
Kondo: Efficient Provenance-Driven Data
Debloating

Aniket Modia, Rohan Tikmanya, Tanu Malika, Raghavan Komondoorb, Ashish Gehanic, Deepak D’Souzab
aSchool of Computing, DePaul University, Chicago, IL, USA

b Dept. Computer Science & Automation, Indian Institute of Science, India
c SRI International, CA, USA

Email: {amodi10, rtikmany, tanu.malik@depaul.edu, gehani@csl.sri.com, raghavan,deepakd@iisc.ac.in}

Abstract—Isolation increases upfront costs of provisioning con-
tainers. This is due to unnecessary software and data in container
images. While several static and dynamic analysis methods for
pruning unnecessary software are known, less attention has been
paid to pruning unnecessary data. In this paper, we address
the problem of determining and reducing unused data within
a containerized application. Current data lineage methods can
be used to detect data files that are never accessed in any
of the observed runs, but this leads to a pessimistic amount
of debloating. It is our observation that while an application
may access a data file, it often accesses only a small portion of
it over all its runs. Based on this observation, we present an
approach and a tool Kondo, which aims to identify the set of
all possible offsets that could be accessed within the data files
over all executions of the application. Kondo works by fuzzing
the parameter inputs to the application, and running it on the
fuzzed inputs, with vastly fewer runs than brute force execution
over all possible parameter valuations. Our evaluation on realistic
benchmarks shows that Kondo is able to achieve 63% reduction
in data file sizes and 98% recall against the set of all required
offsets, on average.

I. INTRODUCTION

Consider the following scenario. Alice, a developer who
has developed a hurricane-tracking application, shares a set of
instructions (e.g. in a Dockerfile) with Bob, who is a user.
When Bob executes these instructions, they download the
necessary environment (say, libraries), application code, and
data file(s) required by the application, which were placed
in a repository by Alice. After the download completes, the
container gets built, and Bob can now run the application
bundled in the container. The application may have parameters
that Bob can set for each run, and the number of distinct
valuations of these parameters determines the total number of
unique runs possible of the application.

There was an issue in this process, though. Bob notices that
downloading the libraries as well as data files associated with
the container takes too long, because they are several gigabytes
in size in total. This is a problem of a bloated container.
In general, we say that application code, or libraries, or the
data files, respectively, are bloated, if they contain portions
that are never executed/read across all supported runs of the
application (i.e., across all parameter valuations supported by
the container creator). While software bloat in general arises
in many settings, it is of particular concern with containers,

because each container is a unit of code and data that must be
downloaded in toto upfront by each user.

Container bloating can arise due to application code, li-
braries, or data files, or all three. For example, machine
learning software like TensorFlow [1], Scikit-learn [2], etc.,
bundle a large number of libraries to be used by a variety of
applications. Similarly, HDF5 [3] and Avro [4] data formats
allow multiple data files to be bundled together. There is also
the tendency to include standard data files that are dissemi-
nated by well-known agencies that contain a large amount of
data, of which only a small part may ever be accessed by a
given application.

Several recent works [5], [6], [7], [8] have determined that
containerized versions of even simple applications come close
to or above a gigabyte, leading to high storage and network
transfer costs, and increased security risk [8]. A comprehensive
survey [9] states that most methods for determining irrelevant
content in a container, aka debloating a container, mainly
analyze application code or libraries, not data files. Lineage
based methods [10], [11], [12], [13] exist to analyze data ac-
cesses, but they work at the coarse-grained level of identifying
whether a data file is accessed or not, not what portions of it
are accessed. Consequently, container bloat overall remains a
pressing challenge in research and in practice. In this paper,
we address the problem of reducing container bloat due to
bloated data files.

A. Motivating example

1 main (i n t stepX , i n t s tepY) {
2 i f (s tepX > s tepY | | s tepX < 0 | | s tepY < 0)

r e t u r n ;

3 i = 0 , j = 0 ;
4 w h i l e (i +1 <= 10 && j +1 <= 10) {
5 l 1 = r e a d (d f i l e , i , j) ; l 2 = r e a d (d f i l e , i +1 , j) ;

l 3 = r e a d (d f i l e , i , j +1) ; l 4 = r e a d (d f i l e , i +1 ,
6 j +1) ; a computation involving l1, l2, l3, l4
7 i = i + s tepX ; j = j + s tepY ;
8 }
9 }

Listing 1: A cross-stencil program

We say that a program subsets its data if it reads only a
certain portion of its data file across all its intended runs (i.e.
parameter valuations supported and advertised by the container
creator). Data subsetting is the primary cause of data bloat.

0 2 4 6 8 10

2

4

6

8

10

1 3 5 7 9

1

3

5

7

9

0

Fig. 1: Data read by the stencil program in different
runs. Solid squares: stepX=1,stepY=1. Blue dashed squares:
stepX=0,stepY=1. Red dashed squares: stepX=1,stepY=2.

Listing 1 shows an outline of a simple stencil computation
program. The data file ‘d file’ that the program accesses is
assumed to be a 10x10 array of numbers (in reality, arrays
tend to be much larger than 10x10). Figure 1 depicts the
10x10 array pertaining to our example program. Throughout
this paper, we assume that data files are structured as multidi-
mensional arrays of numbers, and that library methods such as
‘read’ take the data file name and an array index (i.e., subscript
values) as parameters and return the element at that index. This
assumption generally is supported by libraries like HDF5. The
program in Listing 1, due to the condition in Line 2, reads a
(subset) of the lower triangular portion of the array in any of
its runs (actually, the indexes where the x-subscript is at most
the y-subscript plus two). The program would have subsetted
the same portion of data even if its code did not have the
explicit condition, if the container creator had advertised the
container as only to be run with valuations of parameters stepX
and stepY wherein both are non-negative and stepX ≤ stepY.

Figure 1 also depicts the data read by the program in three
specific runs. The caption of the figure specifies the parameter
valuations corresponding to each of the three runs. A very
large number of runs of the program exist, as both stepX and
stepY can be arbitrary integers. However, all of these runs
read data in the lower triangular portion only, and hence all
elements above or to the right of the solid squares in Figure 1 is
bloat that can be never be accessed in any run of the program.
In this case, this bloat accounts for approximately half the size
of the data file.

Data subsetting is used in scientific applications, numerical
simulation applications, and image processing applications.
Subsetting is often used whenever the available data is large
but the application aims to analyze or visualize a specific
attribute or specific region of data due to memory consid-
erations. Sometimes, the scientific analysis only applies to
the specific attribute or region of data. For example, [14]
illustrates subsetting within I/O access patterns (i.e., in a
problem orthogonal to this paper) in scientific applications
like Chimera supernova modeler and S3D combustion flow
solver. They identify subsets, such as reading only one plane
in a 3-D space, reading a fixed rectangular subset of a bigger

space, or reading a subset of variables (i.e., values) at each
point in the space. Similarly, Tang et al. [15] studies real
applications for data layouts (again an orthogonal problem),
and demonstrate data subsetting in four of the five applications.
((i) Atmospheric rivers’, (ii) Mass spectrometry imaging, (iii)
Adaptive mesh refinement, and (iv) VPIC) First three of those
applications subset from a 3D space to a plane or to a
rectangular sub-region. The last has a somewhat more complex
subsetting idiom. It subsets the 3D space where an attribute
value is greater than a given threshold. This application can
also yield data subsetting savings if, for e.g., an index or
sorted-map has been built with the attribute value as the key.

B. Overview of Kondo

A naive way to find the necessary part of a data file for a
program would it be to execute the program on all supported
parameter valuations, and record using a suitable auditing
mechanism the indexes in the data-file array that get accessed
across all these runs. This would be practically infeasible.
For instance, if the data-file array accessed by the program in
Listing 1 had even 10000x10000 elements, then the number
of parameter valuations (and hence number of runs required)
would be 108.

Another alternative would be to randomly generate a certain
number of parameter valuations up to a practical time budget,
run the program on these valuations, and collect the indexes
accessed in these runs. This approach could result in the
container having an arbitrarily low under-approximation of the
necessary subset of data, and hence increase the likelihood of
(unacceptable) ‘data missing’ exceptions at the users’ end.

Our intuition is to find a middle ground between the two
extremes mentioned above. We make a key observation, which
forms the basis of our proposed approach. It is that if a run
or set of runs cause a set of array indexes S to be accessed,
then the other indexes that are within the convex hull of S in
the euclidean space of indexes are also likely to be accessed
in (other) runs. For instance, in Figure 1, the three runs that
were considered, access indexes covered by the squares. The
remaining indexes in the convex hull of these accessed indexes,
which are basically all the indexes in the lower triangular
portion, happen to be indeed accessible by other runs of this
application.

Based on this observation, we propose a fuzzing and convex-
hull-set construction based approach named Kondo to identify
(a close approximation) of the portions of the data file that get
accessed across all runs of interest. Fuzzing means generation
of random inputs (i.e, parameter valuations) [16]. We design a
custom fuzzing scheme that generates inputs not uniformly
at random, but in a way that increases the likelihood of
generating data accesses around the boundaries of regions of
the array where accesses occur across the runs of interest.

After a desired number of inputs have been generated in
this way, we run the program on these inputs, and record the
indexes accessed. We then compute a set of convex hulls that
cover the indexes accessed, in a way that there is not too much
empty space (which consists of indexes not accessed in the

observed runs) within these convex hulls. These convex hulls
represent the estimate by the approach of the necessary subset
of data. This subset can then be included in the container, and
the rest omitted. Our approach is in principle applicable to
most of the data subsetting idioms seen in real applications.

Our approach is similar to invariant inference ap-
proaches [17], [18], [19] developed by the program analysis
research community. Those approaches have some limitations
in the data debloating context, which we discuss further in
Section VII.

C. Our contributions

A lineage model for identifying debloat. We present a
system call-based lineage tracking method that determines
which portions of data file are accessed by an application.

A fuzzing schedule. We define a debloat test that uses the
lineage model to determine which indices are accessed. We
present two novel fuzzing schedules. These fuzzing schedules
are different from traditional fuzzing schedules [20], [21] in
that the latter maximizes code coverage, which requires source
code analysis and aids in identifying bugs when a program
fails. Our fuzzing schedules aim at maximising data coverage:
executing the program on inputs which help identify as much
of the data access space of the application as possible. Thus,
we differ in the overall goal. We show experimentally that
using code coverage for data coverage results in poor precision
and recall. To the best of our knowledge, ours is the first
known use of fuzzing to determine data offset index coverage
and produce a debloated data subset.

A convex-hull based carving algorithm. We develop an
efficient bottom-up convex-hull based algorithm to determine
subsets of arbitrary (overlapping, disjoint or with holes) shape.
Our algorithm maintains the integrity of hull computation but
improves the merge process when compared to the established
merge algorithm proposed in [22].

Working prototype system. We have developed a prototype
Kondo system, which determines data bloat for a container-
ized application. Kondo is currently applicable for C or
Python-based applications using an array data model. It is
tested for HDF5 [3] and NetCDF [23].

Experiments on real and synthetic datasets. We experi-
mented with h5bench [24] benchmark suite, which represents
I/O patterns commonly used in HDF5 [3] applications. We
also experimented with programs based on real applications.
Our experiments show that Kondo leads to an average recall
of 0.98 and average precision of 0.87.

II. BACKGROUND

We describe a containerized application for which Kondo
performs data debloating. Kondo is not limited to container-
ized applications but a container setting helps to illustrate the
debloating problem. We discuss generalizations in Section VI.

Containers. The contents of a container are described via a
specification. Figure 2 shows such a specification. It consists

Fig. 2: (a) Container Specification (b) Program snippet show-
ing data access by X

of environment dependencies (E’s), data dependencies (D’s),
executables (X’s), and input parameter ranges (Θ’s). The last
two lines specify the commands to run the container with a
specific executable X and a parameter value of (30, 550.0
and 10) and the mnist.h5 data file. In this example, X
refers to the executable of the Listing 1 cross-stencil program
introduced in Section I. As shown, in general, there are
multiple environment and data dependencies and some number
of input parameters.

Auditing system. To debloat, Kondo works in combination
with a fine-grained auditing system. Any auditing system
monitors and tracks which files are accessed by an application.
For example in Figure 2(a), any auditing system [25] will be
able to determine that X accessed D1 as part of its execution,
and not D2 even though D2 is also mentioned as part of the
specification. A fine-grained auditing system [10], [26], [12]
monitors and tracks portions of files that are accessed by an
application. This is often achieved by monitoring application
I/O events and tracking the state of those I/O events.

For example, let X as shown in Figure 2(b), make a single
read to a file of size sz at a location startoff. A fine-
grained auditing system will be able to state that X used only
sz portion of the file starting at startoff. Thus Kondo in
combination with a fine-grained auditing system will be able
to report that for a given parameter value and read file of size
S, the amount of bloat is S-sz. However, our objective in
Kondo is to identify the extent of bloat across all parameter
valuations of interest. That is, the portion of data that will
never be accessed, no matter which parameter value we use.

III. KONDO OVERVIEW

We represent a data file abstractly as an array-oriented data
model. A d-dimensional data array D is a map from a d-
dimensional logical space I of coordinates or indices, to a
set V of attributes or values. Each element of I is a d-
dimensional vector i of the form (i1, . . . , id), and the data
array D associates a value D(i) with it.

The entry executable X is assumed to have m input
parameter variables x1, . . . , xm. A parameter value is a vector
v = (v1, . . . , vm) of input values, where each input value vi
represents a value for variable xi. A parameter space for X is
a vector Θ = (Θ1, . . . ,Θm), where each Θi specifies a range
of values for the corresponding parameter variable xi that the
container creator wishes to support. For a parameter value
v = (v1, . . . , vm) and a parameter space Θ = (Θ1, . . . ,Θm),
we use the notation v ∈ Θ to denote the fact that vi ∈ Θi for
each i.

Let us fix such an executable X and a data array D on
which it runs1. A run of X on a parameter value v results in
accesses to various indices of the data array D. We assume
that this set of indices depends only on v, and not for example
on any prior executions of X on D with possibly different
parameter valuations. This assumption is almost always true
in our scenario; in fact, in most scientific computing D is
read-only. We denote this subset of accessed indices by Iv and
call it the index subset corresponding to v. As an example, in
the Listing 1, when v = (1, 1) (denoting that the parameter
variables stepX and stepY each have value 1), the index subset
Iv is shown shaded in Figure 1. We also define the index subset
corresponding to a parameter space Θ, denoted by IΘ, to be
set of indices

⋃
v∈Θ Iv . Finally, we define the “data-subset”

corresponding to a parameter space Θ, as follows:
Definition 1: The data subset corresponding to D w.r.t. Θ,

is the data array DΘ whose dimension is the same as D, and
is given by

DΘ(i) =

{
D(i) if i ∈ IΘ
Null otherwise.

Here “Null” is a designated “missing” value.
It is evident that the runs of X with parameter values v

in Θ will be identical when using data arrays D and DΘ

respectively, in terms of the values the variables of X may
take during the executions.

We use these definitions to describe the high-level block
diagram of Kondo (Figure 3). Kondo takes as input the
containerized application X , the data file representing a data
array D, the parameter space Θ of m parameters, and an
integer n representing the number of initial parameter values to
be used. Kondo samples n parameter values v1, . . . ,vn from
Θ, and for each parameter value, audits, and executes X . Each
parameter value vi results in accesses to its respective index
subset Ivi

. Both the n parameter values and the set of indices

1We assume a single data file for convenience. In practice, an application
may use multiple data files, each self-describing, and represented by mul-
tiple data arrays. Our approach generalizes to this real setting; we discuss
implementation details regarding the real model in Section VI.

I/O Event
Audit on
v1,…, vn

Debloated
Data File

Fuzzer

Carving

N Parameter
Valuations and Indices

Conf

X,D,!, n

Fig. 3: Kondo Architecture.

∪ni=1Ivi
serve as inputs to an audited Fuzzer. The Fuzzer

performs parameter value fuzzing as per a given configuration
(Conf) and a schedule. Fuzzing results in expanding ∪ni=1Ivi

to include other potential indices. This result of the Fuzzer
is submitted to the Carver which approximates IΘ, denoted
I ′Θ. We describe the details of fuzz configuration and the
schedule in Section IV. We discuss the carving algorithm in
Section IV-B. Finally, we describe auditing of I/O events in
Section IV-C that also creates the data file corresponding to
approximated debloated data array DΘ.

Once the approximate data subset DΘ is known, the de-
veloper includes the corresponding debloated data file in the
container instead of the original data file. At the user’s end, the
debloating is reversed suitably by Kondo’s run-time system
and DΘ recreated, which ensures that the execution on DΘ

results in exactly the same program states as execution on D.
If an access happens to an offset v such that DΘ(v) is Null
(due to the approximation present in our approach), the run-
time throws a “data missing” exception. We show empirically
in Section V that such exceptions are likely to be very rare in
practice.

IV. DETERMINING DEBLOATED DATA SUBSET

Kondo approximates IΘ and DΘ using a fine-grained
auditing system AS. Since Kondo does not aim to make
actual data accesses on every value in the parameter space
Θ, Kondo considers an audited X , denoted XAS , which
determines the indices that will be accessed when X is run
with v. We define this audited execution as a debloat test as
no actual data accesses are made.

Definition 2: Given a fine-grained auditing system AS, a
debloat test determines the indices Iv using XAS , v, and D.

The test outputs Iv obtained by auditing X . AS logs the
indices that were accessed. We term a parameter value v as
a useful parameter value if Iv ̸= ϕ. Otherwise, the parameter
value is not useful. This is akin to a query returning useful data
from a database given the where clause and not returning any
data given a changed where clause. Since the debloat test can
distinguish a useful parameter value from a useless one, our
key observation is that given any two runs of the test with a
useful parameter value and a non-useful parameter value, the
test indicates possible existence of an element of IΘ.

Given a large Θ, often exponential, the test can only be
run some number of times. The problem of determining a
debloated subset is to:

Definition 3: Determining (Debloated) Data Subset. Run
the debloat test, p number of times such that p≪ |Θ| and the
subset ∪pi=1Ivi obtained by running the test is approximately
equal to IΘ.

We describe in the next three subsections a Fuzzer, a Carver
and how to obtain an approximated DΘ from an approximated
IΘ.

A. Fuzzing Schedules for Minimum Test Execution

To determine minimum number of executions, Kondo mu-
tates parameter value, v, as per a schedule, given a known
configuration. Kondo supports two kinds of schedules: an
exploit and explore schedule and boundary-based exploit and
explore schedule. In either schedule, Kondo starts by generat-
ing a set of n randomly sampled parameter values, by sampling
uniformly from Θ. It then mutates the current parameter value,
i.e., changes its value by sampling another value randomly
from a frame surrounding the current parameter value. The
frame is defined based on the euclidean distance from the
current parameter value where the distance is chosen as per a
configuration. We describe the two schedules and an algorithm
that combines the two schedules.

1) Exploit and Explore Schedule: A simple schedule is
to, sometimes, choose a small frame and thus sample a
parameter value such that it is near to the current value,
and to, sometimes, choose a large frame and thus sample a
parameter value such that it is far from the current value.
This schedule is akin to exploiting the parameter space Θ
locally, and exploring the parameter space Θ globally, and is
similar to exploit-explore approaches in AI [27]. The premise
for exploitation is that if the current parameter value of
vi is a useful input, then another value vj sampled with a
small distance from vi, with high probability, will also lead
to a useful input parameter value. Mutating such parameter
values often confirms existence of useful indices of IΘ. The
premise of exploration is that a parameter value vj mutated far
away from vi will help to determine either non-useful input
parameter values or potentially other portions of the subset.

The result of a fuzz campaign using the exploit-explore
schedule on a variation of Listing 12 is shown in Figure 4. The
red and green points in the figure represent the StepX and
StepY parameter values that participated in fuzz testing. The
red ‘-’s correspond to input parameter values that have failed
the debloat test. The green |’s correspond to input parameter
values that have passed the debloat test. In exploit and explore,
exploitation occurs in green |’s regions and exploration occurs
in red ‘-’ regions.

2) Boundary-based Exploit and Explore Schedule: Exploit
and explore is a strategy that identifies some valid and invalid
input parameter values, but the quality of parameter values, as
seen experimentally, is only effective for determining regular
(e.g., rectangular) subsets. If the subset is irregular (e.g., poly-
gons) or complex (multiple overlapping or non-overlapping

2We used this program to visually better contrast between the two sched-
ules. This program is provided as part of our open-source repository [28].

Fig. 4: Contrasting Exploit and Explore (EE) schedule with
Boundary-based EE schedule. Figure is based on 1500 runs
for both schedules. (Each run results in one datapoint.)

subsets), the strategy suffers from two drawbacks: localization
of parameter values, and assignment of uniform priority to
seeds.

In exploit and explore, parameter values tend to localize
based on the initial parameter values, which determine where
new values in the parameter space will be exploited or ex-
plored. Thus, given a set of initial parameter values, future
parameter values tend to be close to initial parameter values,
and mutations of close-by values also produce values in the
vicinity of them. This is problematic because the big green
region is explored but small disjoint valid parameter spaces (in
green) as shown in top-left or bottom-right of Figure 4(top)
are not explored.

Given two parameter values that pass the debloat test, the
exploit and explore approach also does not distinguish amongst
the priority assigned to values. For example, consider three
regions (square, circle, and diamond in solid black lines) in
Figure 4(top). In exploit and explore, parameter value in all
three regions are mutated at the same rate—only the frame
distance changes. However, more mutation must happen within
the circle because mutations around it are indicating exis-
tence/absence of a subset. Less mutation must happen within
the triangle and the square as they have already indicated the
existence of a known subset (square) or absence of a subset
(triangle), respectively.

In boundary-based exploit and explore (EE), we address the
above limitations. Localization is prevented by random restart
of the parameter values. Every few iterations, the algorithm
for boundary-based exploit and explore discards the values in
its queue and starts with a new set of seeds sampled uniformly
at random from the whole input space Θ. This prevents the

stop iter # of iterations after which to terminate
if no new offset discovered

max iter maximum iterations in fuzz schedule
new itr # of iterations since the last new offset

was found
diameter cluster diameter
u reps # of useful input repetitions to consider
n reps # of non-useful input repetitions to consider
u dist distance b/w useful input cluster centers
n dist distance b/w not-useful input cluster centers
restart # of iteration after which random restart
decay iter # of iteration after which ϵ decays
decay decay factor
center d thresh center distance threshold to merge hulls
bound d thresh boundary distance threshold to merge hulls

Fig. 5: Configuration parameters for Fuzz Testing (Sec-
tion IV-A) and Carving (Section IV-B)

algorithm from localising its mutation in a particular region
by resetting the set of values to mutate.

To assign priority to parameter values, the algorithm con-
structs two types of clusters, one of useful parameter values
and other of non-useful values, where the size of each type
of cluster is controlled by the fuzz configuration as specified
in Figure 5. For mutation, it leverages the fact that given a
spatial cluster of useful and non-useful parameter values, the
area between them would result in additional values that can
be used to approximate a subset ‘boundary’. While mutating a
parameter value, the schedule calculates the euclidean distance
of the parameter value to each cluster centre of the opposite
type, and finds the one that is nearest to it. The euclidean
distance of the parameter value to the corresponding cluster
center is used to calculate the factor by which to scale the size
of the frame used for mutation. A greater distance indicates
the parameter value is far from the subset ‘boundary’, and
hence we scale up the frame size. A shorter distance indicates
the parameter value is close to the subset ‘boundary’, hence
we scale down the frame size to increase the density of
parameter values near the boundary. Figure 4 shows how
transitioning into boundary-based exploit and explore mutates
more parameter values near the parameter boundaries for the
same number of runs.

For boundary-based EE to bootstrap, we need sufficient
points to identify the clusters. This disables us from directly
deploying boundary-based exploit and explore right from the
beginning, especially when we know nothing about the data
subset boundaries. Thus, boundary-based exploit and explore
begins with mutation of parameter values as per simple exploit
and explore with probability ϵ = 1. Over time ϵ is decayed,
and boundary-based mutations are used with probability 1−ϵ.
This is similar to an ϵ-greedy policy used in AI. To construct
the clusters, the ADD_TO_CLUSTER routine computes the
minimum euclidean distance of a given parameter value with
existing cluster centres of the same type. If distance exceeds
the configured cluster diameter, the value becomes a new
cluster centre, else value is added to the nearest cluster.

3) The Fuzz Scheduling Algorithm: We present the listing
of a fuzz schedule as Alg 1. The configuration parameters that
drive this fuzz schedule are described in Figure 5. Parameter

Algorithm 1 Fuzz Schedule. Inputs are the n dimensions of
the input parameter space Θ, and the fuzzing configuration C.
Output is a list of indices IS = ∪pi=1Ivi

.

1: Q ← ()
2: IS ← []
3: clu ← []; cln ← []
4: function FUZZSCHEDULE(C,n)
5: itr ← 0
6: while STOPPING CRITERIA is False do
7: itr ++
8: if (Q is empty) or (itr % C.restart == 0) then
9: RANDOM RESTART(n)

10: v ← Q.dequeue()
11: index subset ← EVALUATE SEED(v)
12: IS ← IS + index subset
13: if v.valid then
14: clu ← ADD TO CLUSTER(v, C.diameter)
15: else
16: cln ← ADD TO CLUSTER(v, C.diameter)

17: tmp v ← MUTATE(v, C)
18: for i ∈ tmp v do
19: if i is new then ▷ i not eval. earlier
20: Q.enqueue(i)

21: if (itr % C.decay itr == 0) then
22: C.ϵ ← C.decay ∗ C.ϵ

return IS

1: function MUTATE(v, C)
2: dist ← C.u dist if v.useful else C.n dist
3: reps ← C.u reps if v.useful else C.n reps
4: prob← random.uniform(0,1)
5: if prob ≤ C.ϵ then
6: tmp v ← UNIFORM(v, dist, reps)
7: else
8: if v.valid then clusters← cln
9: else clusters← clu

10: clustermin ← nearest cluster in clusters from v
11: tmp v ← GREEDY(v, clustermin , dist, reps)

return tmp v

values are mutated randomly after a given set of iterations in
Lines 9. The debloat test on the parameter value is run in
Line 11. This test marks a parameter as useful or not useful
and maintains them in clu and cln. Indexes determined by
the auditing system from a useful seed are maintained in
the IS array. Given new information about this parameter
value after the test, the parameter value is mutated further in
Mutate (Line 17), which mutates the seed based on the ϵ factor
of the fuzz schedule configuration, choosing between simple
exploit and explore or combination of exploit and explore and
boundary-based exploit and explore. In boundary-based exploit
and explore, Line 8 to Line 10 dictate the movement of the
parameter values toward a boundary (useful seed approaches
towards cluster of non-useful seeds and vice versa). Distance
is determined in Line 10. New parameter value is determined
from either simple exploit and explore or boundary-based

exploit and explore. If the new parameter value obtained from
mutate has not been evaluated yet, it is enqueued. The last lines
in the listing inform how to slowly transition to boundary-
based exploit and explore over time. The schedule terminates
when no new indexes are determined or after a fixed number
of iterations.

B. Inferring Data Subsets

We now present how to infer a subset that closely approx-
imates the original data subset DΘ. The result of evaluating
the fuzzed seeds is a set of some valid offset indices, but these
offset indices only identify the boundary of the subset, and not
the entire subset.

To identify other valid offsets, we construct the convex hull
around sets of index points in the d-dimensional space such
that the result is a set of convex hulls closely approximating the
subset IΘ. We present the listing of convex hull computation
as Alg 2. The input is a set of index points ∪pi=1Iv in the
d-dimensional space, and the output is H convex hulls. The d-
dimensional offset space is divided into fixed size cells. Given
a set of points that fall in cell i, a hull hi is computed. If no
points fall in a cell, it is discarded. Each hull hi is stored as
a sequence of vertices and wrapping around.

Given an initial set of hulls obtained from cells, Alg 2
checks if two hulls are “close” to be merged to obtain a
bigger hull. If they are close, it merges the hulls to obtain
a larger hull. The merge (Line 9) is achieved by considering
the union of vertices of both hulls as the points in space around
which a new convex hull is desired. This merge is equivalent
to computing a hull with all respective points on which the
original hull were computed [22]. The merge is iterated until
no two hulls are close to each other.

To check if two hulls are close, Alg 2 computes the
distance between hull centres and the distance between hull
boundaries and if center distance and boundary distance is
below a certain threshold, it merges the hull. A hull center is
defined as the centroid of the hull vertices, and hull boundary
is defined as the minimum distance between hull vertices. Both
distance between hull centers and hull boundaries are needed
to compute closeness. This is because as when one hull gets
much bigger than the other, boundary distance between hull
vertices may be more distant than centers. One hull being
bigger than the other is often the case as our merge procedure,
unlike other convex merging algorithms [22] allows merging
of hulls in any direction. Initially the small hulls are merged
and boundary distance suffices, but as one hull keeps becoming
larger, merging with small hulls can still continue since center
distances are close. Thus such a procedure is output-sensitive
which typical convex hull divide and conquer procedures are
not [22].

Figure 6(a) shows the initial set of convex hulls within
cells. As the example shows, computing several small hulls
avoids inclusion of unnecessary cells, which would have
been included if one single hull was computed as shown
in Figure 6(b). However, several small hulls still ignores
several indices sandwiched in between the hulls. Repeated

Fig. 6: An example of the merge algorithm (A, C and D)
against the baseline convex hull (B).

merging ensures that close hulls are approximated to larger
valid subsets as shown in Figure 6(c), and finally obtains a set
of three hulls in Figure 6(d).

Algorithm 2 Using convex hull computation on a given
set of points IS and merging resulting hulls based on hull
configuration C. The output is a set of hulls H, the points of
which correspond to the approximated IΘ.

Require: IS: set of points, C: hull configuration
Ensure: H: set of hulls

1: function HULL(IS , C)
2: H← set()
3: cells ← SPLIT(IS)
4: for cell ← cells do
5: H.insert(CONVEX HULL(cell))

6: while ∃ h1, h2 ∈ H | CLOSE(h1, h2) do
7: for h1, h2 ∈ H do
8: if CLOSE(h1, h2) then
9: H.insert(CONVEX HULL(h1 ∪ h2))

10: H.remove(h1)
11: H.remove(h2)
12: return H

C. I/O Event Audit

Kondo must maintain a mapping between index tuples
and byte offsets as fuzzing and carving happen in the d-
dimensional space of the index tuples but data accesses happen
at byte offset space. Kondo assumes knowledge of metadata
of the data file such as the dimensions of the data file, the
layout of the array, and the type of data values, to maintain a
one-one mapping between index tuples and byte offsets.

To record byte offsets, Kondo audits X’s execution and
in particular data accesses to D in the form of system call
events. Kondo uses function interposition [10], [12] to audit

fine-grained system calls events. Kondo records a system call
event as:

Definition 4: Event. An event is a four tuple ⟨id, c, l, sz⟩
• id identifies the event using the process identifier that

generated the system call and the file it affects,
• c is the type of event (read, mmap, etc.),
• l is the start byte offset location in file which the event

affects, and
• size sz is the size of the affected file starting from l.

l and sz are needed to determine which portion of the data
file is accessed. We record c to ensure that no write event
took place. id is recorded to perform per-process offset range
lookups, where an offset range is [l, l + sz]. Kondo merges
events that overlap in accessed offset ranges. Thus given two
processes accessing a single data file, and the event sequence:
e1(P1, R, 0, 110), e2(P2, R, 70, 30), e3(P1, R, 130, 20), and
e4(P1, R, 90, 30) results in accessed offsets (0, 120) and
(130, 150). Generally, events are large in number from a data-
intensive process. Kondo uses interval-based B-trees to index
events and performs per-process lookup. More details about
I/O event audit are present in our technical report [29].

V. EXPERIMENTS

We now present an evaluation of Kondo. We use publicly
available micro-benchmarks and synthetic programs that we
created for evaluation. We also experiment with programs
derived from real applications [15]. All our programs use
either HDF5 [3] or NetCDF [23] data files. We ran all our
experiments on an Ubuntu 20.04 machine with 32 cores, 93GB
memory and Intel(R) Xeon(R) Silver 4215R 3.20GHz CPU.

Implementation. The Kondo consists of two parts: the fuzzer
and carver as one part, and the I/O event audit as the other. The
former is developed in Python 3.8 and latter in Python 3.8 and
C. Kondo is publicly available via [28]. Kondo’s I/O event
audit works in combination with the Sciunit [11], [12], [30]
fine-grained auditing system, also publicly available. To trace
lineage, Sciunit uses a ptrace-based mechanism to determine
accessed environment and data files. Kondo’s I/O event audit
enhances the intercepted system calls to record system call
arguments in a data store. During re-execution of the debloated
container, Sciunit maps a system call’s arguments to the
appropriate offset of the file. This is achieved via hashing [31]
and lineage methods [32] previously described.

A. Benchmarks

We used four micro-benchmark programs (CS, PRL, LDC
and RDC) available from the H5bench benchmark suite ver-
sion 1.4 [24]. We used the ‘sync’ mode configuration of
H5bench with default settings of data dimensions set to 128 by
128 (256 KB) and blocksize of 2 [33]. Out of the six available
programs in H5bench, these four programs are related to data
subsetting and demonstrate commonly used I/O subsetting
patterns in HDF5-based applications.

In H5bench, an I/O subsetting pattern is described via a
stencil data abstraction. Intuitively, a stencil represents a geo-
metric neighborhood of an array in an HDF5 data file [34]. The

benchmark considers two types of stencils: a solid rectangular
shape and a rectangular shape with a hole. An I/O pattern
is obtained when a program uses the stencil to access data.
Table I provides a visual depiction of the stencil used by each
of the four micro-benchmarks.

Micro-benchmark and Synthetic programs. We experiment
with a total of 11 programs. Each of the four micro-benchmark
program has a given number of parameters and Θ space.
Table II specifies each of the micro-benchmark program in
bold (columns 2 and 4), specifying the number of parameters
and Θ space (we explain the choice of Θ in Section V-D4).
The third row correspondingly also shows the ground truth
data subset for each of these programs.

We developed a few synthetic programs based on the four
micro-benchmark programs. These synthetic programs are
obtained by modifying the stepX and stepY constraint
in the cross-stencil program (column 3 of Table II) or by
changing the the number of parameters from 2 to 3 (column 5
of Table II). The modifications result in additional 7 programs
with 4 different constraints in CS, and one modification each
to PRL, LDC and RDC. The third row again correspondingly
shows the ground truth for these synthetic programs. The
modifications are intuitive as H5bench supports 3d data files
and a stencil can naturally extend to the third dimension or be
constrained to specific regions of interest.

B. Kondo Configuration

Kondo mutates an input 8 times when the debloat test finds
an array index (ureps = 8) and 5 times when the test does
not find an index (nreps = 5). The simulations are run for
a maximum for 2000 iterations (max iter = 2000), where
each iteration evaluates one seed. The simulations are stopped
earlier if no new offsets are discovered for 500 consecutive
iterations (new iter = 500). The distance of the new seed is
chosen uniformly from the interval [5, 15] for valid parameter
seeds (udist = [5, 15]) and [30, 50] for invalid parameter seeds
along each dimension (ndist = [30, 50]). The fuzzer starts with
ϵ = 1 and decays it by 0.97 after every 200 iterations (decay =
0.97, decay iter = 200). Convex hull center and boundary
distances are 20 and 10, respectively (center d thresh =
20, boundary d thresh = 10).

Dataset sizes used. We assume long double datatype of size
16 bytes. Each file’s dimension (size) ranges from 128×128
(256 KB) up to 2048×2048 (64 MB) in 2D and 64×64×64
(4MB) in 3D. When comparing with other baselines all
experiments use default data file dimensions of 128×128 in
2D and 64×64×64 in 3D since comparative baselines become
quite slow with larger dataset sizes.

C. Baselines, metrics, and experimental methodology

We consider a brute-force approach (BF) and American
Fuzzy Lop (AFL) [20] as our main baselines. For recall, we
also consider another baseline, termed Simple Convex (SC),
in which we use Kondo’s Fuzzer with a regular convex hull
computation procedure [22].

TABLE I: Types of Stencils

Stencil Name Cross-Stencil (CS) Peripheral (PRL) Left Diag. Corners (LDC) Right Diag. Corners (RDC)

Stencil Illustration

TABLE II: Micro- and Synthetic Programs

Program Name CS1 CS2, CS3, CS4, CS5 PRL2D, LDC2D, RDC2D PRL3D, LDC3D, RDC3D
of Parameters 2 2 2 3
Θ [0..127]x[0..127] [0..127]x[0..127] [0..127]×[0..127] [0..63]×[0..63]×[0..63]

IΘ
(Ground Truth)

Brute-force (BF): This baseline experiment involves exe-
cution of each program on each of its possible parameter
valuations, exhaustively. The array indices that get accessed
are recorded, and these are reported as the portion of the data
file to subset. By definition, BF computes the true and precise
result, if given sufficient time.

American Fuzzy Lop (AFL): AFL [20] is a modern and
widely used tool for automatically generating test inputs for
a given program. AFL aims for code coverage; meaning, it
tries to generate inputs that cause each “if” condition in the
code to evaluate to true. We would like to re-target AFL to
check array index coverage. We do this by adding a sequence
of “if” conditions adjacent to each array access location in the
program to check if the subscripts are equal to each possible
index. For instance, in the program in Listing 1, adjacent to
the first ‘read’ statement, we insert hundred “if” statements,
which check if (i, j) is equal (0,0), or equal to (0,1), and so on,
until (9,9). Our baseline approach then is to execute AFL on
this modified program for a fixed time budget, observe which
of the checks become true in at least one execution, and subset
the data file to the corresponding indexes.

Metrics. Recall the ground truth is IΘ, and is determined
manually by us by examining the programs. The approximated
IΘ, denoted as I ′Θ, is the index subset identified by Kondo.
To measure Kondo’s accuracy we use two metrics: precision
and recall. Precision, given by IΘ∩I′

Θ

I′
Θ

, measures what fraction
of the carved subset actually appears in the ground truth, and
recall, given by IΘ∩I′

Θ

IΘ
, measures what fraction of the ground

truth actually appears in the approximated index subset. Lower
precision values signify wasteful inclusion of some indices that
would never be needed in any execution of the program with
parameter values from Θ. A recall of 1 signifies soundness.

Experimental Methodology. We experiment with fuzzing and
carving separately from I/O event audit so as to maintain sepa-
ration of concerns. To measure the performance of fuzzing and
carving, we pre-process the programs and replaced each HDF5
library “read” call in each benchmark with an explicit iterative
loop that just prints the datafile offsets that would have been
accessed by the HDF5 call. This simplifying transformation
does not in anyway affect the region I ′Θ computed and reported

CS PRL LDC RDC0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Re

ca
ll

0.971 1 0.983 0.983

0.08 0.024

0.203 0.208

0.691

0.139
0.25 0.275

Kondo AFL BF

Fig. 7: Comparing average recall for a fixed time budget.

by our approach. To measure the overhead of I/O event audit
we run the programs on real data files (Section V-D6).

For Kondo’s results, data from 10 runs of each of the 11
programs was collected. We chose 10 runs due to potential
variations in recall due to random initial seeds and parameter
mutation. We therefore report average values over 10 runs.
Since BF is deterministic, just one run should ideally satisfy;
we still took 10 runs to determine if recall varies across runs.
In general, AFL does not terminate, and time taken by AFL is
significant (shown subsequently). Its recall value showed only
a minor variation across long-running runs, so we used only
2 runs.

For each program (micro- and synthetic), the time budget
is different as each benchmark takes different time to reach a
stable recall value but, for a given program, it is same across
Kondo and the baselines of AFL and BF. We chose a time
budget for Kondo to reach at least 97% of its eventual recall
of 1 in a single run. We chose 97% since the last 3% will take
substantially more time. For example, the CS stencil programs
had a time budget between 14-20 secs, the LDC, RDC ranged
from 8.2 secs in 2D to 10.6 secs in 3D and finally PRL ranged
from 14.4 secs in 2D to 28 secs in 3D.

D. Evaluation

1) Evaluating Recall: In this experiment, we first computed
mean recall for each of the four micro-benchmarks, averaging
the recall value over runs of the respective programs. Each of
Kondo, BF and AFL are allowed to run for a fixed time budget
after which the recall is measured. In Figure 7, the average
recall of Kondo is consistently high with small variance.

We attribute the high recall of Kondo over both AFL and
BF to fuzzing towards the boundaries to quickly discover

CS1 CS2 CS3 CS4 CS5 PRL2D PRL3D LDC2D LDC3D RDC2D RDC3D0.0

0.2

0.4

0.6

0.8

1.0
Pr

ec
is

io
n

AFL/BF Precision Kondo SC

Fig. 8: Comparing precision per program for a fixed time
budget.

CS1 CS2 CS3 CS4 CS5 PRL2D PRL3D LDC2D LDC3D RDC2D RDC3D0.0

0.2

0.4

0.6

0.8

1.0

%
 o

f D
at

a
Bl

oa
t

D
et

ec
te

d

0.51

0.75
0.52

0.62 0.7

0.01

0.53

0.76
0.87

0.76
0.87

Ground Truth Kondo

Fig. 9: Comparing fraction of data bloating identified by
Kondo, to ground truth.

data subsets and eliminate redundant inputs, which both BF
and AFL approaches don’t eliminate. BF does consistently
better than AFL because of fewer parameter variables. In
real applications where the number of parameter variables are
much higher, we do not anticipate BF to achieve even this
high recall. The 3D PRL, LDC and RDC programs have lower
BF recall than corresponding 2D programs. AFL’s low recall
is primarily due to mutation of input other than integers and
repetition of input, which wastes time. AFL has additional
book-keeping operations that results in it taking more time and
leading to low recall for a fixed time budget. We also observe
that whenever the subset region is has fewer boundaries, AFL’s
recall value improves.

Figure 7 shows that with Kondo recall is not always 1.
With a limited time budget, Kondo maybe fail to discover
some points near the boundary of the regions, and exclude
them from the carved dataset. To investigate how many times
a user is impacted due to less than 1 recall, we computed the
percentage of parameter valuations that result in at least one
missed access. We report that for different programs, between
0.0%–0.8% of total number of parameter valuations result in
a missed access. For these parameter valuations, currently,
an exception is reported. In Section VI we discuss practical
reporting of such exceptions further.

2) Evaluating Precision: Figure 8 shows the precision for
each of the 11 benchmark programs. We again report averaged
values over 10 runs of BF and Kondo and 2 runs for AFL
using the previously reported time budget. The precision for
AFL and BF is always 1 because they never subset unaccessed
data. The precision for Kondo drops below 1 because there
is a tradeoff between precision and recall while forming hulls.
If hulls are merged to form bigger hulls, we might subset
additional unused data. If the hulls are kept small, we might
leave out some sandwiched data between the hulls that is

CS PRL LDC RDC0

1

2

3

4

5

6

M
ea

n
Ti

m
e(

s)
 (

lo
g 1

0
sc

al
e)

0.52
(0.97)

1.05
(1) 0.71

(0.98)
0.7

(0.98)

3.32
(0.97)

3.36
(0.83)

4.27
(0.88)

4.5
(0.85)

0.86
(0.97)

2.53
(1) 1.91

(0.98)
1.91

(0.98)

Kondo AFL (2D) BF

Fig. 10: Time comparison for a fixed recall.

actually necessary in some runs, hence dropping the recall. We
analysed this tradeoff and decided on an appropriate Kondo
configuration for merging hulls. Kondo’s precision for LDC
(2D and 3D) and RDC (2D and 3D) is 1 across all runs due
to clear separation of the two subsets present in the program.
Precision drops for PRL2D since the convex hull covers the
small hole within the periphery, but the hole enlarges in
PRL3D. Similarly, precision decreases for CS1 and CS5 since
they have distant sparse regions.

The reduced precision can be considered as the cost of
approximating the debloated subset. However, without this
approximation, a significantly higher number of program exe-
cutions and hence fuzzing time would be required to discover
all indices during the fuzz testing. In Kondo precision is
significantly improved by using the bottom-up merging of
independent convex hulls. The alternative is to use the Fuzzer
with a reguler convex hull computation that does not merge
as mentioned in the Simple Convex baseline. We show in
Figure 8, the precision obtained by Kondo over SC.

The % data reduction for Kondo is directly correlated with
its precision. Figure 9 compares the fraction of data bloat –
i.e. the fraction of unused indices detected by Kondo, or more
precisely |I − I ′Θ|/|I| where I ′Θ is the index subset identified
by Kondo) – with the ground truth |I − IΘ|/|I|. Kondo
identifies an average bloat of 63%.

3) Time taken to Achieve High Recall: Here we answer
the question of whether the baseline tools can achieve the
same recall as Kondo if given more time than what was given
to Kondo. The results of this experiment are summarized in
Fig. 10. It turns out BF is able to reach the same recall as
Kondo across all the benchmarks (these achieved recall num-
bers are shown within parentheses), but taking substantially
more time. For instance, over the PRL programs (averaged),
Kondo took 11.2 seconds to reach recall of 1 while BF took
338 seconds to reach the same recall. With AFL, we observed
that it did not reach Kondo’s recall even over very large time
periods. Therefore, we consider its time as the time taken to
reach Kondo’s recall, or the time taken to reach a stable recall,
whichever is lower. By the latter, we mean the time taken t to
reach a recall value X such that even if given time 2× t, the
recall achieved is equal to or only slightly higher than X . It
can be observed that AFL reaches the same recall as Kondo
only on the CS benchmarks, but taking hundreds of times more
time. On the other benchmarks, it stabilizes at a lower value of
recall, while still taking substantially more time than Kondo;
e.g., it takes 2290 seconds to reach a stable recall value of
0.83 on the PRL programs.

4) Precision and Recall with Increasing Size of Data File:
The fuzzing schedule and hull algorithms don’t depend on the
dataset size or the size of the parameter or offset space. The
fuzzer mutates the seeds towards boundaries of data regions
where accesses happen. But does the size of the identified
subset affect precision/recall? In this experiment, we examine
this affect. We evaluate Kondo by running a program that
had the lowest recall (CS3 program in this case) on different
dataset sizes in 2-dimensions by varying the range of the
dimension from 128 till 2048 or equivalently file sizes from
256KB to 64MB. For each run, we set the range of parameter
values to the maximum dataset size. Figure 11a shows the
results averaged over 10 runs.
Kondo maintains a fairly stable recall as the data size

grows. Precision increases slightly because in smaller data
file sizes, hulls for disjoint regions are also fairly close to
each other. That results in a higher probability of merging of
two hulls when they could be kept separate. However merging
is probabilistic and so the variance of computed precision is
also high. This improves as we increase the data file size,
as disjoint regions are more clearly separated, resulting in
lower probability of unnecessary hull merges, resulting in a
higher mean and low variance. Due to the above reason, in
previous Figures 8 and 9, the data file size is purposely kept
small (128×128 or 256KB) to report conservative precision
measures, but as this experiment shows, precision can further
improve with increasing data size.

5) Precision and Recall Sensitivity to Fuzz Configuration:
We determine the effect of change in precision/recall with a
change in configuration (Figures 11b and Figure 11c). The
primary configuration changed is the center distance parame-
ter for merging hulls as, in our experience, precision/recall
values are most sensitive to this choice of the parameter.
The center d thresh decides if two hulls in euclidean space
should be merged to form a bigger hull, based on the distance
between their centres. Hulls are merged if this distance is less
than the threshold value. Recall increases as we increase this
threshold, and precision falls. This is expected given our hull
merging criteria presented in Alg 2. As we see, precision drops
significantly but recall remains above 0.75. Another parameter
boundary d thresh shows similar trends but due to lack of
space those results are omitted.

6) Overheads due to I/O Event Auditing: We ran the 11
benchmark programs on increasing data file sizes (5 values).
We computed the number of I/O calls issued and the overhead
of recording, merging, and looking up the offset range of a
system call. On average, the overhead across all applications
is close to 31%. In general, an I/O intensive application, with
large number of I/O calls will have higher auditing overhead
than a compute-intensive application with fewer I/O calls.

7) Precision and Recall on Programs Derived from Real
Applications: [15] describes two real applications, Atmo-
spheric River Detection (ARD) and Mass Spectroscopy Imag-
ing (MSI), each of which reads a data subset corresponding
to a cuboidal region in a 3-dimensional mesh. The ARD
application reads a block of data in which width and height are

parameterized but the entire temporal dimension is read. The
MSI application reads a slice of data wherein two dimensions
are entirely read but the third dimension is read between a
start and end index. We wrote programs representing each of
these applications, such that each program reads the same %
of dataset being read as described in the paper [15], while
preserving the parameter ranges. The program operates on
real compressed HDF5 data files. The corresponding programs
and scripts to generate datasets are available as part of our
repository [28] and details about the parameter ranges are
described in Table III. In ARD, 0-4095 represents the entire
range of temporal dimension. The other two ranges are chosen
by the user for subsetting. In MSI, 0-393 and 0-517 ranges are
as specified for the application in [15], but 10000-15000 is
chosen by the user.

In ARD, for a fixed time budget of 2 hours, Kondo achieved
a recall and precision of 1 each, while the BF achieved a
recall of 0.24 with a precision of 1. In MSI, for the same
time budget, Kondo achieved a recall and precision of 1. The
baseline achieved a recall of 0.78 with 1 precision. Since AFL
was gave lower recall in micro-benchmarks on much smaller
dataset sizes, we did not consider it for real experiments. These
experiments show that Kondo is able to determine data subsets
with high recall.

TABLE III: Kondo on programs derived from real applications.

Program ARD MSI
of Parameters 3 3

Θ
(50-200,
100-500,
0-4095)

(0-393,
0-517,
10000-15000)

Data Size 1536×2304×4096
(217GB)

394×518×133092
(405GB)

Kondo Prec.&Recall 1 & 1 1 & 1
BF Prec.&Recall 1 & 0.24 1 & 0.78
Kondo % Debloat 97.20% 96.24%

VI. DISCUSSION

We discuss implementation issues in using Kondo in a
practical setting. Our formulation for simplicity considers a
single dimensional array. In general, chunks form the unit of
access in a data file instead of single values. Further, most
chunked array files are self describing and include metadata
of dimension ranges and chunk sizes. Kondo applies to this
setting as well since using the metadata, the byte offset of each
chunk can also be described in terms of the d-dimensions of
the dataset and array index. Kondo works with user specifying
the ranges of parameters. If the developer does not specify any
parameter ranges, we take a default range over the parameters
based on the data type.

Finally, if the user experiments with a parameter that results
in offset access that has not been containerized, Kondo reports
an exception. There can be different containerized applications
in which potentially some approximation is acceptable such
as analysis applications [35]. While Kondo is not integrated
with a container runtime, a container runtime can use audited
information to pull missing data offsets from a remote server,

7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0
Size of dataset along each dimension (log2 scale)

0.88

0.90

0.92

0.94

0.96

0.98
Pr

ec
is

io
n/

Re
ca

ll

precision recall

(a) Precision/Recall with Large Data Files

0 1 2 3 4 5 6 7 8
Centre Distance Threshold for Hull Merge (log2 scale)

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

CS1
CS2

CS3
CS4

CS5
PRL2D

PRL3D
LDC2D

LDC3D
RDC2D

RDC3D

(b) Precision Vs Changing center d thresh.

0 1 2 3 4 5 6 7 8
Centre Distance Threshold for Hull Merge (log2 scale)

0.75

0.80

0.85

0.90

0.95

1.00

Re
ca

ll

CS1
CS2

CS3
CS4

CS5
PRL2D

PRL3D
LDC2D

LDC3D
RDC2D

RDC3D

(c) Recall Vs. Changing center d thresh.

Fig. 11: Testing Sensitivity of Precision and Recall wrt Data File Size and Kondo Configuration

when requested. Alternative strategies, which can help Kondo
reach 100% recall, is part of our future work. One strategy is
to let Kondo run for some more time and in parallel consult
other fuzzing schedules, such as those available in AFL, to
determine if any other missed offsets are detected.

VII. RELATED WORK

Reducing Size of Container Images. The problem of re-
ducing the size of container images has received significant
attention [6], [36], [5], [31]. Harter et. al. [6] show that indi-
vidual containers are bloated as containers package software
with more dependencies to use, which leads to significant
build times. They suggest improving bloat by determining
redundancies across multiple containers and propose a new
storage driver for the container runtime to pull the common
layers across multiple containers. While we are also interested
in improving the efficiency of container distribution, we do
not examine bloat across multiple software-based containers
but concern ourselves with the bloated size of one data-
intensive container image. Thus our method complements their
approach.

Software Debloating. Software debloating eliminates extra
functionality, such as unwanted basic blocks in shared li-
braries [7], dead code [8] from system programs, or specialize
binaries based on partial evaluation [37], [38], [39], [40],
[41]. These methods do not consider data files or examine
unnecessary subsets of data.

Lineage models for debloating. A fine-grained lineage model
informs about data flows within an application. In [11],
[42], we first proposed the use of database lineage methods
for determining the debloated subset of a database applica-
tion. Relevance-based lineage in ProvSkip [43] determines
a relevant subset, which is similar to a debloated subset,
but is limited to aggregate queries. These works assume a
fixed valuation of parameters to the application. In this paper,
we address programs that access data files. We focus on
the challenging scenario where a (potentially large) range
of parameter valuations is given. For this we have relied
on system call-based fine-grained lineage systems [10], [44].
None of these models, however, log and infer on data subsets
in the system-event trace.

Invariant inference. An invariant is a predicate or formula
that represents all possible valuations of all variables or a

subset of variables across all runs of the program at any
given location in the program’s code. So, in a way, our
approach infers an invariant involving the array access sub-
scripts that occur in the given program. Daikon [17] is a
widely used invariant-inference approach, based on dynamic
analysis, while DIG [18] and LPGen [19] are other such
tools. An issue with dynamic analysis is that it needs a
representative set of program inputs as input, and the quality of
the inferred invariant depends on this set of inputs provided.
Whereas, with our approach, we have a custom fuzzer that
generates a sufficient set of inputs using directed exploration,
and generate disjunctive invariants (i.e., a set of disjoint
convex hulls), which current invariant inference methods do
not generate [45].

Fuzzing. Fuzzing [16] is a popular approach to generate test
inputs for programs. Manès et al. [21] provide an excellent
survey of about 50 fuzzing techniques. The survey shows
that almost all fuzzing methods test for software correctness
and reliability. Thus they generate a minimal set of test cases
that maximizes a code coverage metric, such as branches (or
paths) [20], stack hashing [46], or node coverage [47]. Since
our objective is data debloating, we need data offset index
coverage, which is generally not correlated to code coverage.

VIII. CONCLUSION

In this paper, we highlighted the problem of data bloat
in containerized applications. Current techniques for data
debloating are lineage based, and identify bloat only at the
granularity of entire files. We presented a fuzzing and carving
approach, which identifies the data subset or the portion of
a file that is accessed over all executions of the application,
and is containerized. We presented Kondo, which gives a very
high recall of 98% on average, while achieving substantial data
file size reduction of 63% on average. A comparison with
two different baselines reveals poor recall and much lower
precision. Our work opens up the potential for future work in
several directions, such as examining use of machine learn-
ing approaches for debloating and integrating with software
debloating approaches for an efficient debloated container.

ACKNOWLEDGEMENTS

This work is supported by NASA under grant NASA-AIST-
21-0095 and National Science Foundation under grants CNS-
1846418, NSF ICER-1639759, ICER-1661918.

REFERENCES

[1] Tensorflow.org, “Tensorflow,” https://www.tensorflow.org/, 2023, [On-
line; accessed 2-May-2023].

[2] SciKit.org, “Scikit-learn,” https://scikit-learn.org/stable/, 2023, [Online;
accessed 2-May-2023].

[3] M. Folk, G. Heber, Q. Koziol, E. Pourmal, and D. Robinson, “An
overview of the HDF5 technology suite and its applications,” in Pro-
ceedings of the EDBT/ICDT 2011 workshop on array databases, 2011,
pp. 36–47.

[4] Avro, “Avro,” 2023, [Online; accessed 3-April-2023]. [Online].
Available: https://avro.apache.org/docs/1.2.0/

[5] X. Wu, W. Wang, and S. Jiang, “TotalCow: Unleash the power of copy-
on-write for thin-provisioned containers,” in Proceedings of the 6th Asia-
Pacific Workshop on Systems, 2015, pp. 1–7.

[6] T. Harter, B. Salmon, R. Liu, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “Slacker: Fast distribution with lazy docker containers,” in 14th
{USENIX} Conference on File and Storage Technologies ({FAST} 16),
2016, pp. 181–195.

[7] V. Rastogi, D. Davidson, L. De Carli, S. Jha, and P. McDaniel,
“Cimplifier: automatically debloating containers,” in Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering, 2017,
pp. 476–486.

[8] H. Zhang, F. A. Ahmed, D. Fatih, A. Kitessa, M. Alhanahnah, P. Leit-
ner, and A. Ali-Eldin, “Machine learning containers are bloated and
vulnerable,” arXiv preprint arXiv:2212.09437, 2022.

[9] M. Ali, M. Muzammil, F. Karim, A. Naeem, R. Haroon, M. Haris,
H. Nadeem, W. Sabir, F. Shaon, F. Zaffar, V. Yegneswaran, A. Gehani,
and S. Rahaman, “A Tale of Reduction, Security and Correctness: Eval-
uating Program Debloating Paradigms and Their Compositions,” 28th
European Symposium on Research in Computer Security (ESORICS),
2023.

[10] A. Gehani and D. Tariq, “SPADE: Support for Provenance Auditing
in Distributed Environments,” in Proceedings of the 13th International
Middleware Conference, ser. Middleware ’12. New York, NY, USA:
Springer-Verlag New York, Inc., 2012, pp. 101–120.

[11] Q. Pham, T. Malik, B. Glavic, and I. Foster, “LDV: Light-weight
database virtualization,” in ICDE’15, April 2015, pp. 1179–1190.

[12] D. H. Ton That, G. Fils, Z. Yuan, and T. Malik, “Sciunits: Reusable
research objects,” in IEEE eScience, Auckland, New Zealand, 2017.

[13] S. Ma, J. Zhai, Y. Kwon, K. H. Lee, X. Zhang, G. Ciocarlie, A. Gehani,
V. Yegneswaran, D. Xu, and S. Jha, “Kernel-Supported Cost-Effective
Audit Logging for Causality Tracking,” 29th USENIX Annual Technical
Conference (ATC), 2018.

[14] J. Lofstead, M. Polte, G. Gibson, S. Klasky, K. Schwan, R. Oldfield,
M. Wolf, and Q. Liu, “Six Degrees of Scientific Data: Reading Patterns
for Extreme Scale Science IO,” in Proceedings of the 20th International
Symposium on High Performance Distributed Computing, ser. HPDC
’11. New York, NY, USA: Association for Computing Machinery, 2011,
p. 49–60. [Online]. Available: https://doi.org/10.1145/1996130.1996139

[15] H. Tang, S. Byna, S. Harenberg, X. Zou, W. Zhang, K. Wu, B. Dong,
O. Rubel, K. Bouchard, S. Klasky et al., “Usage Pattern-Driven Dy-
namic Data Layout Reorganization,” in 16th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid). IEEE,
2016, pp. 356–365.

[16] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the
reliability of UNIX utilities,” Communications of the ACM, vol. 33,
no. 12, pp. 32–44, 1990.

[17] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao, “The Daikon system for dynamic detection of
likely invariants,” Science of computer programming, vol. 69, no. 1-3,
pp. 35–45, 2007.

[18] T. Nguyen, D. Kapur, W. Weimer, and S. Forrest, “DIG: A dynamic
invariant generator for polynomial and array invariants,” ACM Trans-
actions on Software Engineering and Methodology (TOSEM), vol. 23,
no. 4, pp. 1–30, 2014.

[19] A. Thakkar and D. D’Souza, “Data-driven learning of strong conjunc-
tive invariants,” in Proc. Formal Methods in Computer-Aided Design
(FMCAD 2023), Ames, IA, USA, October 24-27, 2023. IEEE, 2023,
pp. 1–11.

[20] M. Zalewski, “American fuzzy lop,” http://lcamtuf.coredump.cx/afl/,
2017.

[21] V. J. Manès, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz, and
M. Woo, “The art, science, and engineering of fuzzing: A survey,” IEEE
Transactions on Software Engineering, vol. 47, no. 11, pp. 2312–2331,
2019.

[22] J. Erikson, “Convex hull,” https://jeffe.cs.illinois.edu/teaching/
compgeom/notes/14-convexhull.pdf.

[23] R. Rew and G. Davis, “NetCDF: an interface for scientific data access,”
IEEE computer graphics and applications, vol. 10, no. 4, pp. 76–82,
1990.

[24] T. Li, S. Byna, Q. Koziol, H. Tang, J. L. Bez, and Q. Kang,
“H5bench: HDF5 I/O Kernel Suite for Exercising HPC I/O
Patterns,” in Proceedings of Cray User Group Meeting, CUG
2021, 2021. [Online]. Available: https://github.com/hpc-io/h5bench/
blob/master/h5bench patterns/h5bench read.c

[25] “Docker Slim,” https://github.com/slimtoolkit/slim, 2023, [Online; ac-
cessed 8-Jul-2023].

[26] T. Pasquier, X. Han, M. Goldstein, T. Moyer, D. Eyers, M. Seltzer, and
J. Bacon, “Practical whole-system provenance capture,” in SoCC, 2017.

[27] S. Russell and P. Norvig, “AI a modern approach,” Learning, vol. 2,
no. 3, p. 4, 2005.

[28] “Kondo,” https://github.com/depaul-dice/kondo, 2023.
[29] R. Tikmany, “Interposition-based container optimization for data-

intensive applications,” Master’s thesis, DePaul University, Chicago,
IL, August 2023. [Online]. Available: https://github.com/depaul-dice/
InterpositionBasedKondo

[30] “Sciunit Source Code,” https://github.com/depaul-dice/sciunit, 2017,
[Online; accessed 10-Sep-2024].

[31] Y. Nakamura, R. Ahmad, and T. Malik, “Content-defined merkle trees
for efficient container delivery,” in 27th International Conference on
High Performance Computing, Data, and Analytics. IEEE, Jun. 2020.

[32] N. N. Manne, S. Satpati, T. Malik, A. Bagchi, A. Gehani, and A. Chaud-
hary, “CHEX: Multiversion replay with ordered checkpoints,” Proc.
VLDB Endow., vol. 15, no. 6, p. 1297–1310, Feb 2022.

[33] “H5Bench-configuration,” 2023. [Online]. Available: https://github.com/
hpc-io/h5bench/blob/master/configuration.json

[34] B. Dong, P. Kilian, X. Li, F. Guo, S. Byna, and K. Wu, “Terabyte-
scale particle data analysis: an arrayudf case study,” in Proceedings of
the 31st International Conference on Scientific and Statistical Database
Management, 2019, pp. 202–205.

[35] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica,
“Blinkdb: Queries with bounded errors and bounded response times on
very large data,” in Proceedings of the 8th ACM European Conference
on Computer Systems, 2013, p. 29–42.

[36] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at google with Borg,” in
Proceedings of the Tenth European Conference on Computer Systems,
2015, pp. 1–17.

[37] C. Smowton, “I/o optimisation and elimination via partial evaluation,”
Ph.D. dissertation, University of Cambridge, 2015.

[38] H. Sharif, M. Abubakar, A. Gehani, and F. Zaffar, “Trimmer:
Application Specialization for Code Debloating,” 33rd IEEE/ACM
International Conference on Automated Software Engineering (ASE),
2018. [Online]. Available: http://www.csl.sri.com/users/gehani/papers/
ASE-2018.Trimmer.pdf

[39] C. Niddodi, A. Gehani, T. Malik, J. Navas, and S. Mohan, “MiDas:
Containerizing Data-Intensive Applications with I/O Specialization,” 3rd
ACM Workshop on Practical Reproducible Evaluation of Computer
Systems (P-RECS), 2020.

[40] A. Ahmad, M. Anwar, H. Sharif, A. Gehani, and F. Zaffar, “Trimmer:
Context-Specific Code Reduction,” 37th IEEE/ACM Conference on
Automated Software Engineering (ASE), 2022.

[41] C. Niddodi, A. Gehani, T. Malik, S. Mohan, and M. Rilee, “IOSPReD:
I/O Specialized Packaging of Reduced Datasets and Data-Intensive
Applications for Efficient Reproducibility,” Access, vol. 11, 2023.

[42] Q. Pham, S. Thaler, T. Malik, I. Foster, and B. Glavic, “Sharing and
reproducing database applications,” Proc. VLDB Endow., vol. 8, no. 12,
pp. 1988–1991, Aug. 2015.

[43] X. Niu, B. Glavic, Z. Liu, P. Li, D. Gawlick, V. Krishnaswamy, Z. H.
Liu, and D. Porobic, “Provenance-based data skipping,” Proceedings of
the VLDB Endowment, vol. 15, no. 3, 2021.

[44] N. Balakrishnan, T. Bytheway, R. Sohan, and A. Hopper, “OPUS: A
Lightweight System for Observational Provenance in User Space,” in
5th USENIX Workshop on the Theory and Practice of Provenance (TaPP
13), 2013.

[45] A. Modi, “Interposition-based container optimization for data-intensive
applications,” Master’s thesis, IIT, Delhi, New Delhi, August 2023.
[Online]. Available: https://github.com/depaul-dice/kondo

[46] R. Swiecki and F. Gröbert, “honggfuzz,” https://github.com/google/
honggfuzz., 2019.

[47] D. Vyukov, “syzkaller,” https://github.com/google/syzkaller.

