
Checking Liveness Properties of Presburger
Counter Systems using Reachability Analysis

K. Vasanta Lakshmi, Aravind Acharya, and Raghavan Komondoor

Indian Institute of Science, Bangalore
{kvasanta,aravind.acharya,raghavan}@csa.iisc.ernet.in

Abstract. Counter systems are a well-known and powerful modeling
notation for specifying infinite-state systems. In this paper we target the
problem of checking liveness properties in counter systems. We propose
two semi decision techniques towards this, both of which return a for-
mula that encodes the set of reachable states of the system that satisfy
a given liveness property. A novel aspect of our techniques is that they
use reachability analysis techniques, which are well studied in the liter-
ature, as black boxes, and are hence able to compute precise answers on
a much wider class of systems than previous approaches for the same
problem. Secondly, they compute their results by iterative expansion or
contraction, and hence permit an approximate solution to be obtained
at any point. We state the formal properties of our techniques, and also
provide experimental results using standard benchmarks to show the use-
fulness of our approaches. Finally, we sketch an extension of our liveness
checking approach to check general CTL properties.

1 Introduction

Counter systems are a class of infinite state systems that are equivalent to sim-
ple looping programs that use integer variables, without arrays and pointers. A
counter system has a finite set of control states and a finite set of counters, with
each counter taking values from the infinite domain of integers. There are tran-
sitions between control states, with each transition being guarded by a predicate
on the counters, and having an action, which indicates the updated values of
the counters in terms of the old values. Presburger logic is the decidable first-
order theory of natural numbers. Presburger formulas use variables, constants,
addition and subtraction, comparisons, and quantification. The class of counter
systems where the guards as well as actions are represented using Presburger for-
mulas are called Presburger counter systems. Presburger counter systems have
been shown to be applicable in various settings [1], such as the analysis of the
TTP protocol, different broadcast protocols, as well as cache coherence proto-
cols. In the rest of this paper we use “counter system” or even just “system” to
refer to Presburger counter systems.

Verification of properties of counter systems has been an important topic in
the research literature. While problems such as reachability analysis and tempo-
ral property checking are decidable for infinite systems such as pushdown sys-
tems and petri-nets [2, 3], these problems are in general undecidable on counter



systems because of their greater expressive power. This said, various interesting
subclasses of counter systems have been identified on which reachability anal-
ysis is decidable [4–8]. When it comes to CTL [9] temporal property checking,
researchers have shown decidability of this problem on significantly narrower
classes [10, 11]. We seek to bridge this gap somewhat, by proposing a novel CTL
property checking technique that uses reachability queries as subroutines.

1.1 Our approach

Although our technique addresses the full CTL, the focus in this paper is mainly
on checking liveness properties, which are a fragment of the full CTL. Intuitively,
a state s (i.e., a vector of actual counter values) of a counter system is said to
satisfy liveness with respect to a given “good” property (which is expressed as a
Presburger formula on the counter values) if no matter what trace is taken from s
a state that satisfies the good property will eventually be reached [12]. A classic
example of a liveness property is that an entity that requests a resource will
eventually get the resource (i.e., will not starve). If there are no stuck states in
the system (i.e., states with no outgoing transitions)1, then a state s satisfies the
liveness property iff there does not exist an infinite trace starting from s along
which none of the states satisfy the good property. That is, using CTL notation,
s ought to satisfy the temporal property ¬EGφ, where φ is the negation of the
given good property. (E represents existential quantification over traces, while
G indicates an infinite trace along which the property φ holds globally, i.e., on
all states.) Therefore, we address the following problem: given a counter system
M and a temporal property EGφ, where φ is a formula representing a set of
states, return a Presburger formula that encodes the set of reachable states of
the system that satisfy this temporal property.

It is easy to see that fix-point computations are required to analyze properties
of infinite traces. Our key idea in this paper is to use the fix-point computation
capabilities of reachability analysis techniques to solve EG properties. Our ap-
proach is to perform certain transformations on the given counter system, and
then to perform reachability analysis iteratively, hence computing a progressively
more precise approximation of the set of states that satisfy the EG property.
We actually provide two alternative approaches for the same problem: one that
computes a growing under-approximation of the solution, and the other that
computes a shrinking over-approximation. Both are guaranteed to return a pre-
cise answer upon termination; however, termination is not always guaranteed,
even on systems that are within the subclasses of systems on which reachability
is decidable. In cases where guaranteed termination is not clear, the user can se-
lect one of the two approaches based on their desired direction of approximation,
and forcibly stop the analysis at any point to obtain an approximate result.

1 Any counter system with stuck states can be transformed into one without stuck
states, by adding a “dead” control state that has an unconditional self-loop with
identity action, and by adding transitions that take control from erstwhile stuck
states to this control state.



1.2 Contributions

– The key novelty of our approach, over previous CTL model-checking ap-
proaches [10, 11] is the use of reachability analysis black-boxes as subrou-
tines. In particular, as a result, we are able to show that the subclass of
systems on which each of our approaches is guaranteed to terminate (with
precise solutions) is arguably wider than the subclass addressed by Demri et
al. [10] (and potentially incomparable with that of Bozzelli et al.).

– We support approximations in cases where termination is not guaranteed.
This is a useful feature that is not a part of previous approaches.

– We also introduce an algorithm that can return the set of states that satisfy
any given CTL property. Previous approaches do not address arbitrarily
nested properties. (Our approaches for EG properties are in fact used as
subroutines in this algorithm.) Due to lack of space we only provide a sketch
of this algorithm.

– For each of our two EG approaches we state claims of precision (after ter-
mination), approximation in the appropriate direction (before termination),
and guaranteed termination on a certain subclass of systems. We provide
proofs of these claims in an associated technical report [13].

– We implement both our approaches, and provide experimental results on a
large set of real-life counter systems provided by the FAST [1] toolkit that
are outside the subclass of systems addressed by the approach of Demri et
al. [10].

The remainder of this paper is organized as follows: In Section 2 we introduce
some of the preliminary notions and terminology that underlies our approaches.
In Sections 3 and 4 we describe our under-approximation and over-approximation
approaches to answer EG properties, respectively. In Section 5 we sketch our
algorithm for answering CTL properties. Section 6 contains the discussion on
our implementation and experimental results, while Section 7 discusses related
work.

2 Preliminaries

Definition 1 (Counter System). A counter system M is represented by the
tuple M = 〈Q,C,Σ, φinit , G, F 〉 where Q is a finite set of natural numbers that
encode the control states, C is a finite set of m counters, φinit is a Presburger
formula that represents the initial states of the system, Σ is a finite alphabet
representing the set of transitions in M , such that for each b ∈ Σ there exists a
Presburger formula G(b) and a Presburger formula F (b) that are the guard and
action of the transition b, respectively.

Throughout this paper we use the notation gb and fb to represent G(b) and
F (b).

Figure 1(a) shows a counter system, which also serves as our running example.
Here Q = {q0} (encoded as the natural number zero), C = {x}, Σ = {t0, t1},



x > 0 ∧ x < 5/

x′ = x− 1

t1

x ≥ 0 ∧ x < 100/

x′ = x + 1

t0

x = 0
q0

(a)

x = 0
q0

t0

t1

x′ = x + 1

x > 0 ∧ x < 5 ∧ x < 10/
x′ = x− 1

x ≥ 0 ∧ x < 100 ∧ x < 10/

(b)

t11

q02

t01 t03

q03
q01

t02

(c)

Fig. 1. (a) A counter system M . (b) Refinement M1 of M w.r.t (x < 10). (c) A
flattening N of M1. Each transition tij of N has the same guard and action as transition
ti of M1.

φinit = (x = 0) (shown as the incoming arrow into the system), gt0 ≡ (x ≥
0) ∧ (x < 100), gt1 ≡ (x > 0) ∧ (x < 5), ft0 ≡ (x′ = x + 1), ft1 ≡ (x′ = x − 1).
In our figures we separate the guard and action of a transition using a “/”.

A state (denoted by s, s0, s′ etc.) in a system is a column vector v ∈ Nm+1.
The first element v0 represents the control state, while the values of rest of the
elements v1, . . . , vm represent the values of the counters C. We sometimes use
the term concrete state to refer to a state.

Our Presburger formulas use the names of the counters, as well the control-
state variable q (which refers to the first element v0 of a state as mentioned
above), as free variables. Any formula can be seen either as a property to be
satisfied by a state (e.g., when used in a guard), or as a set of states (e.g.,
in the context of input to our algorithm or output from it). Throughout this
paper we use φ, φi, etc., to denote Presburger formulas. Since the example
systems we use for illustrations have only a single control-state, we omit the
control-state variable q from the guards, actions, and formulas that we show (it
will always be constrained to be zero). Also, sometimes we wish to use extra
free variables (on top of the counter names and q) in a formula. Our notation
in this case is as follows: φ(k) is a Presburger formula with an additional free
variable k. (There is a another kind of Presburger formula, too, which is used to
represent actions of transitions, and uses unprimed and primed versions of the
free variables mentioned above.)

A state s is said to satisfy a formula φ, denoted as s |= φ, if the formula φ
evaluates to true when the free variables in φ are substituted by the correspond-
ing values in s. For this reason, we often refer to a formula as a “set of states”,
by which we mean the states that satisfy the formula.

The semantics of a counter system is as follows. A concrete transition s
b−→ s′

is possible (due to transition b) if s satisfies gb and (s, s′) satisfies fb. In this
case we say that s (s′) is an immediate predecessor (successor) of s′ (s). A
counter system can be non-deterministic; i.e., a state could have multiple suc-
cessor states, either by the action of a single transition itself, or due to different



transitions out of a control-state with overlapping guards. However, we assume
that systems exhibit finite branching ; i.e., every state has a finite number of
immediate successors.

Given a counter system M , a trace t “in” M starting from a state s0 is any
sequence of states s0, s1, . . . , sn, n ≥ 0, such that there is a concrete transition
in M from each state in the sequence to the immediate successor (if any) in the
sequence. This definition also generalizes in a natural way to infinite traces. If t
is a trace in M we also say that M exhibits t. traces(M , φ) is the set of all traces
in M from states that satisfy φ. A state s0 in a system M is said to satisfy a
temporal formula EGφ, written as s0 |= EGφ, iff there exists an infinite trace
s0, s1, . . . in the system such that ∀i ≥ 0. si |= φ.

Other definitions. Given a counter system M and Presburger formula φ, we
use the formula pre(M , φ) (which is also a Presburger formula in the counter
variables and in q) to represent the set of all states that have a successor that
satisfies φ. For the counter system M shown in Figure 1(a), pre(M , (x ≤ 2 )) ≡
(x ≥ 0) ∧ (x ≤ 3).

An extension of the above definition is the formula prek (M , φ)(k). This repre-
sents the set of all states from which some state that satisfies φ can be reached in
exactly k steps (i.e., k concrete transitions). Note that k is an extra free variable
in the formula prek (M , φ)(k). For our example system M , prek (M , x = 4 )(k) ≡
(x ≤ 4) ∧ (x ≥ (4− k)) ∧ (even(k)⇒ even(x)) ∧ (odd(k)⇒ odd(x)).

The backward reachability set for a set of states φ, namely pre∗(M , φ), rep-
resents the set of all states from which a state in φ can be reached in zero or
more steps. For our example system M , pre∗(M , x ≤ 4 ) ≡ x ≤ 4.

A system M1 is said to be a refinement of a system M with respect to
a formula φ, written as M1 ≡ refineSystem(M , φ), if M1 is identical to M in
every way except that the guard of each transition in M1 is the corresponding
guard in M conjuncted with φ. For instance, the system M1 in Figure 1(b) is a
refinement of the system M in part (a) of the same figure with respect to the
formula ‘x < 10’. Intuitively, M1 exhibits exactly those traces in M that do not
go through a concrete transition from a state that does not satisfy φ.

A flat counter system is one in which no two distinct cycles among its control
states overlap. That is, all cycles among its control states are simple cycles. A
flat system N is said to be a flattening of a system M if, intuitively, (a) the
two systems use the same set of counters, (b) each control-state qi of M occurs
zero or more times in N , with each of these copies encoded by the same natural
number as qi, and (c) any transition in N from a control-state qij (a copy of qi
in M) to a control-state qkl (a copy of qk in M) has the same guard and action
as some transition from qi to qk in M . It is easy to see that in general, for any
set of states φ, traces(N , φ) ⊆ traces(M , φ). We say that N is a trace flattening
of M with respect to a specific set of states φ if traces(N , φ) = traces(M , φ).

For instance, Figure 1(c) shows a flattening N of the (non-flat) system M1

in part (b) of the figure. Control state q0 in M1 has three copies in N ; also, each
transition tij in N corresponds to transition ti in M1. N is a trace flattening



of M1 with respect to the set of states ‘x ≥ 5’. On the other hand, any trace
that involves taking transition t1 twice in a row, such as ‘x = 4, x = 3, x = 2’ is
missing in N .

3 Under-Approximation Approach for EG Properties

In this section we describe our under-approximation approach for solving EG
properties, implemented as Algorithm computeGlobalUnder . The input to the
algorithm is a counter system M and a temporal property EGφ. We first present
the key ideas behind our approach, and then finally present our entire approach
in pseudo-code form.

3.1 Our approach

Using refinement and reachability. Let M1 be the refinement of the given system
M with respect to the given φ; i.e., M1 ≡ refineSystem(M , φ). Clearly, a state
satisfies EGφ in M iff it satisfies EGφ in M1, which in turn is true iff there is
at least one infinite trace from this state in M1; this is because every concrete
transition in M1 starts from a state that satisfies φ. Our objective now is to find a
Presburger formula, somehow using reachability analysis, that represents the set
of states in M1 that have an infinite trace starting from them. Two key insights
that make this possible are: (a) In a finite-branching system, as per Köenig’s
Lemma, there is an infinite trace from a state iff there are traces starting from it
of all possible lengths k, for k ≥ 0. (b) A state has a trace of length k from it iff
it satisfies the formula prek (M1 , φ)(k), which can be computed by reachability
analysis. Therefore, with this formula in hand, one only needs to eliminate k as a
free variable from it using universal quantification, as in ∀k ≥ 0. prek (M1 , φ)(k),
to obtain the precise set of states that satisfy EGφ in M .

Computing prek (M1 , φ)(k). Existing reachability analysis that are based on
“accelerations” [4, 6–8] can be used as black-boxes for computing the formula
prek (M1 , φ)(k). However, a key limitation of all these techniques is that although
they can compute the formula pre∗(M1 , φ) for interesting subclasses of systems,
on the more difficult problem of computing the formula prek (M1 , φ)(k) their
applicability is restricted to the narrow class of flat systems. Whereas, most
practical systems, such as those provided by the Fast toolkit [1] are not flat, and
are not even trace-flattable with respect to large subsets of states in the system.
A way out of this quandary is to obtain any flattening N of M1, and to com-
pute the formula prek (N , φ)(k). The presence of an infinite trace in N from any
state s implies the presence of the same trace in M1. Therefore, the set of states
that satisfy EGφ in N (as represented by the formula ∀k ≥ 0. prek (N , φ)(k))
is guaranteed to be a subset (i.e., an under-approximation) of the set of states
that satisfy EGφ in M1.

We now build upon the idea above by systematically enumerating various
flattenings of M1, and by accumulating the sets of states that satisfy EGφ in



Require: A system M and a set of states φ.
Ensure: Returns a set of states, and a label approx which indicates whether the

returned set is precise or is an under-approximation of EGφ in M .
1: M1 ← refineSystem(M , φ). k ← 1. X ← ∅.
2: while not forced to stop do
3: FLAT ← All flattenings of M1 of length k
4: for all N ∈ FLAT do
5: X ← X ∨ pre∗(N ,X )
6: X ← X ∨ ∀k ≥ 0.prek (N , φ)(k)
7: if isTraceFlattening(M1, N, φ−X) then
8: return (X, precise)
9: k ← k + 1

10: return (X, under)

Fig. 2. Algorithm computeGlobalUnder

these flattenings. Therefore, this accumulated set, which we call X, is a monoton-
ically non-decreasing under-approximation of the set of states that satisfy EGφ
in M1. In order to be systematic, we enumerate flattenings of M1 in increasing
order of length, where the length of a flattening is the number of transitions it
possesses.

Termination condition. There is no obvious way to decide to stop enumerating
flattenings of M1 based just on whether the set X is still growing or has stopped
growing. Therefore, the termination condition that we actually use is as fol-
lows: when we come across a flattening N of M1 such that traces(M1 , φ−X ) =
traces(N , φ−X )2, we stop, and return the current set X as the precise solution.
Our termination condition is correct for the following reason: X contains all
states that satisfy EGφ in N (in addition to states that satisfied EGφ in other
flattenings enumerated prior to N). Therefore, φ − X describes states that do
not satisfy EGφ in N , but could potentially satisfy EGφ in M1. However, since
every trace in M1 starting from states in φ−X is also present in N (as per the
termination check) these states do not satisfy EGφ in M1, either. Therefore X
represents precisely the set of states that satisfy EGφ in M1.

Figure 2 shows the pseudo-code for Algorithm computeGlobalUnder . We have
already discussed all the details of this algorithm. One point to note is line 5;
this makes sense because any state from which a state in EGφ is reachable itself
satisfies EGφ.

Illustration. Say we want to solve the property EGφ, where φ ≡ x < 10, for the
systemM in Figure 1(a). The refined systemM1 is shown in part (b) of the figure.
Part (c) of the figure shows a flattening N , wherein the set of states that satisfy
EGφ is x < 5. Ignoring other flattenings that might have been enumerated
before N , let us treat X as being equal to x < 5. It can be observed that

2 This check is decidable provided pre∗ can be computed on the flattening N [10].



traces(M1 , φ−X ) = traces(N , φ−X ). Therefore the algorithm will terminate
on this input with answer (x ≥ 0) ∧ (x < 5).

3.2 Theoretical claims

It is not very difficult to see that the set X maintained by the algorithm is
a monotonically non-decreasing under-approximation of the set of states that
satisfy EGφ in M . Also, that upon termination the accumulated set X contains
the precise solution. However, it is not necessarily true that in all cases where
X becomes equal to the precise solution the algorithm will detect this situation
and terminate.

A sufficient condition for the termination of the algorithm on a system M
is that (a) prek and pre∗ queries terminate on flattenings of the refined system
M1, and (b) the system M1 ≡ refineSystem(M , φ) has a flattening N such that
traces(N , φ−X ) = traces(M1 , φ−X ), where X is the set of states that satisfy
EGφ in N .

While this is a simple condition to state, this characterization describes a
class that is strictly broader than the class addressed by the approach of Demri
et al. [10], which targets only the class of systems M that are trace-flattable
with respect to φinit ; i.e., M needs to have a flattening N such that N exhibits
all traces that M exhibits from all states that are reachable in M .

We provide formal statements and proofs of all our claims in the associated
technical report [13].

4 Over-Approximation Approach for EG Properties

Given a counter system M and a temporal formula EGφ this algorithm first
computes the refined system M1 ≡ refineSystem(M , φ), and then iteratively
accumulates in a set Y a growing set of states that definitely do not satisfy
EGφ. Upon termination it returns φreach − Y as the precise set of states that
satisfy EGφ in M , whereas upon a forced stop it returns φreach − Y as an over-
approximation. φreach is a Presburger formula representing the set of reachable
states in M . This approach basically resembles the classical approach for solving
EG properties for finite-state systems [9], but uses reachability analysis as a
black-box to accelerate the process of adding states to Y .

4.1 Details of the approach

Recall that a state does not satisfy EGφ in M1 iff all traces starting from it
are finite. Therefore, the algorithm starts by initializing the set Y to the set
of states that don’t satisfy φ or are “stuck” (i.e., have no outgoing transition)
in M1, since these states trivially do not satisfy EGφ (M1 could have stuck
states even if the original system M did not). Subsequently, in each iteration,
the algorithm identifies states that do not satisfy EGφ in M1, using two different
conditions as described below, and adds them to Y .



...

grow1

Y

s21

s22

s23

s11

s12

s13

s s1 s2 sn

∀i, j ∈ Σ. ((gi ∧ fi) ∧ (gj ∧ fj [s′′/s′]) =⇒
(s′ = s′′) ∨ (Y [s′/s] ∧ Y [s′′/s])∨
(Y [s′/s]∧¬Y [s′′/s])∨(¬Y [s′/s]∧Y [s′′/s]))

(a) (b)

Fig. 3. (a) Illustration of formula grow2. (b) Formula for φatmost one succ outside Y .

Condition 1: If all successors of a state s are in Y then s can be added to
Y . The states that satisfy this property can be identified using the following
Presburger formula:

grow1 ≡ (∀s′. ((g1 ∧ f1) ∨ (g2 ∧ f2) ∨ . . . (gn ∧ fn) =⇒ Y [s′/s]))− Y

Assuming Y is a Presburger formula in the counter variables and q, grow1 is
also a Presburger formula in these same variables. Y [s′/s] represents the variant
of Y where each variable is substituted with its primed version.

Condition 2: Ignoring all concrete transitions whose target state is already
in Y , if a state s is such that (a) there is only one trace t in M1 starting
from s (not counting prefixes of this trace t), and (b) t reaches a state that
satisfies grow1 after a finite number of steps, then s can be added to Y . In the
illustration in Figure 3(a), states s, s1, s2, etc., satisfy both sub-conditions (a)
and (b) mentioned above; state s11 satisfies only sub-condition (a), while state
s21 satisfies neither of the two sub-conditions.

The states that satisfy sub-condition (a) can be identified using the following
Presburger formula:

grow2a ≡ ¬(pre∗(M1 ,¬φatmost one succ outside Y ))

where φatmost one succ outside Y represents the states that have at most one
successor state that is not already in Y . Therefore, ¬φatmost one succ outside Y

represents states that have two or more successors outside Y . Therefore, the
transitive predecessors of these states are the ones that don’t belong to grow2a.

The formula for φatmost one succ outside Y is shown in Figure 3(b). Intuitively,
the part before the ‘ =⇒ ’ identifies pairs of successor states (s′, s′′) of the state
s under consideration, while the part after the ‘ =⇒ ’ requires that s and s′ be
the same state, or that at least one of them be already in Y . gi, fi are the guard
and action of transition i, respectively.

Now, sub-condition (b) above is captured by the following formula: grow2b ≡
pre∗(M1 , grow1 ). Therefore, the states to be in added to Y by Condition 2 are
described by the formula grow2 ≡ grow2a ∧ grow2b.

Figure 4 shows the pseudo-code for the entire algorithm. Note that the ter-
mination condition is that grow1 and grow2 are both unsatisfiable (i.e., empty).



Require: A system M and a set of states φ.
Ensure: Returns a set of states, and a label approx which indicates whether the

returned set is precise or is an over-approximation of EGφ in M .
1: M1 = refineSystem(M , φ)
2: /* Initialize Y to states that have no successors or don’t satisfy φ. */
3: Y = ¬(g1 ∨ g2 ∨ · · · ∨ gn) ∨ ¬φ
4: while (grow1 ∨ grow2) is satisfiable) ∧ not forced to stop do
5: Y = Y ∨ (grow1 ∨ grow2)
6: return (grow1 ∨ grow2) is satisfiable) ? (φreach − Y , over) : (φreach − Y , precise)

Fig. 4. Algorithm computeGlobalOver

Illustration. Consider the example system M given in Figure 1(a) and the prop-
erty EGφ, where φ ≡ x < 10. The over-approximation algorithm initializes the
set Y to x ≥ 10. In the first iteration of the loop state (x = 9) has its only succes-
sor (x = 10) in Y and hence will satisfy grow1. Also, the states (x ≥ 5)∧ (x < 9)
have only one outgoing trace starting from them and every such trace ends in
state in x = 9. Hence states (x ≥ 5) ∧ (x < 9) satisfy grow2. Hence, Y gets
expanded to x ≥ 5. In the next iteration no states satisfy grow1 or grow2, and
hence the algorithm terminates. It returns the set of reachable states that are
not in Y , namely (x ≥ 0) ∧ (x < 5).

4.2 Theoretical claims

We have already argued informally that the algorithm (a) maintains a growing
under-approximation Y of the set of states in M1 that do not satisfy EGφ, and
(b) terminates iff Y becomes precisely equal to this set.

In order to make an intuitive argument about termination we argue termi-
nation of our algorithm on three successive classes, each one wider than the
previous one. The first class is the class of systems M such that the refined sys-
tem M1 is flat and such that pre∗ queries on it terminate. Any flat system can
be seen as a directed acyclic graph (DAG), whose elements are simple cycles or
transitions that are not part of any cycle. We argue that the algorithm “pro-
cesses” any element e, i.e., identifies all states “in” the control-states in e that
need to be added to Y , in the immediate subsequent iteration after all successor
elements of e in the DAG have been processed. Intuitively, grow1 is responsible
for processing elements that are transitions, and grow2 for simple cycles.

The next class is the class of systems M such that the refined system M1

has a trace flattening with respect to φinit and such that pre∗ queries on M1

terminate. This is a generalization of the class on which the approach of Demri
et al. [10] terminates. Our argument for this class is a simple extension of our
argument for flat systems that is based on the structure of the trace flattening
of the system M1 rather than on the structure of M1 itself.

Our final class is of systems M such that (a) pre∗ queries on the refined
systemM1 terminate, (b) there exists an integer bound k, and a (finite or infinite)
set of flattenings of M1 such that each flattening N in the set contains at most



k simple cycles (each one involving an arbitrary number of control states), and
such that each trace in M1 that starts from a state that does not satisfy EGφ is
exhibited by at least one of the flattenings mentioned above. (As it was with the
under-approximation algorithm, this characterization is a sufficient condition,
and does not exhaustively cover all cases on which our algorithm terminates.)

We provide a proof sketch of the final claim above, and full proofs of all other
claims in the associated technical report [13].

An interesting question that is left to future work is to determine how the
classes of systems on which our under- and over-approximation techniques ter-
minate compare.

5 Algorithm for full CTL

In this section we sketch our algorithm for computing the set of states in a
counter system that satisfy any given CTL property. The algorithm takes a
counter system M , a CTL temporal property ψ, and an approximation label as
input. The CTL property is assumed to be in existential normal form, where the
main operators are EG, EX (“exists next”), and EU (“exists until”). The label,
which is from the set {over , under , precise}, specifies the allowed direction of
approximation in case the set of states that satisfy ψ in M cannot be computed
precisely. The algorithm works in two passes. The first pass is a top-down pass,
where the objective is to identify the allowed direction of approximation for
each sub-property of ψ. An interesting aspect here is that ‘¬’ operators cause
the allowed direction of approximation to get reversed. In the second pass the
set of states that satisfy each sub-property is computed in a bottom-up manner.
We use the notation φi to denote the solution (set of states) computed for a sub-
property ψi of ψ. For a sub-property EGψ1, the solution is obtained by invoking
computeGlobalUnder(M,φ1) or computeGlobalOver(M,φ1), depending on the
label assigned to this sub-property in the top-down pass. A sub-property EXψi

can be solved simply as pre(M , φi). A sub-property E(ψi U ψj) can be solved
as pre∗(refineSystem(M , φi), φj ). In case the underlying pre∗ black-box is not
able to terminate then the approximation label assigned to this sub-property can
be used to perform an approximated pre∗ computation. We provide a detailed
discussion of the above algorithm in the associated technical report [13].

6 Implementation and Results

We have implemented our two algorithms computeGlobalUnder and
computeGlobalOver . We use the reachability analysis black-boxes provided
by the Fast toolkit [1] in our implementations. Fast is applicable on counter
systems whose guards and actions satisfy certain constraints [6]. Fast provides
a routine for computing pre∗ formulas on systems, which necessarily terminates
on flat systems as well as on systems that have a trace flattening with respect
to φinit , but also terminates on many other systems that do not have these
properties. Fast also provides (an always terminating) routine to compute prek



dirty′ = 1
valid′ = 0,

invalid ≥ 1/
invalid′ = invalid + valid + dirty − 1,

q0

dirty′ = 1
valid′ = 0,
invalid′ = invalid + valid + dirty − 1,
valid ≥ 1/

invalid′ = invalid + dirty − 1,

dirty′ = 0
valid′ = valid + 1,

invalid ≥ 1/

t3 t2

t1

Fig. 5. MSI cache coherence protocol

formulas on simple cycles, which we extended in a straightforward way to
work on flat systems. We implemented the routine isTraceFlattening , which is
required by Algorithm computeGlobalUnder , using the trace-flattening check
formula referred to by Demri et al. [10] and shared with us by them via private
communication.

Benchmarks selection. The Fast toolkit comes bundled with a number of example
counter systems, which model cache coherence protocols, client-server interac-
tions, control systems for lifts and trains, producer-consumer systems, etc. For
instance, the counter system shown in Figure 5 is from this toolkit, and models
the MSI cache coherence protocol for a single cache line. The counters invalid ,
valid and dirty represent the number of processors in the respective states for
the modeled cache line.

From the 45 example systems in the bundle, we chose, using a simple sufficient
condition that we designed, 17 systems that are guaranteed to not have a trace-
flattening with respect to φinit . We chose such systems because they are outside
the class of systems addressed by the previous approach of Demri et al. [10] and
on which our approaches are known to definitely terminate. In other words, they
are the more challenging systems.

These 17 systems (and the remaining 28 in the toolkit, also) were analyzed
previously only with reachability queries; the toolkit as such does not contain
any sample temporal properties for these systems. Therefore, after studying these
systems we manually identified CTL temporal properties for these systems which
we believe would be satisfied by all the reachable states of these systems, such
that each CTL property contains an EG sub-property. We identified two proper-
ties each for two of the systems, and one each for the 15 remaining systems, thus
resulting in 19 properties. For instance, for the MSI system shown in Figure 5, the
temporal property we identified is valid ≥ 1 =⇒ A((valid ≥ 1 )U(dirty = 1 )).
This property states that if at some point the cache line is in the valid state in
some processor then this remains true in subsequent steps and eventually some
processor moves into the dirty state wrt this line. This property holds at all
reachable states, intuitively, because transition t1, which is the only transition
that prevents any processor from entering into the dirty state, cannot be taken
indefinitely often (due to the bound on the number of processors in any instance
of the protocol). The above property can be written in existential normal form as
(valid < 1 ) ∨ ¬((EG(dirty 6= 1 )) ∨E((dirty 6= 1 ) U (dirty 6= 1 ∧ valid < 1 ))).



Under-Approximation Over Approximation

Sys #counters #transitions RT(ms) FL NFE Term RT (ms) NI Term

syn 3 3 12 1 1 yes 20 2 yes
moe 5 4 18 1 1 yes 23 2 yes
ill 4 9 120 1 9 yes 140 3 yes

mes 4 4 101 2 19 yes 135 3 yes
cen 12 8 4985 3 96 yes 1600 4 yes

tic 6 6 (TO) 12 1055943 no 480 5 yes
lift 4 5 (TO) 16 1481555 no 720 3 yes
efm 6 5 (TO) 14 1117737 no 1200 3 yes
rea 12 9 (TO) 4 1702 no 9520 7 yes
con 11 8 (TO) 3 184 no 132700 5 yes

Fig. 6. Experimental results for both algorithms. Sys - System name (short), RT -
running time in milliseconds, (TO)-timed out, FL - max. length of flattenings explored,
NFE - number of flattenings explored, Term - termination of algorithm, NI - number
of iterations.

Note that the counter systems in the Fast toolkit are actually abstractions of
the underlying protocols or mechanisms modeled by them. Therefore, in some
cases, it is possible that a temporal property that we identified holds in the
actual protocol or mechanism at all reachable states, but does not hold in the
abstraction.

Since our implementation targets only EG sub-properties, in the rest of this
section we restrict our attention to the EG sub-property inside each of the CTL
properties that we identified. We call each of the 19 system-property pairs under
consideration an input pair. We provide details of each input pair, such as an
English-language description of the system and a specification of the correspond-
ing CTL property in an associated technical report [13].

Results. We ran both our algorithms on the 19 input pairs, with a uniform 1-hour
timeout. Algorithm computeGlobalOver terminated on 10 pairs, while algorithm
computeGlobalUnder terminated on 5 of these 10 pairs. Neither algorithm ter-
minated on the remaining 9 pairs within 1 hour.

We summarize the results on which at least one of our algorithms terminated
in Figure 6. Each row in the table corresponds to results from both algorithms on
an input pair. The first column in this table is the name of a system, shortened
to its first three letters (the first one, “syn”, is the MSI system). The next
two columns give information about the system. Columns 4 − 7 of the table
correspond to results from algorithm computeGlobalUnder , while columns 8−10
correspond to results from algorithm computeGlobalOver . The meanings of these
columns have been explained in the caption of the figure.

Discussion. The first five rows in the table in Figure 6 describe input pairs
on which both our algorithms terminated. We observe that the algorithm
computeGlobalOver takes more time than the algorithm computeGlobalUnder
for smaller systems. This is mainly because of the large number of pre∗ queries



issued by algorithm computeGlobalOver . But for system centralserver, shown in
the fifth row of the table, computeGlobalUnder takes a longer time. This is be-
cause it has to explore 96 flattenings; this involves a large number of prek and
pre∗ queries to the reachability engine when compared to the number of queries
posed by algorithm computeGlobalOver in 4 iterations.

Rows 5-10 in the table are about systems on which only the over-
approximation approach terminated within the time-out. There are multiple
possible reasons for this, such as the set X not becoming precise within the time
out, or the set becoming precise but the termination condition not becoming
true. Due to the large sizes of the systems it was not possible for us to manually
determine whether the algorithm would eventually terminate on the input pairs
in these rows. Also, due to the large sizes of the computed formulas, we could not
determine how “close” the approximate solutions were to the respective precise
solutions when the timeout happened.

The 9 input pairs on which neither of our algorithms terminated within the
time-out are not discussed in Figure 6. These pairs are from the following sys-
tems: ttp2, swimmingpool, dragon, futurbus (two properties), firefly (two prop-
erties), csm, and train. One reason for non-termination of both algorithms is
the large size of some of these counter systems (e.g., ttp2 has 9 counters and
17 transitions), causing individual reachability queries to take more time, and
also more iterations to be required by the algorithms. In fact, for ttp and swim-
mingpool systems, the approximations computed by our under-approximation
algorithm were continuing to improve even after one hour. Another possible rea-
son of non-termination of the two algorithms is the worst-case scenario wherein
none of the reachable states of the system satisfy the given EG property. Both of
our algorithms are more likely to take a long time or go into non-termination in
this scenario. Again, due to the size and complexity of the systems, we were not
able to determine manually for any of these 9 input pairs whether the scenario
mentioned above held, and whether our algorithms would have eventually ter-
minated if given more time. We observe empirically that the over-approximation
algorithm terminates on a superset of inputs as the under-approximation algo-
rithm. However, as mentioned in Section 4.2, we do not have a theoretical proof
that this holds in general. However, both algorithms are useful per-se, because
there are inputs where neither of them terminates. For instance, if one wishes to
conservatively under-approximate the set of states that are live with respect to
some “good” property, they would need an over-approximation of the property
EGφ, where φ is the negation of the “good” property. However, if one wishes
to check conservatively whether all states that satisfy property φ1 also satisfy a
property EGφ2 , they would need to check if φ1 implies an under-approximation
of EGφ2 . In summary, our empirical results show the value of our techniques
in the context of analyzing natural EG properties of real pre-existing system
models. The over-approximation approach terminated on 10 out of 19 input
pairs; both algorithms take reasonable time (from a fraction of a second to a few
seconds) on the vast majority of inputs on which they did not hit the 1-hour
timeout. They provide approximate results upon timeout. In comparison with



pre-existing approaches [10, 11] we are the first to report empirical evidence on
real examples using an implementation.

7 Related Work

Research work on model-checking CTL properties in counter systems has pro-
gressed along side the developments in techniques to answer reachability on these
systems. The approach of Bultan et al. [14] is an early approach; it does not use
accelerations [4, 6–8] to traverse sequences of concrete transitions at one go, and
is subsumed by subsequently proposed approaches [10, 11] that do use accelera-
tions. These approaches both build a summary of all possible traces in the given
counter system using accelerations. This summary is then checked against the
given temporal property. The two key technical differences of our approach over
these are: (a) Rather than attempting to summarize all the traces in the system,
we use refinement and then accelerations to characterize only the traces that sat-
isfy the given property. (b) We use repeated reachability queries, and not a single
phase of applying accelerations. The consequences of these differences are as fol-
lows. Due to features (a) and (b) above, as discussed in Sections 3.2 and 4.2, we
target systems beyond trace flattable systems, and terminate with precise results
on a wider class of systems than the approach of Demri et al. [10]. The practical
importance of this is borne out by our empirical studies. Feature (a) also en-
ables us to solve arbitrarily nested CTL properties, while feature (b) enables us
to compute approximated solutions in cases where a precise computation may
not be possible, which is very useful in practice. The previous approaches do
not possess these advantages. Finally, the previous approaches did not provide
empirical results using implementations.

There are a few other noteworthy points about the previous approaches
mentioned above. The approach of Bozelli et al. [11] does not have the finite-
branching restriction. Also, although neither previous approach addresses arbi-
trarily nested CTL properties, they address certain operators of CTL* that we
do not address.

Cook et al. [15, 16] proposed a technique to model check arbitrarily nested
temporal properties in a restricted class of C programs. The major difference
is that we address the “global” model-checking problem, wherein we return a
formula that encodes all states that satisfy a property. In their case they check
whether a given set of states satisfies a property. Also, they do not have capa-
bilities for approximations. Nevertheless, an interesting investigation for future
work would be to compare the classes of systems targeted by them and by us.

Acknowledgments: We thank A. Finkel and J. Leroux for their suggestions
and for their help with the Fast tool. We also acknowledge Indian Space Reseach
Organisation (ISRO) for providing partial financial support for this work.

References

1. “FASTer.” http://altarica.labri.fr/forge/projects/faster/wiki/.



2. A. Bouajjani, J. Esparza, and O. Maler, “Reachability analysis of pushdown au-
tomata: Application to model-checking,” in Proc. Int. Conf. on Concurrency The-
ory, CONCUR ’97, pp. 135–150, 1997.

3. J. Esparza, “Decidability and complexity of petri net problemsan introduction,”
in Lectures on Petri Nets I: Basic Models, pp. 374–428, Springer, 1998.

4. H. Comon and Y. Jurski, “Multiple counters automata, safety analysis and pres-
burger arithmetic,” in Proc. Comp. Aided Verification (CAV), pp. 268–279, 1998.

5. O. H. Ibarra, J. Su, Z. Dang, T. Bultan, and R. A. Kemmerer, “Counter machines
and verification problems,” Theoret. Comp. Sc., vol. 289, no. 1, pp. 165–189, 2002.

6. A. Finkel and J. Leroux, “How to compose presburger-accelerations: Applications
to broadcast protocols,” Technical Report, Labor. Specif. et Verif. (LSV), 2002.

7. C. Darlot, A. Finkel, and L. Van Begin, “About fast and trex accelerations,” Elec-
tronic Notes in Theoretical Computer Science, vol. 128, pp. 87–103, May 2005.

8. M. Bozga, C. Gı̂rlea, and R. Iosif, “Iterating octagons,” in Proc. Tools and Algo-
rithms for the Constr. and Analysis of Systems (TACAS), pp. 337–351, 2009.

9. J. E. M. Clarke, O. Grumberg, and D. A. Peled, Model checking. MIT Press, 1999.
10. S. Demri, A. Finkel, V. Goranko, and G. V. Drimmelen, “Towards a model-checker

for counter systems,” in Proc. Automated Tech. for Verif. and Analysis (ATVA),
pp. 493–507, 2006.

11. L. Bozzelli and S. Pinchinat, “Verification of gap-order constraint abstractions of
counter systems,” in Proc. of Verif., Model Checking, and Abs. Interp. (VMCAI),
pp. 88–103, 2012.

12. B. Alpern and F. B. Schneider, “Defining liveness,” Information Processing Letters,
vol. 21, no. 4, pp. 181–185, 1985.

13. K. V. Lakshmi, A. Acharya, and R. Komondoor, “Checking temporal prop-
erties of presburger counter systems using reachability analysis,” CoRR, 2013.
http://arxiv.org/abs/1312.1070.

14. T. Bultan, R. Gerber, and W. Pugh, “Symbolic model checking of infinite state pro-
grams using presburger arithmetic,” in Proc. Comp. Aided Verif. (CAV), pp. 400–
411, 1996.

15. B. Cook, E. Koskinen, and M. Vardi, “Temporal property verification as a program
analysis task,” in Proc. Conf. Comp. Aided verification (CAV), pp. 333–348, 2011.

16. B. Cook and E. Koskinen, “Reasoning about nondeterminism in programs,” in
Proc. Conf. on Progr. Lang. Design and Impl. (PLDI), pp. 219–230, 2013.


