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Abstract—Programs that process data that reside in files are
widely used in varied domains, such as banking, healthcare, and
web-traffic analysis. Precise static analysis of these programs in
the context of software transformation and verification tasks is a
challenging problem. Our key insight is that static analysis of file-
processing programs can be made more useful if knowledge of
the input file formats of these programs is made available to the
analysis. We instantiate this idea to solve two practical problems –
specializing the code of a program to a given “restricted” input
file format, and verifying if a program “conforms” to a given
input file format. We then discuss an implementation of our
approach, and also empirical results on a set of real and realistic
programs. The results are very encouraging in the terms of both
scalability as well as precision of the approach.

I. INTRODUCTION

Processing data that resides in files or documents is a central
aspect of computing in many organizations and enterprises.
Standard file formats or document formats have been devel-
oped or evolved in various domains to facilitate storage and in-
terchange of data, e.g., in banking [13], [16], health-care [23],
enterprise-resource planning (ERP) [40], billing [19], and
web-traffic analysis [5]. The wide adoption of such standard
formats has led to extensive development of software that
reads, processes, and writes data in these formats. However,
there is a lack of tool support for developers working in
these domains that specifically targets the idioms commonly
present in file-processing programs. The primary contribution
of this paper is a family of dataflow analysis approaches, all of
which leverage a given input file format specification. These
approaches target the problems of program specialization, file-
format conformance verification, and finally, of improving the
usefulness of any existing static analysis approach.

A. Motivating Example

Our work has been motivated in particular by batch pro-
grams in the context of enterprise legacy systems. Such
programs are typically executed periodically, and in each run
process an input file that contains “transaction” records that
have accumulated since the last run. In order to motivate the
challenges in analyzing file-processing programs, we introduce
as a running example a small batch program, as well as a
sample file that it is meant to process, in Figure 1.

1) Input file format: Although our example is a toy ex-
ample, the sample file shown in Figure 1(b) adheres to a
simplified version of a real banking format [16]. Each record
is shown as a row, with fields being demarcated by vertical
lines. In this file format, the records are grouped logically into
“batches”, with each batch representing a group of “payments”
from one customer to other customers. Each batch consists
of a “header” record (value ‘HDR’ in the first field), which
contains information about the paying customer, followed by
one or more “item” or “payment” records (‘ITM’ in the first
field), which identify the recipients, followed by a “trailer”
record (‘TRL’). There are two such batches in the input file in
Figure 1(b). Figure 1(c) gives the names of the fields of header
as well as item records. Other than the first field typ, which
we have discussed above, another field of particular relevance
to our discussions is the src field in header records, which
identifies whether the paying customer is a customer of the
bank that is running the program (‘SAME’), or of a different
bank (‘DIFF’). The meanings of the other fields are explained
below part (b) and (c) of the figure.

2) The code: Figure 1(a) shows our example program,
which is in a Cobol-like syntax. The “DATA DIVISION”
contains the declarations of the variables used in the program,
including the input file buffer in-rec and output file buffer
out-rec. in-rec is basically an overlay (or union, fol-
lowing the terminology of the C language), of the two record
layouts shown in Figure 1(c). After any record is read into this
buffer the program interprets its contents using the appropriate
layout based on the value of the typ field. The output buffer
out-rec is assumed to have fields pyr, rcv, amt, as well
other fields that are not relevant to our discussions. These field
declarations have been elided in the figure for brevity.

The statements of the program appear within the
“PROCEDURE DIVISION”. The program has a main loop, in
lines 3-26. A record is read from the input file first outside the
main loop (line 2), and then once at the end of each iteration
of the loop (line 25). In each iteration the most recent record
that was read is processed according to whether it is a header
record (lines 12-19), item record (lines 4-11), or trailer record
(lines 20-21). The sole WRITE statement in the program is in
the item-record processing block (line 11), and writes out a
“processed” item record using information in the current item
record as well as in the previously seen header record. Lines 7
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DATA DIVISION. 
INPUT FILE in-file    BUFFER in-rec.  
OUTPUT FILE out-file  BUFFER out-rec.    
/a/ char  same-flag = ‘ ‘. 
/b/ digit eof-flag = 0.   
PROCEDURE DIVISION. 
/1/  OPEN in-file, out-file 
/2/  READ in-file INTO in-rec, AT END MOVE 1  TO eof-flag 
/3/  WHILE eof-flag = 0  
/4/   IF in-rec.typ = ‘ITM’ //Item record processing 
/5/      MOVE in-rec.rcv, in-rec.amt TO out-rec.rcv, out-rec.amt 
/6/      IF same-flag = ‘S‘  

/7/         Itm record processing for SAME batch header 
/8/      ELSE                

/9/         Itm record processing for DIFF batch header 
/10/     END-IF  
/11/     WRITE out-file FROM out-rec 
/12/  ELSE IF in-rec.typ ='HDR' //Header Record Processing 
/13/     MOVE in-rec.pyr TO out-rec.pyr  
/14/     IF in-rec.src = ‘SAME'  
/15/          MOVE ‘S'          TO same-flag 
/16/     ELSE  
/17/          MOVE ‘D'          TO same-flag  
/18/     END-IF  
/19/     Rest of header record processing 
/20/  ELSE IF in-rec.typ =‘TRL' //Trailer Record Processing 

/21/       Trl record processing 
/22/  ELSE  

/23/      Terminate program with error  
/24/  END-IF  
/25/  READ in-file INTO pmt-record, AT END MOVE 1  TO eof-flag 
/26/ END-WHILE.  
/27/ CLOSE in-file,out-file. 
/28/ GOBACK. 

(a)

HDR 10205 9000 SAME
ITM 10201 3000
ITM 10103 4000
ITM 18888 2000
TRL
HDR 20221 6000 DIFF
ITM 19999 2000
ITM 10234 4000
TRL

typ pyr tot src
HDR 10205 9000 SAME

typ rcv amt
ITM 10201 3000

(b) (c)
typ: main type. pyr: payer account number. tot: total batch amount.
src: source bank. rcv: receiver account number. amt: item amount.

qs qi 
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(d) (e)
Record Constraint
Type
SHdr typ = ‘HDR’∧ src = ‘SAME’
DHdr typ = ‘HDR’∧ src = ‘DIFF’
Itm typ = ‘ITM’
Trl typ = ‘TRL’

(f)

Fig. 1. (a) Example program (b) Sample input file (c) Input file record layouts (d) Specialization automaton (e) Well-formed automaton (f) Input record types

and 9 represent code (details elided) that populates certain
fields of out-rec in distinct ways depending on whether the
paying customer is from the same bank or from a different
bank.

B. Program Specialization

Program specialization is the activity of modifying a pro-
gram to restrict its functionality to a subset of all possible
inputs, as specified via a condition or constraint on the inputs
to the program. In this paper, our notion of specialization of a
program is to delete program statements that are irrelevant to
the given input constraint. Numerous applications of program
specialization have been investigated in the software engineer-
ing literature over a long period of time. For instance, it can be
used to untangle conceptually distinct but interleaved function-
alities from monolithic programs, and to support programmer
comprehension of these functionalities [2], [35].

It can be used to support (forward) conditioned program
slicing [17], [4], [11], which involves obtaining a slice of a
program from a set of selected output variables under a given
constraint on the program’s input, which has been shown to
have many applications in software maintenance and evolution
tasks.

The novel aspect of our problem is that we address spe-
cialization of file-processing programs, wherein the input
constraint is a restriction on the sequences of records that
may appear in the input file to a program. For instance, in
our running example, we might be interested only in the
parts of the program that are reached when input files contain
batches whose header records always have ‘SAME’ in the
src field; these parts constitute all the lines in the program

except lines 9, 17, and 23. Line 17 cannot be reached because
in-rec.src is constrained to only have the value ‘SAME’.
Line 9 cannot be reached, because (a) line 17, which assigns
‘D’ to same-flag is unreachable, and (b) the initialization
of same-flag to ’ ’ (before the procedure division) cannot
reach line 6, because an item record cannot be seen in the
input file before seeing a header record first.

File-format specifications, which are usually readily avail-
able because they are organization-wide or even industry-wide
standards, have been used by previous programming languages
researchers in the context of tasks such as parser and validator
generation [19], and white-box testing [21]. Our proposal is
to use a file-format specification, represented as a finite-state
input automaton, whose transitions are labeled with record
types, as a specialization constraint. In this setting, we call an
input automaton a specialization automaton. For instance, Fig-
ure 1(d) depicts a specialization automaton corresponding to
our running example. This specialization automaton describes
the (restricted) file-format wherein input files contain batches
whose header records always have ‘SAME’ in the src field.
Figure 1(f) shows the associated input record-type definitions
as dependent types [41] (for time being ignore the record type
DHdr in table). Intuitively, a record is of a certain type if the
record’s fields satisfy the constraint that constitutes the type’s
definition. Thus, the first record in the file in Figure 1(b) is of
type SHdr, the second record in this file is of type Itm, etc.

A key observation we make is the need for an automaton-
like specification of the constraint, which distinguishes our
work from previous program specialization approaches, which
primarily target programs that accept a fixed-size input at the
beginning of the program. For instance, in the specialization
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scenario mentioned above, it does not suffice to say that the
input file contains only Itm, Trl, and SHdr records (in any
order). The constraint that an SHdr record precedes any Itm
record also needs to be captured, else the initial value of
same-flag (i.e., ’ ’) will appear to reach line 6, which leads
to an imprecise specialization (namely, that line 9 gets included
in the specialized program). In general, capturing the ordering
among the record types is a natural pre-requisite to precise
program specialization.

It is noteworthy that program specialization using our ap-
proach can be followed by slicing, which results in a form
of (forward) conditioned slicing (which we call specialized
slicing). We explore this application further in Sections V
and VI.

C. File Format Conformance Checking

A “well-formed” input file for a program is an input file that
users of a program expect it to process. An input automaton
can be used also to specify the format of all well-formed
input files to a program, in which case we call it a well-
formed automaton. For instance, the input automaton depicted
in Figure 1(e) is a well-formed automaton in the context of
our running example.

The second novel problem that we address in this paper is
of verifying, using static analysis, whether a file-processing
program may (a) “reject” a well-formed input file with a
warning that it is ill-formed, or (b) silently “accept” an ill-
formed input file without a warning, which may potentially
lead to incorrect outputs (or corrupted persistent tables). For
instance, in our running example program, control can never
reach the warning in line 23 during executions well-formed
input file. However, this program actually accepts ill-formed
files that contain an Itm record as the first record; in this
scenario, the program writes out an output record in line 11
whose pyr field is not yet set, and hence contains garbage
(this field is set in line 13, which is executed only when a
header record is seen). In this example, the programmer ought
to have included error-handling code that checked for the well-
formedness of the given input file.

D. Our Contributions

The primary contribution of this paper is a family of sound
static analysis approaches to solve transformation and verifi-
cation problems in the domain of file-processing programs.
In Section III of this paper we present the first approach in
this family, which is for specializing a program based on a
constraint that is expressed as a specialization automaton. In
Section IV we present the second approach, which is to verify
conservatively whether a program rejects well-formed files
or accepts ill-formed files, based on a input automaton that
captures the format of all well-formed files. Then, in Section V
we sketch a generalization of the two approaches mentioned
above that enables any existing static analysis approach to
leverage a given input automaton during analysis of a file-
processing program to compute more useful results.

We have implemented our approach, and applied it on sev-
eral real as well as realistic Cobol batch programs. We found
that our specialization approach was surprisingly precise. We
also found that specialized slices produced using our approach
were significantly smaller than corresponding unconditioned
slices. Our file-format conformance checking approach found
genuine conformance issues in several programs, was also able
to verify the absence of such errors in other programs. We
describe our implementation as well as experimental results
in Section VI of this paper.

Finally, Section VII discusses related work, while Sec-
tion VIII concludes the paper.

II. ASSUMPTIONS AND DEFINITIONS

Definitions (Records and record types): A record is a
contiguous sequence of bytes in a file. A field is a labeled
non-empty sub-string of a record. A record type Ri is a
specification of the length of a record, the names of its fields
and their lengths, and a constraint on the contents of the
record. We say that a record r is of type Ri iff r satisfies
the length as well as value constraints of type Ri.

Definitions (Files and “read” operations): A file is a
sequence of records, of possibly different lengths. Successive
records in a file are assumed to be demarcated explicitly. A
READ statement in a program, upon execution, retrieves the
next so-far unread record from the input file, and copies it
into the file buffer associated with this file in the program.

Definition (Input automaton): An input automaton S is a
tuple (Q,Σ,∆, qs, Qe), where Q is a finite set of states, which
we refer to as file states, Σ = T ∪ {eof }, where T is a set of
record types, ∆ is a set of transitions between the file states,
with each transition labeled with an element of Σ, qs is the
designated start state of S, and Qe is the (non-empty) set
of designated final states of S. A transition is labeled with
eof iff the transition is to a final state. There are no outgoing
transitions from final states.

A file f consisting of a sequence of records R adheres to an
input automaton S, or S accepts f , iff the types of the records
in R, concatenated with eof , take S from its start state to some
final state.

III. OUR PROGRAM SPECIALIZATION APPROACH

In this section we describe our approach for specialization a
given program P using a given specialization automaton S as
the constraint. The output from our approach is a set of nodes
in the control-flow graph (CFG) of P that are unreachable
during executions on inputs that satisfy the given constraint,
and that can hence be removed from the program.

A. Overview Of Our Approach

Existing approaches for specialization or conditioned slicing
of (non file-processing) programs use varying underlying
techniques to perform this transformation; e.g., several ap-
proaches [6], [4], [20] use symbolic execution [27], others
use partial evaluation [25], while at least one approach [2]
uses constant propagation (CP) [33]. Symbolic execution
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and partial evaluation are powerful, precise approaches, that
could potentially be adopted to the domain of file-processing
programs. However, they are relatively expensive, and need
to solve challenging sub-problems such as loop invariants
generation or binding-time analysis to ensure termination.
Constant propagation, on the other hand, is a simpler, fully
automated technique, that identifies conditionals in the pro-
gram that are guaranteed to always evaluate in a fixed direction
under the given specialization constraint. However, it lacks
sufficient precision in the context of analysis of file-processing
programs. For instance, at the point after line 25 in our running
example, CP would not be able to identify any field of the
input record as having a constant value; this is because SHDr,
Itm, and Trl records have different values in their typ field.
Now, since nearly every other point in the program is reachable
from this point, no part of the program will be found to be
unreachable under the specialization constraint.

The approach we propose is based on CP, but identifies
multiple CP facts per program point, one for each file state of
the specialization automaton S. A CP fact at a program point
p associated with a file state q basically describes the constant
values of variables upon executions that reach p while being
“in” file state q. Intuitively, an execution is “in” a file-state
q at a program point if the types of the records read from
the input file so far take the automaton S from its start state
to the state q. The main intuition behind our proposal is that
values of important file-format related flags in the program
(e.g., the flags same-flag and eof-flag in the running
example) correlate well during execution with the file-state that
an execution “is in” at any point of time; hence, allowing a CP
fact per file state enables precise value-analysis of these flags,
which in turn enables precise identification of the portions of
code that are unreachable under a specialization constraint.

We now present our approach in detail. It consists of three
steps: 1) perform a dataflow analysis, 2) identify unreachable
CFG nodes and edges, and 3) perform post-processing to iden-
tify other statements that are not relevant to the specialization
constraint.

B. Step 1: Dataflow Analysis

We assume a given sound [9] “underlying” abstract analysis
domain U ≡ ((L,vL), FL), where L is a join semi-lattice
(of finite height), and FL is the set of transfer functions of
the statements in the language. Each transfer function has the
signature L → L. Intuitively, U can be any analysis domain
that allows the detection of unreachable program points; e.g.,
it could be CP (which is what we use in our implementation),
or the interval domain [9], or a more precise relational domain
such as the octagon domain [32]. Intuitively, the more precise
the underlying analysis is, the bigger the fraction of the
genuinely unreachable nodes that will actually be identified
as unreachable.

The abstract lattice that we actually use for our dataflow
analysis is D ≡ Q → L, where Q is the set of file states in
the given specialization automaton S. The partial ordering for

this lattice is a “point wise” ordering based on the underlying
lattice L:

d1 vD d2 =def ∀q ∈ Q. d1(q) vL d2(q)

The initial abstract value that we supply at the entry of
the program is (qs, iL), where iL ∈ L is a user-given initial
value, and qs is the start state of S. For instance, if none of
the variables have a known value at the entry of a program,
then iL could be the “top” element > of L.

We now present our transfer functions for the lattice D. We
consider the following three categories of CFG nodes: State-
ments other than READ statements, conditionals, and READ

statements. The key to understanding the transfer functions
is that statements other than READ do not change the file state
that an execution is in.

Let n be any node that is neither a READ statement nor a
conditional. Let fnL : L → L ∈ FL be the “underlying”
transfer function for node n. Since n cannot change the file
state, our transfer function for node n is simply:

fnD(d ∈ D) = λq ∈ Q. fnL(d(q))

Let c be a conditional node, with a true successor and
a false successor. Let f ct,L ∈ FL and f cf,L ∈ FL be the
underlying true-branch and false-branch transfer functions of
c. Since a conditional node cannot modify the file-state either,
our transfer function for conditionals is:

f cb,D(d ∈ D) = λq ∈ Q. f cb,L(d(q))

where ‘b’ stands for t or f .
Finally, consider a READ node r, which is the most inter-

esting case. Since a READ statement obtains a record from the
input file and places it in the input file buffer in the program,
the dataflow fact returned by the underlying transfer function
frL ∈ FL ought to depend not only on the incoming dataflow
fact, but also on the type of the record that was read. In other
words, frL ought to have the signature (L × Σ) → L, where
Σ is the set of record types plus eof . Intuitively, this transfer
function ought to (i) remove all value-constraints associated
with the input file buffer from the incoming dataflow fact,
and then, (ii) if the second argument is a record type t ∈ T
(as opposed to eof ), add new constraints for the input file
buffer based on the given constraints associated with t’s type
definition.

We are now ready to present our transfer frD for a READ

node r:

frD(d) = λqj ∈ Q.
⊔

(qi→qj)∈∆

{frL(d(qi), label(S, qi, qj))}

where label(S, qi, qj) returns the label (which is a type, or
eof ) of the transition qi → qj in S. The intuition behind
this transfer function is as follows. For any file state qj , after
executing the READ the fact from the lattice L that is to be
associated with qj at the point after the READ statement can be
obtained as follows: (1) For each file state qi such that there
is a transition qi → qj labeled t in the automaton, transmit
the fact frL(l1, t), where l1 ∈ L is the fact that qi is mapped
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qsh qi qt qe 

in-rec.typ=‘HDR’ 
in-rec.src=‘SAME’ 

eof-flag=0 

in-rec.typ=‘ITM’ 
same-flag=‘S’ 
eof-flag=0 

in-rec.typ=‘TRL’ 
same-flag=‘S’ 
eof-flag=0 

same-flag=‘S’ 
eof-flag=1 

Fig. 2. Fix point solution for program in Figure 1(a), using automaton in
Figure 1(d), at the entry to the main loop

to at the point before the READ statement. (2) Take a join of
all these transmitted facts.

Our presentation above was limited to the intra-procedural
setting. However, our analysis can be extended to the inter-
procedural setting using standard techniques, some details of
which we discuss in Section VI.

C. Steps 2 and 3: Removing Unreachable Nodes, and Post-
processing

Step 2 is straightforward. The program points at which every
file state is mapped to the “bottom” element ⊥ of L are marked
as unreachable. Then, nodes that immediately follow these
program points are “projected out”1 of the program.

The post-processing of Step 3 is an optimization, in which
the following two are applied repeatedly as long as applicable:
(a) Any conditional node such that all nodes that are control-
dependent on it on one side (true/false) have already been
projected out can itself be projected out. (b) Any assignment
statement whose definition reaches uses all of whom have
already been projected away can itself be projected away.

D. Illustration

For our running example, using the input automaton that
was depicted in Figure 1(d), Figure 2 depicts the fix-point
solution produced by Step 1 (dataflow analysis), at the program
point just before the conditional of the main loop in line 3 of
the program. The solution here is a join of the solution just
after line 2 and the solution just after line 25. Due to space
limitations we are not able to depict the full fix-point solution
at all points in the program.

A notable feature of the fix-point solution that is obtained
is that for all three lines of code that ought to have been found
unreachable for the given specialization criterion, namely,
lines 9, 17, and 23 (see the discussion in Section I-B), the
fix-point solution at these lines indeed maps all the file states
to ⊥. To see why, let us consider, for instance, line 9. Of
the four “columns” in the solution in Figure 2 (each column
represents a file-state and its associated CP fact), only one of
them, namely, qi, reaches the conditional in line 6. The other
columns end up with a ‘⊥’ CP fact at line 6, because the
CP facts of those columns contradict the conditional in line 4.
Now, in the qi column, same-flag has the constant value ’S’
(this happens, in turn, because line 17 is not reached when

1The details of this operation are omitted, since they are available in the
literature, for instance, in [38].

all header records are of type SHdr). Therefore, the fix-point
solution at line 9 has ⊥’s associated with all file states.

Therefore, Step 2 of the approach projects out lines 9, 17,
and 23 from the program. Step 3 first projects out the condi-
tionals in lines 6, 14, and 20 (projecting out line 20 amounts
to converting the “ELSE IF” in that line into an “ELSE”).
Then, since the only use of variable same-flag (in line 6)
has been projected away, Step 3 is also able to project away
all assignments to this variable, namely in lines /a/ and 15
(thus effectively eliminating this variable from the program).

E. Correctness Of Our Approach

Our correctness claim (which is not difficult to prove)
basically is that our dataflow analysis will infer a ⊥ fact
for all file-states at a program point p only if the underlying
analysis U will identify a ⊥ fact for this program point, when
considering only executions on input files that adhere to the
given input automaton. The claim above, combined with an
assumption that the underlying analysis U is sound (i.e., the
outgoing dataflow fact from any underlying transfer function
is ⊥ only if the corresponding edge cannot be executed under
the incoming dataflow fact), implies the result that Step 2 will
only project out nodes that are unreachable under executions
on input files that adhere to the given input automaton.

IV. FILE FORMAT CONFORMANCE CHECKING

In this section we describe how our program specialization
approach of Section III can be adapted to solve a different
problem that we had mentioned in the introduction, namely
file format conformance checking. As mentioned in the intro-
duction, a verification question that would be useful from the
developer perspective is whether a program can potentially
silently “accept” an ill-formed input file and possibly write
out a corrupted output file (“over acceptance”). Or, conversely,
could the program “reject” a well-formed file via an abort or
a warning message (“under acceptance”)? Note that whether
an input file is well-formed or ill-formed is essentially a part
of the requirements specification of the program.

Different programs use different kinds of idioms to “reject”
an input file; e.g., generating a warning message (and then
continuing processing as usual), ignoring an erroneous part
of the input file and processing the remaining records, and
aborting the program via an exception. In order to target all
these modes in a generic manner, our approach relies on the
developer to identify file-format related rejection points in a
program. These are the statements in a program where format
violations are flagged, using warnings, aborts, etc.

A. Detecting Under-Acceptance

Under-acceptance warnings can be detected simply by spe-
cializing a program with a well-formed input automaton. If
any rejection point remains that has not been projected out, it
signifies a potential under-acceptance problem. This approach
is sound, in that it will not miss any under-acceptance scenar-
ios. This follows from our correctness claim in Section III-E.
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In our example program there is only one rejection point,
which is line 23. This point gets projected out using the well-
formed automaton that was depicted in Figure 1(e). Therefore,
there are no under-acceptance warnings for this program.

B. Detecting Over-Acceptance

Intuitively, a program has over acceptance errors with
respect to a given well-formed automaton if the program can
reach the end of its “main” procedure without going through
any rejection point when run on an input file that does not
conform to the well-formed automaton. We check this property
as follows:

1) We first extend the given well-formed automaton S to a
full automaton, which accepts all input files (including
ill-formed ones), by adding extra states and transitions
to it systematically. We describe this procedure formally
in an associated technical report [31].

2) We modify the transfer functions of our dataflow anal-
ysis (of Section III-B) at rejection points such that
their outgoing dataflow fact maps all file-states to ⊥,
irrespective of the incoming dataflow fact. Intuitively,
the idea behind this is to “block” paths that go through
rejection points.

3) We then apply the modified dataflow analysis mentioned
above, using the full automaton. Once a fix-point solu-
tion is obtained, we flag an over-acceptance warning if
the dataflow value associated with any file state that is
not a final state in the original well-formed automaton
is not ⊥ at the final point of the “main” procedure.

Since our dataflow analysis (of Section III-B) identifies a
fact at a program point as ⊥ only if it definitely is ⊥ (see the
claim in Section III-E), it follows that the approach mentioned
above will not miss any over-acceptance scenarios as long as
the developer does not wrongly mark a non-rejection point as
a rejection point.

In our running example, the full automaton obtained by
extending the input automaton in Figure 1(e) will have a file-
state, say qer , to accept ill-formed files. In this automaton,
there will be transitions from all other states other than qe to
qer . In the fix-point solution, at line 28 the data flow value as-
sociated with qer is non-⊥, flagging an over-acceptance error.
This is because the full automaton accepts a file containing a
header record followed by eof. The program execution with
such an input file does not reach the sole rejection point at
line 23.

V. LEVERAGING INPUT AUTOMATONS WITHIN EXISTING
STATIC ANALYSIS APPROACHES

In this section we will discuss an adaptation of our basic
specialization approach of Section III-B to solve a more
general problem, which is to leverage an input file format to
improve the precision or usefulness of arbitrary static analysis
approaches.
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Fig. 3. Program File State Graph (PFSG) for the running example

A. Motivation

To motivate this adaptation, we first consider a couple of
example static analyses that could benefit from input file
formats.

1) Conditioned slicing: Recall that specialized slicing (see
Section I-B) is performed by first specializing the program wrt
a specialization automaton using our approach of Section III,
and then slicing the specialized program. However, it is known
in the literature [4] that such an approach is less precise than
conditioned slicing. In our running example, if we use the
well-formed automaton that was depicted in Figure 1(e), the
“specialized” program would miss only line 23 compared to
the full program. A slice of this program with the occurrence
of same-flag in line 6 as the slicing criterion ends up
including the definition of this variable in line /a/ into the
slice, even though no execution on a well-formed input file
flows directly from line /a/ to line 6 without going via lines 15
or 17 (which also assign to same-flag). Conditioned slicing
would avoid this imprecision, but can only be performed if
the format of well-formed files can be explicitly taken into
account during slicing.

2) Uninitialized variables analysis: The field
out-rec.pyr is definitely initialized at the WRITE statement
in line 11 during executions on well-formed input files.
However, a standard uninitialized variables analysis would
not be able to determine this, unless information can somehow
be given to the analysis that a header record will always be
read and line 13 will always execute before line 11 is reached
during any execution on a well-formed input file.

B. The Program File State Graph (PFSG)

In order to address issues such as the above, we propose
a new program representation for file-processing programs
called a Program File State Graph (PFSG). Figure 3 depicts
a PFSG for our running example, wrt the well-formed input
automaton in Figure 1(e). The PFSG is basically an “exploded”
CFG (control-flow graph), with multiple copies of each CFG
node, one per file state in a given input automaton S. That
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is, for each node n of the original CFG G and for each file
state q in the input automaton, there is a node (n, q) in the
PFSG, having the same internal content (i.e., statement or
conditional as node n). In the PFSG in Figure 3, the nodes
corresponding to different file states are depicted for visual
clarity under different columns. For instance, the first column
contains nodes (/a/,qs), (/b/,qs), (/1/,qs), and (/2/,qs); we omit
the second components of these pairs from the figure because
these are implied by the columns in which the nodes are
present.

The PFSG is intuitively a bounded partial evaluation [25]
of the original program wrt the given input automaton S.
That is, a column corresponding to a file state q contains a
specialized version of the program, containing only paths that
an execution can take while remaining in file state q. Notice, in
Figure 3, that that the qsh , qdh , qi and qt columns each contain
a differently specialized version of the main loop, depending
on the paths within the main loop that an execution can take
while being in the corresponding file state. The transitions
between the columns happen at line 25 (the READ statement),
and happen as per the transitions in the input automaton S.

The PFSG as a program representation enjoys the following
properties.

1. The PFSG is a control-flow graph itself. Therefore, any
existing static analysis that is designed to run on a CFG,
including, for example, forward or backward slicing, forward
or backward dataflow analysis, model checking, and Hoare-
logic based assertion checking, can be applied without any
modifications on a PFSG.

2. Every path in a PFSG corresponds to some path in the
CFG from which it is obtained. However, certain paths in the
CFG that are infeasible under executions on input files that
adhere to the given input automaton S could be elided from
the PFSG. It is this feature that enables, for instance, the PFSG
in Figure 3 be successfully applicable on all the analysis tasks
that were mentioned above in Section V-A.

C. Producing a PFSG

Our basic analysis technique of Section III-B can be adapted
to generate a PFSG from a CFG G and an input automaton
S, as follows:

1) For each CFG edge m→ n such that m is not a READ

node, and for each file state q such that q is mapped to
a non-⊥ fact in the fix-point solutions at m and at n,
add a PFSG edge (m, q)→ (n, q).

2) For each CFG edge m→ n such that m is a READ node,
and for each transition qi → qj in the input automaton
S such that qi is mapped to a non-⊥ fact in the fix-point
solution at m and qj is mapped to a non-⊥ fact in the fix-
point solution at n, add a PFSG edge (m, qi)→ (n, qj).

We provide more details about the PFSG and its properties
in the associated technical report [31].

VI. IMPLEMENTATION AND EVALUATION

We have implemented our dataflow analysis of Sec-
tion III-B. Our implementation is targeted at Cobol batch

No. of
S.No Prog. LoC CFG
name Nodes

1 ACCTRAN 155 73
2 SEQ2000 219 115
3 DTAP 632 275
4 CLIEOPP 1421 900
5 PROG1 1177 762
6 PROG2 1052 724
7 PROG3 2780 1178
8 PROG4 49846 32258

Fig. 4. Benchmark program details

programs. These are very prevalent in large enterprises [7], and
are based on a variety of standard as well as proprietary file
formats. Another motivating factor for this choice is that one of
the authors of this paper has extensive professional experience
with developing and maintaining Cobol batch applications.
We have implemented our analysis using a proprietary pro-
gram analysis framework Prism [26]. Our implementation is
in Java. We use the call strings approach [37] for precise
context-sensitive inter-procedural analysis. In order to ensure
scalability we have used an approximated (but conservative)
variant of the call-strings approach [30]. We ran our tool on
a laptop with an Intel i7 2.8 GHz CPU with 4 GB RAM.

A. Benchmark Programs

We have used a set of eight programs as benchmarks for
evaluation. Figure 4 lists key statistics about these programs.
The programs ACCTRAN and SEQ2000 are example pro-
grams taken from a previous paper [38] and a textbook [34],
respectively. The program DTAP was developed by the authors
of this paper, while CLIEOPP was developed by a professional
developer for training purposes; these programs are based on
standard file formats [16] and [13], respectively. Programs
PROG1-PROG4 are proprietary real-world programs. All of
the programs, except SEQ2000, are from the banking domain.
Program SEQ2000 is an inventory management program.

In the case of programs that accessed multiple input files,
we chose one of the input files as the “primary” input file,
and modeled READs from the other files as always returning
non-deterministic values.

We evaluate our specialization approach of Section III, as
well as the file-conformance verification approach of Sec-
tion IV.

B. Program Specialization and Slicing

The objective of this experiment was to evaluate the effec-
tiveness of our program specialization approach in the context
of specialized slicing; i.e., we first specialize a program wrt
to a specialization constraint, and then slice the specialized
program wrt a slicing criterion. We have currently not imple-
mented the more precise conditioned slicing approach that was
discussed in Section V-A. While Step 1 of our specialization
approach (dataflow analysis) is carried out via our implemen-
tation, we have carried out Step 2 (projecting out irrelevant
statements) manually as of now. Step 3 (optimizations) was
not performed. We have performed slicing on the specialized

197



Num. Num. Num. Specialization Num.
S. No Program lines in write lines constraint lines in

name main stmts in full name specialized
loop slice slice

(1) (2) (3) (4) (5) (6) (7)
1 ACCTRAN 43 3 37 Deposit 13

Withdraw 35
2 SEQ2000 66 1 61 Add 45

Change 45
Delete 38

3 DTAP 166 2 113 DDBank 85
DDCust 85
CTBank 85
CTCust 85

4 CLIEOPP 482 6 189 Payments 146
DirectDebit 169

5 PROG1 410 1 162 Edit 96
Update 138

6 PROG2 236 4 112 Form 81
Telex 80

Modified 81
7 PROG3 454 20 407 TranCopy-1 73

TranCopy-7 21
8 PROG4 4435 72 - DAccts -

MAccts -

Fig. 5. Results from specialized slicing

programs using the existing prototype slicing capability in the
Prism framework.

Methodology of the experiment. As a first step, we identi-
fied one or more natural specialization constraints for each
program, based on our understanding of the functionalities
offered by the programs. We have given meaningful names
to these constraints, as depicted in Column 6 of Figure 5.
Due to space constraints, we are not able to describe these
constraints in detail.

Regarding the slicing step, for comparative purposes, we
performed slicing both on “full” (i.e., unspecialized) programs,
as well as on the specialized versions of each program. In
each case (i.e., whether it was a full program or a specialized
program), we first identified the main processing loop in the
program, and then selected the WRITE statements within this
main loop that write to primary output files, and then used all
of these WRITE statements together as the slicing criterion. (We
ignored WRITE statements that write to error files, log files,
etc.). We restricted the slice also to be within the main loop;
this is because in batch programs, typically, the code within
the main loop contains important business logic, while the
code outside the main loop is primarily concerned about other
aspects such as resource acquisition, recovery, and logging.

Results. Figure 5 also summarizes the results from this
experiment. Column 3 indicates the number of lines of code
in the main loop of the program, while Column 4 indicates the
number of write statements in the slicing criterion. Both these
columns pertain to the “full” (i.e., unspecialized) programs.
Column 5 indicates the number of statements in the slice
obtained on the unspecialized program (restricted to the main
loop). Finally, Column 7 indicates the number of lines in the
slices obtained on the specialized versions of the programs
(again, restricted to the main loop).

The slicing infrastructure we used was not able to scale to
the very large program, namely, PROG4. Therefore, we have

omitted the slicing results for this program from Figure 5. Our
specialization approach did scale to this program; it was able
to identify 2022 lines of code in the main loop as unreachable
under the DAccts criterion, and 1424 lines of code in the main
loop as unreachable under the MAccts criterion.

The running time of our analysis (excluding the slicing step)
was a few seconds or less on all programs except PROG4, and
was about 1 hour on PROG4.

The two main takeaways from these results are:
• Slicing is useful in narrowing down the size of code to be

inspected by a developer to identify key business logic. In
most programs the number in Column 5 is much smaller
than the number in Column 3 (up to 60% smaller in
programs like CLIEOPP and PROG1).

• Slicing on specialized programs gives significant addi-
tional benefit in scenarios where developers would like
to identify business logic pertaining to an input file
constraint of interest. In most programs the individual
numbers in Column 7 are significantly smaller than
the numbers in Column 5 (e.g., 15% smaller and 40%
smaller, respectively, for the two specialized variants of
PROG1).

Precision of specialization. We also manually examined the
specialized programs (before slicing) to evaluate the precision
of our specialization approach. We did this for all programs
except PROG4, which is very large. To our surprise, our ap-
proach was 100% precise on all programs, for all specialization
constraints, except on the program SEQ2000. That is, it did not
fail to mark as unreachable any CFG node that was actually
unreachable (as per our human judgment) during executions on
input files that conformed to the given specialization automa-
ton. This is basically evidence that our CP-based approach
in conjunction with specialization automatons is sufficiently
precise to specialize file-processing programs.

C. File Format Conformance Checking

The objective of this experiment was to evaluate the use-
fulness of our file-conformance verification approach that was
discussed in Section IV. The first step in this experiment was
to manually create well-formed input automatons as well as
“full” input automatons for each program. We did this using
our understanding of the programs in the case of proprietary
programs, and using the published standards where available.
Note that even for proprietary programs organizations are
typically conversant with the formats of the input files used
by these programs. The biggest well-formed automaton was
for CLIEOPP, which had 21 states and 48 transitions. The
smallest well-formed automaton was for ACCTRAN, which
had 4 states and 8 transitions.

The next step of the experiment was to manually identify
rejection points in each program. This is a reasonably involved
effort, because different programs use different idioms for
dealing with file-format violations.

Figure 6 summarizes the results of this experiment. Col-
umn 2 in this figure indicates the number of under-acceptance
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Prog. File format conformance warnings
Name Under acceptance Over acceptance

ACCTRAN 0 1
SEQ2000 3 1

DTAP 0 1
CLIEOPP 13 * 0
PROG1 5 9
PROG2 6 10
PROG3 0 1
PROG4 0 * 10

Fig. 6. Conformance checking results

warnings, which is the number of instances of a file state of the
well-formed automaton being associated with a non-⊥ value
at a rejection point. Column 3 indicates the number of over-
acceptance warnings, which is the number of file states of the
full automaton (excluding final states) that reach the final point
of “main” with a non-⊥ value.

Precision of results. A noteworthy aspect of the under-
acceptance results is that four of the eight programs, namely,
ACCTRAN, DTAP, PROG3, and PROG4 have been verified
as having no under-acceptance errors.

We manually inspected many of the under-acceptance warn-
ings on the other programs. Many of the inspected warnings
happened to be false positives. However, some of the warnings
on CLIEOPP were genuine (i.e., true positives), and indicated
programming errors that cause rejection of well-formed files.

Our implementation reports over-acceptance warnings on all
the programs. (The numbers marked with a “*” are potentially
lower than they should really be; this is because the full
automatons had to be pruned in these cases, as otherwise they
would have become very large.)

Our manual examination revealed that some of warnings
reported for two of the programs – DTAP and PROG4 –
turned out to be genuine. In the case of the program PROG4,
the maintainers of this program were able to confirm this
genuineness. They also added that at present there is another
program that runs before PROG4 in their standard workflow
that ensures that ill-formed files are not supplied to PROG4.

D. Discussion

In summary, our specialized slicing allows developers to
narrow the amount of code to be inspected to identify busi-
ness logic under specialized usage scenarios more than with
traditional slicing. Furthermore, our specialization approach
was 100% precise on six out of the eight programs.

On the novel problem of file-conformance verification, our
implementation was able to verify four of the eight programs
as not rejecting any well-formed files, and was able to find
genuine under-acceptance as well as over-acceptance viola-
tions in several programs.

VII. RELATED WORK

We discuss related work broadly in several categories.
Analysis of record- and file-processing programs. There

exists a body of literature, of which the work of Godefroid et
al. [21] and Saxena et al. [36] are representatives, on testing
of programs whose inputs are described by grammars or

regular expressions, via concolic execution. Their approaches
are more suited for bug detection (with high precision), while
our approach is aimed at conservative verification, as well as
program understanding and transformation tasks.

Various approaches have been proposed in the literature
to recover record types and file types from programs by
program analysis [28], [3], [10], [15], [14]. These approaches
complement ours, by being potentially able to infer input
automatons from programs in situations where pre-specified
file formats are not available.

A report by Auguston [1] shows the decidability of verifying
certain kinds of assertions in file-processing programs.

Program specialization and conditioned slices. There is a
significant body of work in using the technique of symbolic
execution for program specialization or conditioned slicing,
a sampling of which we cite [6], [4], [20]. Partial evalua-
tion and amorphous slicing are related techniques, which are
sophisticated forms of program specialization, involving loop
unrolling to arbitrary depths, simplification of expressions,
etc. [25], [29], [8], [22]. Hong et al. [24] propose an approach
for conditioned slicing on an “exploded” CFG (similar to our
PFSG), but where the nodes are duplicated based on a user-
provided set of predicates (as opposed to file states). The
primary novelty of our work in this line of research is the abil-
ity to specifically target file-processing programs, which are
prevalent in many domains, using file-format specifications.
Another difference is that we use a simpler (and potentially
more practical) dataflow approach, based on a novel lattice
whose elements map file-states to underlying facts. In our
experiments we found that our approach is sufficiently precise
on typical file-processing programs.

“Lifted” dataflow analyses. Our dataflow analysis uses a
“lifted” lattice, namely, Q → U , wherein a given underlying
analysis domain U is “lifted” by the set of file states Q. Lifted
analyses have been employed in the literature for different
purposes. For instance, type states [39] have been used to lift
the CP domain [12], while sets of predicates have been used
to lift arbitrary underlying domains [18]. Also, the type-state
approach mentioned above [12] was applied on file-processing
programs, but to analyze the possible states that a file could
be in at different points in the program (e.g., “open”, “closed”,
“error”). To our knowledge ours is the first work to use file
content automatons to lift an analysis.

VIII. CONCLUSION AND FUTURE WORK

In this paper we presented a novel approach for special-
ization and verification of file-processing programs using file-
format specifications.

A key item of future work is to allow richer (logical)
constraints on input file contents. We would also like to
explore in-depth the PFSG, and its usefulness in the context
of various applications. Finally, we would like to investigate
our techniques on domains other than batch programs, such as
image-processing programs and XML-processing programs.
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