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Abstract. The problem of automated reactive synthesis has been well
studied by researchers. We consider a setting that is common in prac-
tice, wherein there is a communication delay between the (synthesized)
controller and the (controlled) plant, such that symbols emitted by ei-
ther component reach the other component after a delay. We address the
problem of synthesizing a controller that can assure the given temporal
property at the remote plant despite delay. We consider two variants
of this setting, one where the delay is a constant over the entire trace,
and the other where the delay could increase over time (upto an upper
bound), and propose approaches for both these settings. We state and
prove soundness and completeness results for both our approaches. We
have implemented our approaches, and evaluated them on the standard
SYNTCOMP 2022 suite of temporal properties. The results provide ev-
idence for the robustness and practicality of our approaches.

1 Introduction

Reactive synthesis is the problem of automatically inferring a correct-by- con-
struction controller, that can control an environment or plant to ensure that all
runs of the plant satisfy a given temporal property. This is a classical problem,
that has been extensively studied over several decades. We cite a selection of
papers [13, 5, 6, 10], and refer the interested reader to a recent book chapter [1]
for a comprehensive view.

The classical controller synthesis setting assumes instant (delay-free) com-
munication of input and output symbols between the controller and the con-
trolled plant. However, delay in the flow of information between controller and
plant is common in real life settings, due to issues like distance between the
plant and controller, or network congestion. For instance, this is recognized in
the Controller Area Network (CAN) protocol for vehicular control [19, 4], and
in protocols for the remote control of satellites [2, 11]. Researchers often devise
carefully handcrafted solutions to account for delay in individual protocols [15,
18], but this can be complicated and error prone.

The formal methods research community has been aware of this issue, and
has proposed a few techniques that can synthesize controllers while accounting
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for communication delay [16, 5, 3]. Our work has the same broad objective, and
we address the scenario where we are given a Linear Temporal Logic (LTL)
property as specification. We make the following contributions in this paper:

– Previous researchers have focused on the setting where the delay between the
two sides is fixed and constant throughout the infinite trace (e.g., 2 time units
of delay). For the first time in the literature to the best of our knowledge, we
identify the issue of variable delay that can arise in real systems, formulate
this problem mathematically, and propose an approach to solve it.

– We propose a novel approach that reduces controller synthesis from LTL
specifications in the presence of delay to the problem of LTL synthesis with-
out delay. We devise techniques (for fixed delay and variable delay) that emit
a delay-adjusted, translated LTL formula. This formula can be fed to any
classical (no-delay) LTL synthesis tool. This makes our approach efficient,
flexible, and capable of leveraging future advances in classical synthesis. Pre-
vious approaches [5, 3], in contrast, involved extensions to specific synthesis
approaches. (Additionally, they did not address variable delay.)

– We implement our approach, and evaluate it on a standard set of 1075 bench-
marks. Our results show that our approach is more efficient than a baseline
approach [3] that targets fixed delay, and gives acceptable performance in
the more-complex variable delay setting.

The rest of this paper is organized as follows. Section 2 provides background
that is required in the rest of the paper. Section 3 presents our fixed-delay ap-
proach, while Section 4 presents our variable-delay approach. Section 5 presents
an add-on feature to our approach – an unrealizability filter. Section 6 presents
our implementation and evaluation, Section 7 discusses related work, while Sec-
tion 8 concludes the paper and suggests future work directions.

2 Background

In this section we provide brief background on classical notions of plant, con-
troller, and controller synthesis, in the absence of delay.

We are concerned with synchronous, reactive systems. Such a system consists
of two players, the first player being the controller, while the second player being
the plant (or environment). A trace of the system is an infinite sequence of steps.
The plant observes a subset of signals from a given output set O in each step,
and emits a subset of signals from a given input set I in each step. Each subset
of I is called an input symbol while each subset of O is called an output symbol.

Definition 1 (Controller). A controller is a transducer C = (Q, 2I , 2O, δ, ω, q0)
where Q is the finite set of controller states, q0 is the initial controller state, 2I is
the input alphabet of the transducer, 2O is the output alphabet of the transducer,
δ : Q × 2I → Q is the state transition function, and ω : Q × 2I → 2O is the
output function.
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Definition 2 (Trace generated by a controller). A trace generated by a
controller (Q, 2I , 2O, δ, ω, q0) is a function t : N→ 2I∪O, such that:

t[0] ∩O = ω(q0, t[0] ∩ I),
∀i > 0. t[i] ∩O = ω(δi(q0, t), t[i] ∩ I),
where δi(q0, t) = q0, if i = 0, and δi(q0, t) = δ(δi−1(q0, t), t[i− 1]), if i > 0

Note, we use t[i] to denote the symbols mapped to i ∈ N by the trace t, which
is intuitively the content of the trace t at step i. Intuitively, the controller, while
in a state q ∈ Q in step i of the current trace t, receives the input symbol t[i]∩ I
emitted by the plant in step i, and responds by emitting the output symbol
t[i]∩O ≡ ω(q, t[i]∩ I) and by transitioning to the state δ(q, t[i]∩ I) in the same
step.

A linear temporal logic [12] (LTL) formula on symbol set I∪O is syntactically
defined using the following grammar:

Ψ = x | ¬Ψ | Ψ ∧ Ψ | Ψ ∨ Ψ | XΨ | FΨ | GΨ | ΨUΨ , where x ∈ I ∪O.

Definition 3 (Trace satisfying LTL specification).
If t is a trace, then for any i ≥ 0, the suffix of t starting at step i, denoted

as t(i), is said to satisfy an LTL formula as defined below.

t(i) |=



x if x ∈ t[i], x ∈ (I ∪O)
¬Ψ if t(i) 6|= Ψ

ψ ∧ ϕ if t(i) |= ψ and t(i) |= ϕ

ψ ∨ ϕ if t(i) |= ψ or t(i) |= ϕ

XΨ if t(i+ 1) |= Ψ

FΨ if ∃k ≥ i. t(k) |= Ψ

GΨ if ∀k ≥ i. t(k) |= Ψ

ψUϕ if ∃k ≥ i. t(k) |= ϕ and ∀n ∈ [i . . . k). t(n) |= ψ

The trace t is said to satisfy a LTL formula Ψ if t(0) |= Ψ .

Definition 4 (Controller meeting a temporal specification). A controller
is said to meet a given temporal specification Ψ (Ψ being an LTL formula) if and
only if every trace generated by the controller satisfies Ψ .

Definition 5 (Realizable specification). A specification Ψ is said to be re-
alizable (under no delay) if and only if there exist a controller that meets the
specification.

Figure 1(a) depicts a controller that meets the specification given in the
caption of the figure. The part before the ’/’ on each transition denotes an input
symbol, the part after the ’/’ denotes the corresponding output symbol according
to the ω function, while the target state of the transition denotes the result of
the δ function. A “-” indicates that any symbol is ok. In this example, the set
I = {r} while the set O = {g}. In fact, in illustrations throughout this paper,
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4

Fig. 1. (a) Controller C1, meeting specification G((r ⇒ X(g ∨ X(g))) ∧ (¬r ⇒ ¬X(g ∧
(X(g))))), (b) A trace generated by the controller

we will assume this same input set I and output set O. We use the notation ‘¬x’
in a set to indicate that the signal x is not an element of the set.

Note that if a given plant provides certain guarantees on its behavior, e.g.,
that it will not emit signal r in two consecutive steps, such guarantees can be
encoded in LTL and treated as an assumption. The given specification can be
amended to the form assumption ⇒ specification, and a controller that meets
this amended specification can be constructed.

Automatically synthesizing a controller that meets a given LTL-formula spec-
ification is a theoretically and practically important problem. It is important
because it enables correctness by construction. It is a well-studied problem, and
many interesting approaches have been proposed in the literature [1]. Numer-
ous practical tools have been developed for this problem [7], and in fact our
approach, which we present in the subsequent sections, is designed to be able to
use any of these approaches as a blackbox.

3 Fixed Delay

The setting we address is that of delay between the plant and controller. That is,
the output symbol emitted by either player at a step will potentially reach the
other player at a later step. This effectively means the reactive system evolves
as a pair of traces tc, tp, where tc is the trace observed by the controller and
tp is the trace observed by the plant, rather than as a single trace t that is
commonly visible to both players. This notion of a trace pair has not been
proposed in closely related previous works. In this section and the next, we
consider the setting where delay is fixed in both directions; i.e., there exist a
pair of constants (dcp, dpc), both being non-negative integers, such that each
output symbol (resp. input symbol) from the controller (resp. plant) reaches the
plant (resp. controller) after dcp (resp. dpc) steps. This delay setting has been
considered by previous researchers [5, 3] as well. It can be easily seen that in
this setting, it is enough to consider delay in one direction (any one direction).
That is, a controller that meets an LTL-formula specification in the presence of
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0 1-/- 2-/¬g

¬r/¬g

3r/g
-/¬g

Fig. 2. Controller feasible under delay=2

delays (dcp, dpc) will also meet the same specification in the presence of delays
(d, 0) or (0, d), where d = dpc +dcp. Hence, in the remainder of our presentation,
we assume that the delays in the two directions are (0, d), where d is a given
constant.

3.1 Definitions

Definition 6 (Trace pair under delay). A trace pair (tc, tp) under delay d
is a pair of traces tc and tp such that: (1) The first d steps of tc have the special
εi in place of an input symbol, indicating that no input symbol has arrived so far
from the plant. Every other step in both traces has an input symbol and an output
symbol, similar to the no-delay setting, (2) For any step i, tc[i] ∩O = tp[i] ∩O,
meaning the symbol emitted by the controller reaches the plant without any delay,
and (3) For any step i, tc[i+ d]∩ I = tp[i]∩ I, meaning input symbols reach the
controller after d steps of delay.

Definition 7 (Trace pair satisfying a specification). A trace pair (tc, tp)
under delay d is said to satisfy a specification if tp satisfies the specification.

Definition 8 (Controller feasible under delay). A controller (see Defini-
tion 1) is said to be feasible under delay d if there is a path of d consecutive
transitions going out from the initial state q0 such that all transitions in this
path are labeled “-” for the input symbol. (Such edges can be traversed upon
receiving any input symbol or even upon εi.)

Definition 9 (Trace pair generated by a controller). A trace pair (tc, tp)
under delay d is said to be generated by a controller C if tc is generated by C
(see Definition 2).

Definition 10 (Controller meeting a specification under delay). A con-
troller is said to meet a given specification Ψ under delay d if and only if each
trace pair (tc, tp) under delay d that is generated by the controller is such that
tp satisfies Ψ .

Definition 11 (Realizable specification under delay). A specification Ψ is
said to be realizable under delay d if and only if there exists a controller that
meets the specification under delay d.
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Fig. 3. A sample trace pair (tc, tp) under delay=2. (tc, tp) satisfies the specification
G((r ⇒ X(g ∨ X(g))) ∧ (¬r ⇒ ¬X(g ∧ (X(g))))).

Figure 2 depicts a controller that is feasible under delay d = 2. This controller
can be seen to meet the specification given in the caption of Figure 1 under delay
d = 2. The trace pair depicted in Figure 3 is under delay=2, and can be seen to be
generated by the controller in Figure 2. This trace pair satisfies the specification.
The dashed arrows in Figure 3 indicate of the flow of symbols in both directions.

3.2 Results on Control Under Delay

An specification that is realizable without delay may not be realizable in the
presence of delay. For instance, consider the specification G(r ⇔ g), where r
is an input signal and g is an output signal. A controller that emits g (resp.
∅ ∈ O) in the same step when it sees r (resp. ∅ ∈ I) meets the specification when
there is no delay. However, this specification is not realizable in the presence
of any delay d > 0, as whatever the controller emits in the first step (without
knowledge of the input), the plant could potentially emit a symbol in the first
step to violate the specification. Similarly, a specification that is realizable under
a certain delay may not remain realizable under higher values of delay.

Say a specification is realizable under delay d1 and under delay d2, d1 < d2. A
controller that meets the specification under delay d1 may not necessarily meet
the same specification under delay d2. For instance, the controller in Figure 1
can meet the specification in the caption of that figure under no delay, but not
under delay=2 because in the first two steps tc will neither satisfy r nor ¬r.
As mentioned earlier, the controller in Figure 2 meets this specification under
delay=2.

A controller that meets a specification under delay d2 can be easily shown to
meet the same specification under any d1 such that d1 < d2 (and hence no delay
also). The input symbols emitted by the plant can be held in a buffer and delayed
by an extra d2 − d1 steps, and then any trace pair generated by the controller
will satisfy the specification. In other words, the set of realizable specifications
under (fixed) delay is a strict subset of realizable specifications under no delay.
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3.3 Controller Synthesis

It is natural for a user to specify a temporal formula Ψ that they require all
plant-side traces to satisfy. This is the because the plant is the main component
of interest to the user, and normally one requires all plant-side traces to satisfy
a specification that one requires irrespective of whether there is delay or not,
or what the amount of delay is. We hence address the problem of automatically
synthesizing a controller C that meets a given specification Ψ under a given
amount of delay d.

By the definitions given in Section 3.1, if the above-mentioned controller C
generates any trace pair (tc, tp), then tp will satisfy Ψ (as desired by the user).
However, tc may not satisfy Ψ . Our approach is to construct a transformed LTL
formula trf (Ψ), such that any such tc satisfies trf (Ψ). trf (Ψ) is obtained by
replacing every leaf x in the formula Ψ , where x is an element of the input set I,
with Xd(x), where Xd means d (nested) occurrences of the LTL “next” operator
X, and d is the given total delay. We then supply trf (Ψ) to any existing (no-
delay) controller synthesis approach, treating the approach as a blackbox, and
return the controller synthesized by the approach as the desired controller C
that meets Ψ under delay d.

To illustrate our approach, consider our running example specification Ψ =
G(( r ⇒ X(g ∨ X(g))) ∧ (¬ r ⇒ ¬X(g ∧ (X(g))))). The transformed LTL
formula trf (Ψ), with d = 2, is G(( X(X(r)) ⇒ X(g ∨X(g))) ∧ (¬ X(X(r)) ⇒
¬X(g ∧ (X(g))))). The to-be transformed leaves and the transformed portions
have been highlighted for clarity. The controller shown in Figure 2 was obtained
using the synthesis tool Strix [10] by providing trf (Ψ) as input. We already
discussed in Section 3.1 that this controller meets the specification Ψ under
delay=2.

As another example, consider the specification Ψ = G(r ⇔ g). The trans-
formed specification in this case with d = 2 is G(X(X(r)) ⇔ g). This formula
is unrealizable in reality (and as per Strix), and indeed this specification Ψ is
unrealizable under delay=2 as we had discussed in Section 3.2.

3.4 Soundness and Completeness

Lemma 1. For any trace pair (tc, tp) under delay d, for any LTL formula Ψ ,
tp satisfies Ψ iff tc satisfies trf (Ψ).

Intuitively, the above property holds because tc is identical to tp except
that the input symbol in each step of tp has been shifted to the right by d
steps in tc, and that is the exact difference between Ψ and trf (Ψ) as well.
We give a proof for the above lemma in an appendix (the proof is by struc-
tural induction on Ψ). The appendix is available in a long-term repository
https://doi.org/10.6084/m9.figshare.c.6608452 associated with this paper.

Theorem 1 (Soundness). Any controller C synthesized by our approach meets
the given specification Ψ under the given delay d.
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Proof: By construction of C, all traces generated by C satisfy trf (Ψ). This
means, for any trace pair (tc, tp) generated by C, tc satisfies trf (Ψ). Therefore,
by Lemma 1, for any trace pair (tc, tp) generated by C, tp satisfies Ψ . �

Theorem 2 (Completeness). Our approach returns a controller whenever the
given specification Ψ is realizable under the given delay d.

Proof: If Ψ is realizable under delay d, it means there exists a controller C ′
that is feasible under delay d and that meets the given property Ψ under delay
d. That is, every trace pair (tc, tp) under delay d that is generated by C ′ is such
that tp satisfies Ψ . It is easy to see that for any trace t′c that C ′ can generate,
there exists a (unique) trace t′p such that (t′c, t′p) is a trace pair under delay d.
Therefore, by Lemma 1, it follows that all traces generated by C ′ satisfy trf (Ψ).
This means that the controller synthesis approach that we invoke as a black box
with input specification trf (Ψ) will necessarily this declare this specification to
be realizable, and will necessarily return a controller C (which may or may not
be equal to C ′). �

4 Variable Delay

In this section we consider the more challenging setting of variable delay. Here,
as the trace (pair) evolves over time, the delay from each side to the other can
increase. At each step, the delay can be equal to or greater than the delay in
the previous step, subject to given minimum and maximum delays, dl and du,
applicable in each direction over the entire trace. Variable delay occurs in prac-
tice due to variations in environmental conditions (such as network congestion,
or interference) that cause delays. To our knowledge ours is the first paper to
propose, formulate, and solve the problem of controller synthesis in the presence
of variable delay.

4.1 Definitions

Definition 12 (Trace pair under variable delay). A trace pair under vari-
able delay (dl, du), where dl and du are non-negative integers such that du ≥ dl,
(we drop the word variable in the rest of this section for brevity), is a pair of
traces tc and tp such that:

1. There exist two infinite sequences dcp and dpc corresponding to this trace
pair, each one being a monotonically non-decreasing sequence of integers
from the interval [dl, du].

2. The output symbol emitted by tc at its step 0 will reach tp at its step 0. That
is, intuitively, the plant trace starts when it receives the first output symbol
from the controller. Subsequently, for each i > 0, the output symbol emitted
at the controller’s step i will reach the plant at its step i+ dcp[i]− dcp[0]. In
other words, tc[i] ∩O = tp[i+ dcp[i]− dcp[0]] ∩O, for all i ≥ 0.
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r/g
¬r/¬g

(a) (b)

Fig. 4. (a) A sample trace pair (tc, tp) under variable delay (0, 1). (tc, tp) satisfies the
specification G((r ⇒ (g ∨ X(g ∨ Xg))) ∧ (¬r ⇒ ¬(g ∧ (X(g ∧ Xg))))). (b) A controller
that meets this specification under variable delay.

3. For any index k such that there exists no i such that i + dcp[i] − dcp[0] is
equal k, tp[k] ∩O will be empty, and tp[k] will contain the special symbol εo
to indicate that no output symbol was received in this step (due to increase
in delay in the controller to plant direction). We assume that the communi-
cation channel between the plant and controller is enhanced in a way that it
assures this behavior.

4. The input symbol emitted by tp at its ith step, for any i ≥ 0, reaches the
plant in its step corr(i), where corr(i) is equal to i+ dcp[0] + dpc[i]. In other
words, tp[i] ∩ I = tc[corr(i)] ∩ I, for all i ≥ 0. (dcp[0] gets added to account
for the delayed start of tp relative to tc, as discussed in the previous point.)

5. Analogous to εo, the controller receives a special symbol εi in any step in
which it receives no input symbol from the plant due to increase in delay in
the plant to controller direction.

Intuitively, dcp[i] indicates the delay (in number of steps) from controller to plant
for the symbol emitted by the controller in its ith step. dpc has an analogous
meaning, but from the plant to the controller. Note, the transition from a lower
delay to a higher delay can happen anywhere in the (infinite) trace, or need not
happen at all, and a bounded number of delay transitions can occur in each
direction (at most du − dl, to be particular).

Figure 4(a) depicts a sample trace pair under delay (0, 1). Here, dcp[0] and
dcp[1] are zero, while the remaining entries in the dcp sequence are one. dpc[0]
to dpc[3] are zero, while dpc[4] onward are one. Notice the presence of εo and εi
at the delay transition points. The dashed arrows indicate the flow of symbols
visually.

We update the definition of a trace satisfying an LTL formula (see Defini-
tion 3), to say that if trace tc (resp. tp) has εi (resp. εo) in index tc[i] (resp. tp[i]),
then it is interpreted as tc[i] (resp. tp[i]) not satisfying x (and satisfying ¬x) for
any x ∈ I (resp. x ∈ O).
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The analogues of Definition 7 and Definitions 9-11 apply in the variable delay
setting as well, simply by substituting each occurrence of the wording “under
delay d” with “under delay (dl, du)”. Since εi’s can arrive at any point in the
controller-side trace tc (and not necessarily in the beginning), and since εi is
interpreted as all input signals being off, any controller (see Definition 1) is also
a feasible controller under variable delay.

Figure 4(b) depicts a controller that meets the specification shown in the
caption of the figure. Part (a) in the figure depicts one of the trace pairs generated
by this controller. Note that in tc[4], the controller interprets εi as ¬g and hence
emits ¬g.

4.2 Results on Control Under Variable Delay

A temporal property Ψ that is realizable under fixed delay d = du + du is
not necessarily realizable under variable delay (dl, du). In other words, the set
of realizable specifications under variable delay is a strict subset of realizable
specifications under fixed delay. As an example, consider the specification G(g),
where g is an output element. This specification is met by the controller that
emits g continuously, both under no delay and any amount of fixed delay. How-
ever, this specification is not realizable under variable delay for any delay bound,
because tp can receive up to du εo’s, and the steps where it receives εo’s do not
satisfy g.

Any controller C that meets any specification Ψ under variable delay (dl, du)
also necessarily meets the same specification under fixed delay du + du. This is
because any fixed-delay trace pair under delay du + du is also a trace pair under
variable delay, with all elements of dpc and dcp being equal to du.

4.3 Controller Synthesis

As in the fixed delay setting, we propose a LTL formula translation scheme trv.
The approach then is to use any (no-delay) synthesis approach as a blackbox to
synthesize a controller that realizes the property trv(Ψ), where Ψ is the given
LTL formula.

A Naive Proposal. A naive proposal would be to model the translation similar
to our fixed delay approach, and basically replace every leaf x ∈ I in Ψ with the
disjunction X2dlx ∨ X2dl+1x ∨ . . . ∨ X2dux (in place of Xdx in the fixed delay
setting). The intuitive reason for this proposal is that if (tc, tp) are a trace pair
under delay (dl, du), and if x and y are the input and output symbols at a plant
step tp[i], and if y was earlier emitted by the controller at step tc[k], then x
would be received by the controller in the range of steps tc[k+2dl] to tc[k+2du]
due to the properties of trace pairs under delay. Therefore, since we would like
tp to satisfy Ψ and tc to satisfy trv(Ψ), input symbol leaves in Ψ would need
to be moved forward by 2dl to 2du steps, and this is implemented using the
transformation proposed above.
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However, the proposal above is not sound. Consider the LTL specification
G(g). Its translation would be G(g) itself (as it does not refer to the input symbol
r). Now, G(g) is realizable under no-delay, but the controller that results from
synthesis, which emits g continuously, does not meet the specification in the
presence of variable delay as the steps of tp that receive εo do not satisfy g. This
motivates the need for a more sophisticated transformation scheme.

Our Proposed Scheme. In order to solve the issue above, we introduce a
set of reflected elements R = {o′ | o ∈ O} ∪ {ε′o}. We also demand a (further)
enhancement to the communication medium such that if the plant emits x ∈ 2I

to the controller at any step tp[i], then the communication medium actually
sends out x ∪ {y′ | y is in O or y is εo, y ∈ tp[i]} to the controller at this step.
For instance, in Figure 4, {r, g′} would be sent out at tp[0] and would reach
the controller at tc[0], with g′ being reflected back because g was received in
tp[0]. Similarly, ε′o would be reflected back from tp[2], and therefore {r, ε′o} would
reach the controller at tc[2]. Only εi would reach tc[4], with no input or reflected
elements reaching. And tp[4] would not reflect g′ as g was not received in this
step. Intuitively, reflected elements give information to the controller on when
its (previously emitted) output symbols reached the plant.

trg
v(Ψ) =



x, if Ψ = x and x ∈ I
y′, if Ψ = y and y ∈ O
¬trg

v(Ψ1), if Ψ = ¬Ψ1

trg
v(Ψ1) ∧ trg

v(Ψ2), if Ψ = Ψ1 ∧ Ψ2

trg
v(Ψ1) ∨ trg

v(Ψ2), if Ψ = Ψ1 ∨ Ψ2

X
(
εi U (¬εi ∧ trg

v(Ψ1))
)
, if Ψ = XΨ1

F
(
¬εi ∧ trg

v(Ψ1)
)
, if Ψ = FΨ1

G
(
εi U (¬εi ∧ trg

v(Ψ1))
)
, if Ψ = GΨ1

(εi U (¬εi ∧ trg
v(Ψ1)))U (εi U (¬εi ∧ trg

v(Ψ2))), if Ψ = Ψ1 U Ψ2

The translation function trg
v defined above forms the core of our translation

scheme. We now illustrate it with a couple of examples. For now, treat trv(Ψ) as
being equal to εi U (¬εi∧trg

v(Ψ)). trv(G(g)) yields εi U (¬εi∧(G(εi U (¬εi ∧ g′)))).
The intuition behind the translation is that if g is to occur in all steps of tp,
then the reflected g′ must occur infinitely often in tc (once corresponding to
each step in tp), and any steps of tc that do not have g′ must have received
nothing (i.e., εi) from the plant. The other cases in the definition above follow
the same intuition. Note, during controller synthesis from the translated formula,
the reflected elements as well as ε′o (in addition to the elements in I) must be
treated as input elements, as they come from the plant to the controller.

A formula such as F (g) is realizable under variable delay. A controller that
continually emits g meets this specification under variable delay (for any (dl, du)).
However, trv(F (g)) = εi U (¬εi∧(F (¬εi ∧ g′))) is not realizable and will not yield
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a controller when fed to a blackbox synthesis tool, as g′ is technically an input
symbol and hence appears to be entirely in the hands of the (adversial) plant.
What is missing in the translation trg

v is an assertion that the controller can at
any time force a g′ to appear later in its input by emitting a g at this time. We
therefore define trv(Ψ) to be equal to Ψas ⇒ εi U (¬εi ∧ (trg

v(Ψ))), where:

Ψas =
∧

y∈O

G

y ⇒ ∨
i∈[2dl,2du]

Xiy′

 ∧ ∧
x∈I∪R

G (x⇒ ¬εi) ∧

∧
y∈O

(GF (y′) ⇒ GF (y)) ∧
∧

y∈O

(GF (¬y′) ⇒ GF (¬y)) ∧ FG(¬εi)

We call Ψas a trace pair characterization, which is a formula that specifies
properties of any trace tc such that there exists a tp such that (tc, tp) is a trace
pair. The first conjunct in the definition above captures the assertion that we had
mentioned above, while the remaining four conjuncts capture other properties
of trace pairs under delay when reflection is employed. Coming back to the
example, it is easy to see that Ψas ⇒ εi U (¬εi ∧ (F (¬εi ∧ g′))) is realizable, and
is met by the controller that continually emits g. Intuitively, the last conjunct in
the definition of Ψas assures that at some point εi’s will stop appearing (reason:
there can be atmost du occurrences of εi’s in a trace), while the first conjunct
assures that after εi’s stop appearing each g emitted by the controller will cause
g′ to appear in a subsequent step.

4.4 Properties of Our Approach

Lemma 2. For any trace pair (tc, tp) under variable delay (dl, du), for any LTL
formula Ψ , and for any index i, tp(i) satisfies Ψ iff tc(corr(i)) satisfies trg

v(Ψ),
where corr(i) equals the expression i+dcp[0]+dpc[i]. (Proof provided in appendix.)

Theorem 3 (Soundness). Any controller C synthesized by our approach meets
the given specification Ψ under the given delay (dl, du).

Proof: Consider any trace pair (tc, tp) under delay (dl, du) generated by C.
C was constructed to realize the formula Ψas ⇒ εi U (¬εi ∧ (trg

v(Ψ))). It can be
seen that by definition of Ψas, since (tc, tp) is a trace pair under delay (dl, du), tc
must satisfy Ψas. Since tc was generated by C, it then follows that tc also satisfies
εi U (¬εi ∧ (trg

v(Ψ))). From this, and by the properties possessed by trace pairs
under delay, it follows that tc(corr(0)) satisfies trg

v(Ψ). Therefore, by Lemma 2,
tp(0) (i.e., tp) satisfies Ψ . �

Unlike, in the fixed delay setting, our approach as presented above does not
offer a completeness guarantee. That is, a specification that is realizable un-
der delay may be declared as unrealizable. For example, consider the property
Ψ = G(¬g). This specification is in reality met by the controller that contin-
ually emits ¬g. However, the translated formula trv(Ψ) = Ψas ⇒ εi U (¬εi ∧
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(G(εi U (¬εi ∧ (¬g′))))) will be declared as unrealizable when it is fed to any no-
delay controller synthesis tool. Intuitively, the reason is that Ψas should ideally
also assert that for any i, i+1, the steps of tc between tc[corr(i)] and tc[corr(i+1)]
contain only εi’s, but it does not.

To summarize, the Ψas we have defined is a sound trace pair characterization,
but not a complete one. A trace pair characterization is sound if for any trace
pair (tc, tp) under delay (dl, du), tc is guaranteed to satisfy the characterization.
This soundness was invoked in the proof of Theorem 3 above. A trace pair
characterization can be called complete, if, for any trace tc that satisfies the
characterization, there exists a trace tp such that (tc, tp) is trace pair under delay
(dl, du). Our approach is basically parametric on the trace pair characterization
used, and our approach will be sound (resp. complete) if the characterization
is sound (resp. complete). It may be possible to devise a complete trace pair
characterization, but it is likely to lead to high synthesis complexity.

5 Unrealizability Filter

A lot practical properties tend to be unrealizable under delay, and the black-
box synthesis approach may expend a lot of time to detect unrealizability of
the transformed formula in such cases. We therefore propose a novel, efficient,
syntax-based heuristic that detects if a given formula is unrealizable under delay.
The heuristic is sound, in that it never mis-classifies a realizable property as un-
realizable. The heuristic is not guaranteed to detect all unrealizable properties,
so whenever it does not give a classification, the synthesis blackbox will need to
be invoked.

We first introduce a pre-requisite function IOIS that is used by the filters. For
the given property Ψ , IOIS(Ψ) returns a logical formula in conjunctive normal
form. Any atomic fact in the formula is of the form (x, l), where x is an input
literal or an output literal. Input literals are input elements or their negations
(e.g., r, ¬r), while output literals are output elements or their negations (e.g.,
g, ¬g). l is in general a finite set of closed intervals in the non-negative integers
domain. Due to space limitations, we provide the full definition of IOIS in the
appendix. For illustration, if Ψ ≡ G((r ⇒ Xg) ∧ (¬r ⇒ X¬g)), then IOIS(Ψ)
happens to yield the following formula, which is a conjunction of two conjuncts:(
(¬r, [0, 0])∨(g, [1, 1])

)
∧
(
(r, [0, 0])∨(¬g, [1, 1])

)
. The intuition is that any plant

side trace tp can satisfy Ψ only if it satisfies IOIS(Ψ). An atomic fact (x, l) is
satisfied by a trace tp iff for some index i ∈ l, tp[i] satisfies x.

Two literals are said to be contradictory if one is a negation of the other. For
e.g., ¬r and r. For a given non-negative integer d, a conjunct Ci is said to be
d-bounded if it contains exactly one atomic fact with an output literal, contains
at least one atomic fact with an input literal, and max(W )−min(V ) < d, where
W is the interval-set associated with the output literal in the conjunct, and V is
the union of the interval sets associated with all input intervals in the conjunct.
A conjunct is said to be a tautology if it contains two contradictory input literals,
and the interval-sets associated with these two input literals are overlapping.
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We now define the fixed-delay filter for a given total delay d as follows:
It classifies the given Ψ as unrealizable if IOIS(Ψ) contains two conjuncts Ci

and Cj such that (a) both conjuncts contain exactly one output literal each,
(b) these two output literals are contradictory, (c) the interval sets associated
with both these output literals are the same, and each of these interval sets is a
unit-interval (i.e., of total width 1), (d) Ci or Cj (or both) are d-bounded, and
(e) neither conjunct is a tautology.

The intuition is that a d-bounded conjunct contains input literals and an
output literal close enough that the controller cannot use the input symbols in
tc to decide whether to emit the output literal or its negation in order to satisfy
the conjunct. Therefore, if two conjuncts have opposite output literals required
at the same step in the trace, whichever conjunct the controller tries to satisfy,
the other conjunct can be falsified by the adversarial plant.

The example provided earlier in this section indeed gets classified as unreal-
izable by our filter when d = 2. Intuitively, the property is unrealizable because
the controller has to send a g or a ¬g before it comes to know whether the step
in tp that precedes the step where this g or ¬g will be received emitted r or ¬r.

We now define two variable-delay filters. The first filter for the variable-
delay setting simply invokes the fixed-delay filter defined above with d = du +du

(see Section 4.2 for the justification). The second filter classifies the given Ψ as
unrealizable if IOIS(Ψ) contains a conjunct C such that (a) all output literals
in the conjunct are positive (i.e., not of the form ‘¬g’), (b) the total number of
positions in the union of the interval sets corresponding to the output literals
in the conjunct (i.e., not counting more than once the positions that occur in
multiple interval-sets) is less than or equal to du − dl, and (c) the conjunct is
not a tautology. The intuition is that such a conjunct becomes falsified if du−dl

εi’s happen to occur in all positions in the above-mentioned union.

6 Empirical Evaluation

We have implemented both our fixed delay and variable delay approaches. Our
approaches accept LTL specifications in the standard TLSF format. We use
Syfco [9] as a front-end to parse TLSF, and implement our formula translation
using Haskell (as that is Syfco’s supported language). Our filter implementa-
tions are also Syfco and Haskell based. We selected Strix [10] as the blackbox
tool to perform synthesis using our translated formulas. Strix was in Number 1
position among all competing synthesis tools in SYNTCOMP 2022 synthesis
competition [8, 7]. SYNTCOMP is a pre-eminent annual contest for (no-delay)
synthesis tools. For our evaluations, we selected all 1075 TLSF benchmarks (i.e.,
LTL specifications) used in the SYNTCOMP 2022 contest.

We are not aware of any other tool that performs delay synthesis from given
LTL specifications. Therefore, to serve as a baseline, we obtained a recently
released tool by Chen et al. [3], from the web site mentioned in their paper.
This tool addresses strategy inference from safety games under fixed-delay. Since
they do not accept LTL as input directly, and only accept a game graph with a
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Table 1. Summary of results

Run # Realizable # Unrealizable # timeouts # Strix errors Time (s)
No delay 500 388 187 145404
FD d = 4 248 463 + 124 = 587 238 2 192952
FD d = 10 206 463 + 40 = 503 364 2 278480
VD (1,2) 39 542 + 25 = 567 82 387 107850
VD (1,5) 37 697 + 3 = 700 66 272 77190
Chen d = 4 90 170 618 197 460890

safety winning condition, we need to first translate LTL specifications to safety
game graphs. We do this using the “k-bounded safety approximation” feature
provided in Owl [14], which is a widely used library for analysis of automata and
LTL specifications. The bound specifies the maximum number of visits to final
states tolerated during safety game translation (as any finite number of visits is
winning). For any LTL property, there exists a (potentially exponentially high)
value of k at which the translation is guaranteed sound. To keep the translation
time tractable, we have specified an upper limit of k = 10. Therefore, Owl will
stop at this value of 10, or at a value less than 10 if it finds a sound safety
game for this lower value. In cases where Owl stops at value 10, the safety
game graph Owl returns may not be sound. However, we enforce the limit of
k = 10 so that Owl will finish within practical time limits. Empirically we
observe a loss of soundness in some cases (details of which we will provide later).
The running times comparison is hence the more interesting takeaway from this
baseline study.

6.1 Our Results

Table 1 summarizes the results from our runs. Each row represents a run of a tool
or approach on all 1075 benchmarks. To keep the total time of the runs tractable,
and also to facilitate uniform comparisons, we use a timeout of 720 seconds per
benchmark in each run. The columns indicate the name of the run, number of
benchmarks found realizable, number of benchmarks found unrealizable, num-
ber of benchmarks on which analysis was stopped due to the timeout being
hit, number of benchmarks on which the corresponding tool encountered er-
rors/exceptions during processing, and finally the total wall clock time of the run
(on all 1075 benchmarks). All our runs were done on a server with an Intel Xeon
W-2295 processor and 256 GB of RAM. Our tool, and certain artifacts from our
runs, are available in our repository https://doi.org/10.6084/m9.figshare.c.6608452.

The ‘No delay’ run is a baseline, and represents a run of Strix directly on
the given benchmarks, without any delay translation. 187 benchmarks hit the
timeout, while the rest were declared realizable (500 of them) or unrealizable
(388 of them). The average time to process a single benchmark is 136 seconds.

Fixed Delay. We now discuss the next two rows, which depict information about
runs of our fixed-delay approach, with delay d = 4 and d = 10, respectively. For
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each benchmark, out of the 720 seconds allotted, we use the first 20 seconds
to run two separate filters sequentially. The first filter is our filter, described
in Section 5. The second is a run of Strix on the untranslated formula, to see
if declares unrealizability. Recall that as per the discussion in Section 3.2, if a
specification is unrealizable with no-delay, it must be unrealizable with delay.
Our run script kills each filter after 10 seconds, and proceeds to run Strix on the
translated formula of the benchmark (with a budget of 700 seconds) if neither
filter declares unrealizability.

The ‘# Realizable’ column indicates that 248 benchmarks (out of a maximum
possible 500) were found realizable with delay d = 4, while 206 were found
realizable when the delay is increased to d = 10. This is consistent with our
theoretical claims of higher-delay realizability implying lower-delay realizability
and delay realizability implying no-delay realizable. Note that what used to be
a realizable or unrealizable benchmark under no-delay could have migrated to
the timeouts category in the fixed-delay runs.

The ‘# Unrealizable’ column shows the break up of the number of bench-
marks found unrealizable by the filters (the number before the “+”) and the
number of benchmarks not removed by the filters but subsequently found to be
unrealizable by Strix when applied on the translated formula. It is notable that
the filters are very effective, and identify 463 benchmarks are unrealizable (under
both delay values). This is a major reason why the fixed-delay total wall-clocks
times are not very high. It only 33% higher than the no-delay wall-clock time at
d = 4, and 91% higher at the very high delay value of d = 10. It is notable that
since our fixed-delay approach is sound and complete, any benchmark that is
declared as realizable (resp. unrealizable) will necessarily belong to the declared
category. It is also notable that with d = 4, the number of timeout runs we en-
counter is only a little more than with the no-delay run despite the complexity
of having to account for delay. We are very encouraged by this result about the
efficiency of our approach.

Variable Delay. In the variable-delay runs, we employ a total of four filters
sequentially, with a time budget of 10 seconds for each filter (per benchmark).
The first two filters were presented at the end of Section 5. The next two filters are
(a) a run of Strix on the original untranslated formula Ψ , and (b) a run of Strix
on Ψ after it is translated as per the fixed-delay translation, with d = du + du.
The reasoning behind these two applications of Strix as filters is provided in
Section 4.2. If none of the four filters detects a benchmark as unrealizable, then
we proceed to run Strix on the (variable-delay) translated formula, with a budget
of 680 seconds.

The next two rows in Table 1 depict information about runs of our variable-
delay approach, with delay (1, 2) and (1, 5) respectively. Recall that if a specifi-
cation is realizable under variable delay (1, 2) (resp. (1, 5)), it must be realizable
under fixed-delay with d = 4 (resp. d = 10). The data indicates that a sub-
stantially smaller number of benchmarks were found to be realizable. Part of
the reason for this is that realizability indeed is less likely to hold with variable
delay than with fixed delay, based on manual analysis of real specifications. But
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the other reason is the substantial numbers of benchmarks on which Strix threw
exceptions when applied to the translated properties (even though they were
syntactically valid). Many of these exceptions contained a message such as “Too
many elements to create power set: 65 > 30”. We suspect that many of these
translated formulas may be too large for Strix. We have some future work ideas
to try to mitigate this effect, which we discuss at the end of the paper.

In the variable delay runs, the benchmarks found unrealizable by the filters
are guaranteed to be unrealizable. However, due to the incompleteness of our
trace pair characterization Ψas, some of the benchmarks that were declared unre-
alizable by Strix (25 in the (1, 2) run and 3 in the (1, 5) run) could potentially be
realizable. Despite the prevalence of Strix errors, we are encouraged that on 56%
to 69% of benchmarks, i.e., 567 + 39 with delay (1, 2) and 700 + 37 with delay
(1, 5), our approach gives definitive results. In all cases, our formula translation
is very fast (less than 1 second per benchmark).

Sample Properties. To give a taste for what kind of properties become unrealiz-
able under different settings, we manually extract core unrealizable portions from
real properties and present them here. Properties (FG(¬r0)) ⇔ (GF (g)) and
G(r0 ⇔ (Xr1)) are unrealizable even without delay. The property G(r ⇔ (Xg))
is realizable without delay but not realizable under fixed delay d = 2. The spec-
ification (G((r0) → (((r1) ↔ (X(g1))) U (g0)))) is realizable under fixed-delay
d = 2 but unrealizable under variable delay (1, 2). The design of our unrealiz-
ability filter gives a more principled feel for causes of unrealizability (applicable
in many, not all, benchmarks).

6.2 Comparison with Chen et al.’s Tool

The last row in Table 1 depicts information about our run of Chen et al.’s
synthesis tool. This row is to be compared with the “FD d = 4” row which
is about our corresponding approach. From the last row, it is seen that 618
benchmarks faced a timeout. Among these, 524 faced the 720 seconds timeout
during the LTL to safety game translation within Owl itself, while the remaining
94 faced a timeout within the synthesis tool. To ensure the uniform total 720
seconds budget, the time budget we gave to the synthesis tool was 720 seconds
minus the time taken during the LTL to safety game translation. The 197 error
cases were all encountered within their synthesis tool.

Of the 90 benchmarks declared realizable, 17 were found unrealizable by our
tool. Additionally, 40 of the declared unrealizable specifications were declared
realizable by our tool. Since our fixed-delay tool is provably sound and complete,
and because their synthesis tool is also presumably correct, we suspect these mis-
classifications occur due to potential unsoundness in the initial LTL to safety
game translation, as discussed at the beginning of this section.

We cannot conclude about the efficiency of Chen et al.’s tool per-se from this
comparison. However, LTL to safety game conversion is inherently an expensive
operation. Whereas, LTL synthesis tools like Strix are heavily optimized using
heuristics. The takeaway is that when one’s input is an LTL specification, it is
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useful to have a way to synthesize directly than to have to go via a determinized
safety game construction.

7 Related Work

There is a rich literature in the classical LTL synthesis space, where the problem
is to synthesize a controller from an LTL specification, with the controller and
plant communicating via input/output symbols, in the absence of delay. Pnueli
et al. [13] propose a seminal solution for this problem, based on determinization
of Buc̈hi automata. This approach has been extended with numerous practi-
cal optimizations, and is in fact used in the tool Strix that we have used in
our evaluations. The time complexity of classical synthesis is in general double
exponential in the size of the LTL specification.

An early work that investigated controller synthesis in the presence of delay
was by Tripakis et al. [16]. They address the problem of supervisory control,
and not input/output symbol based control, which is our setting. In supervisory
control, the controller can block the plant from taking a transition by observing
the event associated with the proposed transition. They address a restricted class
of specifications of the form that every event a must eventually be followed by
an event b. They allow multiple controllers to simultaneously control the plant;
each controller can observe a subset of events without any delay, and observes
the events corresponding to the other controllers’ subsets with delay. There is
no empirical evaluation reported in this paper.

Finkbeiner et al. [5] studied various extended versions of the controller syn-
thesis for symbol-based control. Their approach is to construct an alternating
parity automaton from the given LTL specification, which accepts (infinite) run
trees that represent winning strategies for the controller. The authors describe
how the automaton can be transformed to handle distributed systems, where
there are multiple controllers, and environments where there is (fixed) delay.
There is no empirical evaluation in this paper. The practical tool Bosy [6] that
was introduced subsequently is based on this approach, and uses a SAT-solver
formulation to try to find a controller within a given size bound k whose unfold-
ings are accepted run trees. This tool does not appear to support delay.

Winter et al. [17] recently investigated a problem that they call delay games.
Their notion of delay is not similar to ours, and does not model communication
delay between plant and controller. Rather, the controller is allowed to skip
playing in its turns, while the plant keeps playing and emitting input symbols.
Effectively the controller gains a lookahead into the plant’s behavior before it
chooses to play, and hence this broadens the class of realizable specifications
beyond what is realizable under no-delay.

The closest related work to ours is by Chen et al. [3]. We have partially
described their work already in Section 6. They address fixed delay only, that
too on a given 2-player game graph with a safety winning condition. They first
present a naive proposal that reduces the strategy inference problem to delay-
free games by exploding the game graph by pairing each game graph state with
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a queue configuration. As this is expensive, they subsequently present an opti-
mized strategy that increases the queue lengths iteratively, pruning uncontrol-
lable states along the way, until the queue lengths reach the given delay d. They
do not explicitly address LTL specifications. LTL specifications would first need
to be determinized to obtain a game graph, and this incurs exponential cost.

8 Conclusions and Future Work

In conclusion, to the best of our knowledge, our work is the first one to identify
and address the problem of variable delay. We also investigate how variable delay
relates theoretically to fixed delay. Ours is also the first approach to solve delay
synthesis using LTL formula translation. The advantages of this approach are
its relative simplicity, flexibility in terms of being able to automatically leverage
efficiency improvements to classical (no-delay) synthesis approaches that may
emerge in the future, and substantial empirically observed performance gain
compared to a closely related and recent baseline approach [3].

In future work we plan to investigate if our variable delay translation can be
made more efficient, and can possibly be made complete. Both of these would
need (differing) changes to the trace pair characterization Ψas. We would like
to try blackbox synthesis tools other than Strix within our implementation.
Conceptually, we would like to extend our approach to distributed control, where
there are multiple controllers, with differing delays to the plant.
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