

1 APPENDIX

Here we prove the Theorem "Refined-Derivation" that is referred to in the proof in Section 3.3.3 of our OOPSLA '18 paper titled "Refinement in Object Sensitivity Points-to Analysis via Slicing".

1.1 STATEMENT

Given two alloc-site to length maps K_2 and K_1 such that $K_2(q) \geq K_1(q)$ for all q , and given a derivation R_2 based on K_2 , there exists a derivation R_1 based on K_1 , and there exist two functions

$corrFact$: from facts in R_2 to facts in R_1

$corrObj$: from objects in R_2 to objects in R_1

such that:

(*CorrProp1*): If step m in R_2 processes a certain statement and uses tuples t'_1 and t'_2 to produce tuple t'_3 , then step m in R_1 processes the same statement, and uses $corrFact(t'_1)$ and $corrFact(t'_2)$ to produce $corrFact(t'_3)$.

(*CorrProp2*): If $corrFact(t') = t$, then for any object o' that is mentioned in t' , if o is the corresponding object mentioned in t , then $corrObj(o') = o$. Also, the variable name (resp. field name) occurring in t' is the same as the variable name (resp. field name) occurring in t .

(*CorrProp3*): For any o' in R_2 , if $corrObj(o') = o$, then o' and o are allocated at the same allocation site.

(*CorrProp4*): For any o' in R_2 , $corrObj(o')$ is a suffix (proper or improper) of o' . We denote this as $corrObj(o') \leq o'$.

We say that run R_1 **corresponds** to the given run R_2 .

1.2 PROOF

The proof is by induction on the number of steps in R_2 . As part of the proof we constructively show the presence of R_1 , $corrFact$, and $corrObj$, such that the properties mentioned above are satisfied.

The base case is the first step in R_2 . This step must process an allocation site in 'main', because other rules need non-empty points-to sets to get triggered. Let this statement be $s_q : v = new$. In this case,

$$t' = t = (\epsilon, v) \rightarrow o_q$$

We define:

$$corrFact(t') = t$$

$$corrObj(o_q) = o_q$$

It is easy to see *CorrProp1-CorrProp4* are satisfied after the first step.

The inductive hypothesis is that steps 1 to $(m - 1)$ of Derivation R_2 have been processed, yielding the first $(m - 1)$ steps of R_1 . Also, that $corrFact$ and $corrObj$ have been partially defined so far, such that these partial functions in conjunction with the first $m - 1$ steps of R_2 and the first $m - 1$ steps

1 of R_1 satisfy *CorrProp1*-*CorrProp4*.
 2

3 The argument is now in cases, depending on the statement 'st' that is processed in step m .
 4

5

6 **switch (st) {**

7 **case "v = w":** Say in step m of derivation R_2 the fact $(c', v) \rightarrow o'_1$ gets generated from the fact
 8 $(c', w) \rightarrow o'_1$.
 9

10 Since $((c', w) \rightarrow o'_1)$ was generated in the first $m-1$ steps of derivation R_2 , by the inductive
 11 assumption of *CorrProp1* and *CorrProp2*, it follows that:
 12

13

14 • $corrFact((c', w) \rightarrow o'_1)$ is defined. Let this be equal to $((c, w) \rightarrow o_1)$.
 15

16 • $((c, w) \rightarrow o_1)$ must have been generated in the first $m-1$ steps of R_1 .
 17

18 • $corrObj(c') = c$, and $corrObj(o'_1) = o_1$.
 19

20 We extend the *corrFact* function generated in the first $m-1$ steps as follows:
 21

$$corrFact((c', v) \rightarrow o'_1) = (c, v) \rightarrow o_1$$

22 (We assume that there are no repeated steps in R_2 . Therefore, in Steps 1 to $m-1$, $(c', v) \rightarrow o'_1$
 23 would not have been given an image under *corrFact*. This same point holds in all other cases
 24 below, whenever we extend *corrFact* or *corrObj*.)
 25

26 We also define step m of R_1 as follows: it processes "v = w" using $((c, w) \rightarrow o_1)$ to produce
 27 $((c, v) \rightarrow o_1)$.
 28

29 It is now easy to see that we have inductively re-established *CorrProp1* and *CorrProp2* for Steps
 30 1 to m . *CorrProp3* and *CorrProp4* follow trivially because no object's image under *corrObj* was
 31 established newly in this step.
 32

33 **case "v = w.f":** Say in step m in derivation R_2 existing facts $(c', w) \rightarrow o'_1$ and $o'_1.f \rightarrow o'_2$ are
 34 used to create the new fact $(c', v) \rightarrow o'_2$.
 35

36 Since $(c', w) \rightarrow o'_1$ and $o'_1.f \rightarrow o'_2$ were generated in the first $m-1$ steps of derivation R_2 , by
 37 the inductive assumption of *CorrProp1* and *CorrProp2* it follows that:
 38

39 • $corrFact((c', w) \rightarrow o'_1)$ and $corrFact(o'_1.f \rightarrow o'_2)$ are defined. Let these be equal to
 40 $((c, w) \rightarrow o_1)$ and $o_1.f \rightarrow o_2$, respectively.
 41

42 • $((c, w) \rightarrow o_1)$ and $o_1.f \rightarrow o_2$ must have been generated in the first $m-1$ steps of R_1 .
 43

44 • $corrObj(c') = c$, $corrObj(o'_1) = o_1$, and $corrObj(o'_2) = o_2$.
 45

46 We extend the *corrFact* function generated in the first $m-1$ steps as follows:
 47

$$corrFact((c', v) \rightarrow o'_2) = (c, v) \rightarrow o_2$$

48

50 We also define step m of R_1 as follows: it processes " $v = w.f$ " using $(c, w) \rightarrow o_1$ and $o_1.f \rightarrow o_2$
 51 to produce $((c, v) \rightarrow o_2)$.

52
 53 It is now easy to see that we have inductively re-established *CorrProp1* and *CorrProp2* for Steps
 54 1 to m . *CorrProp3* and *CorrProp4* follow trivially because no object's image under *corrObj* was
 55 established newly in this step.

56
 57 **case "v.f = w":** Say in step m in derivation R_2 existing facts $(c', w) \rightarrow o'_2$ and $(c', v) \rightarrow o'_1$ are
 58 used to create a new fact $o'_1.f \rightarrow o'_2$.

59
 60 Since $(c', w) \rightarrow o'_2$ and $(c', v) \rightarrow o'_1$ were generated in the first $m - 1$ steps of derivation R_2 ,
 61 by the inductive assumption of *CorrProp1* and *CorrProp2* it follows that:

62
 63 • $corrFact((c', w) \rightarrow o'_2)$ and $corrFact((c', v) \rightarrow o'_1)$ are defined. Let these be equal to
 64 $(c, w) \rightarrow o_2$ and $(c, v) \rightarrow o_1$, respectively.

65
 66 • $(c, w) \rightarrow o_2$ and $(c, v) \rightarrow o_1$ must have been generated in the first $m - 1$ steps of R_1 .

67
 68 • $corrObj(c') = c$, $corrObj(o'_1) = o_1$, and $corrObj(o'_2) = o_2$.

69
 70 We extend the *corrFact* function generated in the first $m - 1$ steps as follows:

$$71 \quad 72 \quad corrFact(o'_1.f \rightarrow o'_2) = o_1.f \rightarrow o_2$$

73 We also define step m of R_1 as follows: it processes " $v.f = w$ " using $(c, w) \rightarrow o_2$ and $(c, v) \rightarrow o_1$
 74 to produce $o_1.f \rightarrow o_2$.

75
 76 It is now easy to see that we have inductively re-established *CorrProp1* and *CorrProp2* for Steps
 77 1 to m . *CorrProp3* and *CorrProp4* follow trivially because no object's image under *corrObj* was
 78 established newly in this step.

79
 80 **case "s_q : v = new":** Say this statement is in a method m_j . Say step m in derivation R_2 used an ex-
 81 isting fact $(c', this_{m_j}) \rightarrow c'$ to create a new fact $(c', v) \rightarrow o'$, where $o' = mkName(c', q, K_2(q))$.

82
 83 Since the fact $(c', this_{m_j}) \rightarrow c'$ was generated in the first $m - 1$ steps of derivation R_2 , by
 84 the inductive assumption of *CorrProp1* and *CorrProp2*, it follows that:

85
 86 • $corrFact((c', this_{m_j}) \rightarrow c')$ is defined. Let this be equal to $(c, this_{m_j}) \rightarrow c$.

87
 88 • $(c, this_{m_j}) \rightarrow c$ must have been generated in the first $m - 1$ steps of derivation R_1 .

89
 90 • $corrObj(c') = c$.

91
 92 We extend the *corrFact* function generated in the first $m - 1$ steps as follows:

$$93 \quad 94 \quad corrFact((c', v) \rightarrow o') = (c, v) \rightarrow o$$

95
 96 where $o = mkName(c, q, K_1(q))$.

99 We also extend *corrObj* as follows:

100 $corrObj(o') = o$

101 We also define step m of Derivation R_1 as follows: It processes " $s_q : v = new$ " using fact
 102 $(c, this_{m_j}) \rightarrow c$ to generate the fact $(c, v) \rightarrow o$.

103 It is now easy to see that we have inductively re-established *CorrProp1* and *CorrProp2* for Steps 1
 104 to m . Since o' and o are both allocated at site s_q , *CorrProp3* is established for Steps $1 - m$.

105 To establish *corrObj*, we now need to show that $o \leq o'$. By the inductive hypothesis, we
 106 know that $c \leq c'$. Therefore, $c.q \leq c'.q$. Now, o is the longest suffix of $c.q$ whose length is
 107 at most $K_1(q)$, while o' is the longest suffix of $c'.q$ whose length is at most $K_2(q)$. Because
 108 $K_2(q) \geq K_1(q)$, it follows that $o \leq o'$.

109 **case call from "a₂ = a₀.m(a₁)":** Say in step m in Derivation R_2 this call is processed, using
 110 existing facts $(c', a_0) \rightarrow c'_1$ and $(c', a_1) \rightarrow o'_1$, to produce facts $(c'_1, this_{m_j}) \rightarrow c'_1$ and
 111 $(c'_1, p_j) \rightarrow o'_1$, where $m_j = dispatch(c'_1, m)$ and p_j is the formal parameter of m_j .

112 Since the facts $(c', a_0) \rightarrow c'_1$ and $(c', a_1) \rightarrow o'_1$ were generated in the first $m - 1$ steps in
 113 derivation R_2 , by the inductive assumption of *CorrProp1* and *CorrProp2*, it follows that:

- 114 • $corrFact((c', a_0) \rightarrow c'_1)$ and $corrFact((c', a_1) \rightarrow o'_1)$ are defined. Let these be equal to
 115 $(c, a_0) \rightarrow c_1$ and $(c, a_1) \rightarrow o_1$, respectively.
- 116 • $(c, a_0) \rightarrow c_1$ and $(c, a_1) \rightarrow o_1$ must have been generated in the first $m - 1$ steps of R_1 .
- 117 • $corrObj(c') = c$, $corrObj(c'_1) = c_1$, $corrObj(o'_1) = o_1$.

118 We extend the *corrFact* function generated in the first $m - 1$ steps as follows:

119 $corrFact((c'_1, this_{m_j}) \rightarrow c'_1) = (c_1, this_{m_j}) \rightarrow c_1$

120 $corrFact((c'_1, p_j) \rightarrow o'_1) = (c_1, p_j) \rightarrow o_1$

121 We define step m of R_1 as processing the same invoke statement, using existing facts
 122 $(c, a_0) \rightarrow c_1$ and $(c, a_1) \rightarrow o_1$, to produce facts $(c_1, this_{m_j}) \rightarrow c_1$ and $(c_1, p_j) \rightarrow o_1$.
 123 Note, this is a valid step because $dispatch(c_1, m)$ is necessarily equal to m_j . This follows from
 124 the inductive assumption *CorrProp3*, which implies that c'_1 and c_1 were both allocated at the
 125 allocation site; therefore, $dispatch(c'_1, m)$ must be equal to $dispatch(c_1, m)$.

126 It is easy to see that *CorrProp1* and *CorrProp2* are inductively re-established. *CorrProp3* and
 127 *CorrProp4* follow trivially because no object's image under *corrObj* was established newly in
 128 this step.

129 **case return to "a₂ = a₀.m(a₁)":** Say in step m of Derivation R_2 a return corresponding to this
 130 invoke is processed. Say this step uses existing facts $(c', a_0) \rightarrow c'_1$ and $(c'_1, ret_{m_j}) \rightarrow o'_2$ to
 131 produce the new fact $(c', a_2) \rightarrow o'_2$, where $m_j = dispatch(c'_1, m)$.

148 Since the facts $(c', a_0) \rightarrow c'_1$ and $(c'_1, \text{ret}_{m_j}) \rightarrow o'_2$ were produced in the first $m - 1$ steps of
 149 Derivation R_2 , by the inductive assumption of *CorrProp1* and *CorrProp2*, it follows that:
 150

- 151 • $\text{corrFact}((c', a_0) \rightarrow c'_1)$ and $\text{corrFact}((c'_1, \text{ret}_{m_j}) \rightarrow o'_2)$ are defined. Let these be equal to
 152 $(c, a_0) \rightarrow c_1$ and $(c_1, \text{ret}_{m_j}) \rightarrow o_2$, respectively.
 153
- 154 • $(c, a_0) \rightarrow c_1$ and $(c_1, \text{ret}_{m_j}) \rightarrow o_2$ must have been generated in the first $m - 1$ steps of
 155 Derivation R_1 .
 156
- 157 • $\text{corrObj}(c') = c$, $\text{corrObj}(c'_1) = c_1$, $\text{corrObj}(o'_2) = o_2$.
 158

159 We extend the *corrFact* function generated in the first $m - 1$ steps as follows:
 160

$$162 \quad \text{corrFact}((c', a_2) \rightarrow o'_2) = (c, a_2) \rightarrow o_2$$

163 We define step m of R_1 as processing the return to the same invoke statement, using existing
 164 facts $(c, a_0) \rightarrow c_1$ and $(c_1, \text{ret}_{m_j}) \rightarrow o_2$, to produce the fact $(c, a_2) \rightarrow o_2$. Note, this is a
 165 valid step because $\text{dispatch}(c_1, m)$ is necessarily equal to be equal m_j . This follows from the
 166 inductive assumption *CorrProp3*, which implies that c'_1 and c_1 were both allocated at the
 167 allocation site; therefore, $\text{dispatch}(c'_1, m)$ must be equal to $\text{dispatch}(c_1, m)$.
 168

169 It is easy to see that *CorrProp1* and *CorrProp2* are inductively re-established. *CorrProp3* and
 170 *CorrProp4* follow trivially because no object's image under *corrObj* was established newly in
 171 this step.
 172

173 }
 174 //end of switch-case
 175

176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196