is not mutated in the rest of the
run, and (2) the object’s identity, in particular, its address,
is not used in any computations or conditionals in the rest of
the run (the notion of an object’s identity affecting compu-
tations or conditionals is defined fully in previous work [15]).
Intuitively, an object is a value object at an instant ¢ if it
itself and all objects reachable from it behave like true val-
ues from that instant onward, in the sense that they do not
mutate and do not have any identity. Whenever we refer
to a instant in a run just “after” an object o is created, we
mean the instant when control has returned from the con-
structor corresponding to o’s creation site. We will refer to
an object o as a value object (without reference to an instant
of time) if o is a value object at the instant right after its
creation. We define an allocation site s in a program as a
value-object site, or VO site, if in all runs of the program all
objects created at the site are value objects.

A long-lived object is one that survives multiple rounds
of garbage collection and is still extant (i.e., not garbage
collected) at the end of the run. A temporary or short-
lived object is one that dies soon after it is created. In a
Generational GC scheme, which is used by default in the
primary reference JVM implementation HotSpot [18], long-
lived objects are the ones that are in the tenured generation
at the end of the run, while short-lived objects are ones that
never migrate to the tenured generation.

4. SAFETY

In this section we discuss our sufficient condition for safely
introducing a cache at an allocation site s. The introduction

of a cache at an allocation site (to implement hash-consing
style object-sharing) can be said to be safe if the refactoring
causes no change in the observable behavior of the program.
That is, whenever a newly created object o, is replaced by
another object os that is in the cache, the rest of the run
is identical to the rest of the run had the replacement not
occurred, in terms of both the sequence of instructions ex-
ecuted, as well as the updates to the state of the program
performed by corresponding pairs of instructions in the two
runs.

Our sufficient condition is derived from the sufficient con-
dition that was postulated by Marinov and O’Callahan [15]
for safely replacing an object o, in the heap of a program at
an arbitrary instant of time ¢ in an execution with another
object os that also exists in the heap at that instant. Due
to space limitations we are not able to present their suffi-
cient condition. Our sufficient condition differs from theirs
in two ways: (1) It is simplified and instantiated to the set-
ting where a freshly created object is replaced immediately
after creation by another object that is taken from a cache,
and (2) it is stated in terms of isomorphism and value ob-
jects, which are notions that they did not use, and which
are useful in our setting. The following theorem captures
our sufficient condition for the safety of the hash-consing
style refactoring.

THEOREM 1. Introducing a cache at an allocation site s
to employ hash-consing style object-sharing is safe if (1) the
allocation site s is a VO site, and (2) if the method equals
of the class whose instances are being created at the site is
such that it returns true only if the two objects given to it
are isomorphic.

It can be shown in a straightforward manner that if two
objects o, and o5 are isomorphic at an instant ¢t and are both
value objects at that instant then they necessarily satisfy
Marinov and O’Callahan’s sufficient condition. Using this
argument as the basis it is easy to show the correctness of
our theorem above.

S. ESTIMATION OF HEAP SIZE SAVINGS

In this section we discuss some basic intuitions about how
and when (in a run) to estimate heap savings. We present
our actual dynamic analysis approach that is based on these
intuitions in Section 6. A key prerequisite activity to doing
memory-savings estimation is to determine what exactly to
measure, and at what point or points of time in the run of
the program to measure. A naive approach to estimating
savings at any instant of time ¢ in the run due to object
sharing would be to take into account all the objects cre-
ated so far from the allocation site s that are extant (i.e.,
not yet garbage collected) at this instant, and to calculate
the extra memory occupied by objects that are isomorphic
with other objects from this site. However, there are some
problems with this suggestion. If at instant ¢ a lot of tempo-
rary objects from site s are present in the heap, then these
would skew the estimation and make it non-representative.
The reason for this is that if hypothetically the GC had
done a cycle of collection just before this instant then most
of these temporary objects that are present could have as
such gotten collected and would thus not have been present
in the heap. In other words, estimates become dependent
on (non-deterministic) GC timing, which is undesirable.

A possible fix to this problem is to somehow identify tem-
porary objects that are present in the heap and exclude them
from the calculation, or choose the instant ¢ such that it
is right after a GC collection cycle. However, these ideas
are impractical to implement in a setting where we sim-
ply run an instrumented program on a stock JVM, with no
help or support from a (modified) GC. Furthermore, even if
savings could somehow be estimated by discounting tempo-
rary objects, in order to express this savings as a percentage
(rather than simply in bytes) we would need to know the
total amount of memory occupied by all non-temporary ob-
jects (from all allocation sites) at that instant. Again, this
information is difficult to obtain without a modified JVM.

Therefore, the approach we take is to estimate the reduc-
tion in the size of the heap at the end of the run of the
program only. This approach has the following merits:

e For the class of allocation sites that create predomi-
nantly long-lived objects, the space occupied in mem-
ory by objects from this site is likely to grow monoton-
ically over the course of the program’s run. Therefore,
total memory requirement, and hence the savings po-
tential due to sharing, peaks at the end of the run.
Therefore, the end of the run is a natural point to es-
timate savings at.

e There exists a technique which can be applied at the
end of the run to infer the likely fraction of objects
allocated at each site that were not long-lived, with-
out depending on JVM modifications. This informa-
tion can be used to produce a memory-savings estimate
that is not skewed by these non long-lived objects. We
describe this technique in Section 6.

The total amount of memory occupied by all long-lived
objects (from all sites) at the end of the run, to be
used as the denominator while calculating savings as
a percentage, can be identified readily using logs from
Generational GCs, without needing any modifications
to the JVM.

e The efficiency of our approach is improved, since we
do not need to calculate the estimate (which is an ex-
pensive operation) repeatedly for any site.

6. OBJECT CACHING ADVISOR: DESIGN
AND IMPLEMENTATION

As mentioned in Section 1, we propose a two-phase ap-
proach. That is, given a program P and an input I, we run
two different instrumented versions of P on the same input
I sequentially. We now discuss these two phases in detail.

6.1 Phase 1: Filtering out unsafe and unprof-
itable allocation sites

The objective of this run of the program is to identify un-
safe allocation sites as well as each possibly unprofitable al-
location sites, and to emit the remaining sites for processing
by Phase 2 (which actually calculates estimated savings).

The following are the key data structures that are em-
ployed in the instrumented program. Tracked is the set of
IDs of allocation sites in the program that are under consid-
eration (by “allocation site ID” we mean the static location
of an allocation site). This set is initialized to contain all

switch (current event)
case (object o; is created at site s;):
if (s; € Tracked)
foreach oy, € Reach(o;): Add s; to O2Sites|oy]
fp = »(05)
F2Counts|[si, fp] = F2Counts|s;, fp] + 1;
endif
if (calc_profit-now(s;))
if (poor_profit(s;)): Tracked = Tracked - s;
endif
case (object o; is written to):
foreach s, € O2Sites[o;]: Tracked = Tracked - sy,
case (addresses of objects 0; and o; are compared):
foreach sj, € 02Sites[o;] U O2Sites|o;]:
Tracked = Tracked - sy,
end-switch

Figure 2: Event-processing pseudo-code for Phase 1

the allocation sites in the program; as the run proceeds al-
location sites are subsequently removed from this set as and
when they are found unsafe or potentially unprofitable.

02Sites is a map from objects to sets of allocation site
IDs. Intuitively, if or is an object and s; is an allocation
site, s; needs to be added to O2Sites|ox] if at some point
during the run an object o; is created at site s; and o is
reachable from o; right after o;’s creation.

F2Counts is a map from (allocation site ID, fingerprint)
pairs to frequencies. A fingerprint of an object is a number
that encodes the shape of the region of heap reachable from
the object, as well as values in primitive fields of the objects
in this region. Fingerprints are such that two isomorphic
objects will have the same fingerprint (but not necessarily
vice versa). F2Counts[s;][fp] indicates the number of objects
that have fingerprint fp that were created by instances of the
allocation site s; up to the current point in the run.

The run-time events of interest that are instrumented in
this run of the program are object creations, writes to ob-
jects, as well as identity-based operations.

Object allocations: When an object o; is created at an
allocation site s;, this event is processed by the instrumen-
tation code as shown in the first “case” block in Figure 2.
If site s; is still in under consideration (i.e., is in the set
Tracked) then the following actions are taken: (1) The site
s; is added to the sets of all objects reachable from o; in the
0O2Sites map. (2) The fingerprint fp of o; is computed, and
then the count F2Counts[s;, fp] is incremented by 1. We use
the function ¢ proposed by Xu [21] to compute fingerprints;
this function basically involves a recursive descent from the
given root object, and an aggregation of the values in the
primitive fields of all objects encountered using additions
and multiplications.

The activities mentioned above are illustrated in Figure 3.
The call to the constructor at site s; is shown to the right
in the middle, while the returned ‘root’ object o; as well as
objects reachable from it are shown to the left. Objects o1
and o2 have been passed to the constructor, and are referred
to by the new objects (shown shaded). Note that object o4
would have been created at an allocation site that is inside
the constructor corresponding to site s;. Sample pre-existing
maps O2Sites and F2Counts[s;] before s; is executed are
shown at the top of the figure. The bottom part of the

O2Sites
01 {sp,...} F2Counts|s;]
02 {sc,...} d568£3 12
03 {sa,...} 87cf34 8
. 830ce4 32
o | {sn,...}

. 21 .. 02
53t new((O) SO0
JING

030

w(o)= s
87cf34 f%\

pfe
O28Sites

oj | {s:i}

04 {s:} F2Counts|s;]
o1 | {5pr8ir-..} d56803 | 12
02 {sc,8i,...} 87cf34 9
03 {sd;si,---} 830ce4 32
o6 | {sn,...}

Figure 3: Handing of allocation events

figure shows these same maps after they get updated due
to the creation of 0;. The underlined entries are the newly
added or updated entries.

We now come back to the pseudo-code in Figure 2. The
predicate calc_profit-now(s;) indicates whether it is time to
check heuristically whether s; is a potentially unprofitable
allocation site. In our current implementation this predicate
returns true every 100th time site s; is reached in the run.
The predicate poor_profit(s;) checks whether site s; has poor
potential profit by checking whether there is not much iso-
morphism among the objects created so far at site s;. This
predicate is modeled after the reusability metric of Xu [21],
although they use their metric as a final output rather than
simply to filter away sites from further processing. We cur-
rently use the following definition of poor_profit(s;):

((maxp,e p F2Counts[s;][fp] / 3 4,ep F2Counts(s;][fp]) < 0.1) v
((IF|/ Xp,er F2Counts[s;][fp]) > 0.2)

where is F' is dom(F2Counts[s;]), or in other words, the
set of fingerprints in F2Counts[s;]. If poor_profit(s;) is true
we remove s; (once for all) from the set of sites under con-
sideration. This saves run-time expense in the rest of the
run, because during future visits to this site s; all objects
reachable from the root object that was just created need
not be traversed.

‘Write operations: When a field of an object o; is writ-
ten to, this event is processed by the instrumentation as
shown in the second “case” block in Figure 2. Basically, all
objects oy from which o; was reachable just after o was cre-
ated become non value objects. Therefore, the sites at which
such objects o, were created are inferred to be unsafe, and
are hence removed from consideration (once for all).

Identity-based operations: In our current implemen-
tation we check only for address comparisons (which are the
most common form of identity-based operations). Objects
whose addresses are compared become non value objects,
and cause allocation sites to be considered unsafe, as shown
in the pseudo-code in the third “case” block in Figure 2.

6.2 Phase 2: Calculating estimated savings

In this instrumented run only the allocation sites that
remain in the Tracked set at the end of the first phase are
tracked. These sites are known to create only value objects
(when the program is run on the input I); therefore, in this
phase, write operations and identity-based operations need
not be instrumented.

The main data structure maintained in this phase is a
map OZ2Info, which is a map from (allocation site ID, ob-
ject) pairs to pairs of natural numbers. freq(O2Info[s;][0;])
is the first of the two numbers that (s;, 0;) is mapped to, and
indicates the number of objects that have been allocated so
far in the run from site s; that are isomorphic to object o;.
An object o; is used as an index in the map in conjunction
with s; iff (1) o; is a root object that was returned from
site s;, and (2) o; is the first element in its equivalence class
of objects (wrt isomorphism) to have been created at s;.
In other words, corresponding to each equivalence class of
objects from site s; there is only one entry in O2Info[s;].
size(O2Info[s;][o;]) is the second of the two numbers that
(si,05) is mapped to, and indicates the number of bytes in
memory that would have been saved had o; been garbage
collected right after it was created. We count this as the sum
of the sizes of the objects that are reachable from o; right
after it was created, excluding the sizes of the objects that
were pre-existing before o; was created. In our implementa-
tion, we treat all objects reachable from the parameters to
the constructor invoked at site s; as pre-existing objects. In
Figure 3 the objects to be counted towards the size of 0; are
shown shaded.

Actions during object allocations: When an object
o0; is created at an allocation site s;, the key activity is to see
if there is any object that has already been created at this
site that is isomorphic to o;. That is, we look for an entry
O2Info[s;i][ox] such that o; and o are isomorphic. This is
inherently an expensive operation, but is optimized to some
extent by using the fingerprint of o; and the fingerprints
of the objects that are used as indexes in the map O2Info
as a filter to reduce unnecessary isomorphism checking. If
such an entry O2Info[s;|[or] is found, then we simply incre-
ment freq(O2Info[s;][ox]). Otherwise, we create a new entry
O2Info[si][o;], set its freq component to 1, and set its size
component to the total sizes of fresh objects reachable from
0; as discussed earlier.

Emitting estimates at the end of the run: For any
allocation site s;, let R; represent the set of root objects allo-
cated at site s; that are the first elements of their respective
equivalence classes. At the end of the run, the instrumen-
tation code calculates the estimated savings (in bytes) for
each tracked allocation site s; as follows:

(freq(O2Info[s;][ok]) — 1) *
orn€R; ratioLL; x size(O2Info[s;][ox])

ratioLL; (read as “ratio of long-lived objects”) is an esti-
mate of the ratio of objects created at s; that are long-lived.
This information can be readily obtained at the end of (an
uninstrumented version of) the program using profilers such
as hprof. The calculation that was presented above can be
summarized as follows. For each equivalence class of objects
(wrt isomorphism) that were created at s;, the savings due
to sharing of long-lived objects in this class is the product of
(1) the number of objects in the class except its representa-

tive element times the proportion of these objects that are
estimated to be long-lived, and (2) the amount of memory
to be saved if these objects were to be collected soon after
it is created.

The estimate for a site can also be expressed as a percent-
age of the total size of the tenured generation at the end of
the run. The tenured generation at the end of the run is
expected to consist mostly of long-lived objects.

6.3 Implementation details

Our implementation is based on the JavaAssist [12] byte-
code instrumentation framework. We instrument the ap-
plication code as well as third-party libraries (i.e., jars) on
which the application is dependent. Therefore, we compute
estimates for allocation sites in the application as well as
in third-party libraries. For the sake of efficiency we do
not instrument the JDK core libraries. This could cause
some writes or identity operations on application-level ob-
jects to be missed, and hence could potentially introduce
unsoundness. To mitigate this partially we use a manually
constructed list of JDK core library methods that can cause
safety issues, and treat any object that is being passed to any
of these methods as a non value object. We use the Redis
in-memory key-value store to maintain the data structures
used by the instrumented run efficiently. For the data struc-
tures that are indexed by objects (i.e., O2Sites and O2Info),
we use object IDs to represent objects. We construct an ID
for an object by combining the values returned by the iden-
tityHashCode() method when applied on this object as well
as on the corresponding “class” object.

While we generally treat address comparisons as causes of
unsafeness, we ignore address comparisons in user-defined
equals methods. In our observation most of these address
comparisons turn out to be benign.

Another common idiom that we treat specially is the one
wherein certain fields of newly-allocated objects are initial-
ized in statements that follow the allocation site that cre-
ates the object. This idiom causes many benign allocation
sites to be called non VO sites (due to the mutation in the
above-mentioned statements). In order to partially offset
this limitation we ignore mutations to any object that are
carried out in the method that contains the allocation site
that created the object. These mutations are frequently not
a hindrance to introducing a cache, for the following reason:
in the refactored code one could check whether the newly
allocated object is in the cache at the point after the state-
ments that set these fields, rather than at the point after the
allocation site. Finally for the sake of efficiency we do not
do deep isomorphic check for objects of type belonging to
the java.lang package. Instead we rely on the equals method
which we assume is implemented correctly for the classes in
this core package.

7. EVALUATION

In this section we evaluate our tool on a number of soft-
ware benchmarks, as shown in Table 1, and answer several
research questions.

In Table 1 the first column indicates the name of the
benchmark, the second column indicates the total number
of allocation sites in the benchmark, including ones in the
third-party libraries (excluding the JDK core libraries), the
third column indicates the subset of these allocation sites
that are in the third-party libraries, while the fourth col-

System Name Total Allocation Bytecode
allocation | sites in | instruc-
sites libraries tions

antlr 2496 0 105596

chart 5355 4395 451719

bloat 2958 0 121912

fop 17897 14591 184699

luindex 1298 0 77816

pmd 11201 9476 545766

hsqldb 4590 443 197981

xalan 7110 5250 151134

Apache fop (ver- | 14293 0 537711

sion 1.1)

pdfbox (version | 2265 89 76002

0.73)

Table 1: Benchmarks considered for evaluation.

umn indicates the total number of bytecode instructions in
the application code as well as third-party libraries. We dis-
tinguish the application code from the third-party library
code using simple patterns on the package names, which
may not be fully accurate.

The first eight benchmarks (i.e., upto xalan) belong to the
DaCapo 2006 [4] benchmark suite. There are two reasons
why did not use the more recent 2009 version of this suite:
(1) A previous related approach [21] used this version, and
we wanted to compare our results with theirs. (2) We had
technical difficulties in instrumenting and running the 2009
benchmarks. We have omitted eclipse, which is a part of the
DaCapo suite, from our studies as we could not instrument
and run it successfully.

In order to test whether our tool finds allocation sites
that developers consider important, we searched the check-
in commit comments of various open-source projects using
Krugle [14] to identify employment of caches by developers.
We then manually identified allocation sites in these systems
that use caching to share long-lived objects. Following this
process we found two relevant benchmarks, fop (version 1.1)
and pdfbox (version 0.73). There are 14 sites where develop-
ers have employed (hash-consing style) caching for sharing
objects in fop (version 1.1), and one site in pdfbox. Note
that this version of fop is different from the one that is part
of the DaCapo suite, which is the version 0.20.5. Since we
use both these versions in our evaluation, for convenience
we refer to the DaCapo version simply as “fop” and version
1.1 as “Apache fop”.

For the DaCapo benchmarks we used the “default” test
input provided for each benchmark. We did not use the
“large” inputs, because in some of the benchmarks the “large”
run turns out to be nothing but a sequence of separate runs
over smaller inputs. Since at the end of each of the smaller
runs all long-lived objects become dead, for our purposes
the “large” run is not appropriate.

For each of the two non-DaCapo systems we needed to
select a test input. For Apache fop we used a real 104-page
document [9]. For pdfbox we used cweb.pdf, which is a 28-
page document provided along with the pdfbox distribution,
as the test input. We ran pdfbox in the “text extraction”
mode.

We ran our experiments on a Linux desktop with an Intel
Core 2 2.4 GHz Quad Core processor and 4 GB of RAM.
We use the standard Oracle HotSpot JVM with the default
options. Detailed artifacts corresponding to all our experi-

System H Ey FEo, T, T Ts
(KB) | (KB) (sec) | (min) | (min)
antlr 7093 | 1035 | 16% 11 13 5
chart 12199 986 8% 27 31 14
bloat 8197 530 6% 14 580 8
fop 7215 | 2658 | 37% 3 [§ 4
luindex 9437 | 1248 | 13% 39 300 21
pmd 15979 | 2167 | 14% 19 517 18
hsqldb 76970 | 6762 9% 9 52 4
xalan 16523 | 1503 9% 8 40 4
Apache | 75680 | 5102 7% [§ 73 5
fop
pdfbox 5119 | 1667 | 33% 2 18 3

Table 2: Estimated savings in tenured heap for top-
20 sites

ments are available from the home page of the second author
of this paper.

7.1 RQ 1: What is the estimated total savings in heap by
introducing caches in real benchmarks?

Table 2 shows the total estimated savings produced by
our tool considering the top-20 sites (ranked by estimated
savings per site) for each benchmark. The second column
(H) of the table indicates the size of the tenured generation
at the end of the run, the third column E} shows the total
estimated savings for the top 20 sites (which we calculate as
the sum of the estimates for the individual sites), while the
fourth column Fo, expresses the value in the third column
as a percentage of the value in the second column. It can be
observed that all systems present significant opportunities
for memory reduction, ranging from 6% of the tenured heap
(bloat) to 37% (fop).

An interesting observation we made is that of the top-20
sites in each benchmark, the number of sites inside third-
party libraries varies from zero in several benchmarks to 19
sites in the case of pmd.

7.2 RQ 2: What is the overhead of the analysis?

The fifth column (7,) of Table 2 indicates the running
time (in seconds) of the benchmark without any instrumen-
tation, the sixth column (71) indicates the running time (in
minutes) of Phase 1 of our analysis, while the seventh col-
umn (7?) indicates the running time (in minutes) of Phase 2
of our analysis.

The running time overhead of the analysis is very high,
ranging from approximately 98x for antlr and chart to ap-
proximately 2520x for bloat. Part of the overhead is due
the need to recursively visit all reachable objects from the
“root” object at allocation sites; however, the overhead due
to this reduces as sites get removed from the Tracked set.
However, there is instrumentation overhead at all write op-
erations, and this, unfortunately, does not reduce as the run
progresses.

We feel that the overall running time, which in the worst
case corresponds to an overnight run (e.g., for bloat and
pmd), is tolerable. We also feel it is commensurate with
the benefit provided, namely, an actionable report that con-
tains estimates of user-observable memory savings potential
at highly profitable allocation sites. Isomorphism analysis
is inherently expensive; for instance, the Cachetor tool [17],
which measures isomorphism (among temporary objects),
incurs overhead of 567x on antlr, 317x on pmd, and 287x on

Site manually cached |

CommonBorderPaddingBackground.java:351 1
CommonHyphenation.java:114 3
CommonFont.java:123 4
5
8

EnumNumber.java:54
EnumProperty.java:97

StringProperty.java:107 9
FixedLength.java:84 13
FontFamilyProperty.java:55 14
NumberProperty.java:158 26
LengthProperty.java:56 27
NumberProperty.java:178 NP
NumberProperty.java:148 NP
ColorProperty.java:84 NP
CharacterProperty.java:72 NP

PDFontFactory.java:106 Non-VO

Table 3: Positions of developer-cached sites in tool
output

luindex. Their overheads are on average lower than ours as
they don’t actually construct precise equivalence classes for
all objects from a site, which is required to produce direct
quantitative estimates of memory savings.

We also evaluated our tool in a different mode, wherein
the developer would like to estimate savings for a specific
allocation site that they suspect might give good memory
reduction upon caching. In this mode, in Phase 1 of the
tool’s run, the set Tracked is initialized to contain only the
site selected by the developer. If a developer happens to
select a site that is either unsafe or not profitable, Phase 1
takes between 5 to 70 times less time than when all sites
are being tracked (depending on the benchmark). This is
because such sites get removed early from the set Tracked,
leading to immediate termination. However, if the selected
site happens to be a profitable VO site, our observation was
that the running time was not much less than when all sites
are being tracked.

7.3 RQ 3: Does the approach detect sites that developers
want to cache?

Table 3 shows information about the 14 sites in Apache
fop where developers have introduced caches to share long-
lived objects (the first 14 rows in the table), and the one
site in pdfbox where the same was done (the final row). For
each site we first indicate in the table the file name and line
number at which it is located.

In order to determine whether our tool identifies these
very sites in its output we made code changes to disable all
the caches mentioned in Table 3, and than ran our analysis
on the thus modified versions of the two benchmarks. The
second column of Table 3 shows the rank of each of these
sites in our tool’s output (when sorted in descending order
of estimated savings).

We discuss the sites in Apache fop first. Ten of the 14 sites
(the ones in the first Ten rows of the table) were determined
to be profitable by Phase 1 of our tool, and were computed
an estimate for by Phase 2. Four other sites were removed
from consideration in the Phase 1 itself. These five sites are
marked “NP” in the table. This indicates that our tool has
high “recall” of sites that developers think are worth caching.

Interestingly, the developers have not employed caches at
the sites that occupy ranks 2, 6, and 10 in our tool’s output.
These sites have estimated savings of 1.7%, 0.7%, and 0.5%,

respectively. This is evidence that developers can potentially
miss profitable sites in the absence of good tool support for
identifying such sites.

Coming to pdfbox, the only site that was cached by the
pdfbox developers (see the last row in Table 3) was identi-
fied as a non-VO by our tool. The objects created at this
site were being mutated during the run. As we noted in
Section 1 developers subsequently removed this caching (in
the subsequent version 1.7.0 of the project) in response to a
user’s bug report. This instance illustrates clearly the im-
portance of ensuring safety while introducing caches, and
also the difficulty of doing so without good tool support.

7.4 RQ 4: What is the estimation accuracy of our tool?

For this study, we considered 19 sites from four bench-
marks. Fourteen of these sites are in Apache fop, and are
the ones in the first fourteen rows in Table 3. The caches
at these sites already exist (were introduced by the devel-
oper). Therefore, we (1) ran the tool with caches disabled
at all sites to produce an estimate for each site, and (2) for
each site ran the original (uninstrumented) program, with
the cache disabled first and then enabled, to determine the
actual savings in final tenured heap due to the cache at that
site. Of the remaining five sites, two are from antlr, two
are from pdfbox, and one is from chart. At these sites there
were no developer-introduced caches. Therefore we had to
introduce caches ourselves at these sites.

Due to space constraints we do not show the estimated
savings and actual savings at all these sites. At one extreme
there was a site where the estimated savings was less than
the actual savings by as much as 2.8% of the final tenured
heap. On 16 out of the 19 sites the estimate was either less
than the actual savings, or was above the actual savings by
up to 0.1% of tenured heap. On the remaining three sites,
the largest deviation was on a site where the estimate was
above the actual savings by 1.53% of tenured heap. The
root mean square (RMS) of these deviations when they are
expressed as percentages of the tenured heap works out to
1.08%. We feel that expressing these deviations as a per-
centage of final tenured heap is more useful than expressing
them as a percentage of actual savings, because developers
ultimately care about savings in the final tenured heap.

We investigated more closely the two extreme sites men-
tioned above. The site where the estimate was less than the
actual savings by 2.8% of the final tenured heap is the site
CommonFont.java:128 in Apache fop, which we happened
to show in Listing 1. The final tenured heap size in the run
of the original code with caches at all fourteen sites disabled
is 78269 KB. After introducing the cache at the above site,
the heap size reduced to 75507 KB, which is a reduction of
3.5% in tenured heap. As illustrated in Section 1.1, the esti-
mated savings for this site is 567 KB (0.7% of tenured heap).
The estimate is low because, as discussed in Section 6.2, ob-
jects that were passed in as parameters to the constructor
and that are reachable from the root object returned from
the site are not included in the estimate. However, in this
particular case the parameter objects are not referred to by
any other object or variable after the root object gets con-
structed. Therefore, if this site is cached, these parameter
objects would also get garbage collected whenever a root
object is thrown away (due to a cache hit).

The other extreme case is the site FontFamilyprop-
erty.java:55 in Apache fop, where the estimated savings is

Input Estimated | Actual

savings | savings
104 page 5.6% 11.1%
10 page 3.9% 7.5%
3 page 8.5% 6.5%

Table 4: Variation of savings across different inputs

System | # # Unsafe | Estimated Estimated
Inter- sites savings due | savings
section to safe sites | (%)

(KB)

antlr 0 11 8 0%

bloat 0 10 0 0%

luindex | 3 5 0.5 0%

pmd 2 9 175.7 1%

xalan 0 3 0 0%

fop 0 4 3.7 0%

Table 5: Comparison with Xu’s[21] approach

above the actual savings by 1.53% of the tenured heap. On
this site the estimated savings was 92.6 KB, while the ac-
tual savings was -1107 KB, indicating an increase in memory
requirement due to the overhead of caching.

7.5 RQ 5: What is the sensitivity of estimated and actual
savings to program input?

The objective of this RQ is to measure the sensitivity of
the estimated as well as actual savings from a selected set
of sites to the test input that is used. For the 14 sites in
Apache fop that are listed in Table 3, Table 4 shows both the
sum of the estimated savings from these sites (with caches
at all these sites disabled) as well as actual savings when
the caches are enabled (simultaneously) at all these sites,
on three different test inputs. The first input happens to
be the input that was used to answer all other RQs above.
This table indicates that both the estimated and the actual
savings for a given set of sites can vary across different test
inputs. The estimation error (i.e., estimate compared to
actual) also varies across inputs. As part of future work we
intend to explore how to select a suitable set of test inputs
for each program and produce aggregated estimates from
these inputs.

On a related note, we also measured the running time of
Apache fop with all the caches disabled and enabled, respec-
tively. On the 104-page document the running time with the
caches enabled decreased by about 1%, while on the other
two documents it increased by about 5%.

7.6 RQ 6: How does our tool compare with a previous
tool?

We requested the authors of the previous work [21, 17] on
finding allocation sites that create a lot of isomorphic ob-
jects, but predominantly temporary objects, to share their
tool output with us. Our objective was to see if our top-
20 lists differed significantly from their top-20 lists for the
DaCapo 2006 benchmarks. We are thankful to the authors
for sharing with us the lists from their first approach [21].
We provide a summary of this comparison in Table 5. The
second column of this table shows the sites that are in the
intersection of their list and our list. It is notable that these
numbers are very low. The third column indicates the num-
ber of sites in their top-20 list which our approach detects

as unsafe (for sharing). It is notable, though, that since
most of these sites create temporary objects, which any-
way don’t give savings upon sharing, the inability to employ
sharing here is not a concern in practice. The fourth col-
umn indicates the total estimated savings calculated by our
tool if sharing were to be employed at the safe sites in their
list. Note that these estimates are very low, indicating these
sites indeed create mostly temporary objects. The last col-
umn shows the same total estimate as a percentage of the
tenured heap size.

In summary these results show clearly that our technique
fully complements previous techniques that aim predomi-
nantly at finding sites that create isomorphic temporary ob-
jects.

8. LIMITATIONS

One of the threats to validity of our empirical studies is
that our estimates could include savings from potentially
unsafe sites that were not found unsafe under the test in-
puts that were considered. To mitigate this partially, for
the DaCapo benchmarks, we did check if any of the top-
20 sites in any of the benchmarks that was found safe in
the “default” run was found unsafe under the corresponding
“small” or “large” runs. This turned out to be not the case.
Some related statistics about the coverage of these runs are
as follows: chart was the benchmark that had the least cov-
erage, with 7%, 7%, and 10% line coverage on the small,
default, and large inputs, respectively, while antlr had the
highest coverage at 24%, 46%, and 46%, respectively. Nev-
ertheless, to mitigate this threat, as part of future work we
plan to employ static analysis to verify safety of sites across
all runs.

The total estimated savings that we show in Table 2 could
be biased or inaccurate, for the following reasons: (1) These
are obtained using a single test run per benchmark, (2) Total
actual savings when a set of sites are cached simultaneously
could be less than the sum of individually estimated sav-
ings for these sites, and (3) The various assumptions made
in Sections 5 and 6 potentially impact the accuracy of the
estimates produced by our tool.

The scalability of the tool needs to be improved; as part
of this, static analysis could potentially be used to reduce
instrumentation overhead wherever feasible.

9. RELATED WORK

The previous literature that is most closely related to our
work is that by Marinov and O’Callahan [15]. Marinov
and O’Callahan recognized the problem of excessive usage
of memory by co-existing isomorphic objects. They intro-
duced the notion of safely replacing one object by another at
run time (i.e., object sharing), and gave a dynamic analysis
approach to find the maximum extent of co-existing isomor-
phic objects during a run. Their results are in effect a limit
study, because it is in general not possible to refactor code
to remove all the isomorphism redundancy that they detect.
Our work is a logical extension of their work, in that our
analysis identifies the extent of redundancy that is practi-
cally remediable by introducing caches at allocation sites.
In other words, we provide actionable reports to develop-
ers. Our empirical results also give a feel for the extent of
remediable isomorphism redundancy in real benchmarks.

Xu et al. [21, 17] focus on reducing running time of pro-
grams by enabling reuse of (dead) temporary objects. For
each allocation site they calculate a metric that represents
the proportion of all objects allocated at that site that be-
long to its single largest equivalence class (wrt isomorphism).
This metric indicates the potential for reuse at the site.
(They also compute reuse metrics at instruction level and at
method level.) Our objective, in contrast, is to save memory
by sharing (live) existing objects. Our outputs are estimates
of a user-observable benefit, namely, quantitative memory
savings, and are hence readily actionable by developers. Fi-
nally, our analysis approach is quite different from theirs,
and specifically does not required a modified JVM.

In addition to the work of Marinov and O’Callahan [15],
there are other previous approaches about optimizing mem-
ory usage of programs. Mitchell et al. [16] and Chis et al. [7]
propose approaches to help developers identify uses of data
structures that are overly memory intensive, and that could
possibly be remediated using idiomatic code improvements.
On the same topic of memory inefficiency, there is a large
body of work on using modified JVMs during final deploy-
ment of code to compress the heap or reduce the space over-
head of objects [6, 1, 5, 19]. Kawachiya et al. [13] propose
a scheme to use a modified JVM at deployment time to
de-duplicate co-existing string literals. A recent approach
by Infante [11] addresses the problem of identifying memory
savings opportunities by employing object caches in the con-
text of the Smalltalk programming language. However, this
approach is described only at a high-level, making it hard
to be compared and contrasted with our approach. The
approach does not produce quantitative estimates. Finally,
it has been evaluated only in the context of a limited case
study.

Finally, there is a rich body of literature on analyses for
detecting as well as remediating performance inefficiencies
due to factors such as creation of too many temporary ob-
jects [8, 20, 3, 21], creation and use of low utility data struc-
tures [26, 23], chains of pure copies [22], and use of only a
small subset of objects created [27]. In contrast to these ap-
proaches the problem we address is to remediate excessive
use of memory.

10. CONCLUSION

In this paper we presented an approach to identify oppor-
tunities to reduce the memory requirement of Java programs
by introducing object sharing. The approach addresses the
challenges in identifying suitable opportunities, namely, de-
termining the safety of introducing sharing at an allocation
site, identifying sites that potentially create large numbers
of isomorphic long-lived objects, and estimating the mem-
ory saving without actually having to introduce caches. We
have empirically validated the approach and answered sev-
eral research questions pertaining to it by applying an im-
plementation of the approach on a set of real benchmarks.

11. REFERENCES

[1] C.S. Ananian and M. Rinard. Data size optimizations
for Java programs. In Proc. ACM Conference on
Language, Compiler, and Tool for Embedded Systems
(LCTES), pages 59-68, 2003.

[2] A. W. Appel and M. J. R. Concalves. Hash-consing
garbage collection. Technical Report CS-TR-412-93,
Princeton University, 1993.

3]

S. Bhattacharya, M. G. Nanda, K. Gopinath, and

M. Gupta. Reuse, recycle to de-bloat software. In
European Conf. on Object-Oriented Programming
(ECOOP), pages 408-432, 2011.

S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan,
K. S. McKinley, R. Bentzur, A. Diwan, D. Feinberg,
D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking,

M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,

D. Stefanovié, T. VanDrunen, D. von Dincklage, and
B. Wiedermann. The DaCapo benchmarks: Java
benchmarking development and analysis. In Proc.
Conf, on Object-Oriented Programing, Systems,
Languages, and Applications (OOPSLA), pages
169-190, 2006.

G. Chen, M. Kandemir, and M. J. Irwin. Exploiting
frequent field values in java objects for reducing heap
memory requirements. In Proc. Int. Conf. on Virtual
Ezecution Environments (VEE), pages 68-78, 2005.
G. Chen, M. Kandemir, N. Vijaykrishnan, M. Irwin,
B. Mathiske, and M. Wolczko. Heap compression for
memory-constrained Java environments. In Proc.
Conf. on Object-oriented Programing, Systems,
Languages, and Applications (OOPSLA), pages
282-301, 2003.

A. E. Chis, N. Mitchell, E. Schonberg, G. Sevitsky,

P. O’Sullivan, T. Parsons, and J. Murphy. Patterns of
memory inefficiency. In European Conf. on
Object-Oriented Programming (ECOOP), pages
383-407, 2011.

B. Dufour, B. G. Ryder, and G. Sevitsky. A scalable
technique for characterizing the usage of temporaries
in framework-intensive Java applications. In Proc. Int.
Symp. on Foundations of Software Engineering (FSE),
pages 59-70, 2008.

P. Friere. Test document.
www.arvindguptatoys.com/arvindgupta/oppressed.doc,
July 2014.

E. Goto. Monocopy and associative algorithms in
extended Lisp. Technical Report TR 74-03, University
of Tokyo, 1974.

A. Infante. Identifying caching opportunities,
effortlessly. In Companion Proc. Int. Conf. on
Software Engineering (ICSE), pages 730-732, 2014.
Javassist, www.javaassist.org.

K. Kawachiya, K. Ogata, and T. Onodera. Analysis
and reduction of memory inefficiencies in java strings.
In Proc. Conf. on Object-oriented Programming
Systems Languages and Applications (OOPSLA),
pages 385-402, 2008.

Krugle. http://www.krugle.com/.

D. Marinov and R. O’Callahan. Object equality
profiling. In Proc. Conf. on Object-Oriented
programing, Systems, languages, and applications,
2003.

(16]

(17]

(18]

(19]

20]

(21]

(22]

23]

(24]

(25]

[26]

27]

N. Mitchell and G. Sevitsky. The causes of bloat, the
limits of health. In Proc. Conf. on Object-oriented
programing, Systems, languages, and applications
(OOPSLA), pages 245-260. ACM, 2007.

K. Nguyen and G. Xu. Cachetor: detecting cacheable
data to remove bloat. In Proc. Foundations of
Software Engineering (FSE), pages 268-278, 2013.
Oracle. Java SE 6 Hotspot Virtual Machine Garbage
Collection tuning.
http://www.oracle.com/technetwork/java/javase/gc-
tuning-6-140523.html, March

2014.

J. B. Sartor, M. Hirzel, and K. S. McKinley. No bit
left behind: the limits of heap data compression. In
Proc. International Symposium on Memory
management, pages 111-120. ACM, 2008.

A. Shankar, M. Arnold, and R. Bodik. Jolt:
lightweight dynamic analysis and removal of object
churn. In Proc. Conf. on Object-oriented Programming
Systems Languages and Applications (OOPSLA),
pages 127-142, 2008.

G. Xu. Finding reusable data structures. In Proc. Int.
Conf. on Object oriented Programming Systems
Languages and Applications (OOPSLA), pages
1017-1034, 2012.

G. Xu, M. Arnold, N. Mitchell, A. Rountev, and

G. Sevitsky. Go with the flow: profiling copies to find
runtime bloat. In Proc. Conf. on Programming
Language Design and Implementation (OOPSLA),
pages 419-430, 2009.

G. Xu, N. Mitchell, M. Arnold, A. Rountev,

E. Schonberg, and G. Sevitsky. Finding low-utility
data structures. In Proc. Conf. on Programming
Language Design and Implementation (OOPSLA),
pages 174-186, 2010.

G. Xu, N. Mitchell, M. Arnold, A. Rountev, and

G. Sevitsky. Software bloat analysis: finding,
removing, and preventing performance problems in
modern large-scale object-oriented applications. In
Proc. FSE/SDP Workshop on Future of Software
Engineering Research, pages 421-426, 2010.

G. Xu and A. Rountev. Precise memory leak detection
for java software using container profiling. In Int.
Conf. on Software Engineering (ICSE), pages
151-160, 2008.

G. Xu and A. Rountev. Detecting inefficiently-used
containers to avoid bloat. In Proc. Conf. on
Programming Language Design and Implementation
(OOPSLA), pages 160-173, 2010.

D. Yan, G. Xu, and A. Rountev. Uncovering
performance problems in Java applications with
reference propagation profiling. In Proc. Int. Conf. on
Software Engineering (ICSE, pages 134-144, 2012.

