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ABSTRACT
In this work we describe a novel approach for modeling, analysis
and verification of database-accessing applications that use the
ORM (Object Relational Mapping) paradigm. Rather than directly
analyze ORM code to check specific properties, our approach infers
a general-purpose relational algebra summary of each controller in
the application. This summary can then be fed into any off-the-shelf
relational algebra solver to check for properties or specifications
given by a developer. The summaries can also aid program under-
standing, and may have other applications. We have implemented
our approach as a prototype tool that works for ‘Spring’ based MVC
applications. A preliminary evaluation reveals that the approach is
efficient, and gives good results while checking a set of properties
given by human subjects.

CCS CONCEPTS
• Software and its engineering → Software verification and
validation; Software functional properties; • Information sys-
tems →Web applications.
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1 INTRODUCTION
MVC (Model-View-Controller) frameworks are regularly used to
develop web applications and RESTful services [8]. An MVC ap-
plication consists primarily of a set of controllers, each of which
receives requests directed to a specific URL. Much of the core logic
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1 @PostMapping ( " / s e tDe f au l t Paymen t " )
2 pu b l i c S t r i n g s e tDe f au l t Paymen t ( Long de fPay Id , Model

model , P r i n c i p a l p r i n c i p a l ) {
3 User u se r = u s e r S e r v i c e . f indByUsername ( p r i n c i p a l .

getName ( ) ) ;
4 u s e r S e r v i c e . s e tUse rDe f au l t Paymen t ( de fPay Id , u s e r ) ;
5 . . .
6 }
7

8 Us e r S e r v i c e : : p u b l i c vo id s e tUse rDe f au l t Paymen t ( Long
de fPay Id , User u s e r ) {

9 L i s t <UserPayment > uPL i s t = uPRepo . f i n dA l l ( ) ;
10 f o r ( UserPayment u P I t e r : u PL i s t ) {
11 i f ( u P I t e r . g e t I d ( ) == de fPay I d ) {
12 uP I t e r . s e tDe f au l t Paymen t ( t r u e ) ;
13 uPRepo . save ( u P I t e r ) ;
14 } e l s e {
15 uP I t e r . s e tDe f au l t Paymen t ( f a l s e ) ;
16 uPRepo . save ( u P I t e r ) ;
17 }
18 }
19 }

Figure 1: Example controller

in these controllers tends to be focused on fetching or updating
data in databases. Therefore, MVC frameworks commonly include
ORM (Object Relational Mapping) APIs, which make database ac-
cess intuitive for programmers. The ORM idea is basically to let
the developer use imperative constructs such as loops, and access
or update a database table as if it were an in-memory collection
of entities, where entities are in-memory objects representing the
tuples in the database. ORM is frequently preferred by develop-
ers over embedded SQL (via ODBC APIs) as it avoids impedance
mismatch between SQL and imperative code as well as type- and
schema-related errors.

While the imperative flavor of ORM code is intuitive to many
developers, mechanically checking properties of imperative code is
more challenging than mechanically reasoning about SQL, which is
declarative in nature. We propose to bridge this gap by proposing
in this paper a novel approach that infers a declarative summary,
in relational-algebra form, of the database updates performed by a
controller and of the model attributes that it may return.

https://doi.org/10.1145/3510003.3510148
https://doi.org/10.1145/3510003.3510148
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1.1 Motivating Example
Figure 1 depicts a controller1 named setDefaultPayment from
an open-source book-store application [9] in Spring. The con-
troller in turn calls the method setUserDefaultPayment. This
method first retrieves all “user payment” entities from a table
named userPayment in Line 9. The repository variable ‘uPRepo’
corresponds to the table userPayment. Repository variables are
Spring’s interfaces to database tables; each repository variable im-
plicitly provides method calls to query the underlying table using
the fields of the table and to save tuples into the underlying table.

In the example, each ‘UserPayment’ entity represents a pay-
ment method (e.g., the information about a credit card). Each of
these entities contains a field ‘id’ (which is the primary key), a
boolean field ‘defaultPayment’, which encodes whether this pay-
ment method is the “default” payment method or not for its owning
user, and a field ‘type’, which encodes whether this paymentmethod
is a credit card, or a debit card, etc.

In the loop in Lines 10-18, each ‘UserPayment’ entity’s ‘default-
Payment’ field is set to true or false depending on whether this en-
tity’s ‘id’ field is equal or not to the given argument ‘defPayId’. These
updated entities are also saved back into the table userPayment.

A developer might want to check if the controller in Figure 1
satisfies certain properties. Consider the following example, which
we denote as Property (1): Does the controller set to true (resp.
false) the ‘defaultPayment’ field of a ‘UserPayment’ entity only
if the entity’s ‘id’ field is equal (resp. not equal) to the argument
‘defPayId’? This property is indeed satisfied by the code.

Automated checking of properties such as the ones above would
enable the production of reliable software, and this is the problem
we address in this paper. Automated property checking for ORM
controllers is a challenging problem, for a few different reasons. The
first is that in-memory collections are used to store specific subsets
of database tables, and these subsets typically need to be character-
ized with good precision by analysis techniques to find property
violations. Secondly, ORM code frequently uses imperative loops
to iterate over databases or collections. Generally, loops are known
to be challenging for automated property-checking approaches.

1.2 Our approach
In this paper we propose a static analysis approach to infer sum-
maries in relational algebra form from ORM controllers. A sum-
mary of a controller maps each database table that is updated in a
given controller and each return value from the controller to a rela-
tional algebra expression. For the controller ‘setDefaultPayment’
in Figure 1, in its inferred summary, the expression for the table
userPayment (which is mapped to the repository variable ‘uPRepo’)
would be as follows.

uPRepo ↦→ Πid,true,type (𝜎id=defPayId (uPRepo)) ∪
Πid,false,type (𝜎id≠defPayId (uPRepo))

(1)

Note, the occurrence of ‘uPRepo’ within the relational algebra ex-
pression to the right of the “ ↦→” refers to the incoming contents of
the table userPayment when the controller is invoked, while the

1The code shown is simplified in minor ways for ease of presentation. Also, while we
refer to each request-handling method as a “controller”, the general terminology is to
refer to a class that may contain several request handling methods as a controller.

for (⟨itr⟩ : ⟨coll1⟩) {
if (⟨cond⟩)
⟨coll2⟩.save(⟨tuple1⟩);

else
⟨coll2⟩.save(⟨tuple2⟩);

}

⇒

⟨coll2⟩ ↦→
⟨coll2⟩ - ⟨coll1⟩ ∪
Π ⟨tuple1 ⟩ (𝜎 ⟨cond ⟩ (⟨coll1⟩)) ∪
Π ⟨tuple2 ⟩ (𝜎¬⟨cond ⟩ (⟨coll1⟩))

Figure 2: Code pattern based rewrite rule

occurrence to the left of ‘↦→’ denotes the updated contents when
the controller finishes execution. Also, throughout this paper we
use a generalized form of the projection operator ‘Π’ that allows
any tuple of expressions in its subscript, and not just a tuple of field
names.

Say we want to check Property (1) mentioned in Section 1.1. The
developer may specify this property as:

𝜎id≠defPayId ∧ defaultPayment≠false (uPRepo) = ∅ (2)

Now, an off-the-shelf relational algebra solver can be used to check
that the inferred summary shown in Equation (1) logically implies
the specification shown above2, and hence declare Property (1) as
holding.

Summarizing loops (such as the one in Figure 1) is similar to
inferring loop invariants. This is known to be a challenging problem
in program analysis, and would be especially so when loops iterate
over collections, copy entities from one collection to another under
some condition, etc. To circumvent this difficulty, we propose an
efficient pattern-based rewriting technique to infer summaries of
loops.

A pattern-based rewrite rule that suffices for our example in
Figure 1 is depicted in Figure 2. The names within angle brackets
are meta-variables, which match actual expressions in the code. If a
rewrite rule’s LHS (left hand side) matches a loop, then, intuitively,
the summary is obtained by instantiating the RHS (right hand side)
pattern. That is, the meta-variables in the RHS are replaced with
their matching expressions as obtained from the LHS.

When the LHS of the pattern shown in Figure 2 is matched with
the loop in Figure 1, the meta-variable ⟨itr⟩ matches the iterator
variable ‘uPIter’, ⟨coll1⟩ matches the collection ‘uPList’, and so on.
After ‘uPList’ is determined to be equal to ‘uPRepo’ (using Line 9
in the code), the instantiated RHS becomes equal to the summary
shown in Equation (1).

Notwithstanding the simplified intuition mentioned above, the
rewriting process is not entirely syntactic or straightforward. For
instance, even though ⟨tuple1⟩ syntactically matches ‘uPIter’ in
Line 13 of the code, ⟨tuple1⟩ is replaced in the inferred summary
with “id, true, type”, rather than with any references to ‘uPIter’.
The transformations referred to above are performed by employing
static analysis to infer the values stored in variables. These transfor-
mations are necessary because the inferred summary should refer
to only the incoming database tables and arguments, and not to the
values of local variables or iterators.

2This can be done by replacing the ‘uPRepo’ in Equation (2) with the right-hand-side
of Equation (1) and then checking the validity of Equation (2).
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1.3 Contributions
Controller summarization. The primary contribution of this pa-

per is a novel approach for summarization of ORM controllers in
the form of relational algebra. Our approach is the first one to the
best of our knowledge that uses static analysis to infer functional
summaries for Java controllers.

Pattern based rewriting. As part of our approach, we introduce a
novel, efficient and effective pattern-based rewriting mechanism to
summarize a variety of ORM loops.

A related approach that also addresses the problem of summa-
rization of ORM code is by Bocić and Bultan [2]. Their approach
attempts to infer loop-invariants for ORM code without any pat-
terns, but is guaranteed to terminate only on certain classes of
loops, and abstracts away scalar operations and conditionals.

Reasoning on traces. We introduce an inductive and efficient tech-
nique to verify properties of all possible traces in a MVC application
that pass through specified controllers.

Prototype tool. We describe a prototype implementation of our
approach, which is a tool called ORMInfer. ORMInfer infers a sum-
mary for a given controller method. While our approach conceptu-
ally applies to any ORM mechanism, our implementation targets
Spring [24], which is the most popular MVC framework for Java,
and the third most popular backend development framework over-
all [21]. ORMInfer includes a DSL (domain specific language) to
specify pattern-based rewrite rules. Our core implementation in-
fers a relational algebra summary in a solver-independent form,
while a postpass translates the summary into the widely used Alloy
Language [18] in order to be further checked by the Alloy solver.
We have also implemented our trace-property checking approach
mentioned above as a tool MultiORM, and this tool is dependent on
ORMInfer to obtain summaries of the individual controllers that
the traces go through.

Evaluation. We applied our tool on six open-source Spring bench-
marks, and used the inferred summaries to check properties pro-
vided by a set of volunteer graduate students. Our approach identi-
fied correct results (pass/fail) on about 76% of the properties, and
also demonstrated itself as being very efficient.

The rest of this paper is structured as follows. Section 2 describes
our core contribution of summarizing a controller. Section 3 de-
scribes the trace-checking extension mentioned above. Section 4
gives an overview of our prototype implementation, while Section 5
presents our empirical evaluation. Section 6 discusses related work,
while Section 7 concludes the paper.

2 OUR APPROACH FOR CONTROLLER
SUMMARIZATION

In this section we present the core of our approach, which is a
syntax-directed technique to infer a relational algebra summary for
a given controller.

2.1 Flattening
Inferring summaries for updated repositories and return values
requires, as an intermediate step, summaries for local variables as
well as heap objects. Heap objects could potentially be modeled

using symbolic objects provided by points-to analysis. However,
points-to analysis is in general expensive, and can also reduce
precision by over-approximating information on which variables
point to which objects. In bug-detection settings like ours, high
precision is desired in order to minimize false positives.

Therefore, we adopt a flattening based approach that does not
use points-to or alias analysis. The idea intuitively is to model
the heap using a set of variables, whose types are primitives or
collections but not object references. For instance, if a variable v1
is an object reference, we replace v1 with a set of access paths of
the form v1.f, v1.g, etc., based on the fields declared in v1’s type.
If v1.f is itself an object reference, we further replace it with a set
v1.f.k, v1.f.l, and so on. We do this at all depths, and retain a
variable without further expansion only if its last field is a primitive
or a Java collection. This process can go into non-termination in
the presence of cyclic references. Therefore, to enforce termination,
we impose a length bound on access paths, and throw away any
access path that ends in an object reference and that already has as
many fields as the bound permits.

After the flattening mentioned above, we effectively treat each
access path as if it were a single (non object reference) variable. We
start referring to the access paths simply as variables from here
on, and correspondingly, use underscores instead of dots in their
representations.

Our next step is to replace each original assignment statement
with a set of statements that make use of the (flattened) variables
obtained above. For instance, a statement of the form “v1 = v2”
would be replaced with the set (actually, sequence) of statements
“v1_g = v2_g; v1_f_k = v2_f_k; v1_f_l = v2_f_l; . . .”, the statement
“v1.f = v3” would be replaced with “v1_f_k = v3_k; v1_f_l = v3_l;
. . .”, and so on.

The flattening approach mentioned above can potentially give
rise to incorrect summaries in the presence of arbitrary aliasing
between variables or access paths. However, it is our observation
that real-life Java controllers are very idiomatic, and do not normally
setup aliasing between access paths or use the heap in rich ways.

2.2 Summary inference for simple statements
The flattening mentioned above is done as a pre-pass. After the
flattening, the rest of the approach is syntax-directed. It essentially
performs a bottom-up traversal of the Abstract Syntax Tree (AST) of
the controller’s code, and generates the summary of each subtree
using the already generated summaries of the immediately nested
subtrees. In this part of the paper we discuss how summaries are
inferred for non-looping code fragments.

Figure 3 gives a set of rules for the process described above, one
rule per kind of statement. The notation “S ⊢ 𝑒” means that 𝑒 is the
inferred summary of statement S, where 𝑒 is a mapping from access-
paths to relational algebra expressions. The subroutine mkcond
translates its argument syntactic condition into a condition in the
syntax of relational algebra. Type(𝑣) returns the name of the table
corresponding to the declared type of 𝑣 (which is an entity class),
while TypeElement(𝑣) returns the name of the table corresponding
to the entities declared to be stored in 𝑣 provided 𝑣 is a collection.

Figure 4 illustrates the bottom-up summarization for our running
example in Figure 1. Since we are ignoringmethod calls at this point,
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assign: v1 := v2 ⊢ {(𝑣1, 𝑣2)}

seqence:

𝑆1 ⊢ VL 𝑆2 ⊢ VR
S1; S2 ⊢ {(𝑘, 𝑣) | 𝑣 = VR (𝑘) [VL (𝑔1)/𝑔1] .....[VL (𝑔𝑛)/𝑔𝑛]

if 𝑘 ∈ domain(VR),
n is the number of leaves in VR (𝑘)
𝑔1, 𝑔2 ...𝑔𝑛 are leaves in VR (𝑘)

𝑣 = VL (𝑘), if 𝑘 ∈ VL}

If-Then-Else:
𝑆1 ⊢ VT 𝑆2 ⊢ VE

if c then S1 else S2 ⊢ {(𝑘, 𝑣) |𝑣 = (mkcond (c) ? VT (𝑘) : VE (𝑘))
if 𝑘 ∈ VT and 𝑘 ∈ VE

𝑣 = (mkcond (c) ?VT (k) : 𝑘)
if 𝑘 ∈ VT

𝑣 = (mkcond (c) ? 𝑘 : VE (𝑘))
if 𝑘 ∈ VE}

alloc: v = new T ⊢ {(𝑣,DefaultVal)}

CollAdd:

𝑓1 .....𝑓𝑛 are primitive columns in TypeElement (v)
v.add(w) ⊢ {(𝑣, 𝑣 ∪ (𝑤_𝑓1, ...,𝑤_𝑓𝑛))}

RepoSave:
𝑓1 .....𝑓𝑛 are primitive columns in Type(𝑣)

repo.save(v) ⊢ {(repo, repo − 𝜎𝑖𝑑=𝑣_𝑖𝑑 (repo) ∪
(𝑣_𝑓1, ..., 𝑣_𝑓𝑛))}

Delete: repo.deleteById(v) ⊢ {(repo, repo − 𝜎𝑖𝑑=𝑣 (𝑟𝑒𝑝𝑜))}

Figure 3: Inference rules for simple statements

we treat the method setUserDefaultPayment as if it is the con-
troller in this illustration (although method setDefaultPayment
is the actual controller). Also, we treat the getter and setter calls
in Lines 11, 12, and 15 as if they were inlined to yield direct field
references. Each row in Figure 4 depicts the inferred summary for
a certain AST subtree, which corresponds to the code region whose
line numbers are given in the first column. Each summary is in gen-
eral a mapping from variables that are modified in the code region
to their individual summaries, each of which is a relational algebra
expression. Relational algebra expressions use program variables,
repository variables or table names, and constants, as leaves.

The row for Line 12 in Figure 4 depicts how assignment state-
ments are modeled: the summary of the LHS variable is simply the
expression that occurs in the RHS. The summary for Line 13 uses

an extended relational algebra operator, namely, save. This operator
has two operands, namely, the repository (and underlying table) to
save into, and the tuple to save. Note that the single variable uPIter
in Line 13 in the code has become a tuple of variables at this point;
this happens because uPIter is an object reference, and has been
flattened. Another noteworthy point in Line 13 is that a variable
can occur on both sides of the ‘ ↦→’ symbol in a summary, with the
RHS (resp. LHS) occurrence denoting the incoming value into (resp.
outgoing from) the corresponding code region.

The entry for Lines 12-13 in Figure 4 illustrates summary in-
ference for statement sequences. The mappings (i.e., summaries)
corresponding to the two regions are basically composed; hence, in
the example, the second component in the tuple within the save
operation is now true (rather than uPIter_defaultPayment).

The entry for Lines 11-17 illustrates processing for if-then-else
constructs. A ternary “? :” operator is used in our extended relational
algebra to model this construct in a straightforward manner.

Spring ORM implicitly provides schema-specific query methods
on repository variables. Our approach converts calls to these meth-
ods to equivalent relational algebra. For instance, for the statement
in Line 9 in Figure 1, the summary we infer is “upList ↦→ upRepo”.
In cases where a query method returns a single element, summary
inference also accounts for flattening. For instance, a statement “v
= uPRepo.findById(x)” would result in a summary as depicted
below:

v_id ↦→ Πid (𝜎𝑖𝑑=𝑥 uPRepo)
v_defaultPayment ↦→ ΠdefaultPayment (𝜎𝑖𝑑=𝑥 uPRepo)
v_type ↦→ Πtype (𝜎𝑖𝑑=𝑥 uPRepo)

Spring ORM supports certain kinds of annotations to intro-
duce fields within entity declarations. These annotated fields
do not correspond to columns in the underlying table, but are
pointers that explicitly encode relationships with other entities.
Our summary inference approach for query method calls ac-
counts for these as well. For instance, consider a field declared
as “@OneToOne UserBilling uBilling” within the entity class
‘UserPayment’. Say name is a primitive column in the ‘userBilling’
table, and say paymentId is another column in the ‘userBilling’
table and is a foreign key into the ‘userPayment’ table. Say the
controller had a statement “payment = uPRepo.findById(x)”.
Our flattening approach treats OneToOne and ManyToOne fields
similar to pointers, and flattens through them. Therefore, the
statement above would yield a set of statements, one of which
would be “payment_uBilling_name = uPRepo.findById(x)”. Our
approach generates a summary for this statement in which
payment_uBilling_name is mapped to the relational algebra
expression Πname (ΠCols (userBilling) (𝜎id=paymentId (𝜎id=x (uPRepo) ×
userBilling))). In a similar manner, we handle ‘OneToMany’ and
‘ManyToMany’ annotations as well.

A set of formal inference rules to summarize query-method call-
ing statements is given in Figure 5. The bottommost two rules are
the root rules. In these rules’ consequents, the part before the ‘⊢’ is
the (flattened) statement that needs to be summarized, with accp
being a flattened access path. relExpFor is a subroutine whose im-
plementation is not shown; it is assumed to return the relational
algebra expression corresponding to its argument. The ‘↠’ deriva-
tions are defined using the first three rules in Figure 5. 𝑒1 Z 𝑒2 is a
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Line # Summary
12 uPIter_defaultPayment ↦→ true
13 uPRepo ↦→ save(uPRepo, (uPIter_id, uPIter_defaultPayment, uPIter_type))
12-13 uPIter_defaultPayment ↦→ true

uPRepo ↦→ save(uPRepo, (uPIter_id, true, uPIter_type))
15-16 uPIter_defaultPayment ↦→ false

uPRepo ↦→ save(uPRepo, (uPIter_id, false, uPIter_type))
11-17 uPIter_defaultPayment ↦→ (uPIter_id = defPayId) ? true : false

uPRepo ↦→ (uPIter_id = defPayId) ?
save(uPRepo, (uPIter_id, true, uPIter_type)) : save(uPRepo, (uPIter_id, false, uPIter_type))

10-18 uPRepo ↦→ (uPRepo - uPList) ∪ Πid,true,type (𝜎id=defPayId uPList) ∪ Πid,false,type (𝜎id≠defPayId uPList)
uPList ↦→ Πid,(id=defPayId)?true:false,type 𝑢𝑃𝐿𝑖𝑠𝑡

9-18 uPRepo ↦→ Πid,true,type (𝜎id=defPayId uPRepo) ∪ Πid,false,type (𝜎id≠defPayId uPRepo)
uPList ↦→ Πid,(id=defPayId)?true:false,type 𝑢𝑃𝑅𝑒𝑝𝑜

Figure 4: Illustration of summary construction

𝑓2 is a *ToOne field
⟨𝑓2_𝑓3_𝑓4 ...,ΠCols (Type (𝑓2)) (relExp Z Type(𝑓2))⟩ ↠ relExp1

⟨𝑓1_𝑓2_𝑓3_𝑓4 ..., relExp⟩ ↠ relExp1

𝑓2 is a *ToMany field

⟨𝑓1_𝑓2, relExp⟩ ↠ ΠCols (TypeElement (𝑓2)) (relExp Z Type(𝑓2))

𝑓2 is a primitive field

⟨𝑓1_𝑓2, relExp⟩ ↠ Π𝑓2 (relExp)

⟨accp, relExpFor (repo.findByCol(X ))⟩ ↠ relExp

accp = repo.findByCol(X) ⊢ {(accp, relExp)}

accp = repo.findAll() ⊢ {(accp, relExpFor (repo.findAll()))}

Figure 5: Inference rules for query-method calls

join operation whose join predicate equates the foreign-key field
in 𝑒2 with the primary key field field in 𝑒1.

2.3 Summary inference for loops
In this part of the paper we discuss how we infer the summary of
a loop after having inferred the summary of the body of the loop
using pattern-based rewriting rules.

In Figure 2, for simplicity of presentation, the LHS of the rewrite
rule was shown as if it was a syntactic or code-based pattern.
However, in our system, actually, any rewrite rule 𝑖 is of the form
LHS𝑖 ⇒ RHS𝑖 , where both LHS𝑖 and RHS𝑖 are relational algebra
expressions. Both these expressions are patterns, and are hence
allowed to have meta variables, also known as pattern variables, at
leaf (i.e., operand) positions.

We made the important choice mentioned above for a couple
of reasons. Firstly, as our summary inference approach proceeds
bottom-up in the AST, the relational algebra expression for a loop’s
body would anyway be available by the time the loop’s summary
is to be inferred. Secondly, relational algebra summaries are free
of internal data flow through local variables, and are hence more
declarative. Thus, a pattern based on relational algebra is more
likely to successfully match a variety of different loop structures
that have the same semantics.

Algorithm 1 SummarizeLoop(body, coll, itr)
1: summ = ∅
2: for all variables 𝑣 in the domain of body, excluding variables

of the form itr_f do
3: Let expr1 = body(𝑣)
4: if exists a rewrite rule LHS𝑖 ⇒ RHS𝑖 such that match(LHS𝑖 ,

expr1, coll, itr, 𝑣) = v2e and v2e ≠ ⊥ then
5: Let expr2 be equal to subst(RHS𝑖 , v2e), and expr3 be equal

to expr2 with each itr_fi replaced with coll.𝑓𝑖 .
6: Add 𝑣 → expr3 to summ
7: else
8: Add 𝑣 → Unknown to summ
9: end if
10: end for
11: if any itr_fi is in the domain of body then
12: Let tuple be the tuple formed from the expressions that the

variables of the form itr_fi are mapped to in body. Add coll →
Πtuple (coll) to summ.

13: end if
14: return summ

The approach for summarizing a loop is depicted in Algorithm 1.
The argument body is the summary of the loop body alone, obtained
previously as part of the bottom-up traversal of the AST. In other
words, it is a mapping from each variable that is modified within
the loop body to the relational-algebra summary of the value that
is assigned to the variable in the loop body (i.e., intuitively, in
a single iteration of the loop). The argument coll is the name of
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the collection variable being iterated over in the loop, while the
argument itr is the name of the iterator variable. For the loop in
Figure 1, body is depicted next to Lines 11-17 in Figure 4, coll is
‘uPList’ and itr is ‘uPIter’. summ is the summary of the entire loop,
to be returned at the end.

The loop in Lines 2-10 in Algorithm 1 summarizes each variable
𝑣 one after the other. expr1 is the summary of the value assigned
to 𝑣 in the loop’s body. The function match is used to check if
the LHS of a rewrite rule matches expr1. The function checks the
following two conditions: (i) LHS𝑖 and expr1 are isomorphic as
trees, not counting the operand positions in LHS𝑖 where there
are meta variables, and (ii) at every position where the special
meta variables ⟨coll⟩/⟨itr⟩/⟨lvar⟩ occur in LHS𝑖 , the values of the
arguments coll/itr/𝑣 , respectively, occur in expr1. If the check passes,
match returns a mapping v2e, which maps every meta-variable
occurring in LHS𝑖 to its matching sub-expression in expr1. v2e
also maps ⟨coll⟩/⟨itr⟩/⟨lvar⟩ to the values in arguments coll/itr/𝑣 ,
respectively. match returns ⊥ if the conditions named above do
not hold. If the LHS’s of multiple rules match expr1, Line 4 in the
algorithm picks the earliest matching rule.

Lines 5-6 in the algorithm produce the summary of 𝑣 as far
the full loop is concerned; basically, this summary accounts for
the cumulative updates done to 𝑣 across all iterations of the loop.
The summary is produced by the function subst, which simply
replaces every occurrence of any meta variable𝑤 in RHS𝑖 with the
corresponding subexpression v2e(𝑤). Each occurrence of itr_fi is
finally replacedwith coll.𝑓𝑖 , as itr_fi is a local variable and represents
the value of the field 𝑓𝑖 in a single iteration.

2.3.1 Illustrations. Part (A) of Figure 6 illustrates the summariza-
tion of the loop in Figure 1. Row (b) depicts the LHS of a rewriting
rule, while Row (c) depicts the RHS. (These correspond to the LHS-
RHS shown informally as a code-pattern in Figure 2.) The variable
whose summary is being computed (𝑣 in Algorithm 1) is ‘uPRepo’.
Row (a) depicts body(uPRepo), which is the summary of ‘uPRepo’
as inferred from the loop’s body. The mapping v2e is represented
by the underbraces. Row (d) depicts the result of applying subst
on the RHS pattern in Row (c) using the mapping v2e referred to
above. This result is the final relational expression for ‘uPRepo’
in the loop’s summary (the same information is present against
Lines 10-18 in Figure 4). Intuitively, this rewrite rule is meant to
summarize the action of saving different tuples into a repository
across different iterations of a loop.

Lines 12-13 in Algorithm 1 basically produce the summary for
‘uPList’ that is shown against Lines 10-18 in Figure 4).

Rows (b) and (c) in Part (B) of Figure 6 depict another sample
rewrite rule. This rule is meant to summarize the action of delet-
ing specific tuples from a repository in each iteration of the loop.
Rows (a) and (d) show the pre-computed loop-body-summary and
the full-loop-summary inferred using the rewrite rule, respectively,
for the example loop that appears to the left in Part (B).

Finally, Part (C) follows a similar format as Part (B), and illustrates
a another sample rule, which infers a sum-aggregation operation
over a field of all entities in a collection. This rule can be generalized
easily to account for the situation where only certain entities in the
collection are selected for the aggregation.

2.4 Capabilities and limitations
Our approach handles nested loops naturally. We handle precisely
only loops that iterate over collections, as ORM programs primarily
use this type of loop. For other types of loops we conservativelymap
modified variables to ‘Unknown’ values. Our approach performs
inter-procedural analysis basically by simulating inlining. This
technique may not terminate in the presence of recursion, but
we have not come across recursion in application code in Spring
benchmarks that we have seen. The two limitations just mentioned
are also shared by closely related work [2].

In our approach, the summary of a controller not only includes
summaries for updated repositories, but also summaries for model
attributes, which are the return values sent by controllers to views.

Our approach is sound with regard to loop-free code fragments.
Soundness means that any property that is implied by a summary
is also satisfied by the code. Our approach is also complete with
regard to loop-free code fragments, in the sense that if relational
algebra suffices to capture the full semantics of a fragment of code,
our approach will infer such a summary. Both these claims are
conditional on no-aliasing between variables and on a sufficient
bound for flattening.

A limitation of our approach is that if a variable or access path
refers to a collection of entities, then the summary of this variable
or access path will be a ‘𝜎’ expression that contains information
about primitive fields but contains no information about Spring-
annotation fields within these entities. Capturing such information
in general needs nested relational algebra. Currently our inferred
summaries as well user-provided properties are restricted to flat
relational algebra (in which only primitive fields in collections are
referred to).

A final point to note is that in the presence of loops our approach
does not have absolute soundness or completeness. Currently it
is up to developers to ensure that the rewrite rules they specify
are sound, i.e., semantically valid. Also, the extent to which loops
are summarized precisely depends on the sufficiency of the set of
rewrite rules provided.

3 CHECKING PROPERTIES OF TRACES
Generally, many interesting properties of controllers are in terms
of their incoming and outgoing database states (in addition to the
input arguments and returned model attributes). For instance, in an
open-source benchmark called ‘PetClinic’ [14] that we used in our
evaluations, there is a controller named ‘processCreationForm’. It
accepts a tuple of (primitive typed) input arguments corresponding
to an ‘Owner’ entity, such as (id, lastName, firstName, city), and
saves this tuple as an entity into a repository called ‘owRepo’. Say
the property that the developer has in mind is to check if this
controller indeed saves the given tuple into persistent state. To
write this as a single-controller property, the developer would first
need to guess that this controller would be saving its argument
tuple into some database table, and would secondly need to know
the name of repository it is saving into. We also refer the reader
to the sample property in Equation (2) in Section 1.2, which has a
similar flavor, and is in terms of the updated state of the repository
‘uPRepo’.
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(A)

(a) (uPIter_id = defPayId) ?︸                         ︷︷                         ︸ save(uPRepo, (uPIter_id, true, uPIter_type)) :︸                                                    ︷︷                                                    ︸ save(uPRepo, (uPIter_id, false, uPIter_type))︸                                                   ︷︷                                                   ︸
(b) ⟨cond⟩ ? save(⟨lvar⟩, ⟨tuple1⟩) : save(⟨lvar⟩, ⟨tuple2⟩)
(c) (⟨lvar⟩ − ⟨coll⟩) ∪ Π ⟨tuple1 ⟩ (𝜎 ⟨cond ⟩ ⟨coll⟩) ∪ Π ⟨tuple2 ⟩ (𝜎¬⟨cond ⟩ ⟨coll⟩)

(d)
︷                    ︸︸                    ︷
(uPRepo − uPList) ∪

︷                                                        ︸︸                                                        ︷
Π uPList .id, true,

uPList .type
(𝜎uPList .id=defPayId ⟨uPList⟩) ∪

︷                                                    ︸︸                                                    ︷
Π uPList .id, false,

uPList .type
(𝜎uPList .id≠defPayId ⟨uPList⟩)

(B)

for (UType uItr: uColl) {
if (uItr.column1 = k) {
uRepo.deleteById(uItr.getId());
}
}

(a) (uItr_column1 = 𝑘) ?︸                     ︷︷                     ︸ uRepo : uRepo − 𝜎uRepo.id=uItr_id (uRepo)︸                                                ︷︷                                                ︸
(b) ⟨cond⟩ ? ⟨lvar⟩ : ⟨lvar⟩ − 𝜎 ⟨lvar ⟩. ⟨f ⟩ = ⟨exr ⟩ (⟨lvar⟩)
(c) ⟨lvar⟩ − 𝜎 ⟨lvar ⟩. ⟨f ⟩∈Π⟨expr⟩ (𝜎⟨cond⟩ ( ⟨coll⟩)) (⟨lvar⟩)

(d)
︷   ︸︸   ︷
uRepo −

︷                                                       ︸︸                                                       ︷
𝜎uRepo.id∈ΠuColl.id (𝜎 (uColl.column1=𝑘 ) (uColl)) (uRepo)

(C)

for (Long pItr: pIds) {
PType product = pRepo.findById(pItr);
total = total + product.price;
}

(a) total +︸ ︷︷ ︸ ΠpRepo.price (𝜎pRepo.id=pItr (pRepo))︸                                       ︷︷                                       ︸
(b) ⟨lvar⟩ + Π ⟨repo⟩. ⟨f ⟩ (𝜎 ⟨repo⟩. ⟨g⟩=⟨itr ⟩ (⟨repo⟩))
(c) ⟨lvar⟩ + 𝐺sum( ⟨repo⟩. ⟨f ⟩) ( 𝜎 ⟨repo⟩. ⟨g⟩∈⟨coll⟩ (⟨repo⟩))

(d)
︷                            ︸︸                            ︷
total + 𝐺sum(pRepo.price) (

︷                      ︸︸                      ︷
𝜎pRepo.id∈pIds (pRepo))

Figure 6: Sample loop-summarization patterns

Our observation in this section is that awareness of the database
schema and of the access relationships between controllers and
database tables may become unnecessary if properties are specified
in a different way – purely in terms of argument and return-value
behavior of pairs of related controllers. For instance, in the PetClinic
benchmark there is another controller named ‘processFindForm’,
which takes a lastName as argument, and returns (to a view) via a
model attribute the set of all Owner entities with the given lastName.
If one is aware of this controller and its I/O behavior as stated above,
one could write more natural (i.e., database independent) version of
the single-controller property mentioned in the previous paragraph
as follows:

If processCreationForm is invoked in a trace and then processFind-
Form is invoked next, if the lastName given to processFindForm is
equal to the lastName given to processCreationForm, then one of the
‘Owner’ entities returned by processFindForm agrees in all its fields
with the tuple of argument values given to processCreationForm.

3.1 Approach
Definition 3.1 (Trace property). A trace property wrt two con-

trollers 𝐶𝐴 and 𝐶𝐵 is a predicate 𝜓 (𝑖 𝑓 , 𝑜 𝑓 , 𝑖𝑙 , 𝑜𝑙 ) on the variables
𝑖 𝑓 , 𝑜 𝑓 , 𝑖𝑙 , 𝑜𝑙 , where 𝑖 𝑓 represents the tuple of input arguments to𝐶𝐴 ,
𝑜 𝑓 is the tuple of return values (i.e., model attributes) from𝐶𝐴 , and
𝑖𝑙 and 𝑜𝑙 are analogously defined and pertain to 𝐶𝐵 .

Definition 3.2 (Trace satisfaction). A trace 𝑡 (i.e., a run of the
application) is said to satisfy a trace property 𝜓 (𝑖 𝑓 , 𝑜 𝑓 , 𝑖𝑙 , 𝑜𝑙 ) wrt
two given controllers 𝐶𝐴 and 𝐶𝐵 and wrt a given set of controllers
notBetween if the following condition holds: If 𝑡 invokes 𝐶𝐴 at some
point with actual arguments 𝑖𝑎 and receives actual return values 𝑜𝑎 ,
and 𝑡 invokes 𝐶𝐵 at some later point with actual arguments 𝑖𝑏 and
receives actual values 𝑜𝑏 , and 𝑡 does not visit any controller in the set
notBetween between the aforementioned visits to 𝐶𝐴 and 𝐶𝐵 , then
𝜓 (𝑖𝑎, 𝑜𝑎, 𝑖𝑏 , 𝑜𝑏 ) holds.

Our problem statement is: Given two controllers 𝐶𝐴 and 𝐶𝐵

and a set of controllers notBetween and a trace-property𝜓 , check if
all traces of the application satisfy𝜓 .

Note that we have generalized our problem statement, in that𝐶𝐴
and𝐶𝐵 need not be invoked back to back. This generalization gives
a stronger guarantee about the application, as it reasons across a
potentially infinite set of traces of unbounded lengths.

We use the notation 𝐶 (𝑑𝑖 , 𝑑𝑜 , 𝑖𝑎, 𝑜𝑎) to denote the summary of a
given controller 𝐶 as inferred by the approach of Section 2. 𝑑𝑖 and
𝑑𝑜 are variables in the summary that denote the incoming data base
state and outgoing data base state, respectively, while 𝑖𝑎 and 𝑜𝑎
denote the input arguments to and return values from the controller,
respectively.

The approach we propose for our problem is basically to check
the following two properties using any relational algebra solver.

∀𝑑1, 𝑑2, 𝑑3, 𝑖𝐴, 𝑖𝐵, 𝑜𝐴, 𝑜𝐵
𝐶𝐴 (𝑑1, 𝑑2, 𝑖𝐴, 𝑜𝐴) ∧𝐶𝐵 (𝑑2, 𝑑3, 𝑖𝐵, 𝑜𝐵)

⇒ 𝜓 (𝑖𝐴, 𝑜𝐴, 𝑖𝐵, 𝑜𝐵)
(A)

Intuitively, Property (A) above checks that𝜓 is satisfiedwhenever
controller 𝐶𝐵 is invoked directly after 𝐶𝐴 in any trace.

∀𝐶𝑋 ∉ notBetween

∀𝑑1, 𝑑2, 𝑑3, 𝑖𝐴, 𝑜𝐴, 𝑖𝐵, 𝑜𝐵, 𝑑𝑋 , 𝑖𝑋 , 𝑜𝑋 , 𝑖4, 𝑜4

(
𝐶𝐵 (𝑑1, 𝑑2, 𝑖𝐵, 𝑜𝐵) ⇒ 𝜓 (𝑖𝐴, 𝑜𝐴, 𝑖𝐵, 𝑜𝐵)

)
=⇒

𝐶𝑋 (𝑑1, 𝑑𝑋 , 𝑖𝑋 , 𝑜𝑋 )
∧

𝐶𝐵 (𝑑𝑋 , 𝑑3, 𝑖4, 𝑜4)

 ⇒ 𝜓 (𝑖𝐴, 𝑜𝐴, 𝑖4, 𝑜4)


(I)

Property (I) is actually a template for a set of properties, one for
every𝐶𝑋 ∉ notBetween. The property above basically checks that if
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a trace ends at 𝐶𝐵 and the trace satisfies𝜓 , then upon inserting an
invocation to 𝐶𝑋 just before 𝐶𝐵 the resultant trace also satisfies𝜓 .
That is, an invocation to𝐶𝑋 does not interfere with the satisfaction
of the property.

Intuitively, the approach solves our problem in a sound manner
for the following reason. Property (A) above is the base case, and
discharges correctness for traces that don’t visit any controller
between𝐶𝐴 and𝐶𝐵 . Property (I) is the inductive case, and basically
implies that any sequence of visits to controllers that are not in
notBetween can be inserted between𝐶𝐴 and𝐶𝐵 without interfering
with the property. A detailed proof of soundness is included in a
supplementary document other-details.pdf [7] associated with this
paper.

3.1.1 Illustration. If 𝐶𝑅 denotes the controller processCreation-
Form and 𝐶𝐹 denotes processFindForm, then the inferred sum-
maries would be as follows:
𝐶𝑅 (owRepo, owRepo’, (id, lastName, firstName, city), _) ≡

owRepo’ = save(owRepo, (id, lastName, firstName, city))
𝐶𝐹 (owRepo, owRepo, lastNameX, ret)) ≡

ret = 𝜎lastNameX=owRepo.lastName (owRepo)
Note, we use owRepo’ to refer to the outgoing state of this repos-
itory in order to treat the summary as a formula rather than as a
mapping.

The trace property given by the developer could be:
𝜓 ((id, lastName, firstName, city), _, lastNameX, ret) ≡

(lastName = lastNameX )⇒
(id, firstName, lastName, city) ∈ ret
The developer may indicate notBetween to contain all controllers

that they believe do not delete or update any ‘Owner’ entity in the
persistent state.

3.2 Capabilities and limitations
To our knowledge, our proposal above is the first one to use an
efficient, inductive approach to check properties of all traces in
a web application without bounding the lengths of traces. The
number of properties checked by the approach using calls to the
solver is linear in the number of controllers in the application.

Our approach is sound if the individual controller summaries
are sound; i.e., the approach will not declare a property that does
not hold as holding. The approach can suffer from false positives.
The fundamental cause is that the approach ignores the effects due
to views, which can restrict the order in which controllers may
be invoked, and can also restrict what data flows in as arguments
to a controller. Currently, the given property 𝜓 can refer to two
controllers 𝐶𝐴 and 𝐶𝐵 . An extension to more than two controllers
(but a fixed number of them) is conceptually straightforward, and
provided in our supplementary document other-details.pdf [7].

4 IMPLEMENTATION
We have implemented our controller summarization approach (de-
scribed in Section 2) as a prototype tool called ORMInfer. The tool
is implemented using the Soot bytecode analysis framework [26].
Our summary-construction code is based on the DBridge [5] code,
with many additional features added (which are summarized in
Section 6). The default flattening length bound in our tool (see
Section 2.1) is three (i.e., three underscores). We have identified a

subset of commonly used library functions, and translated them
directly into relational algebra during summary inference. Any
other library calls, if encountered, are treated, in the interest of
efficiency, as if they return arbitrary values.

One of the major new components in our implementation over
DBridge is the one that accepts pattern-based rewrite rules, and
applies them during analysis time. Our tool provides a simple cus-
tom DSL (domain specific language) for specifying these rewrite
rules. For instance, for a simplified version of the rewrite rule in
Figure 6(A), the corresponding rule in the DSL would be as follows:

(loop (bodyexpr (? <cond> (save <lvar> <tuple1>)
(save <lvar> <tuple2>))) <lvar> <coll> <itr>)

(union (- <lvar> <coll>)
(union (pi (select <coll> <cond>) <tuple1>)

(pi (select <coll> (= <cond> 0)) <tuple2>)))

The DSL uses a Lisp-like prefix notation, with keywords/operators
preceding operands. The first two lines above encode the LHS;
actually, the sole operand of bodyexpr keyword represents the LHS
pattern. The three names towards the end of the loop construct are
the names of the special meta variables introduced in Section 2.3
(these meta variable names are not fixed, and can be chosen by the
pattern specifier). The last three lines above represent the RHS of
the pattern. We include five specific rewrite rules with the tool, and
more can be added by users. We provide these five patterns in the
supplementary document other-details.pdf [7].

We currently use Alloy [18] as our backend tool for checking
properties. To this end, we have implemented a postpass that takes
a relational algebra summary of a controller (in memory) and trans-
lates it into an Alloy model. Since Alloy itself is based on relational
algebra, the translation is defined quite naturally. Every variable
in the domain of a controller’s summary (i.e., updated repositories,
assigned model attributes) becomes a “sig” in the Alloy model, and
the model contains facts that are translations of the relational alge-
bra expressions that the variables are mapped to. Assertions can
subsequently be added to the Alloy model by users. The assertions
can refer to the “sig”s mentioned above, and can be checked by the
Alloy tool. Currently, we abstract away any scalar arithmetic that
may be present in the summary and replace these subexpressions
with unconstrained values.

We have also implemented the trace-property checker described
in Section 3 as a toolMultiORM. This tool uses the relational algebra
summaries inferred by ORMInfer for the individual controllers to
emit the Property (A) and a set of Property (I)’s in Alloy form for
each given trace property.

5 EMPIRICAL EVALUATION
This section describes the initial empirical evaluations we have
performed using our prototype tools to evaluate their usefulness,
precision, and efficiency.

5.1 Benchmarks and Properties
We selected six open-source benchmarks for our evaluations. Key
statistics about the benchmarks are summarized in Table 1. Our
key criteria for choosing a benchmark were that it should use
Spring ORM features for data access, and should not use third-party
libraries or frameworks extensively. Many of the benchmarks in
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Benchmark Cont- Ent- Java Github URL
rollers ities LOC Stars

PetClinic 17 6 2762 4955 [14]
Spring Boot Blog 14 4 1204 131 [12]
Employee Directory 5 1 375 0 [10]
Imagine 22 4 3538 17 [11]
Spring Coffee Shop 6 3 372 7 [13]
Bookstore 24 12 2892 0 [9]

Table 1: Benchmark statistics

our list were created by the Spring community to illustrate the ideal
usage of Spring features to build realistic applications.

Our next step was to obtain a set of properties for evaluation.
Since the benchmarks come with almost no assertions in the code,
we approached volunteers we knew and asked them to understand
the benchmarks and provide us properties (or specifications) for us
to check. These volunteers were either PhD students or post-docs,
were experienced in programming, and had good familiarity with
notions such as property checking, first-order logic, relational alge-
bra, etc. However, they were unfamiliar with our work and with
the abilities of our approach. There were a total of four volunteers.
We requested each volunteer to supply properties for three bench-
marks, so each benchmark had properties from two volunteers. We
asked each volunteer to give us single-controller properties, e.g.,
similar to Property (1) in Section 1.1, as well as trace properties, e.g.,
similar to the ‘𝜓 ’ in Section 3.1.1, for all their benchmarks.

In order to make the work of the volunteers easier, we gave
them various resources, such as: (i) database schemas, to enable
them to write single-controller properties, (ii) hosted instances
of the applications, to enable them to use the applications and
come to understand them well, and (iii) a few sample properties
(of both types). The volunteers did not look at the source codes
of the benchmarks. An important guideline given to them was
to write properties based on expected behavior from the end-user
perspective, even if any bugs in the applications resulted in non-
expected behavior.

We asked the volunteers to give us each property in English
wording. We decided that asking them to formally state the proper-
ties might prove too burdensome and might disincentivize them. In
the remainder of this section we present the results from our evalu-
ations. We have made available a virtual machine image [7] that
contains our tools, scripts to run them, as well as inputs necessary
to reproduce all results given in this section.

5.2 Performance on single-controller
properties

We first went through the given single-controller properties to
translate them manually to Alloy assertions using our best judg-
ment. We had to “reject” 14 of the given properties – four because
they were too vague, five because they were trivially implied by
the constraints of the schema, and the remaining five for one-off
reasons that would need more space to explain. We also ignored
“repeat” properties – i.e., essentially duplicates of properties pro-
vided by other volunteers. What remained were 59 properties. We

Category Single Trace
True Neg. 44 28
True Pos. 2 7
False Pos. 1 7
Unexpressed 12 4
TOTAL: 59 46

Table 2: Usefulness and precision results

inferred summaries in Alloy form for the controllers to which these
properties pertained using ORMInfer, and then used the Alloy tool
to check if the summaries implied the properties. The results are
summarized in the “Single” column of Table 2.

A negative means the property was found to pass by the tool (i.e.,
the Alloy assertion did not fail), while a positive is the converse.
True means the tool’s decision agrees with our understanding of
the application’s behavior, while a False means the converse. “Unex-
pressed” means that although the summary (and its corresponding
Alloy model) were generated by the tool, the summary did not
contain certain elements that are necessary to translate the prop-
erty into an Alloy assertion. Note, we did not notice any cases of
unsoundness, and hence there is no row titled “False Negative”.

Overall, the performance of our approach is very good. 46/59
properties (78%) are in the True categories. Note that 44/59 proper-
ties hold. Two properties (which were on the same controller) actu-
ally did not hold: the volunteer expected this controller, which saved
a given ‘Employee’ entity into a database, to check for uniqueness
of the given email ID and non-emptyness of other fields. However,
it was not doing these checks.

There was only one false positive. It was due to constraints on
incoming arguments imposed by preceding views, which were not
encoded in the summaries. 7/12 of the “unexpressed” assertions
were not expressible because the summary had no information on
collection-typed fields which were themselves inside collections;
as discussed in Section 2.4, one needs nested relational algebra to
represent such summaries. The remaining 5 unexpressed properties
were due to other one-off reasons that cannot be explained due to
space constraints.

Our approach turns out to be very efficient. On four of the six
benchmarks, the maximum analysis time per controller, including
summary inference time and assertion checking time using Alloy,
was 3 seconds. With ‘Bookstore’ the maximum was 10 seconds and
average was 3 seconds, while with ‘Imagine’ the maximum time
was 104 seconds and average was 17 seconds. In our all runs of the
Alloy tool we used a universe of 20 elements.

5.3 Performance on trace properties
We followed a similar process as above, beginning with a manual
translation of the given English-language properties into Alloy as-
sertions. In this case, we had to “reject” 17 of the given properties.
The prevalent reason (accounting for 12/17 properties) was that
the property was referring to three different controllers that the
trace had to go through. The current limit of our tool is two con-
trollers (see Section 3.2), although in principle it is not difficult to
extend our tool to process 3-controller properties. After ignoring
“repeat” properties as well, there remained 46 properties that we
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handled using our tool. We used our MultiORM tool to generate
Alloy facts and assertions corresponding to the Property (A) and
the set of Property (I)’s for each given trace property, and checked
all these generated assertions using the Alloy tool. The results are
summarized in the “Trace” column of Table 2.

Overall, the performance of our approach is very good. 35/46
properties (76%) are in the True categories. Seven of the properties
failed as per the tool, and truly did not hold in our opinion. Our
manual analysis revealed that all these were actually due to the
result of oversight or misunderstanding by the volunteers. A preva-
lent reason was volunteers not putting all the controllers that can
indeed be expected to affect the return value from 𝐶𝐵 in the set
notBetween. Note that if a human subject expects a property to hold
and it actually does not hold and the tool reports it as not hold-
ing, then it really is a true positive irrespective of the fact that the
subject’s expectation was due to a limitation in their understanding.

There are relatively larger number of false positives (7/46) in
this part of our evaluation. The reasons are varied, and hard to
present in detail. Imprecise handling of certain complex Spring
idioms and library calls account for many of these cases. Two of
the “Unexpressed” cases were because a field of a result entity was
not present in the summary due to its dependence on arithmetic,
while two were due to the need for nested relational algebra.

The average time spent by Alloy to check a trace property was 5
seconds, while the maximum was 54 seconds.

5.4 Ability to find bugs
In this part of our study we wish to answer a natural question,
namely, whether a reasonably large set of assertions if written
apriori would be useful in detecting bugs, including bugs that may
get introduced in the future. Since our benchmarks did not possess
many bugs at all, we decided to seed mutations in our benchmarks.
This is a common practice by researchers who wish to evaluate bug-
detection approaches. For this, we used the automated production-
quality tool PIT (https://pitest.org).

Since this study involved some time-consuming effort, we fo-
cused our attention on two benchmarks, namely, PetClinic and
Bookstore. From our single-controller study (Section 5.2), we iden-
tified all 16 passing (i.e., True Negative) assertions, and applied PIT
on the controllers tested by these assertions as well as their callees.
PIT suggested a total of 33 separate mutations. We applied these
mutations one by one in the benchmark codes, and ran our tool
separately on each mutated version of the benchmark. 6 of the
mutations could not be handled by our tool, because there is cur-
rrently a limitation in the tool that prevents it from analyzing callee
methods that contain an explicit “return null” statement (these
statements got introduced due to the mutations). Of the 27 mutated
versions that were analyzed by our tool, 15 caused at least one of
the provided assertions to fail (i.e., 15 were “killed”).

Our takeaway is that a set of general-purpose assertions written
apriori without any regard to any specific bugs still has the potential
to find a significant proportion of bugs that could be introduced in
the future (based on the 56% kill rate in the evaluation above).

5.5 Comparison with a baseline
Finally, we wished to comparatively evaluate our approach with a
baseline tool. There are no comparable controller summarization
tools for Java that we are aware of. The closest matching family of
tools is symbolic execution tools, as they can automatically check
assertions. We decided to use the widely-used tool Java Pathfinder
(JPF), https://github.com/javapathfinder. JPF is not directly meant
to test Spring controllers, so we made some manual changes to
the benchmarks to make them amenable to analysis by JPF. The
main changes were to initialize the database tables with tuples
that contained symbolic values in order to enhance the coverage of
JPF, to call each controller like a normal method, and to write the
assertions in Java.

Since this study also needed significant manual effort, we decided
to focus only on the 16 assertions mentioned in Section 5.4 above.
JPF also found all 16 of these assertions to pass. It took 7 seconds
for one of the assertions, and around 1 second each for the rest. As
JPF explores execution traces in-depth, we expect it to also declare
as passing most of our false-positive assertions.

In other words, JPF is efficient and effective at checking asser-
tions, provided one puts in the manual work as discussed above.
However, the utility of our approach is not just in checking asser-
tions, but in producing general-purpose summaries of controllers
that are amenable to various different downstream analyses. For
instance, the trace-checking application was easily enabled using
our summaries. With JPF, only a finite number of traces, of bounded
lengths, can be checked.

5.6 Manual intervention during
experimentation

It is to be noted that in the studies reported above involving our
tool, we manually added some facts (i.e., constraints) to the Alloy
models of some of the controllers to improve precision. The con-
straints were on incoming arguments to the controllers, and were
meant to either encode knowledge about these arguments derived
from preceding views or controllers, or prune out paths within
the controller that throw exceptions on ill-formed arguments, etc.
Eighteen of the 44 true negative properties in the single-controller
experiments and nine of the 28 true negative properties in the trace
property experiments needed such manually added constraints. We
believe that in real usage, developers would be willing to add such
constraints in order to get maximum benefit from the tool.

A limitation of our currently implemented Alloy generation
postpass is that “sig”s and fields are emitted only for those parts of
the database schema that are actually referred to in the controller.
However, assertions sometimes need to refer to schema elements
that are not referred to in the controller. This limitation can be
removed from the tool in the future, but for now we manually add
such required information from the schema into the Alloy models
on demand.

Finally, for the trace-checking study (Section 5.3) alone, we mod-
ified the benchmarks to simplify two specific idioms that can ob-
struct the precision of our analysis: Replaced substring matching
using “LIKE” with equality in embedded SQL wherever it is present,
and replaced calls to Spring that return the currently logged in
username with a constant username.

https://pitest.org
https://github.com/javapathfinder
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6 RELATEDWORK
The closest related work to our work is that by Bocić and Bultan [2].
Their approach actually infers a verification condition for checking
a property for a controller, but it can be seen as inferring a sum-
mary as well. Their summary is represented in FOL (First Order
Logic). They use FOL without scalars or arithmetic, so arithmetic
operations are abstracted away, as are all conditionals. This results
in imprecision. Our core summary inference approach (described
in Section 2) is based on relational algebra, and precisely represents
scalars, arithmetic, conditionals, as well as aggregations over loops.
Our current translation of the summaries to Alloy does result in ab-
stracting away of arithmetic, but non-arithmetic based conditionals
(such as the one in the running example in Figure 1) are retained,
and such conditionals did play a major role in enhancing precision
as per our evaluations.

The technique employed by their approach to summarize loops
is fully automated, and does not use patterns. However, their ap-
proach is efficient and terminates in practice only when there are
no loop-carried data flows [3]. With patterns we do not have this
restriction, and we are able to summarize precisely loops with loop-
carried flows, e.g., ones that add up values from a collection. Also,
our approach emits its summaries in Alloy, which is both human
readable and amenable to a variety of downstream analysis-based
applications.

It was not possible to directly apply their tool on our bench-
marks, as their work targets Ruby on Rails applications. They have
reported in their paper a significantly lower rate of false positives
and “unexpressed” properties than we do. However, it appears that
their properties were written by the authors themselves, whereas
our properties were provided by volunteers who were not involved
in our work. We studied the ten loops that occur across our six
benchmarks, and found that our approach infers precise summaries
for six of them.Whereas, upon a conceptual and manual application
of their approach on our ten loops, we found that their approach
would be able to infer a precise summary for only one of the ten
loops.

There exists a rich body of work on inferring SQL from imper-
ative code fragments using program analysis, primarily focusing
on loops that read from databases [4, 5, 15, 17, 28]. The objective
of these works is generally to optimize loops by replacing them
with SQL, which can be optimized by query optimizers. The closest
work from this body to our work is DBridge [5]. Their approach
performs bottom-up summarization of ASTs, and this aspect of
our implementation is in fact borrowed from their implementation.
They address a fixed set of looping idioms in code. We have gener-
alized this aspect of their work into a generic rewrite system for
loops based on developer specified patterns. The use of flattening to
address heap references is new in our approach, as is the handling
of various Spring-specific features. On the ten loops that we had
referred to earlier in this section, DBridge is able to infer precise
SQL for just two of them.

A key difference between the approaches mentioned above and
ours is our focus on representing all the effects of a controller,
including database updates and model attributes returned, into
the summary, and then using the summary for property-checking

purposes. A couple of recent approaches [19, 23] perform black-
box analysis of a querying code or query to infer equivalent SQL,
with the objective of program understanding, reconstruction, or
migration.

Logical methods have been used by researchers to reason about
database accessing applications. The work of Itzhaky et al. [16]
focuses on computing weakest preconditions in a simple loop-free
scripting language that allows embedded SQL. The work of Wang
et al. [27] is about proving equivalence of two database-accessing
programs written in an intermediate language.

A number of papers propose techniques for automated test-
case generation or symbolic execution to find bugs in database-
accessing applications [6, 20, 22, 25]. These approaches do not
produce summaries of code, but rather explore paths in the code in
an attempt to find bugs. The work of Athaiya et al. [1] is orthogonal
to ours, in that it focuses on inferring summaries of views rather
than controllers.

7 CONCLUSIONS AND FUTUREWORK
We presented in this paper a novel, pattern-based approach for sum-
marization of ORM controllers. We explored in-depth applications
of the inferred summaries to property checking for controllers. Our
implementation of our approach was very efficient, and showed
promising precision, with around 78% of the properties processed
with correct results. We not only checked properties of individual
controllers using our summaries, but also showed an application
or extension of these summaries to check all possible traces in the
application to see if they satisfy a specific kind of trace property.

Our work opens up several ideas for future work. We could
expand the set of controllers that get summarized precisely by in-
corporating nested relational algebra, and by incorporating features
such as “group by” and “having”. Constraints on incoming argu-
ments to controllers could be inferred from preceding views and
preceding controllers. Checking soundness (i.e., semantics preser-
vation) of a given rewrite rule could be a very interesting problem.
We could potentially make use of points-to analysis in order to
eliminate the potential for unsoundness in the current flattening
approach in the presence of aliasing. Finally, we suggest that other
applications of the inferred summaries be explored, such as auto-
mated comparison or merging of different versions of the same
controller’s code, automated test input generation, etc.
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