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Abstract

The problem addressed in this paper is sound, scalable, demand-driven null-
dereference verification for Java programs. Our approach consists conceptually
of a base analysis, plus two major extensions for enhanced precision. The base
analysis is a dataflow analysis wherein we propagate formulas in the backward
direction from a given dereference, and compute a necessary condition at the en-
try of the program for the dereference to be potentially unsafe. The extensions
are motivated by the presence of certain “difficult” constructs in real programs,
e.g., virtual calls with too many candidate targets, and library method calls,
which happen to need excessive analysis time to be analyzed fully. The base
analysis is hence configured to skip such a difficult construct when it is encoun-
tered by dropping all information that has been tracked so far that could poten-
tially be affected by the construct. Our extensions are essentially more precise
ways to account for the effect of these constructs on information that is being
tracked, without requiring full analysis of these constructs. The first extension
is a novel scheme to transmit formulas along certain kinds of def-use edges,
while the second extension is based on using manually constructed backward-
direction summary functions of library methods. We have implemented our
approach, and applied it on a set of real-life benchmarks. The base analysis is
on average able to declare about 84% of dereferences in each benchmark as safe,
while the two extensions push this number up to 91%.

Keywords: dataflow analysis, weakest pre-conditions

1. Introduction

Null-dereferences are a bane while programming in pointer-based languages
such as C and Java. In this paper, we describe a sound, contert-sensitive,
demand-driven technique to verify dereferences in Java programs via over-
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1: foo(a,b,c) {

2: if(a # null) { (b.f = null,a # null,a = null) = false

3: b = c; false

4: t = new...; (b.f =null,b# c,a# null)

5: c.f = t; (b.f = null,b # c,a # null), (t =null,b = c,a# null)
6: }

7: d=a; (b.f = null, a # null)

8: if(d # null) (b.f = null,d # null)

9: b.f.g = 10;  (b.f = null)

10:}

Figure 1: Example to illustrate the base analysis. The dereference of field f in line 9 is being
verified.

approximated weakest pre-conditions analysis. A weakest pre-condition wp(p,C)
is the weakest constraint on the initial state of the program that guarantees that
the program state will satisfy the condition C' every time control reaches the
point p. We define the notion of weakest at-least once pre-condition, denoted
as wpy (p, C'), as the weakest constraint on the initial state of the program that
guarantees that execution will reach p at least once in a state that satisfies C.
Note that for any (p, C), wp,(p, C) = —wp(p, ~C). We can use the weakest at-
least once pre-condition to check if a selected dereference of a variable or access-
path v at a given program point p is always safe. This can be done by checking
if wpy(p,v = null) is false. However, the weakest at-least-once pre-condition
is in general not computable precisely in the presence of loops or recursion;
hence, our approach uses an abstract interpretation [1] to compute an over-
approximation of it. After our analysis terminates, we check if the computed
over-approximation of wpi(p,v = null) is false; if yes, it would imply that the
precise solution is also false, implying the safety of the dereference. On the
other hand, if the over-approximation is satisfiable, we declare the dereference
as potentially unsafe.

Each element in the lattice that we use for abstract interpretation is a rep-
resentation of a formula in disjunctive normal form, with each literal being a
predicate that compares an access path with another access path or with null.
An access path is a variable, or a variable followed by fields, e.g., v.fi.fs... fk,
that points to an object (i.e., is not of primitive type). The lattice elements
are ordered by implication, where weaker formulas dominate stronger formulas;
our join operation basically implements logical or. We illustrate our lattice as
well as our analysis using an example, shown in Figure 1. Our notation is to
show the formula that holds at the point above any statement to the right of
the statement. Also, we enclose each disjunct in a formula (except the disjuncts
true and false) within angle brackets, and indicate both conjunctions of predi-
cates within a disjunct as well as disjunctions of disjuncts using commas. Note
in the example that there are two disjuncts at the point above line 5, and a
single disjunct at all other points. The underlining of certain predicates in the



example can be ignored for now, and will be addressed later.

The input to our approach is a dereference that needs to be verified, which
we refer to as the root dereference. In the example, the root dereference is
that of b.f in line 9. Therefore, the first step in the approach is to initialize
the formula at the point above line 9 to (b.f = null), as shown to the right of
line 9. The analysis proceeds by propagating formulas in a backwards direction,
using conservative transfer functions which over-approximate the weakest pre-
condition semantics of each statement. The final result of this propagation at
all points is shown in the figure. Assuming that the method foo is the entire
program, the computed over-approximation of wp; (line 9, (b.f = null)), which
is shown adjacent to line 2, is false; hence, the root dereference is declared safe.
We postpone a detailed discussion and illustration of our analysis to subsequent
sections in the paper.

1.1. Challenges

The obvious advantage that a backwards analysis such as ours has over a
forward counterpart is that it is demand-driven, meaning a single selected deref-
erence can be verified. This is a very useful feature in a real world setting, where
most changes are incremental and affect only a small part of a program. Thus,
the developer will be able to verify the dereferences in the part of code that is
modified, without paying the price of analyzing all dereferences in the program.
There are several reasons why analyzing a single dereference in the backwards
direction can be much more efficient than analyzing all the dereferences in the
program using a forwards analysis; we postpone a detailed discussion of this to
Section 2.5.

This said, a backwards analysis poses its own set of challenges. The first
problem is that in order to obtain high precision we would need to perform strong
updates on formulas that refer to fields of objects when they are propagated
back through “put field” statements that write to fields of objects. However,
techniques for performing strong updates on formulas have been proposed in
the literature only for forward analyses. These techniques do not carry over
naturally to the backward setting. The second problem is the resolution of
virtual calls in large object-oriented programs. While a forward analysis could
potentially use path-specific points-to information [2] to derive a precise set of
targets for a virtual call, a backwards analysis would need to rely on imprecise
may points-to information to identify an over-approximation of the candidate
targets at a virtual call.

There are other problems we face that are shared by forward counterparts,
too. Java programs make extensive use of libraries; entering and analyzing all
library methods would take a heavy toll on the scalability of the technique.
The usage of recursive data structures such as linked lists and trees, and the
usage of arrays, pose challenges to any analysis, because code that uses these
structures is hard to analyze precisely in an efficient manner. Shape analysis [3]
is a sophisticated technique that has been proposed to handle recursive data
structures, but it does not scale to programs of sizes we are interested in in its



current state of evolution. Finally, context-sensitivity and path-sensitivity are
typically required for precision, but can be complex or expensive to implement.

1.2. The base analysis

Our approach consists of two parts: 1) the base analysis, and 2) an ex-
tended analysis, which is the base analysis plus two major extensions. The
base analysis was originally proposed, discussed, and evaluated by Madhavan
and Komondoor [4]. The key elements of the base analysis are a base lattice
of formulas, backwards transfer functions for each kind of statement that over-
approximate the corresponding wp, semantics, as well as an inter-procedural
component, based on a variant of Sharir-Pneuli’s [5] tabulation based approach.
We had earlier illustrated the base analysis (in the intra-procedural setting) us-
ing the example in Figure 1. The key conceptual novelty of the base analysis
is a technique to perform strong updates by embedding aliasing hypotheses in
the pre-conditions generated for statements, and using other preceding state-
ments to validate or invalidate these hypotheses. For instance, in the example
in Figure 1, the analysis produces two disjuncts at the point before Statement 5
from the post-condition after this statement, with each of the two disjuncts be-
ing the result of a strong update of the post-condition under a distinct aliasing
hypothesis, namely, ‘b # ¢’ or ‘b = ¢’. The first of these two disjuncts happens
to later get invalidated at Statement 3. The base analysis also contains innova-
tive techniques for context-sensitive and path-sensitive analysis which increase
precision significantly.

1.8. Our first extension

The primary focus of this paper is the two extensions in the extended anal-
ysis, which address two of the challenges that the base analysis dealt with only
in simple ways. The first challenge is virtual calls. The base analysis requires
pre-computed may-points-to information to identify candidate targets of virtual
calls. However, practical points-to analysis implementations typically compute
imprecise information, which results in virtual calls having too many candidate
targets, with many of them typically being spurious. A full analysis would
therefore require a formula that reaches the point after a virtual call-site (i.e., a
post-condition) to be propagated through all the candidate targets of the call.
This would result in the analysis becoming very expensive. Yet, because of the
spurious targets, the overall precision is lowered; for instance, a root dereference
could be called unsafe even if it is actually safe if one of the spurious targets
of a virtual call writes a null into the field referred to in the root dereference.
The negative impact that virtual-call resolution has in general on scalability
and precision of various kinds of analyses is well-known in the literature, e.g.,
as reported in these publications [6, 7, 2].

Therefore, to keep the analysis time practical, the base analysis is configured
to skip, i.e., to not enter and analyze, any of the candidate target methods of
virtual calls that have more number of candidate targets than a pre-set thresh-
old. Instead, it identifies, using conservative mod-ref [8] information that can



be efficiently pre-computed, a superset of the predicates in the post-condition
whose truth value could be affected by the side-effects of the call or by the
return value from the call. The analysis then computes the pre-condition (at
the point before the call-site) as simply the set of unaffected predicates in the
post-condition, based on the conservative assumption that the affected predi-
cates could potentially all become true if the formula were to be propagated
through the target methods. The pre-condition obtained in this way is clearly
an over-approximation of the precise pre-condition. Therefore, eventually an
over-approximation of the weakest at-least-once pre-condition is guaranteed.

However, an over-approximated pre-condition implies loss of precision. In
the worst case, if all predicates get dropped, the analysis stops right away and
declares the root dereference unsafe. Therefore the above mentioned technique
of the base analysis, while allowing the base analysis to have a practical running
time, results in significant loss of precision.

The first major extension that we employ is an alternative approach to the
above technique that is typically more precise, while still expending less time
than would be required to enter and analyze all the targets fully. Whenever we
have a post-condition formula at the point after a difficult virtual call-site, we
carry this formula directly to the statements that potentially write values into
the field that is being compared with null in the formula, which we call the
immediate producer statements, and then resume the base analysis from these
statements using the carried formulas. For an illustration of this idea consider
the formula to the right of line 9 in Figure 1. The immediate producers of
this formula at this point are Statement 5, as well as any statements in the
function that calls foo (not shown) that write a value into the field b.f. If
line 9 were hypothetically preceded by a difficult virtual call-site, we would
carry the formula (b.f = null) to its immediate producers. Considering the
producer statement 5, the above formula after it is carried (and after a required
rewriting) becomes the formula (t = null) at the point before this statement.
The base analysis resumes from this point, resulting subsequently in this formula
getting invalidated at Statement 4 itself.

Note that determining the immediate producers of a formula requires alias
analysis. For instance, it is the aliasing introduced in Statement 3 in Figure 1
that causes Statement 5 to be an immediate producer of b.f at line 9. In
our approach we pre-compute immediate producers of all access paths at all
program points upfront, and use this information during the actual backwards
null-dereference analysis.

Our technique of using immediate producers is typically more efficient than
entering all targets of the virtual call, for the following reason. For the immedi-
ate producers that are in the calling method or its callees, as opposed to being
in the target methods of the virtual call site, the analysis after resuming from
these statements would not enter into the target methods at all. Other imme-
diate producers could be inside the target methods; yet, even in this situation,
only the portion of a target method that “precedes” an immediate producer
needs to be analyzed. On other hand, this technique is typically more expen-
sive than the simple mod-ref information-based technique resorted to by the



base analysis, because (a) as mentioned above, certain portions of the target
method may still need to be analyzed, which means the method cannot always
be skipped entirely, and (b) in situations where the base analysis would have
stopped because all the predicates in the disjunct were affected as per the mod-
ref information, and would have called the root dereference unsafe, the extended
analysis could still continue and eventually verify the root dereference as safe.
Yet, the technique still has a practical running time requirement, while yielding
significantly more precise results than the mod-ref-based technique.

Our technique is a fairly general one, in that it could potentially be used to
side-step the analysis of any kind of difficult construct. In fact, we show its appli-
cability in skipping not only difficult virtual calls but also library method calls,
which the base analysis normally skips using mod-ref information because of the
typical high complexity of analyzing library method implementations. The nov-
elty of our technique is as follows. While certain previous approaches [9, 10, 11]
have used the transitive closure of the immediate-producer relation (which is
known as a thin slice) to perform certain inexpensive, approximate analyses,
ours is the first to our knowledge to use immediate producers within the over-
all context of a precise, path-sensitive analysis to skip localized regions of code
conservatively.

1.4. Our second extension

Our second extension also addresses the challenge of library methods, but in
a different way. Here we target a specific category of frequently used libraries —
the Java Collections API. Our approach is to use summary functions that we
have designed manually as transfer functions at call sites to collections meth-
ods, rather than enter and analyze these methods or use conservative mod-ref
information. The novelty of our approach, compared to previous related ap-
proaches [12, 13, 14, 15], is that our summary functions work in the backward
direction, and are hence very different from the forward transfer functions used
in these other approaches.

The impact of our two extensions is significant. Across 10 real-world medium
to large sized Java programs on which the base analysis was originally evalu-
ated, we find that the average percentage of dereferences reported as unsafe
per benchmark has gone down from 16.25% by the base analysis to 9% by the
extended analysis, which is a 45% reduction. Our extensions have caused the
average running time to verify a dereference to go up from 288 ms to 427 ms; this
happens, as discussed earlier, because our immediate producers extension is less
efficient than the mod-ref technique of the base analysis. However, this running
time requirement is still very reasonable, even in the context of an on-demand
verification tool.

The rest of this paper is structured as follows. We give an overview of the
base analysis in Section 2. In Section 3 we present our first extension, which is
based on using immediate producers to skip portions of “difficult” programming
constructs. We then present our second extension, to handle the built-in Java
Collections APIs using manually provided summary functions, in Section 4.



Section 5 describes our implementation of our approach, while Section 6 has
a discussion on the results of applying our implementation on real programs.
Section 7 contains a discussion of related work, while Section 8 concludes the
paper. An appendix follows, with two parts. Appendix A contains a proof of
correctness of the base analysis, while Appendix B contains proofs of correctness
of some of our key Collections API summary functions.

2. Base analysis

The base analysis checks if a given dereference is unsafe by computing an
over-approximation of the weakest at-least-once precondition. In this section
we give an overview of the abstract lattice and transfer functions used by this
analysis, as well as a few other key features of this analysis. A detailed discussion
of this analysis can be found in a previous publication [4].

2.1. Abstract Lattice and Transfer function

Formula =  gDisjunct

Disjunct =  Predicate

o o= 1#

Predicate — AP op Atom

Atom — AP | null

Fields —  field.Fields | €
AccessPath (AP) —  Variable.Fields | Variable

Figure 2: Structure of formulas (lattice elements) in base analysis

The data-flow lattice of the base analysis is described in Figure 2. Each
lattice element is a Formula, which is a set of Disjuncts. Each Disjunct is a
set of Predicates. Any f € Formula is a set that can be logically interpreted as
the disjunction of its elements; whereas, any d € Disjunct can be interpreted
as conjunction of its elements. Operands in Predicates are either AccessPaths
(which point to objects), or null. Each AccessPath is either a Variable or a
Variable followed by a sequence of fields. The ordering operation T of the
lattice is defined as follows: fi T fo iff fi C fo, where fi, fo € 2Disiunct,
Therefore, the join operator is set-union (which basically implements logical
OR). The bottom element is the empty set of disjuncts (which represents logical
falsehood), and the top element is the set of all Disjuncts (which represents
logical truth). The lattice is made effectively finite by bounding the lengths of
access paths. Whenever a predicate in the formula contains an access path in
which some field repeats more than once in the sequence of fields, this predicate
is dropped from the disjunct to which it belongs, i.e., is implicitly reduced to
true. This in general results in an over-approximation, as the resulting formula
after dropping a predicate is weaker than the original formula.

The program is assumed to be in an Intermediate Representation (IR) form
like three-address code. The (backward) transfer functions for the individual



Name Instruction Transfer Function: \¢ € Disjunct.¢’,
where ¢’ € 2DPis7unct and is =

Copry v=w dlw/v]

NULLASGN v = null o[null/v]

NEWASGN v=new T @[ti/v], where t; is a variable representing all
objects allocated at this instruction 4

GETFIELD v=r.f Qlr.f/v] + {r # null}

ASSUME assume(b) ¢ + {b}, if bis “AP op null”

¢, otherwise
EXPRASGN v=wiopva ¢-{pred € ¢ |v € Vars(pred)}

GETARRAY v = ali] ¢ - {pred € ¢ | v € Vars(pred)}
PUTARRAY  ali] =v ¢
RETURN return v ¢[v/ret], where ret is a place-holder for the
return value
PurFIELD rf=v T,
where pseudo-code for computing 7' is as follows.
1 T = {6}

2: Let SubAPs(¢) be the set consisting of all prefixes (proper as well as

improper) of all access paths that are operands of the predicates in

.

3: for all access paths ap; such that ap,.f € SubAPs(¢) do
4 S=T

5. if MustAlias(ap;,r) after “r.f =v” then

6: for all ¢; € S do

7: T =T—{¢1} U{g2},

8: where ¢2 = ¢1[v/ap;.f] + {r # null}.

9:  else if MayAlias(ap;,r) after “r.f = v” then

10: for all 1 € S do

11: T =T—{é1}U{g2} U{d3},

12: where ¢2 = ¢1[v/ap,.f] + {r = ap;} + {r # null}, and
13: 65 = b1+ {r # ap;} + {r # null}.

14:  else {r and ap; are definitely not aliased}

15: for all ¢; € S do

16: T =T-{¢1}U{¢2},

17: where ¢2 = ¢1 + {r # ap;} + {r # null}.

Figure 3: Abstract transfer functions used in the base analysis

statements in the IR are shown in Figure 3. These functions are distributive;
therefore, each function is expressed as taking a single disjunct ¢ in the state-
ment’s post-state as input, and returning a set (i.e., disjunction) of disjuncts
¢’ in the statement’s pre-state. In all transfer functions other than the one
for PUTFIELD instructions ¢’ contains a single disjunct; therefore, we omit the
curly braces around this disjunct for convenience. We use the notation ¢w/v]
to denote a disjunct that is identical to ¢ except that all instances of v have
been replaced by w.

Every disjunct in the analysis has zero or one root predicates. The root
predicate is always of form AP = null. At the start of the analysis, at the
point just above the given root dereference the root predicate is the one that
compares the access-path that is being dereferenced to null. Whenever a dis-
junct is propagated through an instruction the same predicate remains the root
predicate, except that the access path in the predicate may get rewritten. For



instance, this happens in line 5 in Figure 1, where b.f gets rewritten to t in
one of the disjuncts. Our convention is to always underline the root predicate.
Intuitively, the root predicate is an important predicate because it encodes the
nullness hypothesis of the root dereference. The root predicate is therefore han-
dled specially at various points in our analysis, as will become clear in the rest
of this paper.

We now discuss the transfer functions shown in Figure 3. The functions
Copry, NULLASGN, and RETURN are self-explanatory; we discuss below some
of the more interesting ones. The EXPRASGN function drops all predicates in
¢ that depend on v (Vars(pred) denotes the set of program variables that oc-
cur in the predicate pred). This is because the base analysis abstracts away
all the arithmetic from the disjuncts. The GETARRAY function does a similar
reduction, because the base analysis does not model array accesses. Since ¢
can contain no array references, the PUTARRAY function is basically an iden-
tity transfer function. NEWASGN uses the (standard) approach of representing
all objects allocated at an allocation-site ¢ by a single variable ¢; (that is not
present in the original program). We assume that “if” conditions in the source
program are encoded in the IR using assume instructions in the standard way;
i.e., the target of the ¢rue branch out of a condition “if (b)” is the instruction “as-
sume(b)”, while the target of the false branch is the instruction “assume(—b)”.
The base analysis implements a limited notion of path sensitivity, as follows: the
ASSUME transfer function for the instruction assume(b) adds b to the disjunct
if b is a predicate that compares an access path to null, and otherwise acts as a
identity function.

2.1.1. Handling put-fields

As discussed in the introduction, the base analysis always performs strong
updates at put-field statements for precision. At the instruction r.f = v , if
¢ is the postcondition, for each access path ap,.f in ¢, the transfer function
produces a separate disjunct in the pre-condition in the place of ¢ for each of
the following two hypotheses: (i) r and ap; refer to the same object, and (ii) r
and ap; do not refer to the same object. Under the first hypothesis a disjunct
is generated by replacing all the instances of ap;.f in ¢ by v, and adding an
alias predicate (r = ap;) to it (see Lines 8 and 12 in the pseudo-code for the
PUTFIELD instruction in Figure 3). Under the second hypothesis the analysis
produces a disjunct that is the same as ¢, with the alias predicate (r # ap;)
(see Line 13). Note that in order to distinguish them better we use the ‘+’
symbol to add predicates to disjuncts (which are sets of predicates), and the
‘U’ to union together sets of disjuncts. The alias predicate added to a disjunct
embeds the aliasing hypotheses made in that disjunct, and can get validated or
invalidated later in the analysis depending on the statements encountered in the
path. This approach is entirely different from that taken in a typical forward
analysis, where whether r and ap; alias or not would be known by the time the
analysis reaches the put-field statement along a path (or set of paths); therefore,
different aliasing hypotheses need not be made.

For an illustration of the PUTFIELD function, see line 5 in the example in



(1) (ap=ap) — true
(2) {ap1 = ap2,apr # ap2}  —  {false}
3) {ap1 = null,ap1 # null} —  {false}
4) (ti=t;) —  false
(5) (i #t5) —  true
(6) (ti = null) —  false
(7)  (t: # null) — true
(8) (ti =ap) —  false
(9) (ti # ap) — true

Figure 4: Rules for simplifying disjuncts

Figure 1. Note that the single disjunct at the point after this line gets turned
into two disjuncts at the point before this line.

Note that the PUTFIELD transfer function makes use of a utility function
SubAPs(¢); this returns a set consisting of all prefixes (proper as well as im-
proper) of all access paths that are operands of the predicates in ¢. For instance,
SubAPs({v.f = null,v = u.g)) is {v,v.f,u,u.g}. Note also that the transfer
function makes use of pre-computed MayAlias and MustAlias information (if
available). Using must-aliasing information, if available, is an optimization for
efficiency with no influence on the precision of the base analysis. If must-alias
information is not available then the analysis assumes that no two access paths
at a program point are must-aliased unless they are syntactically identical.

2.1.2. Simplification rules

Inspired by the Snugglebug [2] approach, rather than use a theorem prover,
the base analysis uses a lightweight custom simplifier on each disjunct after
it is produced by a propagation step to validate, invalidate, or simplify the
disjunct. Figure 4 shows a sampling of the rules used in the simplifier. Rules 2
and 3 reduce an entire disjunct to true/false; the other rules reduce individual
predicates (in disjuncts) to true/false. For instance, the disjunct just above
statement 2 in Figure 1 is reduced to false by applying Rule 2. In the rules ¢;
is a special variable that represents objects allocated at a static allocation site
1. The simplification rules are conservative; i.e., they may simplify a disjunct
to something weaker than what is ideally possible. Thus, the soundness of the
analysis is preserved.

2.2. Example

We use the example in Figure 1 to illustrate the base analysis. The root
dereference is the dereference of b.f at line 9; hence we start the analysis with
the singleton disjunct (b.f = null) at the point above this dereference, and the
empty set of disjuncts at all other points. Predicate d # null gets added to the
pre-condition above line 8 (for path-sensitivity) by the transfer function As-
SUME. d gets rewritten to a in line 7. Then, the disjunct b.f = null, a # null at
point above line 7, while propagating through the ¢rue branch of the conditional
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at line 2, encounters a putfield statement in line 5, hence resulting in two dis-
juncts above line 5. The second of these two disjuncts gets invalidated at line 4,
while the first one gets invalidated at line 3. Thus, false (which we use to denote
the empty disjunct) reaches the point above line 3. The disjunct above line 7
also propagates through the false branch of the conditional at line 2, the result
of which is shown to the right of line 2. This disjunct gets simplified to false.
Therefore, since only false reaches the point above line 2 along both branches,
the dereference in line 9 is reported as safe; in this example, this turns out to
be the precise weakest at-least-once pre-condition.

2.3. Interprocedural analysis

The inter-procedural aspect of the base analysis is modeled on that of the
Xylem [16] approach, which itself is based on Sharir and Pneuli’s tabulation
based approach [5]. The analysis follows a depth-first propagation. That is,
when a disjunct ¢ reaches the point that follows a call-site to a method m
in a method n, the analysis of method n (i.e., the propagation of disjuncts
within method n) is suspended. The disjunct ¢ is transformed by replacing each
occurrence of an actual parameter at the call-site with the corresponding formal
parameter of m, and then propagated to the end of m’s body. This disjunct is
propagated up through m (and in a similar way, through its transitive callees).
The set of disjuncts that thus results at the entry of m is finally propagated back
to the point that precedes the call-site to m in n (with a corresponding inverse
replacement of formal parameters with actual parameters), and the analysis of
method n is resumed. When a virtual callsite is encountered, pre-computed
may-points-to information is used to resolve the potential targets of the call.

For the sake of efficiency, as well as to ensure termination, the analysis
maintains a summary table X[m] : Disjunct — 2P7unct " which is a partial
map, which associates each disjunct ¢ that was propagated to the exit of method
m with the set of disjuncts that would result at the entry of m upon propagating
¢ through the method m (and its transitive callees). The summary table is used
to avoid re-analysis of methods that are entered multiple times with the same
post-condition.

The approach discussed above is outlined as pseudo-code in Figure 5. The
routine wp WrtMethod shown here computes the pre-condition at the entry of a
given method m given a post-condition ¢, at the exit of m. We will discuss
the need for the context-stack CS later.

A related point is that when the root dereference is in a method m, or
in a callee of a method m, and a propagated disjunct reaches the entry of
m, then there is no specific caller of m to return to. Therefore, the disjunct
is propagated to the point before each call-site in the program that calls m
(after a transformation of formal parameters to actual parameters, as described
earlier). We call the methods that contain these call-sites the predecessors of m.
Similar to the summary table 3, the analysis also maintains a set propagated
to keep track of disjuncts propagated from each method m to its predecessors
during analysis of root dereferences in m (or its callees), and avoids repeated
propagation of such disjuncts.
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N U W N e

8:

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

20:

21:

22:
23:
24:
25:
26:
27:
28:
29:

: Procedure wp WrtMethod(m, ¢post)
. ex = exit statement of m

: worklist W = {(ex, dpost)}

o if 3[m](¢post) is not defined then

update X[m][¢post — emptyset]

: push(CS,(m, Ppost))
: Ty, = X {1}, is a snapshot of summary table ¥ before analysis of m and its

callees.}
while W # () do
Select (S, ¢) € W {¢ is a post-condition after stmt S}
if S is a call instruction v, = ¢(vy,va,...,v,) then
if (c,¢) € CS then
output = X[c](¢)
else
if X[c](¢) is defined then
output = X[c](¢p) {Summary hit}
else {Summary miss}
output = wp WrtMethod(c, ¢)
else
Propagate ¢ back through S. Let output be the set of disjuncts obtained
(at the point preceding S) as a result.
For each disjunct ¢’ in output and for each predecessor statement S’ of S
add (57,¢") to W.
Let result be the set of disjuncts that results at the entry of method m due
to the propagation above.
pop(CS)
if (X[m](dpost) # result) then
Y =T, {replace the summary table by the saved snapshot}
update X[m][@post > result]
result = wp WrtMethod(m, ¢post)
else
update E[m][¢post —> result]
return result

Figure 5: Computing wp, (ex, ¢post) at the entry of method m for post-condition ¢pest at

the exit statement ez of m.
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The above-described depth-first approach (which is inherited from Xylem)
gives two important benefits over a breadth-first or chaotic iteration approach:
(a) Tt prioritizes exploration of long paths, which are often required to be tra-
versed in order for certain safe root dereferences to be identified as such. (b)
It minimizes usage of space, by requiring control-flow graphs (CFGs) and other
analysis artifacts of only those methods that are in a single calling-sequence to
be kept in memory together at a time.

2.3.1. Handling recursion

Consider once again the routine wp WrtMethod in Figure 5, to be run on a
method m with a given post-condition ¢p.st. Since m or its callees could be
recursive or mutually recursive, and since analysis of m triggers analysis of m’s
callees using recursive invocations of wp WrtMethod (see line 17 in the pseudo-
code), wpWrtMethod could go into non-termination whenever a method ¢ (¢
being m or a callee of m) needs to be analyzed wrt a post-condition ¢ during
the context of an unfinished analysis of ¢ wrt the same post-condition.

Therefore, in order to ensure termination, the first thing the routine wp Wrt-
Method does is to push its arguments (m, ¢post) iito a context-stack CS (see
line 6 in the pseudo-code). Later, whenever the pre-condition of a method c is
required to be computed wrt to post-condition ¢, and (c, ¢) is already in the
context-stack (as checked for in line 11 in Figure 5), the analysis picks up the
(potentially intermediate non-fix-point) result X[c][¢#] from the summary table
(instead of starting a re-analysis of ¢), and continues with the analysis of the
caller.

Eventually, when the original invocation of wp WrtMethod on (m, ¢pest) ter-
minates, the following steps are taken (see line 21 onward in the pseudo-code):
(1) Z[m][Ppost] is set to the disjuncts that were propagated to the entry of m.
(2) All other updates made to the summary table X by this original invocation
or by its recursive invocations are undone (because they are potentially derived
from intermediate non-fix-point entries in the summary table). (3) If the newly
updated value in X[m][¢pos:] is not equal to the corresponding pre-existing value
then an analysis of method m with post-condition ¢ is again started. Note
that in the re-started analysis mentioned above, if a call-site to m with post-
condition ¢,,s is again encountered, then the updated value in X[m][@pos:] is
used. This process is repeated iteratively until the value in X[m][¢pos:] stabi-
lizes. In the final iteration of this activity steps (2) and (3) mentioned above
are not performed.

2.4. Some details about library calls

Library methods are typically large and complex, and hence are expensive
to analyze. Moreover, they often use recursive data structures, which cause
formulas to be generated with repeating fields in access paths, as well as arrays;
as discussed earlier in this section, these constructs are not modeled precisely
enough by the base analysis.

Therefore, the base analysis uses a few conservative heuristics to minimize
analysis of library methods. First of all, a library method is entered and analyzed
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in the normal manner from the point that follows a call-site to the method only
if the variable that gets assigned the return value from the call is involved in the
post-condition at this point. Else, the target library method(s) at the call-site
are skipped, as follows. First, pre-computed mod-ref information [8] is used to
identify the actual parameters of the call from which it is potentially possible to
reach objects that could potentially be modified by the target method(s). Next,
the pre-condition at the point before the call-site is set to be equal to the set of
predicates in the post-condition that do not involve any of the affected actual
parameters identified above.

On a related note, the base analysis uses a manually constructed list of
library methods, called a skip list, which lists library methods that are side-
effect free as per their specification. For these methods the (often imprecise)
pre-computed mod-ref information is ignored; i.e., the pre-condition is set to be
the same as the post-condition (unless the return value from the method call is
used in the post-condition, in which case the method is entered and analyzed).
The skip list currently contains around 136 methods.

There is yet another manually constructed list, called the analyze list, which
is non-overlapping with the skip list, and contains library methods that are
considered to have important side effects. The methods in this list are always
entered and analyzed, even if the return value from the method-call is not used
in the post-condition. Currently the analyze-list contains around 84 library
methods.

2.5. Advantages of a backwards analysis

Approaches for null-dereference verification that preceded our publication [4]
on the base analysis, for instance, [17, 18], are based on a forward analysis, and
are meant to verify all dereferences in a program in one go. The base analysis
is demand-driven in many ways; i.e., it only does work that is required to verify
the given root dereference. (a) It keeps track only of aliasing relationships that
are pertinent at the put-field instructions traversed so far along the path being
currently analyzed. A forward analysis would potentially need to eagerly track
all aliasing relationships to achieve similar precision. (b) It keeps track of null-
ness or non-null-ness information only for the access paths that occur in the
root dereference or in “if” conditionals traversed so far. A forward analysis
might need to track this information for all access paths eagerly. (c¢) It only
analyses paths from the program entry to the root dereference; other paths are
never traversed. (d) It can stop and declare the root dereference to be safe or
unsafe much before propagation reaches the program entry. In particular, the
base analysis declares a root dereference safe as soon as all extant disjuncts
get invalidated at some point during the analysis. In fact, in large programs,
more than 95% of dereferences that were reported as safe needed only paths of
length up to 50 instructions to be traversed. Conversely, the analysis declares
the root dereference unsafe as soon as a true disjunct reaches the entry point of
any method (although, in general, there are situations wherein continuing the
propagation of this disjunct to callers of the method could result in an eventual
invalidation of this disjunct). It is this demand-driven nature of the base analysis
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that enables it to have an extremely low response time, of around 288 ms on
average for the analysis of a single dereference. Our extended analysis, which we
focus on in the remaining sections of this paper, entirely preserves this backward
and demand-driven style of analysis, while incorporating extensions to enhance
its precision.

3. Improving our analysis using producer-consumer edges

As has been discussed in the Sections 1.3 and 2.4 there are two limits that
the base analysis employs to keep the running time within practical bounds. (a)
When a virtual call-site has greater number of candidate targets than a pre-set
threshold (which was 10 in our experiments), the pre-condition is computed
simply by dropping from the post-condition the predicates that are potentially
affected by the side-effects of any of the target methods of the call-site (as
per pre-computed mod-ref information) or that refer to the return value. (b)
When a library call is encountered, and the return value from the call is not
referred to in the post-condition, then the call is similarly skipped using mod-ref
information.

There is also a third limit (¢) employed by the base analysis, as follows. A li-
brary call-back method (which we often abbreviate simply as a call-back method)
is an application method that is called by library methods; e.g., equals methods
in user-defined classes are called by library methods such as HashSet.add. If the
given root dereference is inside a call-back method, then during the analysis a
formula could get propagated to the entry point of the call-back method. Now,
rather than propagate this formula via the library code back to the application
code (i.e., to its calling contexts), the base analysis is configured to give up en-
tirely and call the root dereference unsafe. (Note that the over-approximation
strategy using mod-ref information is not applicable in this setting, because the
formula to be propagated is not at a point that follows a call-site.)

These limits were found essential to keep the base analysis practical. On a
set of eight real benchmarks it was observed that if the two limits mentioned
above are not enforced then the analysis time went up on average by 87 times
per dereference. (We discuss in more detail our experimental setup as well as
these results in Section 6.) Nonetheless, these limits are a significant contributor
to the overall imprecision in the base analysis. With call-backs it is easy to see
why the limit causes imprecision. The example in Figure 6 illustrates a simple
scenario where the virtual-call limit causes imprecision. Say the virtual call in
line 8 has more targets than the threshold, with the method bar in lines 10-14
being one of the targets. Say the root dereference is the dereference of z.f at
Statement 9. Therefore, we have the formula (z.f = null) at the point p that
precedes Statement 9. The base analysis would immediately reduce this formula
to true, because it involves the return value z from the call, and hence end up
calling the dereference unsafe. However, it is clear that the root dereference is
actually safe (ignoring, for simplicity, the other targets of the virtual call). This
is because the only values that flow to z.f at line 9 are the values that are put
into u and v in Statements 2 and 3, respectively, which are both non-null.
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-

foo( {

2: B u = new B();

3: By = new BO;

4: A x = new AQ;

5: x.f =u; (u = null)

6: Ay = new AQ;

7: y.f =v; (v = null)

8: A z = w.bar(x, y);

9: print z.f.g; (z.f = null) // point p
}

10: bar(A x, A y) {
11: Az = x;
12: if (x == null)
13: zZ=1Y;
14: return z;

}

Figure 6: Example to illustrate handling of difficult virtual calls. The root dereference is in
bold.

Our approach, in brief, is to directly carry the predicate (z.f = null), which
the base analysis would have otherwise reduced to true by employing its limit,
from the point p to the points that precede the statements that write into the
location referred to by z.f at point p. These statements happen to be the
ones in lines 5 and 7; the carried predicates (after a required rewrite step) are
shown to the right of these statements. The carried predicates are subsequently
checked using (independent) applications of the base analysis. In this case they
are both found to be infeasible, thus indicating that the original post-condition
(z.f = null) at the point after the virtual call is infeasible. Therefore, the root
dereference is declared safe.

On a set of ten benchmark programs (the eight programs mentioned earlier,
plus two more), on average per program, at least one of the limits in the base
analysis kicked in and dropped the root predicate during the analysis of about
26% of the dereferences in the program that were eventually declared unsafe. In
particular, 13% experienced the virtual-call limit, 10% experienced the call-back
limit, while 3% experienced both limits (along different paths). These 26% of
unsafe dereferences are intuitively the ones that were called unsafe due to the
limits. Our approach achieves significant improvement in precision over the
base analysis. Our approach is able to declare 68% of these 26% of dereferences
as safe. This result basically confirms our hypothesis that virtual calls and
call backs were a significant cause of imprecision in the base analysis. At the
same time, the increase in running time is very reasonable, as was mentioned in
Section 1.3.

3.1. Immediate producers

Our extension is based on the notion of immediate producers, which is defined
as follows: A statement ¢ is an immediate producer of an access path AP at a
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program point p iff (1) there exists a memory location ! that may be referred
to by AP at point p, (2) the content of location [ is not dereferenced by AP to
obtain another address, (3) ¢ is an assignment statement, and [ is one of the
addresses that ¢ may write into, and (4) there is a path from ¢ to p along which
[ is not written to by any statement. Intuitively, the immediate producers of an
access path at a point are the statements that assign to the locations referred
to by the final (innermost) field in the access path.

For instance, in the example program in Figure 6, Statements 5 and 7 (which
are underlined) are the immediate producers of the access path z.f at the point
before Statement 9. Note that Statements 11 and 13 are def-use [8] (or flow-
dependence) predecessors of z.f at the point that precedes Statement 9, but are
not immediate producers, because the value in z is used only for dereferencing
in z.f. Note that if we disregard condition (2) in the definition above what
remains is nothing but the definition of def-use predecessors. Therefore, the
immediate producer relation is a restricted form of the def-use relation. Note
that identifying the immediate-producers of an access path at a program point
requires pre-computed aliasing information (as does identifying the def-use pre-
decessors of an access path). In the example in Figure 6, Statements 5 and 7
cannot be identified as the immediate producers of the access path z.f at State-
ment 9 without taking into the account the aliasing relationships established in
Statements 11 and 13.

Our notion of immediate producer is derived from the notion of producers,
introduced by Sridharan et al. [19]. For them, a producer of a statement s
is any statement ¢ such that g copies a value that may eventually flow to s
and be used at s for a purpose other than pointer dereferencing. Note that
if we define the immediate producers of any statement s=“AP1 = AP2” as
the immediate producers of AP2 at the point before s, then the producer re-
lation (between statements) is nothing but the reflexive transitive closure of
this immediate producer relation between statements. In the example in Fig-
ure 6, if Statement 9 had been simply “print z.f”, then the underlined plus
wavy-underlined statements would be its producers. The underlined statements
would be the immediate producers, while the wavy-underlined statements would
be the transitive producers.

Lemma 1. A predicate “AP = k”, where k is any constant value, can be true
at a program point p ounly if at least one of the immediate producers of AP at p
could write the value k.

For instance, in Figure 6, the predicate shown to the right of Statement 9 can
be true only if one of the predicates shown to the right of Statements 5 or 7 can
be true at those respective points. The correctness of this observation is easy
to see, because the value referred to by AP whenever execution reaches point p
is guaranteed to be the value written by the most recent preceding instance of
one of the immediate producers of AP at p. The extension that we discuss in
this section is based on this observation.

Sridharan et al. [19] describe an approach to compute an over-approximation
of the immediate producer relation between statements. In our approach we
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Subroutine: carryDisjunctTolmmProds

Input: (p,¢), where p is a program point and ¢ is a disjunct at p.

Output: {(si, i) | s; is an immediate producer of AP at p, where “AP = null” is
the root predicate of ¢, and ¢; is this root predicate carried over to the point that
precedes s;.}

Step 1: result =0

Step 2: IF ¢ has a root predicate

Step 3:  rootAp = getRootAP(¢)

Step 4: prodSet = ImmProds(rootAp,p)

Step 5: FOR ALL statement s in prodSet

Step 6: ap = getRhsAP(s)

Step 7: ¢ = {{ap = null)}

Step 8: result = result U {(s,¢')}

Step 9: END FOR

Step 10: END IF

Step 11: RETURN result

Figure 7: Subroutine carryDisjunctTolmmProds carries disjunct ¢ at point p to the
immediate producers of the access path in the root predicate in the disjunct.

assume that this relation is pre-computed for all access paths at all program
points. While there is some cost associated with this, we have observed in
practice that this is much less than the expense involved in analyzing all targets
of a virtual call or in analyzing library methods from entry points of call-back
methods. We provide some additional details about how we determine the
immediate producers of statements in Sections 5.

3.2. Carrying disjuncts using immediate producers

Figure 7 shows a subroutine carryDisjunctTolmmProds which we use in our
technique. Its objective is to take a disjunct ¢ at a point p as input, and to
“carry” ¢ to the points that precede the immediate producers of ¢ at p. Since
Lemma 1 is applicable only to a single predicate, the subroutine first drops all
other predicates from ¢, and retains only the root predicate. This it does by
invoking the utility method getRootAP(¢), which returns the access path that
occurs in root predicate in the disjunct ¢ (see Step 3). It then invokes the
routine ImmProds(rootAp,p) (see Step 4), which implements Sridharan et al.’s
algorithm [19] and returns the immediate producers of rootAp at point p. The
algorithm then goes over all the immediate producers (see the loop in Steps 5-9).
Corresponding to each immediate producer s, it constructs a single-predicate
disjunct {{ap = null)} at the point before s, where ap is the rhs of the statement
s. Note that as per Lemma 1 ¢ can be true at point p only if at least one of these
created disjuncts can be true at its respective point. The algorithm returns a
set of pairs, each one consisting of an immediate producer statement and the
disjunct constructed at the point before this statement.

We illustrate Subroutine carryDisjunctToImmProds in Figure 8(a). Here,
point D is the one that’s preceded by a difficult construct (denoted by the
cloud), with the disjunct at this point being (x.f = null,y = z). “x.f = null”
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(1 = null)
(a) (b)

Figure 8: (a) Propagation of the disjunct at D to sites producing values for it on
encountering Difficult construct. (b) Illustration of our approach on the example in
Figure 10.

being the root predicate, we first find the immediate producers of x.f at point
D. Say these are the statements s 4, sg, and s¢c. We drop the predicate “y = 2”7,
and carry the root predicate from D to the points above these three statements.
The thus carried predicates are shown in the figure within angle brackets at
the points that precede the three immediate producer statements, respectively.
In this case, s4 and s are outside the difficult construct, while s¢ is inside.
Note that the reason we drop the predicate “y = z” is that, in general, we do
not know the variables at the points that precede s 4, sp, and s¢, respectively,
that store the values that eventually flow into y and z at point D. Note also
that in each carried predicate the root predicate now involves the rhs of the
corresponding immediate producer statement.

Algorithm IsDisjunctInvalid in Figure 9 is the main routine of our extension.
It also takes a disjunct ¢ at a program point p as input. It is invoked from the
base analysis whenever a disjunct ¢ reaches a point p that is just after (any
kind of) difficult construct. (How our approach specifically identifies difficult
constructs at which to apply this routine is the topic of Section 3.3). This
routine first uses carryDisjunctTolmmProds to carry ¢ to points that precede
the immediate producers of ¢ at p (see Step 1). It then applies an (independent)
instance of our complete backwards analysis on each of the carried disjuncts
(Step 7), and returns true iff each of these disjuncts got invalidated. Upon its
return the base analysis invalidates ¢ if the routine returned true, else it proceeds
to propagate ¢ from p in the normal manner (i.e., ignoring our extension).

Note that in Steps 2 and 3 the algorithm returns false if there are no im-
mediate producers; this is actually to address an implementation-specific corner
case, which we discuss in 5.2.

Reverting to the illustration in Figure 8(a), this algorithm causes the dis-
junct at point D to be carried to points s4,sp, and s¢, as shown. It causes
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Algorithm: IsDisjunctInvalid

Input: (p,¢), where p is a program point and ¢ is a disjunct at p.
Output: true, if ¢ can be invalidated, false otherwise.

Step 1: carriedDisjSet = carryDisjunctTolmmProds(p,)

Step 2: IF carriedDisjSet is empty

Step 3: result = false

Step 4: ELSE

Step 5: result = true

Step 6: FOR ALL (s,¢) € carriedDisjSet

Step 7: Apply an instance of our complete analysis
treating ¢’ at the point before s as the root post-condition.
Step 8: IF the above analysis did not invalidate ¢’
Step 9: result = false
Step 10: BREAK
Step 11: END IF

Step 12: END FOR
Step 13: END IF
Step 14: RETURN result

Figure 9: Algorithm IsDisjunctinvalid checks if the disjunct ¢ at point p can be carried to
its immediate producers and then invalidated.

each of these disjuncts to be treated as a post-condition and to be analyzed
using our complete analysis. The shaded area inside the cloud represents the
portion of the difficult construct that needs to be analyzed fully. For a con-
crete illustration consider the example in Figure 6. The disjunct at the point
after Statement 8 is first carried to the points before Statements 5 and 7, as
shown to the right of these statements. These two disjuncts are then analyzed
separately, during which process they get invalidated (at Statements 2 and 3,
respectively). Now, consider a variant of this example such that Statement 5 is
inside method bar, between Statements 11 and 12. In this scenario the carried
disjunct (u = null) would have been propagated through Statement 11, and
then via Statements 7, 6, etc., until it reaches Statement 2 and gets invalidated.
The following theorem states the soundness of our extension.

Theorem 1. Algorithm IsDisjunctinvalid(p, ¢) returns true only if wpi(p, @)
1s false.

The correctness of this theorem is easy to argue. Let rootAp be the root
predicate of ¢. (a) Assuming that subroutine ImmProds(rootAp, p) returns an
over-approximation of the true set of immediate producers of rootAp at p (which
is guaranteed by the approach of Sridharan et al. [19]), and assuming that the
rest of our analysis is correct (i.e., over-approximates the weakest at-least-once
precondition), it can be easily seen that Algorithm IsDisjunctInvalid returns
true only if the weakest at-least-once pre-conditions of all disjuncts that are
obtained by carrying rootAp to its immediate producers are false. (b) In other
words, the algorithm returns true only if none of the immediate producers of
rootAp at point p copy a null. (c) Now, from Lemma 1, it follows that the
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1: public class Element {
2 Integer i;
3: public int hashCode() { Entry of Call-Back hit !!!
4 return i.hashCodeQ); (1 = null)
}
}
mainQ) {

5 z= new HashSet();

6: Element u = new Element();

7: Integer x = new Integer(0); false

8: u.i=x; (x = null) (immediate producer of i at line 4)
9: Element v

= new Element();
10: Integer y = new Integer(l); false
11: v.i = vy; (y = null) (immediate producer of i at line 4)
12: z.add(u);
13: z.add(v);
}

Figure 10: Example to illustrate verification of a root dereference (indicated in bold) inside a
call-back method.

algorithm returns true only if rootAp cannot be null at p. This implies that
wp1(p, @) is false. O

8.8. Instantiation of our approach

In our current implementation we treat virtual calls with too many candidate
targets, certain library calls, and entry points of call-back methods as points at
which to employ our extension by invoking the routine IsDisjunctInvalid. We
state this idea more precisely below.

Whenever the base analysis chooses to skip a target of a call-site and use
the target’s mod-ref information instead, either because the target was a library
method whose return value is not used in the post-condition or because the call-
site had too many candidate targets, and pre-computed mod-ref information of
this target reveals that it may affect the root-predicate of the disjunct ¢ at the
program point p that follows the call-site, then the extended analysis over-rides
the base analysis at this call-site. It does not enter and analyze any of the
targets of the call-site; instead it calls the routine IsDisjunctInvalid(p, ¢), and
proceeds when this routine returns as was discussed in Section 3.2. A similar
action is performed whenever a disjunct ¢ reaches the entry point p of any
library call-back method.

We have already illustrated the handling of virtual calls by the extended
analysis using the example in Figure 6. To illustrate the handling of call-backs,
consider the example in Figure 10. Here, the method Element.hashCode (de-
fined at lines 3-4) is a library call-back, as it is invoked by the library method
HashSet.add, which itself is invoked on the variable z in Statements 12 and 13.
In this example, say our root dereference is that of field ‘i’ in Statement 4 in
the method Element.hashCode. The analysis begins by propagating the disjunct
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(i = null) to the entry of this method. At this point, rather than simply reduce
this disjunct to true (hence calling the root dereference unsafe), it gets carried to
the points that precede its immediate producers, which are Statements 8 and 11.
The result of this carrying is shown in Figure 10, as well as in Figure 8(b). (In
fact, in this example, we have obtained the exact same precise outcome without
analyzing any library code as would have been obtained if the base analysis had
hypothetically been able to propagate the disjunct at the entry of the method
Element.hashCode via the code of the library method HashSet.add with full
precision to the points before the calls to add in the main function.) The two
carried disjuncts both get subsequently invalidated by subsequent applications
of our complete analysis. Therefore, the dereference at Statement 4 is called
safe.

It is somewhat difficult for us to measure, with virtual calls, the percentage
of times that all immediate producers of a post-condition after the call-site are
outside all target methods of the call-site as well as their transitive callees. On
the other hand, we are able to measure this for call-backs. Our experiments
using the ten real benchmark programs that we referred to earlier reveal that
95% of the time when a disjunct reaches the entry of a library call-back method
it refers to locations that are written to only in application code (and thus ends
up being carried directly to application code).

8.4. Precision of our approach

Our experiments on real benchmarks, which we discuss in detail in Section 6,
show clearly that in practice our extended analysis is more precise than the
base analysis. In fact, it is more precise in practice than even the base analysis
without any limits (even though such an analysis is impractically expensive).
However, these gains are not guaranteed to hold in every single program. We
now present a series of examples to illustrate various scenarios. The example
in Figure 6 illustrated how the extended analysis gives more precision than the
base analysis with limits. In this same example, if the limits in the base analysis
were removed, and if the other targets of the call in Statement 8 (not shown in
the figure) all are such that they can be analyzed precisely by the base analysis,
then the base analysis would also prove the root dereference safe, as did the
extended analysis.

To see that the extended analysis analysis can outperform the base analysis
even without any of its limits, consider the variant of the example in Figure 6
that is shown in Figure 11(a). Consider the performance of the base analysis
without any limits. The predicate shown to the right of Statement 12 gets
propagated to the point before Statement 20 when the analysis enters method
bar. Later, when this predicate reaches the point after Statement 17, then
the GETARRAY transfer function of the base analysis (see Figure 3) drops it
(because the contents of arrays are not modeled precisely). Hence, the root
dereference is called unsafe. However, the extended analysis directly carries the
predicate at the point after Statement 11 to the points that precede Statements 7
and 9, as shown to the right of these statements in the figure. Intuitively,
even though arrays are still not being modeled precisely, the analysis is able to
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1: fooO {

.. 1: foo(Q {
2 B u = new BO; s
3 B v = new BQ); 2: a.f.g = null;
4 for(i = 0; i <n ++i) { 3: if (y != null)
5: a[i] = new AQ; 4: a.f.g = new BQ;
6 if (..) 5: zZ = a; {{a.f.g = null),
7 alil.f = u; (u = null) (y # null)}
8: else 6: if (y !'= null) {
9: alil.f = v; (v = null) 7: copies z.f to itself
10:  } 8: print z.f.g.h; (z.f.g =
11: A z = w.bar(a); }
12: print z.f.g; (z.f = null) }

}
13: bar(A[] a) {

(b)

14: A z = a[0];
15: while (i < n) {

16: if (..)
17: z = a[i];
18: i++;
19:  }
20: return z;
}

(a)

Figure 11: (a) Example to illustrate imprecision due to arrays. (b) Imprecision due to
immediate producers.

determine that the f field of each element of the array a points to either what
variable u did or what variable v did. From this point on the base analysis takes
over, and is able to invalidate the predicates shown to the right of Statements 7
and 9. Therefore, the root dereference is declared safe.

We hypothesize that the arrays and recursive data structures are the chief
reasons why the base analysis shows a large increase in running time but little
improvement in precision when its limits are removed. On the other hand, the
extended analysis is often able to side-step usages of these constructs in a way
that retains precision, as is evidenced by our empirical results.

In the converse direction, it is possible to come up with examples in which the
base analysis without limits performs more precisely than the extended analysis.
Consider the example in Figure 11(b). The initial formula due to the root
dereference is shown to the right of Statement 8. Let line 7 denote a call to some
method that ends up copying the value in the field z.f to itself. Assume that this
method can be analyzed precisely by the base analysis, and that the extended
analysis treats it as a difficult method (e.g., because it is a library method).
The base analysis without any limits would result in the formula shown to
the right of Statement 5. Propagation from this formula eventually results in
invalidation of all disjuncts, because the part of the program that precedes this
statement ensures that a.f.g is null only when y is also null. Therefore, the
root dereference is declared safe. However, when the extended analysis uses the
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immediate producer approach on the predicate (z.f.g = null) at the point above
Statement 8, this predicate gets carried directly to Statements 2 and 4, and then
validated at Statement 2. Thus, the root dereference is declared unsafe. This
imprecision results because Statement 2 is actually not an immediate producer
of z.f.g at Statement 8 at all; however, this could have been determined only
by a path-sensitive immediate producers computation, which can potentially
be expensive. We hypothesize (without a proof) that if immediate producers
can be computed precisely (using a path-sensitive) analysis then our extended
analysis is never less precise than the base analysis with limits.

3.5. Comparison with a simple alternative approach

Sridharan et al. [19] introduced the notion of a thin slice of a program wrt a
criterion statement. This kind of slice consists of all the producer statements of
the criterion, as defined in Section 3.1. Sridharan et al. originally proposed thin
slicing to support program understanding and debugging tasks; they argued
that thin slices were much smaller than full slices, while managing to include
statements that are pertinent to program understanding and debugging tasks.
Then, subsequently proposed approaches [11, 10, 9] have used the thin slice as
a program abstraction (as opposed to using the full program) to carry out dif-
ferent kinds of analyses (not null-deference analysis, though). We did originally
consider an approach similar to the ones referred to above. The approach is to
simply take a thin-slice from the root dereference, and see if any of the state-
ments in the slice is a null-assignment. This approach is sound. It is expected
to be less precise than our approach, because while we use immediate producers
only when faced with difficult constructs and use a flow-sensitive approach oth-
erwise, this approach uses immediate producers all the time. For instance, in
the example in Figure 11(b), say the difficult construct in line 7 is not present.
In our approach the immediate producers extension does not kick in; therefore,
the base analysis is able to prove the root dereference safe. However, the thin-
slice-based approach finds Statement 2 to be in the thin slice, and hence calls
the root dereference unsafe.

We have implemented the thin-slice-based approach also, and experimented
with it. We present the results in detail in Section 6.5. The summary is that the
thin-slice-based approach is less precise than our approach on eight out of ten
benchmarks programs, and often, significantly so. The more surprising result
is that it is also much less efficient than our approach. It turns out that the
primary reason for this is that on a vast majority of dereferences our approach
is able to prove them safe within a very small number of propagation steps.
Whereas, a thin slice from a dereference usually contains a larger number of
producers, which all need to be visited as part of the approach. In other words,
flow-sensitivity and precision also result in quick verification.

A related idea is to run our (flow-sensitive) analysis on a (normally) sliced
version of the program, rather than on the whole program. One would expect
our analysis to run faster, because a sliced program is generally smaller than a
full program. However, it was observed [4] that the time saved by performing the
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analysis on the sliced program did not compensate the time spent in computing
the slice in the first place.

4. Java collections and maps

The Java standard library provides built-in implementations of collections
such as sets, lists and vectors, which are used extensively by Java programmers.
Henceforth, we will refer to the API methods in these libraries as Java col-
lections methods. When the base analysis enters and analyzes Java collections
methods, it ends up analyzing code that accesses complex data structures that
are used in the implementations of these collections. Examples of these com-
plex data structures are arrays and recursive data structures. The base analysis
does not model array accesses; by applying transfer function GETARRAY (in
Figure 3), it reduces any predicate that contains an access path involving an
array reference to true. The base analysis cannot reason about the contents
of recursive data structures precisely either, because it drops predicates that
contain repeated fields (see Section 2). Therefore, entering and analyzing Java
collections methods typically does not improve the precision of the base anal-
ysis, and yet, adds a lot to the running time. Our objective in the extended
analysis is to side-step this difficulty altogether. The approach we take is: (1)
Introduce special fields in collection objects to model the contents of these col-
lections; these fields will occur in access paths in the formulas that we propagate
during the analysis, but are not present in the actual implementations of the
collections. (2) Provide manually constructed summary functions for all Java
collections methods. Each summary function is used as a backwards transfer
function; it recognizes and manipulates the special fields, and computes an over-
approximation of the weakest-atleast-once precondition before a call-site to the
corresponding method given a post-condition after the call-site. When a call to
a Java collections method is encountered in the analysis we use the summary
function of the method rather than enter and analyze it. This enhances the
precision of the analysis significantly, while also improving its efficiency.

Our primary design objective is that the analysis should scale to large, real
world Java programs (like our benchmark programs), and have quick response
time for verifying a dereference (which is expected from a demand-driven anal-
ysis). Therefore, we have chosen to encode all collections, including ordered
collections such as lists and vectors, simply as unordered sets, and allow only a
simple form of existential quantification over the elements of collections in the
formulas.

The primary focus of our work is handling Java collections. We also have a
simple way to handle maps, which we describe at the end of this section.

4.1. The special fields elem and collection

The grammar for access paths that we use in the lattice of the extended
analysis, which allows for two special fields, namely elem and collection, is
shown in Figure 12. The rest of the grammar describing the syntax of formulas
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AccessPath (AP) —  Variable.Fields | Variable
Fields —  field.Fields | €
| elem.Fields | collection
| collection.elem.Fields

Figure 12: Our structure of formulas (lattice elements) to handle collections

remains the same as in Figure 2. The two special fields have the following
meanings.

e clem: If u is an access path that points to a collection object, then the
access path u.elem refers to any of the elements stored the collection.
Therefore, for instance, the predicate (u.elem.f = null) asserts that there
exists an element in the collection pointed to by u whose field f is null.
Similarly, the predicate (ul.elemn = u2.elem) asserts that some element of
the collection pointed to by w1 is the same as some element of the collection
pointed to by u2. Note that if application code contains references to
structures that are part of a collection’s internal implementation (which
is not common) then these will be represented using normal access paths
(i.e., not involving the special fields).

e collection: If u is an access path that points to an iterator object, then
u.collection is an access path that points to the collection object whose
elements this iterator refers to (i.e., iterates over).

When we analyze well-typed Java programs using our summary functions for
collections methods the access paths in the formulas that arise will necessarily
respect the following constraints:

i) An access path preceding an elem field can only refer to a collection object.

ii) An access path preceding a collection field can only refer to an iterator
object. Also, any occurrence of the field collection in an access path is
either followed by no field, or is followed by elem.

The simplification rules in Figure 4 are still applicable even in the presence of
the special fields, but with a couple of changes: Rules 2 and 3 are not applicable
if the access paths mentioned contain elem fields. Also, we use Rule 1 even when
the predicate is of the form (ap; = aps), where ap; and aps are syntactically
different, in case ap; or apy involves the elem field. This is because reducing a
predicate to false can be done only when there is certainty about this, whereas
reducing to true just results in an over-approximation.

4.2. Overview of our transfer functions

Our objective is to provide summary functions, which we also call transfer
functions or rules, for the methods in the Java Standard Collections API. These
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Container Transfer Function: \¢ € Disjunct.¢’,
operation where ¢’ € 2Pt and is =

COLLECTIONADD

COLLECTIONADDALL
LisTGET

GETITERATOR
ITERATORNEXT

COLLECTIONCLEAR

INIT
PARAMETERISEDINIT

REMOVE
TOARRAY

c.add(v) T,
where pseudo-code for computing 7" is as follows.
LT = {¢)
2: Let SubAPs*(¢) be the set {(ap;.elem,j) | ap;.elem €
SubAPs(¢), 1 < j < n, where n is the number of occur-
rences of ap;.elem in ¢}.
: for all (ap,.elem,j) in SubAPs*(¢) do
S=T
if MustAlias(ap;,c) after “c.add(v)” then
for all ¢; € S do
T'=T-—{¢1} U{d2} U{¢s}, where
b2 = 61 [0/ (ap-clem, )]+ {c = ap}+{c # null},
63 = b1+ {c = ap,} + {c # null}.
10:  else if MayAlias(ap;,c) after “c.add(v)” then
11: for all ¢; € S do
12: T =T— {1} U{gp2} U{#3} U{pa}, where
13: $2 = d1[v/(ap;.clem, )] +{c = ap;}+{c # null},
14: 03 = 1+ {c=ap;} + {c # null},
15: ¢4 = 1 + {c # ap;} + {c # null}.
16:  else {ap,; and c are definitely not aliased}
17: for all ¢; € S do
18: T =T—{¢$1} U{¢p2}, where
19: @2 = 1 +{c# ap;} + {c # null}.
v.addAll(c) Treat this as v.add(c.elem).

© 0 DT

v = c.get (i) olc.elem /v]
i = v.iterator()  ¢[v/i.collection]
v = i.next() @li.collection.elem [v)

v.clear() o[false/pred][false/pred,) .. . [false/pred,,],
where the pred;’s are the predicates in ¢

such that v.elem € SubAPs(pred;).
v.(init)() Treat this as v.clear().
v.(init)(c) olc.elem /v.elem],

v.remove(w) ¢

v.toArray() o[true/pred,][true/pred,) . .. [true/pred,,],
where the pred;’s are the predicates in ¢
such that v.elem € SubAPs(pred;).

Figure 13: Transfer Functions for Java collections API methods

are the methods that are declared in the interface java.util.Collection, as
well as the ones declared in its subinterfaces java.util.Set and java.util.List,
as well as methods not listed in these interfaces that are provided specifically by
classes that inherit from these interfaces (e.g., the method getLast in the class
LinkedList). We present a selection of our summary functions in Figure 13.
There are 23 other summary functions that we have provided in our implemen-
tation, which we have not included in Figure 13, which are similar in spirit to the
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foo {

1: u = new Integer(l); false

2: v = new Integer(2); (u=null )

3: z = new HashSet(Q); (u=null ),{ v=null )

4: z.add(w); (z.elem =null), (u=null ), ( v=null )
5: z.add(v); (v=null ),{ z.elem = null )

6: 1 = z.iterator(); ( z.elem = null )

7: w = 1i.next(Q; ( i.collection.elem = null )

8: w.toString(Q; (w=null )

}

Figure 14: Example to illustrate new transfer functions to handle collections. Each entry on
the right-hand side shows the formula at the program point that precedes the corresponding
statement.

ones in this figure. There remain a few other infrequently used Java Collections
methods for which we do not provide summary functions. When our analysis
encounters calls to these methods we skip these calls conservatively by simply
dropping predicates that involve either of the two special fields and transmitting
the remaining predicates to the pre-condition.

Note that at any call-site to a Collections API method we first check (using
may points-to information) whether all candidate targets of the call-site are
definitely within the standard library implementations in the Java JDK. If yes
we use the corresponding summary function (or skip the call conservatively, as
mentioned above); else, we first drop all predicates in the post-condition that
refer to the special fields and then handle the call as we would handle any other
call.

Before discussing the details of our transfer functions, we first intuitively
illustrate our approach using the complete example in Figure 14. In the example
we wish to verify the dereference of w at Statement 8. This dereference is safe;
this is because w points to some element of the collection z, and the objects added
to z (at Statements 4 and 5) are non-null. Note that we abuse terminology, and
simply use “the collection z” to mean “the collection object pointed to by the
variable z”. Similarly, we use shorthand for iterators, e.g., “the iterator i”. The
initial post-condition to verify the root dereference is (w = null) at the point just
above Statement 8. At Statement 7, w is assigned to an element fetched by the
iterator 1. Unlike in a forward analysis, in our backward analysis we do not know
at this point the collection object that i refers to; even if we knew this, we would
not know the elements that were added to this collection in the preceding code.
Therefore, we replace w in the post-condition with i.collection.elem, yielding
the pre-condition (i.collection.elem = null), which means some element of the
collection currently referred to by the iterator i is null. Statement 7 is processed
by the transfer function ITERATORNEXT in Figure 13.

At Statement 6 it gets revealed that i’s iterator refers to the collection z;
therefore, in our predicate, we replace i.collection (the collection referred to by
i) with z, resulting in the condition (z.elem = null). This is taken care of by
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the GETITERATOR transfer function. At Statement 5, we generate two disjuncts
in the precondition: (1) v = null, reflecting the hypothesis that the element re-
ferred to by z.elem in the post-condition is exactly the element pointed to by
v, which is being added to z, (2) z.elem = null, reflecting the hypothesis that
the element referred to in the post-condition is not the element pointed to by
v. This is implemented in the transfer function COLLECTIONADD. Statement 4
is handled similarly. At Statement 3 the variable z is made to point to a new,
empty collection. Therefore, no predicate that involves the access path z.elem,
which refers to the elements in the collection, can be true just after this state-
ment. Hence, the transfer function INIT reduces the disjunct (z.elem = null)
to false. The remaining two disjuncts, namely, (u = null) and (v = null), get
invalidated at Statements 1 and 2, respectively. Thus, our analysis proves that
the dereference at Statement 8 is safe.

4.3. Discussion on the transfer functions

<c.elem = null> <c.f = null>
v = c.get(i); v=c.f
<v = null> <v = null>
(a) (b)
<v = null, c = y>, <y.elem = null, c = y>, | <v = null, c =y>,
<y.elem = null, c # y> <y.f = null, c # y>
c.add(v) c.f=v;
<y.elem= null> <y.f = null>
(c) (d)

Figure 15: Illustration of the similarities between the transfer functions of (a) LISTGET and
(b) GETFIELD, and (c) COLLECTIONADD and (d) PUTFIELD.

We now discuss the details of some of our collections-related transfer func-
tions. The COLLECTIONADD rule is the most complex one. It bears resemblance
to the PUTFIELD rule in Figure 3. The COLLECTIONADD rule is best under-
stood by comparing it to the PUTFIELD rule, which is what is done in Figure 15,
parts (¢) and (d). Note that there are two differences between these two rules.
The first is that in the PUTFIELD rule we produce two disjuncts, one for the
‘c = y’ hypothesis and the other for the ‘c # y’ hypothesis (see Figure 15(d)).
However, with the COLLECTIONADD rule (see Figure 15(c)), even if ¢ could be
equal to y, the new element being added (pointed to by v) may or may not be
equal to the element being referred to by y.elem. Therefore, we produce a total
of three disjuncts in the pre-condition. (In case c and y are must-aliased, which
would happen if they are the same variable, then the PUTFIELD rule would
produce one disjunct in the pre-condition. Rule COLLECTIONADD would still
produce two disjuncts, corresponding to the first two disjuncts shown in the
pre-condition in Figure 15(c)).

The second difference comes up when there are multiple predicates in the
post-condition involving an access path y.f (which actually does not happen in
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Figure 15). With the PUTFIELD rule, in the disjunct in the pre-condition that
contains ‘c = y’, we would replace all these occurrences with the variable v.
However, if the post-condition after a call to add contains multiple occurrences
of y.elem, each of these may independently refer to or not refer to the element
v being added. In general, if there are k& occurrences of the elem field in the
disjunct in the post-condition, we produce 2% disjuncts in the pre-condition.
In contrast, the PUTFIELD produces 2" disjuncts in the pre-condition, where
m is the number of syntactically distinct access paths ending with “.f” in the
post-condition, irrespective of how many times each such access path occurs in
the post-condition.

The COLLECTIONADD rule is described in detail using pseudo-code in Fig-
ure 13. Note the utility function SubAPs*(¢) used in this rule (see Line 2).
This function returns pairs of the form (ap,,j), which denotes the jth occur-
rence in the post-condition of the sub-access-path ap,. For instance, if ¢ is
(x.elem.f = null, x.elem = y.elem) then SubAPs™(¢) is { (x.elem, 1),(x.elem, 2),
(y.elem,1)} (while SubAPs(¢), as defined in Section 2.1.1, would be the set
{x,x.elem,x.elem.f,y,y.elem}). Basically, for each subset of the set SubAPs™(¢)
we generate a disjunct in the pre-condition, obtained by replacing sub-access
paths in ¢ that are also in this subset with the variable v (v being the argument
passed to the call to add). A related point about notation: we use ¢[v/(ap;,j)]
(see Lines 8 and 13) to denote the disjunct obtained by replacing the jth oc-
currence of ap; in ¢ with v.

The statement v.addAll(c) adds all elements in collection ¢ to collection v.
The corresponding transfer function COLLECTIONADDALL rule is implemented
by basically invoking the COLLECTIONADD transfer function as a subroutine.

The statement ‘v = c.get(i)’ retrieves the ith element of the list ¢, and copies
it into v. Since in our backwards analysis we do not know the elements that were
added to c¢ in the preceding code, in the corresponding rule LISTGET we simply
replace occurrences of v in the post-condition with c.elem. Note that since we do
not keep track of the order of elements inside a list, or even distinguish them, the
transfer function ignores the index 4. Just like rule COLLECTIONADD resembles
the PUTFIELD rule in Figure 3, the LISTGET rule resembles the GETFIELD rule
in Figure 3. This similarity is illustrated in Figure 15, parts (a) and (b).

Rules GETITERATOR and ITERATORNEXT in Figure 13 are intuitive, and
were illustrated in the example in Section 4.2. In fact, the principle behind rule
GETITERATOR is similar to the one behind rule LISTGET.

The COLLECTIONCLEAR rule is for modeling the statement ‘v.clear()’, which
removes all elements from the collection v. The rule invalidates predicates in
the post-condition that refer to elements of the collection being cleared. This
is a sound thing to do, because an empty collection cannot possibly satisfy any
predicate. The rule INIT, which models statements that create a new, empty
collection, does the same thing. The rule PARAMETERISEDINIT, which handles
the copying of one collection (c¢) to another (v), is straightforward.

The rule REMOVE is actually used to model three (related) API methods:
v.remove(w), v.removeAll(c), and v.retainAll(c). The first of these methods re-
moves the element pointed to by w from collection v; the remaining two methods
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remove all elements from collection v that are present (resp. not present) in c.
In all these cases, removal of an element z really means that all objects that
are equals to the object pointed to by = are removed, where equals could be
a type-specific user-defined function. Modeling remove statements soundly and
precisely therefore requires precise analysis of these equals methods, which may
not be feasible in our demand-driven setting. Therefore, we let REMOVE be an
identity function. By choosing to not track removal of elements from collections
we basically over-approximate the elements that are treated as being present in
any collection at any point. Such over-approximation is sound in our setting;
this is because the satisfiability of our formulas (see Figure 12) depends only
on what elements are present in a collection, and not on what elements are not
present in a collection.

In rule TOARRAY, we drop all predicates that contain access paths of the
form v.elem. This is a conservative action we take, because toArray() returns
an array of elements, which we do not model.

Appendix B contains proofs of correctness of four key transfer functions in
Figure 13. Our approach in these proofs is to first specify the (idealized) concrete
semantics of the four corresponding API methods based on the documentations
of these methods in the interfaces in which they are introduced. We then prove
that our summary functions are over-approximations of the idealized concrete
semantics. In this paper we assume that the various actual implementations
of these methods in the Java JDK libraries are bug free and faithful to their
corresponding idealized concrete semantics. This is also the approach taken
by most previous researchers that have proposed to use summary functions of
library methods to analyze client code. Interesting (and challenging) topics
for future work would include the development of approaches to automatically
check whether any given implementation of an interface method is faithful to its
idealized concrete semantics, or to extract idealized concrete semantics directly
from a method implementation in a sound manner.

4.4. Handling Maps

We also handle the methods in the Java standard library interface java.util
Map in a simple, conservative way. A map is a collection of (key,value) pairs. We
abstract away the correlation between keys and values, and instead model each
map m as two collections, m.keys (its set of keys), and m.values (its set of values).
Note that, keys and wvalues are special fields introduced only for the purpose
of the analysis, like elem and collection. We treat the operation m.put(k,v)
as a sequence of two add operations: m.keys.add(k) and m.values.add(v). Note
that as per the specified semantics of maps the operation m.get (k) returns null
when the key referred to by k is not present in m. Therefore, we translate
operation “m.get(k)” as “(...) ? map.values.get(k) : null”, where “(...)” is a
non-deterministic condition. For example, consider a postcondition v.f = null
at the point after the statement v = m.get (k). The precondition will contain two
disjuncts: (m.values.elem.f = null), considering the non-deterministic condition
to be true, and (null.f = null), considering the non-deterministic condition
to be false. The latter disjunct reduces to false, because null does not have
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any fields (this reduction is accomplished by a simplification rule that will be
introduced in 5). The other methods in the Map interface are handled in a
similar way, conservatively.

5. Implementation Details

5.1. Analysis Framework

We have implemented our approach using the Wala [20] program analysis
framework. Wala provides us control-flow graphs of methods, may-points-to
information, as well as the immediate-producers of all access paths at all pro-
gram points (following Sridharan et al.’s approach). All this information is
pre-computed by Wala as part of its pre-processing, before our actual analysis
starts. We use a flow-insensitive and receiver-type context-sensitive points-to
mode of Wala analysis (namely, ReceiverType ContextSelector), where the
context is based on the concrete type of the receiver object. Our approach uses
Wala’s points-to analysis results for four purposes: (a) to construct a call-graph
(particularly, to resolve virtual method calls), (b) to compute Mod-Ref sets (i.e.,
side-effect information) for methods, (c¢) in the PUTFIELD rule (see Figure 3,
to reduce the number of aliasing combinations that need to be considered, (d)
in the COLLECTIONADD and COLLECTIONADDALL rules (see Figure 13), for
a similar purpose as in the PUTFIELD rule, and (e) implicitly during Wala’s
pre-processing to compute immediate producers of access paths. Imprecision
in Wala’s points-to analysis affects the precision as well as scalability of our
approach due to reasons (a) through (e) above. Our approach would bene-
fit significantly both in terms of precision and scalability from a more precise
points-to analysis. However, due to scalability limitations of Wala’s points-to
analysis implementations, we chose a points-to analysis method that is reason-
ably precise but highly scalable.

Our  implementation is available in  open-source form  at
http://sourceforge.net/p/npedetector. Our implementation is single threaded.
We analyze every dereference using a separate instance of our analysis; there is
no analysis information shared across the verification of different dereferences,
except the pre-computed call graph, may points-to, and mod-ref information.
Although sharing of intermediate results within our analysis is certainly
possible, and would be beneficial, we avoid this in our experiments in order
to estimate running time in a worst-case scenario where only a few selected
dereferences need to be verified on-demand. Finally, as with many previous
related techniques, our approach does not model concurrency soundly, nor
dynamic features such as reflection and dynamic class loading. Also, there
are some libraries, for instance, GUI libraries and JDBC libraries, which
upon linking cause Wala’s may-points-to information computation to become
unscalable. Therefore, we omit any analysis of these libraries, and process calls
to these libraries using a heuristic that is conservative in most but not all cases.

In the rest of this section we describe a few interesting details about our
implementation.
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Name Instruction Transfer Function: \¢ € Disjunct.¢’,
where ¢ € 2P"unet and is =

s;: Copy v=w U(p, v, si)|w/v], where ‘U’ is shorthand for
UpdateOriginatingStmt

s;: GETFIELD v =r.f Ulp, v, si)[r.f/v] + {r # null}

s;: PUTFIELD r.f=wv olr.f,v,apr.flr.f,v,apa.f]...[r.f,v, apn.f],

where {ap1.f,apa.f,...,apn.f} are the access paths
in SubAPs(¢) that end with field f, and
¢[T'f7 v, aplf]
= U(¢, api.f, si)[v/api.f] + {r # null},
if MustAlias(r,ap;) after r.f = v
={U(®, api.f, si)[v/api.f] +{r = ap:} +
{r # null},
¢+ {r # ap:} +{r # null}},
if MayAlias(r,ap;) after r.f =v
= ¢ + {r # null}, otherwise

Figure 16: Modified transfer functions for tracking originating statement

Algorithm: UpdateOriginatingStmt

Input: a disjunct ¢, access path ap, and statement s;

Output: a disjunct ¢’, with the originating statement of access path ap updated
to s;

Step 1: ¢' = ¢

Step 2: FOR ALL (ap,s;) in APs(¢')

Step 3: Replace (ap,s;) in ¢’ with (ap,s;)

Step 4: END FOR

Step 5: RETURN ¢’

Figure 17: Pseudocode to update originating statement of an access path

5.2. Determining immediate producers

Wala’s immediate-producers API actually provides the immediate producers
of any given statement. However, as discussed in Section 3.2, we require in our
approach a routine ImmProds(ap,p) which returns the immediate producers
of an access path ap at a program point p. The immediate producers of a
statement are nothing but the immediate producers of access paths that are used
in the statement for purposes other than pointer dereferencing. For instance,
the immediate producers of a statement u = v.g are the immediate producers
of the access path v.g (but not the immediate producers of v) at the point that
precedes this statement.

Our approach to implementing the routine ImmProds using Wala’s APT call
is as follows. We associate with every access path in a formula a statement,
which we refer to as its originating statement, which is the statement at which
the access path was originally introduced into the formula. The idea is that the
immediate producers of an access path in a formula at any program point are
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nothing but the immediate producers of the originating-statement associated
with that access path.

In order to track the originating statements of access paths we extend the
syntax of access paths that we use in formulas, and let each access path be a
pair of the form (Variable.Fields, stmt) or (Variable, stmt). Then, we modify
the transfer functions GETFIELD, PUTFIELD, and CoPY (see Figure 3) to in-
corporate originating-statement information into access paths. Figure 16 shows
these modified transfer functions, while Figure 17 shows the accessory function
UpdateOriginatingStmt used in these transfer functions to update the originat-
ing statement of an access path. The function APs(¢) used in UpdateOrig-
inatingStmt returns only the (complete) access paths (and not the extended
sub-access paths) that occur in ¢. For instance, APs((v.f, s,) = null) will only
return (v.f,s,) and not (v, s,). Note that, as per our definition of algorithm
UpdateOriginatingStmt, we replace the originating statement of an access path
ap with a statement s; only when the transfer function of statement s; replaces
ap entirely with a different access path. For instance, for a copy instruction
s; : v = w, and if the postcondition is ((v,s;) = null, (v.f,s;) = null), the
precondition will be ((w,s;) = null, (w.f,s;) = null). This makes sense, be-
cause the immediate producer of w.f at the point preceding s; is nothing but
the immediate producer of v.f at the point after s;.

There arise situations where an access-path has no originating statement
associated with it. For instance, a statement of the form v = c.get(k), where
c is a collection, will introduce an access path c.elem into its pre-condition;
this access path cannot have an originating statement, because the access path
uses a special field (which Wala’s thin slicer will not recognize). Whenever an
access path does not have an associated originating statement we will essentially
be unable to find its immediate producers, and hence cannot skip a difficult
construct.

Another noteworthy aspect is that fields of newly created objects are by
default assigned to null in Java. The Wala IR does not represent this implicit
null assignment. Therefore, if a field f of an object pointed to by a variable
v is never explicitly assigned on a path from the program’s entry to a point
p, then ImmProds(v.f, p) will miss the null that implicitly flows to v.f at p,
hence missing an immediate producer. This would make our analysis unsound.
Therefore, before using the immediate producers returned by Wala of an access
path ap.f at a point p, we check if ap.f has been assigned on all paths to p.
We do this using an inexpensive limited-scope forward analysis from the new
statements that create the objects that ap may point-to. If within this limited-
scope analysis we are not able to confirm that f is definitely assigned a value, we
conservatively assume that the immediate producers of ap.f returned by Wala
are unsound, and do not employ our extension to skip the difficult construct.

5.8. New simplification rules to invalidate infeasible disjuncts

We use several additional simplification rules in our extended analysis over
the base rules shown in Figure 4, in order to invalidate infeasible disjuncts, which
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are disjuncts that flow along infeasible paths. This increases the precision of
our analysis.

e Say method m of class C is being analyzed and a disjunct at some point
in m contains the predicate this.f = null. It may so happen (due to
imprecision in Wala’s points-to analysis and call graph) that the class in
which field f declared is neither C' nor any superclass of C. In such a case
we invalidate this predicate, because the access path this.f is infeasible.

e If an access path null.fy.fs.fs5... fn occurs in a disjunct, where n > 1, we
invalidate the disjunct. This is because null does not have any fields.

e If an access path t;.f1.fs... fi, occurs in a disjunct, where n > 1, and t;
is a variable representing a newly created object (see rule NEWASGN in
Figure 3), we invalidate the disjunct. This is because f1, being a field of
a newly created object, is implicitly null.

o If a disjunct ¢ containing an access path ap.elem reaches the entry of the
program then this disjunct is invalidated. This is because it is impossible
for any collection to contain any elements at the beginning of a program.

6. Experimental Results

In this section we address the following research questions by empirical eval-
uation using our implementation:

RQ1 How many null-dereference warnings does the base analysis produce, and
is it scalable?

RQ2 Is the extended analysis more precise than the base analysis? Is it also
scalable?

RQ3 What is the contribution of our immediate producers idea (refer Section 3)
to the gain in the precision of the extended analysis over the base analysis?

RQ4 What is the contribution of our idea of handling Java collections using
summary functions (refer Section 4) to the gain in the precision of the
extended analysis over the base analysis?

RQ5 Is the extended analysis more precise than the simple thin-slice based
approach discussed in Section 3.57 Which one is more expensive?

6.1. RQ1. How many null-dereference warnings does the base analysis produce,
and is it scalable?

We used 10 real-world Java programs for all our primary experiments dis-
cussed in this section, key information about which is presented in Figure 18.
In each benchmark we considered all the methods that are reachable along the
call-graph from all the main methods, excluding main methods in test-suites,
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Benchmarks Analyzed Analyzed Lib. No. of Total # | # unsafe | # unsafe
Appl. bytecodes appl. derefs derefs by | derefs by
bytecodes (2) methods base extended

Base Extended analysis analysis
€] (a) (b) (3) &) (5) (6)

bcel 5.2 86483 3596 28728 10092 10143 1221 653

jbidwatcher 105043 16505 | 112702 4076 9643 1652 769

2.1.2

javacup 0.1 29180 509 29563 70548 2851 608 186

sablecc 4.2 157169 4055 16389 28821 14017 2139 1220

jlex 1.2.6 25056 408 1329 1264 2510 93 28

12j 3.7 373661 14310 | 68565 591 36899 6015 4100

proguard 4.5 | 185594 2766 33474 19195 18275 2781 1789

ourtunes 127167 7206 34639 162 16449 1532 1029

1.3.3

antlr 3.3 251010 7224 30317 14472 17409 4042 2072

freecol 0.9.5 260785 8889 113012 16432 24077 6994 4281

Figure 18: Results of base and extended analyses on 10 real world Java programs.

Benchmark | Pre-proc. Running time | Running time
time (sec) | base analysis | ext. analysis

(1) 2) (sec) (3) (sec) (4)

bcel 11 34 190

jbidwatcher | 17 470 470

javacup 7 23 68

sablecc 20 74 656

jlex 6 9 13

12j 23 1159 1125

proguard 19 116 1415

ourtunes 12 203 72

antlr 18 43892 45464

freecol 32 5815 39952

Figure 19: Analysis time of the base and extended analysis on 10 real world Java programs.

as the scope of analysis. That is, our analysis is restricted to this scope, and
so are all metrics that we present in the rest of this section. Column (1) shows
the number of bytecodes in the methods in the actual application portion of the
benchmark. Column (2)(a) shows the number of bytecodes in the linked library
methods that were actually visited and analyzed by the base analysis, while
Column (2)(b) gives the same information wrt the extended analysis. Note that
due to the various heuristics and extensions, the library methods that are vis-
ited by either of the two analyses mentioned above need not be the same or
even be a subset of the ones visited by the other analysis. Column (3) shows
the total number of application methods. We treated each dereference in each
non-library method, except dereferences to the variable this (which are always
guaranteed to be safe), as a root dereference to be verified. The total number
of such dereferences in each benchmark is shown in Column (4).

We selected these ten particular benchmarks for our primary experimenta-
tion because they were used by previous researches working on null-dereference
analysis for Java. For instance, we used these same benchmarks in our previous
work [4], and before this Loginov et al. [17] used 8 of these 10 benchmarks.
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Reasons for Average % over 10 benchmarks (2)
Imprecision Base analysis | Base analysis Extended analysis
(1) (a) w/o limits (b) | (¢)
null-assignment | 19.4 21.2 35.4
unbounded-aps | 40 54.3 36

call-backs 10.4 NA NA

virtual-calls 15.9 NA NA

Figure 20: Reasons for dereferences being declared unsafe

We carried out our experiments by linking our benchmarks to the Open JDK
1.6 libraries, on a server machine having 2.27 GHz 8-core Intel Xeon processor,
with 16 GB RAM.

Throughout this section, unless otherwise noted explicitly, whenever we refer
to the base analysis, we mean the base analysis with the limits referred to at
the beginning of Section 3. Column (5) of Figure 18 shows the number of
dereferences (from the total number shown in Column (4)) that were reported
as unsafe by the base analysis. The percentage of dereferences reported as unsafe
by the base analysis ranges from 3.7% in Jlex to 29% in freecol. The arithmetic
mean (resp. geometric mean) of the percentage of dereferences reported as
unsafe in each of the ten benchmarks by the base analysis is 16.3% (resp. 14.4%).
Note that unfortunately it is not straightforward to determine the percentage
of these unsafe reports that are false positives.

Figure 19 shows for each benchmark Wala’s pre-processing time for com-
puting may points-to information in Column (2), and the total running time to
verify all dereferences in Column (3). Over all ten benchmarks the base analysis
takes only 288 millisecs on average to verify a dereference.

6.1.1. Reasons for unsafe dereferences

In order to understand the performance of the base analysis better, we iden-
tified four major reasons why it declares dereferences as unsafe, as is listed in
Column (1) of Figure 20. The null-assignment category includes all the unsafe
dereferences during whose analysis a disjunct containing a root predicate was
propagated through a null-assignment statement that replaced the access-path
in the root predicate by null and hence reduced the root predicate to true. For
instance, this would happen if a disjunct (v.f = null) is propagated thorough
the statement “v.f = null”. For the dereferences that fall under this cate-
gory there exists at least one static path along which a null value flows to the
root dereference (although this path could be an infeasible one, not eliminated
by our limited notion of path sensitivity). An unsafe dereference falls in the
unbounded-aps category if during its analysis the root predicate of some dis-
junct was reduced to true because it had an access path with a repeating field
or a reference to an element of an array (see Section 2.1). A dereference falls
into the call-backs category, if during its analysis some disjunct containing a
root predicate reached the entry of a method that is called-back by a library
method. The base analysis stops at this point and declares dereference to be
unsafe. A dereference falls into the virtual-calls category if during its analysis
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some disjunct containing a root predicate had to be propagated though a virtual
method call with more targets than the pre-set threshold, with at least one of
targets affecting the root predicate, and the limit in the base analysis (see the
beginning of Section 3) reduced this root predicate to true.

Column 2(a) in Figure 20 shows, for each reason of imprecision, the average
percentage of dereferences across all benchmarks that were called unsafe due
to this reason. A single dereference can go into multiple categories as several
disjuncts may be introduced at various program points during the analysis of
this dereference, with each of them being reduced to true for a different reason.
The categories cover the most important reasons for imprecision but not every
possible reason. In other words, some dereferences may not fall into any of the
categories.

It is clear that the top reason for dereferences being called unsafe are arrays
and recursive data structures (i.e., the unbounded-aps category). Enhancing our
analysis to address these directly and precisely would be expensive, and would
likely render our approach not usable in a demand-driven setting with very fast
response time. This is why we have chosen to indirectly address this problem
using summary functions for Collections API methods, which are typically heavy
users of arrays and recursive data structures. The null-assignment category
can possibly be shrunk by incorporating more path sensitivity in our analysis;
however, this again is likely to impact the efficiency of the analysis. Finally, our
immediate producers idea is addressed directly at reducing the negative impact
of virtual-calls and call-backs on the base analysis.

6.1.2. Empirical evaluation of the base analysis without limits

We also evaluated the possibility of removing the three limits in the base
analysis (see the discussion at the beginning of Section 3). The analysis in this
mode does not complete on two of the ten benchmarks, namely, antlr and freecol,
even after 154+ hours of running. It completes on the other eight benchmarks,
but is extremely inefficient. When we remove only the limits on virtual calls
and library calls, and hence enter and analyze all targets of all virtual calls
and all library methods, the analysis on average spends 37 times more time to
verify each dereference. This slowdown is due to the large numbers of candidate
targets that some virtual calls have, and also due to the size and complexity
of library codes. Yet, the precision gain is very low — the number of unsafe
dereferences reported comes down by only 3.4% on average per benchmark.
Similarly, removing the limit on propagating disjuncts back from library call-
back methods increases the average time to verify a dereference by 3 times, while
decreasing the unsafe dereferences reported by only 0.27%. When we remove
both the limits the analysis takes 87 times more time on average to verify a
dereference, while reducing the unsafe dereferences reported by merely 4.1%.

One of the main reasons why we did not observe significant precision gain
in the experiments above is that when we allow the base analysis to analyze
difficult constructs it in many cases ends up encountering either array accesses
or recursive data structure accesses. This is evident from the results shown in
Column 2(b) of Figure 20. Note that the percentage of unsafe dereferences that
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fall into the category of unbounded-aps has gone up from 40% to 54.3%. Another
important reason, which is harder to quantify, is that imprecision in the call-
graphs provided by Wala result in many spurious candidate target methods at
virtual call-sites. These spurious targets hold back the precision of the analysis
because if a disjunct gets validated inside a spurious target method during the
analysis of a root dereference then having entered all the (non-spurious) targets
and having analyzed them is of no avail.

6.2. RQ2. Is the extended analysis more precise than the base analysis? Is it
also scalable?

Column (6) in Figure 18 shows the number of dereferences reported as un-
safe by the extended analysis (i.e., with both our extensions turned on). The
percentage of dereferences reported as unsafe by the extended analysis ranges
from 1.2% in Jlex to 17.8% in freecol. The arithmetic mean (resp. geometric
mean) of the percentage of dereferences reported as unsafe in each of the ten
benchmarks by the extended analysis is 9% (resp. 7.6%), vis-a-vis 16.3% (resp.
14.4%) for the base analysis. Figure 21 shows three bars for each benchmark,
with the smaller benchmarks being in part (a) of the figure and the larger bench-
marks being in part (b) of the figure. The first bar (i.e., the tallest bar) for each
benchmark indicates the percentage reduction in number of unsafe dereferences
reported by the extended analysis in comparison to the base analysis; in other
words, this is the percentage by which the number in Column (6) of Figure 18
for this benchmark is less than the corresponding number in Column (5). We
discuss the other two bars for each benchmark in Sections 6.3 and 6.4, respec-
tively.

It is noteworthy that the extended analysis is also significantly more precise
than the base analysis without its limits. The reasons why removing the limits
from the base analysis did not improve its precision significantly were discussed
in Section 6.1.2.

Column 2(c) of Figure 20 shows the reasons for imprecision of the extended
analysis. Note that in comparison to the base analysis without limits, whose cor-
responding numbers are shown in Column 2(b), the incidence of unbounded-aps
has come down significantly. The contribution by the null-assignment category
has increased a lot, indicating that infeasible paths are potentially a major
source of imprecision in the extended analysis. We wish to reiterate, however,
that the denominators used in these percentage calculations (i.e., the number
of unsafe dereferences) are different in these two columns.

6.2.1. Correlation between propagation count and precision

We now discuss a metric about the analysis that correlates to precision: av-
erage propagation count. The propagation count of a dereference refers to the
length of the longest path of instructions through which a disjunct is propa-
gated during the analysis of the dereference. We determine this by associating
a count with each disjunct; this is set to zero for the original disjunct created
at the root dereference. Whenever the transfer function of an instruction gener-
ates one or more pre-condition disjuncts from a given post-condition disjunct at

39



80

Total =3

DifficultConstruct —=

JavaContainer mmmm
70 | 68.4 7

60 - E

50 B
44.3

%-age reduction in unsafe dereferences
=
B

(a) Smaller benchmarks

80

Total ==
DifficultConstruct ——=
JavaContainer

60 E

50 I 47.7

40 38.6 R

31
30 29.8 4

%-age reduction in unsafe dereferences

©
°
o

9
2
%.

N
R

(b) Larger benchmarks

Figure 21: Reduction in unsafe dereferences (%-age) when compared to the base analysis
when the extended analysis is run in different modes.
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B Propagation count ratio M %-age reduction in unsafe dereferences
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Figure 22: Increase in precision and in propagation count of the extended analysis. The left

y-axis indicates the ratio of average propagation count of the extended analysis over the base

analysis, while the right y-axis indicates the corresponding reduction in percentage of unsafe

dereferences. The number within parenthesis for each benchmark is its average propagation
count under the base analysis.

the point after the instruction, the generated disjuncts get a count that is one
more that of the post-condition disjunct. The following situations are treated
as if they involve propagation through a single instruction: a summary hit from
the summary table X, a propagation of a disjunct along an immediate producer
edge, and the generation of a disjunct by one of our manually constructed sum-
mary functions. The propagation count of a dereference, then, is the maximum
propagation count of any disjunct that gets generated during the analysis of the
dereference. Finally, the average propagation count for a benchmark is the av-
erage propagation count of all its dereferences. For each of our ten benchmarks,
the first bar in Figure 22 shows the ratio of the average propagation count of
the extended analysis over the base analysis. The second bar shows the per-
centage reduction in unsafe dereferences reported by the extended analysis over
the base analysis; here, a taller bar indicates more gain in precision (this bar is
a reproduction of the first bar in Figure 21 for the same benchmark).

There are several points to note in these results. (a) In seven out of ten
benchmarks the propagation counts are higher in the extended analysis when
compared to the base analysis. This result indicates that the situations wherein
the limits in the base analysis cause it to stop early and give up whereas the
extended analysis continues the analysis are frequent. (b) Across all ten bench-
marks there is a general positive correlation between change in average prop-
agation count and increase in precision. This confirms our expectation that if
we reduce the situations where we give up early and pursue longer paths we
get higher precision. (c) In the benchmarks [2j, proguard and ourtunes the ex-
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Benchmarks Total | Base Diff-Constr. | Diff-Constr. Collections | Collections
Deref | unsafe || Related proved Related related
safe proved
(1) @ e |l (5) (6) safe (7)
bceel 10143 | 1221 344 201 191 61
jbidwatcher 9643 1652 914 731 490 78
javacup 2851 608 24 22 410 385
sablecc 14017 | 2139 265 186 827 373
jlex 2510 93 10 3 55 43
12j 36899 | 6015 2367 1771 235 166
proguard 18275 | 2781 1243 493 113 46
ourtunes 16449 | 1532 253 250 97 59
antlr 17409 | 4042 2495 1496 456 146
freecol 24077 | 6994 2167 1796 1302 353

Figure 23: Improvement due to our extensions to handle difficult constructs and Java
collections

tended analysis has higher precision than the base analysis (albeit, by a smaller
margin than in the other benchmarks) even though the propagation count has
fallen. For certain dereferences, our extensions actually reduce the propagation
count (because, e.g., we do not enter and analyze a library call or targets of a
virtual call).

The increase in propagation counts has caused a corresponding increase in
running time of the analysis. Column (4) in Figure 19 shows the total time to
verify all dereferences in each benchmark by the extended analysis. This is to be
contrasted with the corresponding numbers for the base analysis in Column (3).
The extended analysis takes, on average, 427 ms to verify a dereference, in
contrast with the 288 ms requirement of the base analysis. The time requirement
of the extended analysis is still very tolerable, and is justified by its higher
precision. Furthermore, we have empirical evidence that the extended analysis
spends extra time only on the dereferences that the base analysis calls unsafe;
the average analysis time per dereference has increased by only 1% for the
dereferences that the base analysis reported as safe. The extended analysis
takes more time to verify the dereferences that were called unsafe by the base
analysis because the extended analysis continues its work even after the point
where the base analysis would have given up.

The pre-processing time for the extended analysis analysis is only one or two
seconds more than the pre-processing time for the base analysis, even though
we ask for immediate producers to be pre-computed in the extended analysis.
Therefore we have not shown pre-processing time for the extended analysis
analysis separately.

6.3. RQ3. What is the contribution of our immediate producers idea (refer
Section 8) to the gain in the precision of the extended analysis over the
base analysis?

We now study our immediate producers extension in isolation (i.e., without
using the manual summary functions of collections methods). The idea is to
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bring out the potential applicability of this extension, and also to bring out the
extent to which the extension meets its potential. Figure 23 once again lists all
our ten benchmarks. Columns (2) and (3) in this figure are basically the same
as columns (4) and (5) in Figure 18, respectively. In Column (4) of Figure 23 we
report the number of dereferences among the ones in Column (3) that had their
root predicate reduced to true due to the limits imposed by the base analysis for
avoiding the analysis of difficult constructs (see the discussion at the beginning
of Section 3). These are the dereferences that can potentially benefit from our
extension. In Column (5) we report the dereferences among the ones included in
Column (4) that are proved safe by our extension. This ratio of Column (5) over
Column (3) is shown as a percentage by the second bar for every benchmark in
Figure 21.

As evidenced by Columns (4) and (5) in Figure 23, on average across all
benchmarks, we are able to prove 68.63% of the dereferences reported in Col-
umn (4) as safe. Our difficult-construct extension reduces unsafe dereferences
by 20.24% (on average across all benchmarks), while increasing average time to
verify a dereference by only 2.5 times. These results clearly show the value of
our extension.

The ratio of Column (5) over Column (4), in general, cannot be 100% because
a dereference falls into Column (4) if some disjunct along some path during the
analysis of the dereference encounters a difficult construct. Along other paths
other complicating factors (e.g., array accesses, or recursive data structures) may
be encountered which the immediate-producers extension does not address, and
which cause a disjunct to get validated, hence resulting in the dereference still
being called unsafe.

6.4. RQ4. What is the contribution of our idea of handling Java collections
using summary functions (refer Section 4) to the gain in the precision of
the extended analysis over the base analysis?

We now discuss the effect of turning on only our extension to handle Java
collections methods. Column (6) in Figure 23 shows the number of unsafe
dereferences reported by the base analysis during the analysis of which a root
predicate was reduced to true when the analysis was inside the body of a Java
collections method. This typically happens because the implementations of Java
collections use complex data structures like arrays or recursive data structures,
which are not handled precisely by the base analysis. In Column (7) we report
the dereferences among the ones included in Column (6) that are proved safe by
our summary-functions based technique to handle Java collection methods. The
ratio of Column (7) over Column (3) is shown as a percentage in the third bar
for every benchmark in Figure 21. Note that in Figure 21 the third bar is taller
that the second bar for three programs — javacup, jlex, and sablecc. This implies
that in these three programs our collections summary functions are effective
than our immediate producers extension in proving dereferences safe.

Ideally, the numbers in Column (7) should be close to those reported in
Column (6). This happens on the benchmarks jlex, javacup, ourtunes and 12j, in
which on average the number in Column (7) is 76% of the number in Column (6).
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Benchmarks | Total Base Collections | Collections related Extended
(1) Deref (2) | unsafe (3) || Related (6) | proved safe (7) unsafe (8)
mst 69 15 7 7 3

em3d 69 23 17 17 6

health 111 22 6 2 14

Power 211 10 8 1 2

voronoi 174 61 49 11 50

bh 242 53 26 25 7

Figure 24: Our results on the Jolden benchmarks

In the benchmarks sablecc, proguard, beel, antlr, and freecol the impact of our
technique is moderate; the numbers in Column (7) are 45%, 40%, 31%, 32%
and 27% of the corresponding numbers in Column (6). In the jbidwatcher, we
do not observe much reduction in the dereferences being reported unsafe earlier.
We already discussed in Section 6.3, why all the dereferences in a category of
imprecision in general cannot be proven safe just by turning on the extension
for that category.

On a related note, in general, there are some dereferences that can be verified
as safe if both of our extensions are turned on simultaneously, but not when either
one of the extensions alone is turned on. This happens when different extensions
help invalidate different disjuncts during the analysis of the dereference. This
is why in Figure 21 the first bar in each benchmark, except 12j, is taller (and
sometimes significantly so) than the sum of the heights of the last two bars.

We also additionally use the variant of the Jolden benchmarks created by
Marron et al. [12] to evaluate their approach. The original Jolden benchmarks
are based on the Olden C-language benchmarks, and are pointer-intensive pro-
grams. Marron et al. replaced uses of ad-hoc data structures in the original
Jolden programs wherever possible with uses of the standard Java collection
APIs. Marron et al. also put an extra wrapper API over the Java collections
API, which we have removed. We only used 6 of the 9 Jolden benchmarks,
as the others did not have any usage of collections. The reason we did this
study was that since the Jolden benchmarks do not possess some of the other
complications present in real benchmarks, such as virtual calls with too many
candidate targets, our results on these benchmarks serve as a sort of limit study
on the effectiveness of our summary functions approach. Figure 24 shows the
results on each of these benchmarks. Columns (2), (3), (6), and (7) have the
same meanings as the corresponding columns in Figure 23. Note that the num-
bers in Column (7) were obtained with only our extension for Java collections
turned on. On benchmarks bh, mst and em3d, our extension to handle Java
collections methods has been remarkably effective; the numbers in Column (7)
are on average 96% of the numbers in Column (6). Considering all of the six
micro benchmarks this number works out to 60%, which is higher than the
corresponding number of 49% observed with the real benchmarks. Column (8)
shows the number of dereferences that are declared unsafe by the full extended
analysis, i.e., by turning both of our extensions on. In the six micro benchmarks
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Figure 25: Precision comparison of the thin-slice based approach and the extended analysis

the extended analysis has, on average, proved safe 60% of the dereferences in
each benchmark that were declared unsafe by the base analysis; the correspond-
ing number with the real benchmarks was 45%. Thus, our extensions serve their
intended objectives well.

6.5. RQ5. Is the extended analysis more precise than the simple thin-slice based
approach discussed in Section 3.5¢ Which one is more expensive?

We will now present the results of our empirical evaluation of the thin-slice
based approach discussed in Section 3.5 using an implementation of ours of
this approach. This approach did not complete on two of our ten benchmarks,
namely, antlr and freecol, even after running for 154 hours. Figure 25 shows a
comparison of the percentage of the dereferences that were reported as unsafe by
the thin-slice based approach versus the results from the extended analysis on
the remaining eight benchmarks In 6 out of 8 benchmarks the extended analysis
reports much fewer unsafe dereferences than the thin-slice based approach. The
average percentage of dereferences reported as unsafe over all the benchmarks is
19.9% for the thin-slice based approach versus 7.5% for the extended analysis.

We now discuss the potential reason why the thin-slice based approach gives
better precision than the extended analysis on two of the benchmarks, namely,
127 and ourtunes. Recall, as per the discussion in Section 5.2, that Wala actually
under-approximates the set of immediate producers of any statement. We had
discussed in that section a workaround to ensure that our approach is sound in
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Benchmarks | Total Base Analysis (3) Unsafe derefs (4)
derefs | Unsafe Derefs | Time[sec] | Unsafe Derefs | Time[sec]
(1) @ | @ (b) () (b)
bloat 18044 | 3592 311 2228 11342
chart 16139 | 1972 556 1460 9721
fop 1211 187 11 163 14
hsqldb 829 138 5 95 7
luindex 1957 280 15 236 16
lusearch 3121 696 1727 532 1827
xalan 376 70 4 60 4
eclipse 5713 1242 977 863 2422

Figure 26: Results of the base and extended analyses on the Dacapo benchmarks

spite of this limitation of Wala. We did not implement this same workaround
in our implementation of the thin-slice based approach, due to its complex-
ity. Therefore, our implementation of the thin-slice based approach is actually
unsound, meaning it can potentially miss null dereferences. If we somehow up-
dated our implementation to use the workaround in order to ensure soundness
it is possible that the number of dereferences reported as unsafe will increase
significantly.

Contrary to our expectations, the thin-slice-based approach turned out to
be also less efficient than our extended analysis. As mentioned above, it did
not scale to two of the benchmarks. On the remaining 8 benchmarks it takes
on average 337 ms to verify a single dereference in comparison to 47 ms by
the extended analysis. The reason for this is that in the version of Wala that
we are using (version 1.1.3), when we ask for the immediate producers of a
statement, the Wala API method in fact first performs a linear search of the
entire dependence graph to locate that statement. The pre-computed immediate
producers of this statement are then returned. The above-mentioned linear
search is time consuming, and needs to be carried out at every step with the
thin-slice-based approach. Whereas, in the extended analysis, we query for
immediate producers only at difficult constructs. It would be possible to modify
the Wala code to avoid the need for the linear search, in which case the thin-
slice-based approach is likely to become more efficient than our approach.

6.6. Experimentation using the Dacapo benchmarks

We have performed our primary experimentation with the ten benchmarks
mentioned in Figure 18 for reasons that we mentioned in Section 6.1. However,
for additional validation, we have also evaluated our approach on the Dacapo
2006 [21] benchmarks, which have been used by researchers in the past for vari-
ous kinds of evaluations (although not, to our knowledge, to evaluate verification
approaches that are similar to ours).

We could not run our analysis on two Dacapo benchmarks, namely, pmd
and jython, as the base as well as extended analyses both faced out-of-memory
issues with these benchmarks. Regarding antlr, Dacapo 2006 includes version
2.7.2 of this benchmark, whereas version 3.3 is already included in our primary
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set of 10 benchmarks. Therefore, we ignore the Dacapo version of this bench-
mark. Figure 26 shows the results of running the base analysis and the extended
analysis on the remaining eight Dacapo benchmarks. For each benchmark we
show the total number of dereferences analyzed in Column (2), the number of
dereferences reported unsafe and total analysis time taken by the base analysis
and the extended analysis in Column (3) and (4), respectively. The total num-
ber of dereferences that we analyzed is lower than expected in the benchmarks
other than bloat and chart. One reason for this could be that there are many
methods that are called using reflection, the dereferences within which we would
not analyze.

The arithmetic mean (resp. geometric mean) of the percentage of deref-
erences reported as unsafe in each of these eight Dacapo benchmarks by the
base analysis is 17.6% (resp. 17.3%). The corresponding figures for the ex-
tended analysis analysis are 13.3% (resp. 13%). The base analysis takes on
average over all these 8 benchmarks 101 ms to verify each dereference whereas
the extended analysis takes 214 ms.

7. Related work

We categorize related work in three ways, and discuss each category sepa-
rately. The first category is about approaches for null-dereference verification,
in general, and how they relate to the base analysis. The other two categories
are related to our two extensions, respectively.

7.1. Null dereference analysis

Xylem [16] and Snugglebug [2] are two previous approaches that are closely
related to the base analysis, in the sense that they compute weakest pre-
conditions in Java programs using a backwards analysis. Xylem is an unsound
approach, unlike the base analysis, in that they may miss real bugs. However,
several of the design decisions in the base analysis are inspired by Xylem; e.g.,
demand-driven analysis, use of predicates as data-flow facts, custom simplifi-
cation rules, etc. Xylem uses a richer set of predicates than our approach, for
higher precision. On the other hand, they deal with recursion in an unsound
manner, whereas the base analysis computes fix-points. Snugglebug’s objective
is to try to find a concrete input to a program that disproves a desired safety
property. Their approach is much more expensive than the base analysis. They
under-approximate the weakest pre-condition, whereas the base analysis over-
approximates it. The work of Sinha et al. [22] also proves safety properties by
propagating formulas. Their idea of using backwards analysis, with “forward”
descent into call targets from call sites is very similar to the depth-first prop-
agation that the base analysis employs, as was discussed in 2.3. Additionally,
it exploits caller/callee invariants inferred from failures in satisfying formulas
to prune future search. Blackshear et al. [23] propose a technique to perform
refutation of heap reachability using backward symbolic execution. The objec-
tive of this approach is to find memory leaks in Android programs. Like the
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base analysis, this technique also performs strong updates, and is path- and
context-sensitive.

Salsa [17], and approach of Spoto et al. [18] target null-dereference verifica-
tion of Java programs using a forward analysis; i.e., they are not demand driven.
For a more detailed discussion on these approaches we refer the reader to earlier
work [4].

Shape analysis [3] is a precise but heavy-weight technique for verifying vari-
ous properties of heaps. As such shape analysis can be used for null-dereference
analysis also. There exist several techniques [24, 25, 26] for performing shape
analysis by backward analysis. Of these, only the paper by Gulavani et al. [26]
spells out an inter-procedural analysis, and provides empirical evidence. The
largest benchmark program they evaluated their approach on has 460 LOC, with
the corresponding analysis time being 75 seconds (for the complete program).
Among the forward (i.e., non demand-driven) shape analysis techniques, the one
due to Yang et al. [27] has been shown to scale to real programs (device drivers)
of size approximately 10 kLOC, taking on average 430 seconds to analyze each
benchmark.

7.2. Virtual Calls and Call-backs

We now compare our technique of using immediate producers to skip diffi-
cult constructs with three previous related approaches that use thin slicing for
solving verification problems. A thin slice from a data reference r is basically
the set of statements in the backward transitive closure of the immediate pro-
ducer relation (defined in Section 3.1) from data reference r. Tripp et al. [10]
propose a technique to perform static taint analysis on Java programs to de-
tect security vulnerabilities in web applications. Geay et al. [9] perform static
permission analysis on programs built by assembling components. This is done
to find permissions for components such that these permissions are neither too
restrictive nor too permissive. Hammer et al. [11] propose an approach to iden-
tify potential run-time types of object references. All three techniques use thin
slicing to identify all possible sources from which information flows (via transi-
tive copy statements) into a given sink. In Section 3.5, we had mentioned how
thin slices could potentially be used in a similar way to check whether the value
null could flow into a dereference. Our technique, in contrast, is mostly flow-
and path-sensitive, using immediate producers only to skip difficult constructs
locally. This is in contrast to a full thin slice, which skips a lot more statements
(including all conditionals). We presented empirical results in Section 6.5 that
show the higher precision of our approach.

There have been earlier approaches that attempt to alleviate the problems
due to virtual calls having too many targets, or call-backs having too many
predecessors, by pruning edges in the call graph. The Snugglebug approach,
which was introduced earlier, performs directed call graph construction, wherein
they precisely find the targets of a virtual call in a way that is specific to the
path that is being currently analyzed. This is orthogonal to our approach to skip
difficult virtual calls completely or partially. The approach of Ryder et al. [28],
addresses the issue of call-backs by constructing an application call graph instead
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of a whole-program call graph. The application call graph captures (direct or
transitive) calling relationships between application methods, eliding library
methods entirely. This technique cannot always be used safely in our setting,
because the immediate producers of a formula at the entry of a call-back method
could potentially be in library code, too.

7.3. Java collections

There exist earlier approaches [29, 30, 31, 12, 32, 13, 15, 33] that share
our focus of verifying client code of collections APIs, by abstracting away the
implementation details of these APIs. We discuss here these approaches in brief,
and compare them with our technique.

The technique proposed by Gregor et al. [29] finds instances of incorrect
usage of C++ STL (Standard Template Library) API methods, e.g., attempts to
dereference an iterator that had passed the end of the collection it is referring to,
and using an out-of-bound index to access elements in vector. It uses symbolic
execution, but is an unsound bug finding tool. Blanc et al. [32] also propose
a technique to verify if client code uses STL correctly. They use predicate-
abstraction based model checkers for their analysis. These two approaches do
not focus on reasoning about the contents of containers, which is the focus of
the approaches discussed below as well as of our work.

The approach of Heine et al. [31] uses an ownership-based flow- and context-
sensitive type system to detect leaks as well as double-deletes of objects that
are stored in polymorphic containers. In this approach the user needs to specify
a summary for each API method which indicates both its input-side as well as
output-side ownership constraints.

The Hob verification framework [14, 30] can be used to verify whether client
code that uses data-structure implementations uses them in ways that their
consistency properties are maintained. Their approach addresses not just stan-
dard (library-provided) data structures, but also user-provided data structures.
Client codes that accesses data structures can be analyzed using summary func-
tions of the data structure API methods. The implementations of data-structure
methods can also be checked for conformance to the corresponding summary
functions. However, the limitation of the approach is that both client code as
well as data-structure implementation code needs to be expressed in their own
programming language. Moreover, this language does not offer powerful features
such as inheritance and virtual calls, which are prevalent in Java programs and
which pose challenges to static analysis. This approach has been evaluated only
on programs measuring up to about 2000 LOC. However, the kind of properties
they address are more deep that just null-ness properties.

The approach for heap analysis of Java programs by Marron et al. [12] uses
the semantics of the inbuilt Java collections and iterators methods for analysis
of client code, without analyzing the implementations of these methods. They
model the pointers in a collection that point to the elements stored in the
collection as edges in a heap graph from the node representing the collection
object to the nodes representing the elements; our use of the special field elem is
similar to this. They use a richer notation than us to model the heap accurately
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as they need to track more properties than us, and not just if a reference may be
null. However, this potentially hampers the scalability of their approach. They
have evaluated their technique only on the Jolden benchmarks (which we have
used as micro benchmarks), but not on larger Java applications.

The approach of Dillig et al. [13] models collections precisely, keeping track
of positions of elements in sequence-based collections such as lists and vectors,
which is something we do not do. They also keep track of key-value correla-
tions for maps. They have evaluated their technique on three C++ programs
ranging from 16,030 to 128,318 LOC. However, it is not clear whether their
approach can be made to work as a backwards analysis, in a demand-driven
setting, where efficiency and response time are prime concerns. Moreover, we
believe that typical Java programs pose unique challenges that are not predom-
inant in a C++ setting, that impact the scalability of any analysis. As pointed
out by earlier work [34], Java programs typically make use of library calls, whose
implementations can be large and complex, in a more extensive way than C++
programs. Also, it is generally believed that Java programs are written in a
more object-oriented way than C/C++ programs, and are also based on appli-
cation frameworks frequently, which result in an increased prevalence of difficult
constructs such as virtual method calls and library call-backs.

Recently, Parizek et al. [15] have proposed an approach for verifying prop-
erties of programs that use Java Collections APIs. They are interested in deep
properties, e.g., that the keys in a map are all present in some other set, or
that a list is maintained in sorted order. They basically model each collection
as an array, and express properties using quantified formulas that involve array
theory. Their approach is based on predicate abstraction. They first infer a
(finitely bounded) set of predicates for the given program and property, then
translate the program into an abstract boolean program, and then model-check
this boolean program. The way they construct the abstract boolean program is
by defining weakest pre-conditions (WP) rules for the Collections API methods,
and then interpreting these rules using an SMT solver. Note that although they
specify WP rules, these are not used as dataflow transfer functions, unlike in
our setting. Also, since we don’t use array theory, and rather use the special
fields elem and collection, our WP rules are quite different from theirs in flavor.
Their pre-pass, wherein they construct the abstract program is quite expensive;
in their experiments, which were only on small programs (< 65 lines of code),
the pre-pass took anywhere from 9 seconds to approximately 15,000 seconds,
and also produced large abstract programs.

Arzt et al. [33] have developed a tool Flowdroid to perform taint analysis
on Android applications. Their taint analysis is basically a forward analysis,
which is assisted by backward on-demand alias analysis. As part of the for-
ward analysis phase their tool uses predefined taint-propagation rules, which
are essentially summary functions wrt the taint analysis problem, for standard
collection classes, string buffers and other commonly used data structures pro-
vided by the Java standard library.

It is noteworthy that the approaches mentioned above all employ library
summaries in the context of a forward analysis. In a forward analysis, one keeps
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track of what objects are added to what collections, and the properties (e.g.,
fields that may be null) of these objects. Therefore, in a statement where we
retrieve an object from a collection, one can determine the properties of the
object that could be retrieved from the collection at that point. In contrast, in
our setting, while traversing a path in the backwards direction and encountering
a “retrieve” from an iterator or from a collection, we face a key challenge: we do
not know the collection that the iterator is referring to, and we do not know what
objects have been added to what collections. Our backwards transfer functions
adopt a novel approach to address this challenge, and are entirely different from
typical forward transfer functions. For example, in the example in Figure 14,
after processing Statements 7 and 6, our formula (z.elem = null) asserts that
some element of the collection pointed by to z needs to be null. Then, at an
“add” statement, such as Statement 5, we transfer this null-ness property from
z.elem to the element being added at that statement, namely, v, to result in the
formula (v = null), and then continue proceeding backwards from this point.

8. Conclusions and future work

In this paper we presented a demand-driven null-dereference verification
technique for Java programs. The foundational aspect of this technique is a
base analysis, which is a flow- and context-sensitive backward data-flow analy-
sis using a lattice of formulas, that over-approximates a weakest at-least once
pre-condition computation. We then described two major extensions on top of
the base analysis to improve the precision of the approach. The first extension
is to address certain difficult constructs on which the flow-sensitive technique
of the base analysis incurs much running time while still yielding poor pre-
cision. The idea behind the extension is to transmit formulas from program
points that follow such constructs directly to statements that affect these for-
mulas, in a manner which is sound, efficient and yet more precise than an
(expensive) flow-sensitive analysis of the construct. Our second extension is to
employ manually constructed summary functions of Java Collections API meth-
ods that over-approximate the weakest at-least once pre-condition semantics of
these methods. This extension results in improved precision as well as efficiency.
All told, our approach gives good results, in being able to verify approximately
91% of dereferences as safe, on average across ten real benchmarks, with average
running time of only 427 ms per dereference.

There are several interesting directions for future work. The first would be
to compute immediate producers information in a context-sensitive on-demand
manner, rather than use pre-computed immediate producers information which
could be less precise. Another would be to apply the immediate producers ex-
tension at more kinds of difficult constructs than we do currently. A third would
be to introduce manually constructed summaries for library methods other than
Java Collections methods. Finally, it would be interesting to explore the use
of immediate producers as well as backwards library summaries to improve the
precision of other kinds of scalable demand-driven backward analyses.
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Appendix A. Formalizing the base analysis as an abstract interpre-
tation

In this section we give a formulation of the weakest at-least once pre-
condition analysis of the base analysis as an abstract interpretation [1].

Appendiz A.1. Concrete Semantics

n € O = 25tate : Concrete Domain
o € State = Env x Store : program state

e € Env = Var — Loc : environment

s € Store = Addr — (Ptr | Scalar) : store

Addr = Loc x (Offset|e) : addresses

l € Loc : Location

Ptr = Loc | null

o € Offset = FieldName | N : offset

CyUCy = Cy Uy, where C1,Cy € C' @ Ordering

Figure A.27: Concrete Semantics

We first introduce in Figure A.27 the concrete lattice that we use to specify
the concrete semantics of the statements in the language. Our concrete lattice
is inspired by the standard memory model described by Sotin et al. [35]. An
environment (e € Env) is a mapping from the program variables (Var) to the
memory locations (Loc) where their content is stored. A store (s € Store)
is a mapping from addresses (Addr = Loc x (Offset U {e})) to values Pir |
Scalar. The scalar values (Scalar) are the primitive values. Each address is a
pair consisting of a base Location, and an Offset or ‘€’. Offsets are used while
referring to constituents of non-primitive memory cells (i.e., objects), while an
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‘e’ is used while referring to a scalar cell. An offset is a declared program field
(FieldName). As per Figure A.27 offsets can also be natural numbers; however,
this option is to be ignored in this section.

Let (e, s) be a state and let v be a variable. The pointer value or scalar
value that resides in the location referred to by the access path v.f1.fs...f, is
retrieved by the following recursively defined macro:

GetContents(e, s,v, f1, fa,..., fn) =
(n==0)? s(e(v),e) : s(GetContents(e,s,v, f1, fas-- s fa-1)s fn)-

A concrete state (e, s) is said to satisfy a disjunct ¢, written as (e, s) F ¢, if
the disjunct becomes true when each access path = in ¢ is substituted with a
concrete value from the domain (Pitr | Scalar) using the following substitution
rules:

1. If = is a variable that belongs to domain Var, substitute z with
GetContents(e, s,v),

2. else if x is of the form w.f1.fo...f,, substitute =z with
GetContents(e, s,v, f1, fa,..., fn)-

The backward concrete transfer function f° of any statement st is as fol-
lows: If st is not an ASSUME statement then f° = An.{(e,s1) | 3(e,s2) €
n : st transforms s; to sp}. If st is of the form “ASSUME b” then f° =
An{(e,s) | (e,s) € n and (e, s) F b}.

Let p be the program point that precedes the root dereference, and let C
be formula at p reflecting the null-ness hypothesis of the root dereference. The
initialization of the concrete analysis is as follows: the set of states satisfying
C' at p, and the empty set at all other program points. It is straightforward to
show that the join over all paths solution at the entry of the program according
to the above concrete analysis is precisely the set of states that satisfy wp, (p, C).

Appendiz A.2. Abstract semantics

The abstract lattice of the base analysis was presented in Figure 2. Its join
operation is set-union (recall that formulas are represented as sets of disjuncts).
The concretization function « is A¢ € Disjunct.{(e, s) | (e, s) F ¢}.

For each statement type st the abstract backward transfer function fy for st
is shown in Figure 3. It can be shown that each of these abstract transfer func-
tions is monotonic, and also conservatively over-approximates the corresponding
concrete transfer function f°; i.e., for any disjunct ¢, v(fa(#)) 2 f2(v(4)). We
now prove the above mentioned over-approximation property for the transfer
function of the PUTFIELD instruction “r.f = v»”, which is the most involved
one of all the transfer functions in Figure 3. We start from the right-side of
the inequality above. Consider any disjunct ¢, and any state (e, s) such that
(e,8) € v(¢)) (i.e., (e,8) F ¢). Say ¢y is a disjunct obtained from ¢ as described
in Figure A.28. Let (e, s') be any state such that when the statement “r.f = v”
is executed on this state the state (e, s) results. That is, (e, s') € f2(y(¢)), where
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¢1=¢
for all access paths w.fi1.fs...f,.f in SubAPs(¢$), n >0 do
if GetContents(e, s,w, f1, fa,..., fn) = GetContents(e, s, r) then
Replace w. fi.fo.. . fr.f in ¢1 with v
If MustAlias(w.f1.fa...fn,7) is false at the point after the statement
“r.f =v” then add the predicate “w.f1.fs...fn =77 to ¢
else
If MayAlias(w.fi.fa...fn,r) is true at the point after the statement
“r.f =v” add the predicate “w.f1.fs...fn # 1”7 to ¢
Add the predicate “r # null” to ¢,

Figure A.28: Generating ¢; from ¢

f? is the backward concrete transfer function of the above instruction. Clearly,
for this to happen (without a null-dereference exception), GetContents(e,s’,r)
cannot be equal to null. Given this, and given that (e, s) F ¢, it is easy to show
that (e,s’) F ¢1. It is also easy to show that ¢ is one of the disjuncts returned
by fa(¢), where f4 is the backward abstract transfer function of the above in-
struction as described in Figure 3. Therefore, (e, s’) € y(fa(¢)). Therefore, we
have the result that y(fa(¢)) 2 f2(v(9)).

Proving the over-approximation property for all other transfer functions in
Figure 3 is straightforward.

The initialization for the abstract analysis is as follows: the formula C re-
flecting the null-ness hypothesis of the root dereference at the point p that
precedes the root dereference, and the empty set (i.e., false) at all other points.
Now, putting all the arguments presented in this section together, and invoking
the safety guarantees of abstract interpretation in general [1], it follows that the
~v-image of pre-condition computed at the program’s entry by the base analysis
is equal to or weaker than wp,(p, C).

Appendix B. Soundness of our Collections transfer functions

In this section we will consider a few representative abstract transfer func-
tions for the Java Collections API from Figure 13 and prove them to be correct
abstractions of their respective concrete semantics. Recall that these transfer
functions are based on the abstract lattice that was first defined in Figure 2,
and then extended in Figure 12.

Appendiz B.1. Concrete Lattice

We had earlier introduced the lattice of concrete states (i.e, memory config-
urations) in Figure A.27. One aspect that we had not discussed in Appendix
A was collection objects. Rather than model these objects fully concretely (i.e.,
as they are implemented), we choose to model collection objects (of all collec-
tion types) in a simplified manner as arrays. Recall that an address is a pair
consisting of a base Location, and an Offset or ‘€’. When a base location is that
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of a collection object, we use natural numbers rather than field names as offsets
within this object (see the production of Offset in Figure A.27). The offset 0
refers to the first element in the collection, 1 refers to the second element, and
so on. Although the elements of a collection are indexed by these natural num-
bers, the abstract transfer functions ignore this ordering. That is, they treat all
collections as unordered. An iterator object is modeled as containing a field c,
which contains the Location of the underlying collection, and a field next that
contains the offset (a natural number) of the element of the underlying collection
that is to be retrieved next.

Recall from the discussion in Section 4 that in order to accommodate refer-
ences to collections and iterators we use the special fields elem and collection in
our formulas. Therefore, we extend our original definition of a state (e, s) satis-
fying a formula ¢ (originally given in Appendix A) as follows. (e, s) F ¢ holds
if the formula ¢ becomes true when each access path x in ¢ is substituted with
a concrete value from the domain (Ptr | Scalar) using the following substitution
rules:

1. If z is a variable that belongs to domain Var, substitute  with s(e(v), €),

2. else if x is of the form v.elem, substitute x with s(s(e(v), €),0), where o is
some natural number,

3. else if x is of the form wv.collection, substitute wv.collection with
s(s(e(v),€),c), where ¢ is the field in the iterator object referred to by
v that refers to the underlying collection,

4. else if x is of the form w.fi.fo...f,, substitute =z with
GetContents(e, s,v, f1, fo,-- ., fn)-

Appendiz B.2. Proofs

We will now prove the correctness of certain representative abstract back-
wards transfer functions from Figure 13. For each abstract backwards transfer
function that we consider in this subsection we show (a) the transfer function fy
itself, from Figure 13, (b) the concrete forward transfer function f/ (for ease of
understanding), (c) the concrete backwards transfer function f°, and finally (d)
the proof that f; sounds abstracts f°. Note, as discussed in Section 4.3, that our
concrete transfer functions capture the concrete semantics of the corresponding
API methods in an idealized manner. In particular, they assume the simplified
array-based representation of collection objects introduced above. In the proofs
we use the notation s[a — p| to represent a store that differs from store s only
in that address a contains the value p.

(a) v =1i.next()

fa = Ap. @', where ¢’ = @li.collection.elem /v].

The function i.next() returns the next element of the underlying collection ob-
ject to be iterated. For simplicity, we only consider the case where there is an
element to return. Our abstract transfer function is still sound in the scenario
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where there is no element to return. In this scenario the concrete semantics
is to throw an exception; therefore, the weakest pre-condition of any formula
is false, which is over-approximated by any abstract state. We will use three
utility functions to define the concrete transfer functions: nextAddr, hasNext
and incNest. Given a state (e, s) and a variable ¢ that refers to an iterator, the
function nextAddr returns the address of the “next” element of the collection
referred to by i:

nextAddr(e,s,i) = (GetContents(e, s,1, c), GetContents(e, s, i, next))

Function hasNext takes a state (e, s) and an iterator variable ¢ and returns true
if the underlying collection referred to by ¢ has a “next” element to be iterated
over:

hasNext(e,s,i) = (the address nextAddr(e,s,i) is in the domain of s) 7 true :
false

Function incNext takes a state (e,s) and an iterator variable ¢ and returns an
updated store wherein the next field of ¢ is incremented:

incNext(e,s,i) = s[(s(e(i), €), next) — (GetContents(e, s, i, next) + 1)]

Forward concrete function:

5= {(e,s2) | (e,8) €n A

hasNext(e,s,i) N s1 = s[(e(v),e) — s(nextAddr(e,s,i))] N s2 =
incNext(e, s1,1)}

Backward concrete function:

fl = . {(e,s) | (e;s") €n A hasNeat(e,s,i) A s1 = s[(e(v),€) — s(nextAddr(e
,8,1))] A 8’ = incNext(e, s1,1)}

To prove : f(+(9)) € 7(fal#))
F21(8)) = f2({(e.5) | (e, ) € State A (e.5) - 6})
{(e s) | hasNewt(e s, i) N (e,s") F o A sp = s[(e(v),e) — s(nextAddr

(e,8,4))] A 8" = incNext(e, s1,1) }

C {(e,s)|(e, ") F o A s1 = s[(e(v),€) — s(nextAddr(e,s,i))] A s =
incNext(e, s1,1)}

C {(e,s)|3j e N. ((e,8') F ¢ A 51 = s[(e(v),€) — GetContents(e, s,1,
¢, j)] A s’ = incNext(e, s1,1))}
Now, since (b does not refer to the nezt fields of iterators, for any stores s’ and s;
such that s’ = incNext(e, s1,1), and for any formula ¢, ( s ¢ iff (e, s1) F o.
Therefore, we get
Fe(v(#)) C{(e,s)|Fj € N. ((e,51) F ¢ As1 = s[(e(v),€) — GetContents(e, s, i,c
D}
Now, from substitution Rules 2 and 3 mentioned in Appendix A.l, it follows
that 35 € N. ((e,s1) F & A s1 = s[(e(v),€) — GetContents(e, s,i,c ,j)]) iff
(e, ) F @li.collection.elem/v]. Therefore, we get
12(1(6)) € {(e,5) | (es5) F &'}
Hence, it follows from the definition of fy that f2(v(¢)) C v(fa(9))

(b) c.add(v)

fa=X¢. T, where T is a set of disjuncts computed as per the pseudo-code shown
for the COLLECTIONADD rule in Figure 13.
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¢ refers to a collection, that is a either a set or a list (as mentioned in
Section 4 every collection in Java is either a set or a list). Initially let us
consider the case where ¢ refers to a set.

We first define a few utility predicates to use in the definitions of the concrete
functions.

CanbeAdded (e, s, c,v) checks if the object referred to by variable v in state
(e,s) can be added to the collection referred to by the variable ¢ in the state
(e, s). The logic employed in this predicate is dependent on the kind of collection
object referred to by c. For instance, if ¢ refers to a normal set then the predicate
would need to check that the object referred to by v is not already present in
this set. If ¢ refers to a multi-set then this predicate always return true, and so
on.

added(e, s, s',c,v) checks if (e, s’) is the state obtained by adding the object
referred to by variable v in state (e, s) to some offset in the collection referred
to by variable ¢ in the state (e, s), while preserving all other portions of the
store. It is formally defined as:

Ji. ((the address (s(e(c),e),4) is unmapped in (e,s)) A (¢ =
sl(s(e(c), €),7) = s(e(v), €)]))

The forward concrete function can be defined as follows:
fl =M. {(e,s) | ((e,s) € n A CanbeAdded(e, s, c,v) A added(e,s,s',c,v)) V

((e,s'") € n A1 CanbeAdded(e, s',c,v)) }

The transfer function above can be thought of as choosing a free offset
within the collection object referred to by the variable ¢ in the state (e, s)
non-deterministically.

The backward concrete function can be defined as follows:
o= . {(e,s) | ((e,s") € n A CanbeAdded(e, s,c,v) A added(e,s, s, c,v)) V

((e,s) € n A !CanbeAdded(e, s, c,v)) }

To prove : f2(+(6)) € 7(fa(6))
P2((9) = ££{(e,s) | (e,5) F 6)
= {(e,s) | ((e,s") F ¢ A CanbeAdded(e, s, c,v) A added(e, s, s',c,v)) V
((e,8) F ¢ A 1CanbeAdded(e, s, c,v)) }
C{(e,s) | ((e, ") F ¢ A added(e, s, s ,c,v)) V (e,$) b ¢}, by removing
some conjuncted conditions. - (i)
We now define a utility function Transform(e, s, ¢, ¢, v), whose pre-requisites
are that ¢ is a disjunct that is satisfied by (e, s), ¢ is a variable that refers to a
collection in (e, s), and v is a variable that refers to any object in (e, s). This
function returns a new disjunct ¢* by rewriting ¢ as follows. For each pair
of the form (ap;.elem,j) in SubAPs*(¢) (see Section 4.3 for the definition of
SubAPs*(¢)) such that ap; and c refer to the same (collection) object in (e, s)
and such that this collection contains the object referred to by v in (e, s) as one
of its elements, replace the jth occurrence ap;.elem in ¢ by v iff the resulting
formula is satisfied by (e, s).
For instance, consider an invocation Transform(e,s,,c,v) wherein ¢ is
(k.elem = null,l.elem = xz), and wherein the parameters satisfy all the pre-
requisites of Transform. If ¢ and [ refer to the same (collection) object in
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(e, ), and k does not prefer to this same object, and v and x refer to the same
object in (e, s), and one of the elements of the collection referred to by [ in
(e,s) is this object, then the return value from this invocation is the disjunct
(k.elem = null,v = z). On the other hand, for instance, if v and = did not refer
to the same object in (e, s), then the invocation above would return the original
disjunct (k.elem = null,l.elem = x) itself.

Lemma 1: Say (e, s) is a state, ¢ is a variable that refers to a collection
object in (e, s), v is a variable that refers to some object in (e, s), and (e, s') is
another state such that added(e, s, s', ¢, v) is true. Then, for any formula ¢, the
following holds:

((e,s") F @) = ((e, ') b Transform(e, s, ¢,c,v)) =

((e, 8) b Transform(e, s', ¢, c,v)).

Proof:

From the definition of the function Transform it is easy to see that
((e,s") F @) = ((e,s") F Transform(e,s’,p,c,v)). We argue the second
implication in the lemma’s statement by contradiction, by first assuming
that (e,s’) b Transform(e,s’,¢,c,v). Say there is some predicate p in
Transform(e, s', ¢, c,v) such that (e,s) does not satisfy this predicate. Since
this predicate is satisfied by (e, s’), and since (e,s) and (e, s’) differ only in
that some offset ¢ in the collection referred to by variable ¢ in (e, s) is not
mapped to any object in (e, s) while is mapped in (e, s’) to the object referred
to by v in (e, s) (this is because added(e, s, s',c,v) is true), it follows that (a)
p is satisfied by (e, s’) due to the element at offset ¢ in the collection referred
to by variable ¢ in (e, s), and that (b) p involves an access path ap,.elem such
that ap,; refers to the same collection object as ¢ does in (e,s). It follows
from the above observations, and from the definition of Transform, that the
access path ap;.elem in p must have been rewritten to simply v by Transform.
However, this contradicts our earlier finding that p involves the access path
ap,.elem. Therefore, we have shown that (e,s’) = Transform(e,s’,®,c,v)
implies (e, s) - Transform(e, s, ¢, c,v). O

Now, applying Lemma 1, we can rewrite (¢) as

f2(v(9)) € {(e,s) | ((e,s) F Transform(e,s', ¢,c,v) A added(e,s,s’,c,v)) V
(e,5) F o}

where the underlined portion is the one that has changed relative to (7).
Given that ¢’ = f4(¢)), from the definition of fy in the COLLECTIONADD rule
in Figure 4.3, and by the definition of Transform(e,s’, ¢, c,v), it can be shown
that Transform(e,s’, ®,c,v) implies one of the disjuncts in ¢’. Therefore, we
get
f2(v(9) € {(e,s) | ((e,s) = &' A added(e,s,s',c,v)) V (e,s) F ¢}
Now, we drop the conjunct added(e,s,s’,c,v)). Also, since ¢ = ¢’ as per the
definition of fy, we replace ¢ in the second disjunct in the formula above with
¢’'. Upon simplification we get
f2((9) € {(e5) | ((e,s) - ¢') }.
Therefore, by definition of v(fq(¢)), we get
P21(@)) € 1(fal®)).
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The same proof holds if v refers to a list object rather than a set, except that
the condition CanbeAdded need not be used.

(c) i = v.iterator()

fa = Ap. @', where ¢’ = ¢lv/i.collection]

Forward concrete function:

11 = Ap(e,s) | () € n A & = (sl(ilc) > s(e(v),e), (il neat) — O]},
where il= s(e(i), €). Basically, (il,¢) is the ¢ field of the iterator object pointed
to by 4, while (il, next) is the next field of this object.

Backward concrete function:

fo = . {(e,s) | (e,s) € State A s = (s[(il,c) — s(e(v),e), (il, next) + 0]) A
(e,s") € n}, where il= s(e(i), €)

To prove : [(7(¢)) € 7(fa(¢))

a(¢
) € State /\(e s)F o))

fe(v(9)) = fe({(e,s) | (s
f2(v(9) = {(e,s) | (e,5) € State A 5" = (s[(il,c) — s(e(v),e), (il, next) + 0])
A (e,s') F ¢}, where il= s(e(i),€).

Now, consider any two stores s and s’ such that s = (s[(il,c) — s(e(v),e),
(il, next) — 0]), where il= s(e(i), €), and such that (e, s’) - ¢. Since s'(e(v),€) =
GetContents(e, s',i,c), from Substitution Rule 3 in Appendix A.1 it follows
that (e, s’) b ¢[v/i.collection]. That is, (e, s’) - ¢'. Now, s and s’ differ only in
the contents of the addresses (i1,c¢) and (i1, next). However, since i.collection
does not appear in ¢’, and this is the only way to access the location (i1, c¢),
and there is no way in a formula to refer to the next field of any iterator, it
follows that (e, s) - ¢'. Therefore, we get

12(1(6)) = (€15 | (es5) F &'}

Thus, we have shown that v(f4(¢)) = f2(v(s)).

(d) v.remove(w)

fa=2Ap. ¢

Forward concrete function:

= .{(e;s) | (e,5") € n A IsCollection(v) A (Vi.((equals(s'(s'(e(v),€),1),
s'(e(w),¢€))) ? (the address (s'(e(v),€),4) is not mapped to any value in s) :
(matchedEntry(e, s, s’ v,1))))}.

We define matchedEntry(e, s, s’,v,1) as a predicate that is true iff either (a)
the address (s'(e(v), €),) is unmapped in store s’ and the address (s(e(v),€), 1)
is unmapped in store s, or (b) GetContents(e, s’,v,i) = GetContents(e, s, v,1).
IsCollection(var) is an auxiliary function to check if var refers to one of the
library classes that implement java.util.Collection.

equals(z,y) is an auxiliary function which takes the locations (€ Loc) of two
objects and checks if they are semantically equal (using the equals method of
the object pointed to by z).

Backward concrete function:
o= . {(e,s") | (e,s) € n A IsCollection(v) A (Vi.((equals(s'(s'(e(v),€), 1),
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s'(e(w),€))) 7 (the address (s'(e(v),€),4) is not mapped to any value in s) :
(matchedEntry(e, s,s’,v,1))))}.

To Pr0V6= ¢(1(9)) € v(fa(9))

fe(v(e)) = ({(6 s) | (e,5) € State A (e, s) F ¢})
An.{(e, s) s) F ¢ A IsCollection(v) A
"(s'(e(v), €

|
s') | (e,
(Vi.((equals( (v),¢€),1),5 (e(w),€))) ? (the address (s'(e(v),€),i) is not
mapped to any value in s) : (matchedEntry(e, s, s’ v,14))))}. - (i)
Lemma 2: Say (e, s) and (e, s’) are States that are identical, except that for
each address addr such that a collection object resides in addr in s and s’, and
for each natural number 4, either (a) the address (s(e(v),€),4) is unmapped in
the store s, or (b) GetContents(e,s’,v,1) = GetContents(e,s,v,1). Then, for
any formula ¢, (e,s) F ¢ = (e,s') F ¢.
Proof: Intuitively, since every element of every collection in s is also present
in s/, and since our formulas cannot capture a requirement that a collection
not contain any element that satisfies a certain property, the lemma follows. O
Using Lemma 2, continuing from (7), we get
= . {(e,s") | (e,¢") F ¢ A IsCollection(v) A
(Vi. ((equals(s'(s'(e(v),€),1), s (e(w),€))) 7 (the address (s'(e(v),€),i) is not
mapped to any value in s) : (matchedEntry(e,s,s’,v,4))))} (the underlined
part is the changed part)
C A {(e,s) | (e,8") F &} (by eliminating some conjuncts)
€ 1(fal@)).
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