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Abstract—Context sensitive inter-procedural dataflow analysis
is a precise approach for static analysis of programs. It is very
expensive in its full form. We propose a prefix approximation for
context sensitive analysis, wherein a prefix of the full context
stack is used to tag dataflow facts. Our technique, which is
in contrast with suffix approximation that has been widely
used in the literature, is designed to be more scalable when
applied to programs with modular structure. We describe an
instantiation of our technique in the setting of the classical
call-strings approach for inter-procedural analysis. We analyzed
several large enterprise programs using an implementation of
our technique, and compared it with the fully context sensitive,
context insensitive, as well as suffix-approximated variants of
the call-strings approach. The precision of our technique was in
general less than that of suffix approximation when measured on
entire programs. However, the precision that it offered for outer-
level procedures, which typically contain key business logic, was
better, and its performance was much better.

I. INTRODUCTION

Dataflow analysis [1] is an automated program analysis
technique that has been used extensively in the context of
reverse engineering and re-engineering scenarios such as
program comprehension [2], [3], data model recovery and file-
format recovery [4], [5], [6], and binary analysis [7]. Dataflow
analysis also forms the foundation for construction of program
dependence graphs and program slices, which, in turn, have
numerous applications in software engineering [8].

Dataflow analysis is performed by propagating “abstract
facts” from a chosen lattice, which forms the abstract domain,
through the program. The final fix-point solution obtained
associates an abstract fact with each program point, which
encodes a conservative approximation of properties that are
guaranteed to hold at that point at run-time.

When a program involves procedures and procedure calls,
an inter-procedural dataflow analysis is required. A feasible
path in such a program is one that does not enter a procedure
from a certain call-site and then return from that invocation
to a location other than the one that follows this call-site. A
context insensitive inter-procedural analysis propagates facts
along all paths, including infeasible paths, and hence potentially
computes imprecise results. A context sensitive inter-procedural
analysis is one that performs propagations only along feasible
paths (to the extent possible). Empirical studies [9], [10] have
confirmed that context sensitive analysis is more precise than
context insensitive analysis.

Context sensitivity, however, increases analysis cost signifi-
cantly, as has been shown in the same studies mentioned above.
It can also potentially lead to non-termination in the presence of
recursion. To curb this, limits are typically imposed on context
sensitivity, which essentially trade off some of the precision
gain for efficiency. A common way of enforcing a limit is to
use suffix approximated calling contexts. Intuitively, what this
means is that only certain number of items from the top of the
stack of contexts are used during the analysis, as opposed to
full context stacks. The primary contribution of this paper is
an alternative proposal, which is to restrict context stacks to a
certain number of entries from the bottom of the stack. In the
rest of this section we first introduce suffix approximation. We
then introduce our technique of prefix approximation, as well
as its benefits.

A. Suffix Approximated Context Stacks

The idea of suffix approximation has been employed in
two generic approaches that are aimed at making any given
underlying “client” dataflow analysis context sensitive: the
classical call-strings approach [11], as well as the more
recent object-sensitivity approach [12]. In this paper we focus
primarily on the call-strings approach. In this approach, each
dataflow fact is tagged with a string (representing a stack) of
call-site IDs, which serves as the context for the fact. In the
full (i.e., “unlimited”) call-strings approach, there is no bound
on the lengths of call strings. Therefore, even in non-recursive
programs, in general an exponential number of distinct dataflow
facts could reach certain program points (exponential in terms
of the total number of call-sites in the program). With k-suffix
approximation, where k > 0 is a user parameter, call strings
are limited to be of length k, thus limiting the number of call
strings at any program point to Kk in the worst case, where
K is the number of distinct call-sites in the program.

We illustrate the call-strings approach using the example
program in Figure 1. This program will serve as our running
example. It contains a main procedure (at the leftmost position)
and procedures f, g, h, and i. Note that for simplicity of
illustration procedure i has no statements. For simplicity we
use only global variables in this program, namely, a and b. In
this example, the possibly uninitialized variable analysis [13]
is used as a client analysis. This analysis determines whether
each variable at each program point is possibly uninitialized, or
contains a value that was computed by an expression that itself
involved possible uninitialized operands, along any path to that
point. Therefore, each tagged dataflow fact would be of the



call g 

return g 

call g 

return g 

a = 1 

a = a + 1 

call  h 

return h 

call h 

return h 

b = 0 

b = b + 2 

f g 

rg 

eg 

ri 

c2 

1 

2 

3 

4 

n2 

c3 

n3 

c4 

n4 

c5 

n5 

call f 

return f 

main 

c1 

n1 

i 

rf 

ef 

call i 

rh 

eh 

h 

return i 

call i 

return i 

〈ε,{a,b}〉 

〈c1,{a,b}〉 〈c1,{a,b}〉 〈c1c2,{a,b}〉 

c6 

n6 

c7 

n7 

〈c1,{a}〉 

〈ε,{a}〉 

〈c1c2,{a,b}〉 〈c1c2,{a,b}〉 

〈c1c2,{a,b}〉 〈c1c2,{a,b}〉 

〈c1c2,{a,b}〉 

〈c1c3,{b}〉 〈c1c3,{b}〉 〈c1c3,{b}〉 

〈c1c3,{b}〉 〈c1c3,{b}〉 

〈c1c3,{b}〉 
〈c1,{b}〉 

〈ε,{b}〉 

〈c1c2,{a,b}〉 
〈c1c3,{b}〉 

〈c1c2,{a,b}〉 
〈c1c3,{b}〉 

〈c1c2,{a,b}〉 
〈c1c3,{b}〉 〈ε,{a,b}〉 

〈c1,{a}〉 

〈c1,{a}〉 〈c1,{a,b}〉 

〈c1,{b}〉 

〈c1c2,{a,b}〉 

〈c1c2,{a}〉 
〈c1c3,{a}〉 

〈c1c3,⌀〉 

〈c1c2,{a}〉 
〈c1c3,{a}〉 

〈c1c2,{a,b}〉 
〈c1c3,{a,b}〉 

〈c2c4,{a,b}〉 

〈c2c4,{a,b}〉 
〈c3c4,{a,b}〉 

〈c2c5,{a}〉 

〈c2c5,{a}〉 
〈c3c5,{a}〉 

〈c3c4,⌀〉 
〈c3c5,{a}〉 

〈c2c4,{a,b}〉 
〈c3c4,{a,b}〉 
〈c2c5,{a}〉 
〈c3c5,{a}〉 

ei 

〈c4c6,{a,b}〉 

〈c4c6,{a,b}〉 

〈c4c7,{a,b}〉 

〈c4c7,{a,b}〉 

〈c5c6,{a}〉 

〈c5c6,{a}〉 

〈c5c7,{a}〉 

〈c5c7,{a}〉 

Fig. 1. Running example, with fix-point solution. Dataflow facts to the left of control-flow edges correspond to 2-prefix approximation, while facts to the right
of edges correspond to 2-suffix approximation.

form 〈γ, d〉, where γ represents a call string and d represents
a set of variables (that are possibly uninitialized).

In the figure, for brevity, the dataflow facts due to full
context sensitivity are not shown. For instance, at program
point ri (in procedure i), with full context sensitivity, eight
tagged dataflow facts would reach. These would include the
facts 〈c1c2c4c6, {a, b}〉, 〈c1c2c5c6, {a}〉, etc.

The fix-point facts due to 2-suffix approximation are shown
to the right of the control-flow edges, in blue colour, at key
program points. Consider, for instance, the facts 〈c1c2, {a, b}〉
and 〈c1c3, ∅〉 at point rg . Intuitively, the first fact is due to the
path that comes directly to rg via c1 and c2, while the second
fact is due to the path that visits procedures g, h, and i via c2,
then returns to n2, then flows through point 1, and then reaches
rg via c3. Along the second path mentioned above both the
variables get initialized – first variable b at point 3 and then
variable a at point 1. Then, the two facts mentioned above,
upon propagation via c4, become 〈c2c4, {a, b}〉 and 〈c3c4, ∅〉,
respectively, at point rh. In other words, c1 is removed from
both the call-strings in order to restrict their lengths to 2. Now,
these two facts, upon further propagation via c6, end up having
the same call-string c4c6. Since the approach maintains at most
one fact per call-string at any program point, these two facts get
joined, yielding the fact 〈c4c6, {a, b}〉 at ri. (For the possibly
uninitialized variables analysis, the union operation is the join.)
This fact then reaches ei.

Along return edges, the approach propagates a data fact to
that caller of the current procedure that contains the call-site
that is at the top of the call-string of the fact. For example,
along the edge ei → n6, the incoming data fact 〈c4c6, {a, b}〉

(that was mentioned above) is propagated to the point after n6.
During this propagation the call-site c6 is popped from the call-
string, leaving behind only c4. Now, since procedure g, which
contains the call-site c4, could have been invoked either via call-
site c2 or via call-site c3, the fact mentioned above is sent to n6
as two different facts, namely, 〈c2c4, {a, b}〉 and 〈c3c4, {a, b}〉.
Note that the latter of these two facts is imprecise, because
when control reaches n6 via a path that has come through c3
both the variables would have become initialized (at points 3
and 1). In other words, this fact should have had an empty set
of variables. This fact subsequently reaches eh unmodified (via
c7, procedure i, and n7), and then gets sent to point 4 with
tag c1c3. This fact flows through point 3, and thus becomes
〈c1c3, {a}〉. It then flows through procedures h and i, and
reaches eg unmodified. It then gets propagated to n3 and then
point 2. Here, the presence of the variable a in the set in the
fact causes the use of variable a in the rhs (i.e., right hand side)
at point 2 to be declared as possibly uninitialized, which is a
false warning. This false warning arises due to the imprecision
mentioned earlier. On the other hand, the use of b in the rhs
at point 4 is determined to be definitely initialized. Intuitively,
this is because both the facts that contain b at ei eventually get
propagated only to n4 (from where they reach the initialization
at point 3), and not mistakenly to n5.

Note that false warnings are in general unavoidable when
full calling contexts are not used. With suffix approximation,
precision tends to get compromised at outer-level procedures.
Note that the use of a at point 2 is called possibly uninitialized,
whereas the use of b at point 4 is called definitely initialized.

Secondly, when inner-level procedures have high fan-in (i.e.,
number of call-sites invoking them is high), the number of



distinct call-strings that reach inner-level procedures can be high.
In our example, procedure f has fan-in 1, while procedures g,
h, and i have fan-in 2. The number of facts at each program
point in the procedures h and i is 4. This can cause inefficiency
(although not as much as with the full call-strings approach).
It is our hypothesis that in practice inner-level procedures
would often contain simpler functionality, with higher potential
for reuse, than outer-level procedures. Therefore, inner-level
procedures can be expected to have higher fan-in than outer-
level procedures.

B. An Alternative Proposal: Prefix Approximation

Our key proposal is to restrict context stacks to a certain
number of bottom entries, as opposed to a certain number
of top entries as in the suffix approach. Our motivation is to
obtain better scalability on programs in which fan-in is lower
at outer-levels.

Consider again the example in Figure 1. Assume 2-prefix
approximation, meaning only two bottom calls in each call-
string are used. The fix-point dataflow facts due to this technique
are shown to the left of the control flow edges, in red colour.
With this technique, the dataflow facts that reach procedures
g, h and i are distinguished by only two contexts – c1c2 and
c1c3, which are of length 2. Within these procedures, the data
facts are propagated context insensitively. Notice that due to
the lower fan-in on outer-level procedures in this example, the
number of tagged dataflow facts at any point is never more
than two, whereas with 2-suffix approximation it is four in
procedures h and i. In other words, 2-prefix approximation is
more efficient.

In order to compare the precision of the two techniques,
consider the dataflow fact 〈c1c2, {a, b}〉 at point ri. This fact
is intuitively the result of the joining of facts that reach ri
along all paths that begin by going via c1 and then c2. This
fact then reaches ei. It is then sent back both to n6 and to n7
(because there is no indication in the call-string as to whether
the fact came to ri via c6 or via c7). Then, from n7, this
fact propagates (via eh) to both n4 and to n5. From n5 this
fact reaches point 4. Here, due to the presence of variable
b in the fact, the occurrence of this variable in the rhs is
marked as possibly uninitialized, which is a false warning. This
imprecision is due to the fact that b occurs in this dataflow fact
due to paths that go through c4 (and not c5); therefore, ideally,
the fact mentioned above should have gotten propagated only
to n4, and not to n5. However, the prefix limited call-string is
unable to make this distinction. Recall that suffix approximation
gave a precise result at program point 4.

Continuing on from point 4, the fact mentioned above goes
via eg to n2, but not to n3. This is because the call-string
of this fact ends with c2. Therefore, the variable a in the
set in this fact does not reach point 2. (The other fact at eg,
whose call-string is c1c3, reaches point 2; however, this fact
indicates only variable b as being possibly uninitialized.) As
a result, the occurrence of a in the rhs at point 2 is declared
initialized, whereas suffix approximation declared it as possibly
uninitialized. In other words, prefix approximation is more
precise at outer-level procedures, whereas suffix approximation
is more precise at inner-level procedures.

In programs that have good modular structure, inner-
level procedures are more likely to contain generic “utility”
code, while outer-level procedures are more likely to contain
application-specific “business logic”. In such cases, higher
precision at outer-level procedures would be more valuable to
users in many software-analysis scenarios than higher precision
at inner-level procedures.

C. Our Contributions

• The primary contribution of this paper is the insight that
prefix approximation for context sensitivity is likely to
(a) be more scalable than standard suffix approximation
on programs that have good modular structure, and at
the same time, (b) give higher precision at outer-level
procedures, which are anyway more likely to contain
key application-specific logic.

• We instantiate our idea specifically in the context of
the classical call-strings approach, by giving details
of the changes required to this approach in order to
incorporate prefix approximation. We select the call-
strings approach because it is a simple approach, and
is yet very general, in terms of being suited to both
object-oriented and non-object-oriented languages, and
to any kind of underlying “client” dataflow analysis.
At the same time, we posit that our approach can be
extended to other approaches to context sensitivity,
such as the object sensitivity approach.

• We implement our technique of k-prefix approximation,
and using a set of large, real Cobol benchmarks,
compare its precision and efficiency with other variants
of the call-strings approach, such as zero context
sensitivity, full context sensitivity, and k-suffix ap-
proximation. Our findings, in summary, are that our
technique is much more scalable than k-suffix approxi-
mation, offers somewhat lower overall precision (when
entire programs are considered), but offers comparable
or better precision at outer-level procedures in these
programs.

The rest of this paper is organized as follows. Section II
gives a technical introduction to the call-strings approach,
including its suffix approximation variant. We then spell out
the details of prefix approximation in Section III. We describe
our implementation and experimental results in Section IV, and
then conclude with a discussion of related work in Section V.

II. INTERPROCEDURAL ANALYSIS USING CALL STRINGS

In this section, we first introduce context insensitive analysis,
and then the existing variants of the call-strings context-sensitive
approach. This discussion forms core background material for
the understanding of our own technique of prefix approximation.

A. ICFG Representation, and Underlying Analysis

Inter-procedural analysis is typically performed on an
interprocedural control flow graph (ICFG) representation of
the program. An ICFG consists of a control-flow graph (CFG)
for each procedure, which are linked by inter-procedural call
and return edges. Each procedure p has an entry node rp and
an exit node ep. Each call site node ci in a procedure has a



corresponding return site node ni where control returns from
the called procedure. An edge that transfers control from a call
site ci to the entry node rp of the called procedure is called
a call edge. The corresponding return edge of this call edge
is the edge that comes back from ep to ni. Other than call
and return edges, the other edges in the CFGs are termed as
intra-procedural edges.

As mentioned in the introduction, any context-sensitivity
approach is a wrapper around a given underlying “client”
dataflow analysis. We assume that this analysis is a standard
intra-procedural data flow problem A ≡ ((D,vD), FD) (e.g.,
constant propagation, reaching definitions). D is a join semi-
lattice, while FD is a set of transfer functions with signatures
D → D associated with the intra-procedural edges. We call
the elements of D “dataflow facts”.

We depict and illustrate various transfer functions in
Figure 2. Each of the six parts of this figure depicts a transfer
function of a call or return edge, first as an illustration,
and then as a formal specification (below the illustration).
In the illustrations c4, c5, etc., denote call sites, while n4,
n5, etc., denote the corresponding return sites. In the formal
specifications, fci,rp denotes the transfer function of a call edge
from call-site ci to the entry node rp of procedure p, while
fep,ni denotes the transfer function of a return edge from an
exit node ep to a return site ni.

B. Context Insensitive Analysis

In context insensitive analysis, elements of the underlying
lattice D are used directly in the analysis, without any context
tagging. Therefore, call and return edges have identity transfer
functions.

Parts (a) and (b) of Figure 2 depict the call and return
transfer functions, respectively, for the context insensitive
approach. Note that in effect this approach joins all facts coming
into a procedure entry rp from all call sites, propagates this
joined fact through the procedure, and then returns the fact
that reaches the exit ep to all return sites. In other words, facts
are sent along feasible as well as infeasible paths, causing
imprecision.

C. Full Call Strings Technique

The “full” call strings approach tags each fact from D with
a call-string. Each call-string intuitively represents a stack of
call-site IDs of unfinished calls.

Figure 2(c) depicts the transfer function for call edges.
〈γ, d〉 is the incoming tagged dataflow fact into the edge, with
γ being the call-string (i.e., context tag), and d ∈ D being the
underlying fact. The transfer function outputs the same fact d,
tagged with the extended call-string γ.ci; this is basically γ
with the ID of the current call-site ci pushed on to it. This is
illustrated just above the transfer function specification; in the
picture the concrete call-string c1c3 serves as γ, and c4 serves
as ci.

Note that we model transfer functions as returning sets,
rather than individual facts. This is because in other situations
(which we will encounter below) transfer functions may need
to return empty sets or sets with multiple tagged dataflow facts.

In case the underlying lattice D is finite, Sharir and
Pneuli [11] have shown that call-strings of length greater than
K|D|2 can be ignored, without any impact on the correctness
or precision of the analysis, where K is the number of distinct
call-sites in the program. That is, the call transfer function may
return the empty set if the incoming call-string γ is already of
length K|D|2. For simplicity of exposition, we have omitted
this check from the transfer function shown in Figure 2(c). Note
that although this bound ensures termination of the analysis,
the number of call-strings per program point is still likely to be
so high that applicability to large programs would be unlikely.

The transfer function for a return edge ep → ni is depicted
in Figure 2(d). Say 〈γ, d〉 is the tagged fact that reaches the
exit node ep. Let the topmost call-symbol in γ be cl. If cl is the
call-site corresponding to ni (which we denote as σ(ni) = cl),
it follows that the transfer function ought to send the fact d
back to ni. This it does, with a tag γ′ that is obtained by
popping cl from γ. On other hand, if cl does not correspond to
ni, then, in order to enforce context sensitivity, the approach
sends back no dataflow fact to ni.

This transfer function is illustrated in the picture in
Figure 2(d). In the picture c1c3c4 serves as γ. Therefore, the
fact d is sent back to n4, with tag c1c3. No fact is sent back
to the other return site n5 (assume that c5 also calls the same
procedure p, of which ep is the exit node).

We do not show the transfer functions of intra-procedural
edges. These transfer functions simply use the correspond-
ing underlying transfer functions from FD to transform the
underlying fact, without modifying the call-string component.

D. k-Suffix Technique

The full call strings analysis may not terminate if an infinite
underlying lattice D is used (e.g., the constant propagation
lattice). Moreover, even when D is finite, the call-string length
bound of K|D|2 means that a very large number of call-strings
could be generated at certain program points (in the worst case,
this number grows exponentially with K|D|2). Therefore, for
the sake of practicality, the k-suffix approximation technique
has been suggested by Sharir and Pneuli, and has been used
by various other researchers. This technique, basically ensures
that call-string lengths are always bounded by k, where k is a
user-selected parameter.

The transfer function for call edges with this technique is
depicted in Figure 2(e). Basically, if the tag γ of the incoming
fact into the call edge is of length less than k, then the function
behaves the same as with the full technique. If not, the fact d
is sent out with a new call-string, which is obtained by pushing
the current call-site ci onto γ and simultaneously dropping the
bottom-most entry cb of γ. This ensures that the length of the
call-string does not increase beyond k. Implicitly, this causes a
join of all facts that agree on the k-suffixes of their call strings.

The picture in the same part of the figure illustrates this
transfer function. Assuming k = 1, the pushing of the current
call-site c4 onto the call-string causes the bottom-most element
c3 to be dropped from the call-string.

The transfer function for the return edges (see Figure 2(f))
is similar to that used by the full call-strings technique, in that it
uses the call-site symbol cl that is on top of the call-string γ of
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Fig. 2. Existing call strings techniques. Transfer functions for call edges: (a), (c), and (e); Transfer functions for return edges: (b), (d), and (f).

the incoming dataflow fact into the return edge to decide which
return site to send the fact d back to. However, to produce the
call-string on the output side, it is not enough to pop cl from γ.
The basic reason for this is that since γ contains only a suffix
of the true call stack, the output call-string cannot be allowed to
become empty when active invocations still remain from which
control needs to return. Let γ′ represent the call-string obtained
by popping cl from γ. The technique actually returns a set of
dataflow facts of the form 〈cf .γ′, d〉, where cf is any call-site
that calls the procedure that contains the bottom call-site in
γ. (Note that cf becomes the bottom entry of the call-strings
of these returned facts.) In our notation ProcOf(cb) is the
procedure that contains the call site cb, while CallersOf (P ) is
the set of all call-sites that call procedure P (this would be an
empty set of P is main).

The technique mentioned above constitutes a conservative
over-approximation, because the dataflow facts that reached cl
with call-strings of the form γ′ are the only possible dataflow
facts that could, upon further propagation, reach ep with the
call-string γ′.cl.

The transfer function above is illustrated in the upper part
of Figure 2(f). Again, for the sake of illustration, we assume
k = 1. In this picture, the call string associated with the fact d
at ep is c4. Hence, the technique identifies n4 as the correct
return site, and pops c4 from the call string (thus leaving it
empty). Say c2 and c3 are call-sites such that they call the
procedure P that contains c4. Therefore, these are the candidate
call-sites that can be inserted into the bottom of the call-string

to be returned. Therefore two tagged facts – 〈c2, d〉 and 〈c3, d〉
– are returned to n4.

For a more complete illustration of the suffix approximated
call-strings approach, we refer readers to the fix-point solution
shown to the right of the control-flow edges in Figure 1. This
solution was already discussed in Section I-A.

III. PREFIX APPROXIMATION CALL STRINGS APPROACH

In this section we describe in detail the transfer functions for
our prefix approximation technique for the call-strings approach.
These transfer functions are specified assuming that a prefix
length limit k is specified by the user.

A. Transfer Function for Call Edges

Figure 3(a) shows our transfer function for call edges, as
well as an illustration of this transfer function (which appears
above the transfer function specification). Basically, if the length
of call-string γ of the input fact is less than k, then we append
the current call site ci as usual to the call-string of the outgoing
fact. That is, the analysis remains in a context-sensitive mode.
However, if the length of the call-string γ is equal to k, then
the analysis is in a context insensitive mode, and needs to
remain in it. Therefore, the current call-site ci is not appended
to the outgoing call-string. Note that the mode switch happens
whenever the length of a call-string γ becomes equals to k for
the first time.
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{〈γ, d〉}, Otherwise fep,ni
(〈γ, d〉) =



{〈γ′, d〉 | γ = γ′.cl, σ(ni) = cl}, if |γ| < k
{〈γ, d〉 | γ = γ′.cl, σ(ni) = ci,

ci ∈ Region(cl)}
∪

{〈γ′, d〉 | γ = γ′.cl, σ(ni) = cl},
otherwise.

(a) (b)

Fig. 3. Transfer functions for (a) call edges, and (b) return edges. Illustrations are with k = 2.

In the illustration that appears in Figure 3(a), say k = 2.
Therefore, along the edge c2 → rp, the call-string c1 of the
incoming dataflow fact into the call edge is extended by having
c2 pushed on to it. However, along the edge c7 → rp, since
the incoming fact has a call-string c5c6, whose length is 2, this
call-string is sent out unchanged in the outgoing fact.

B. Transfer Function for Return Edges

We now discuss our transfer function for return edges,
which is more complex. This transfer function is depicted in
Figure 3(b). In the most straight forward scenario, the length
of call string γ is less than k. That is, the analysis is currently
in the context sensitive mode. In this scenario, the transfer
function is exactly the same as in the full call strings approach.
That is, if the topmost call-site cl in the call-string γ of the
incoming dataflow fact into the return edge corresponds to the
return site ni that is at the target of this return edge, then the
call-string γ′ for the outgoing dataflow fact that is sent to ni
is obtained by popping cl from γ; otherwise, no fact is sent
to ni. This logic is specified in the first part of the transfer
function specification in Figure 3(b) (the part that is controlled
by the “if” condition).

In the illustration that appears above the transfer function
specification, the dataflow fact 〈c4, dc〉 matches the scenario
mentioned above. It is sent back only to return site n4, with
call-string ε.

We now discuss the case where the call-string γ of the
incoming dataflow fact into the return edge is of length k,
meaning the analysis is currently in the context insensitive
mode. There are two possible scenarios while in this mode.

1) Scenario 1: cl is the call-site corresponding to ni. That
is, cl = σ(ni).

In this case, as usual, the transfer function pops cl from
γ, and returns the resultant call-string γ′ along the edge to ni.
This case is covered by the last line in the transfer function
specification (which is the second argument of the ‘∪’ operator).
It is illustrated in the picture by the dataflow fact 〈c5c6, dl〉
being propagated to n6 as 〈c5, dl〉.

This does not suffice. It is possible that procedure p (of
which ep is the exit node) either contains cl (i.e., is self-
recursive), or calls (directly or transitively) the procedure that
contains cl (i.e., mutual recursion). In these cases, the fact
〈γ, d〉 at ep could have actually resulted from a call-sequence
that visited cl multiple times, with some of these visits not
resulting in pushes of cl onto γ (due to the k limit). When
this happens, cl should not be popped from γ on the outgoing
call-string to ni (because cl does not represent the topmost
unfinished call). Therefore, 〈γ, d〉 itself needs to be propagated
back to ni. This case is covered by the first argument of the
‘∪’ operator in the transfer function, where Region(cl) denotes
the procedures in the program that are reachable directly or
transitively from cl (without returning via the corresponding
return site nl). Since cl is the same as ci ≡ σ(ni) (as per
the assumption of Scenario 1), and since ci calls p (which
follows from the presence of the edge from ep to ni), the test
ci ∈ Region(cl) in the transfer function actually implies that
procedure p either contains cl, or calls (directly or transitively)
the procedure that contains cl.

The situation discussed above is illustrated in the picture
by the dataflow fact 〈c5c6, dl〉 that gets propagated as-is to
the return site n6. Note that this happens in addition to this
fact being sent to n6 with tag c5 (as was mentioned earlier,
this happens due to the second argument of the ‘∪’ operator).
Sending both these facts to n6 is required, because even in
the presence of mutual recursion there would exist a path that
reaches ep via a single traversal via cl, in which setting cl
needs to be popped from the call-string. In the picture the
cloud represents Region(c6).

2) Scenario 2: cl is not the call-site corresponding to ni.
That is, cl 6= σ(ni).

In this case, the transfer function checks whether ci is
present in Region(cl), where ci is σ(ni). If yes, it means that
some call sequence brought control to p via cl, and γ is a prefix
of this call-sequence. In this case, since ci was not pushed
onto γ earlier, the fact 〈γ, d〉 is returned as-is to ni. This case
is also covered by the first argument of the ‘∪’ operator. This
case is illustrated in the picture by 〈c5c6, dl〉 being propagated
as-is to return site n7.



C. Variable Length Prefixes

So far in this section we have discussed prefix approximation
with an apriori length limit of k on the prefixes. An alternative
way of using prefix approximation would be for the user of
the analysis to identify a set of call-sites KP such that they
are willing to tolerate context-insensitive analysis within the
regions of these call sites. For instance, if there is a library that
is expensive to analyze (e.g., due to high fan-in on procedures
within the library), such that analysis results within this library
are not of interest to the user and such that context-insensitive
analysis within this library would not impact precision in the
other parts of the programs too much, then the set of call-sites
to the procedures in this library could be used as KP .

Our prefix approximation technique can be used in this
scenario with the following (simple) modification to the transfer
functions that were shown in Figure 3: the check “if |γ| < k” in
both transfer functions be replaced with the check “if γ = γ′.cl
∧ cl 6∈ KP ”. Note that with this variant, in the presence of
recursion, termination would need to be guaranteed by other
means, such as by collapsing cycles in the call-graph, or by
using a call-string length bound of K|D|2.

D. Soundness of Our Technique, and Other Discussions

Our prefix approximation technique is sound, in that in the
fix-point solution, the fact (from D) that is computed for each
program point is an over-approximation of (i.e., dominates)
the fact that would have been computed at that point had full
context sensitivity been used. We omit a detailed proof of this
due to lack of space. The key property that is shown in the
proof is about the return transfer function. The property is that
if at all there was a call-sequence that was traversed during the
analysis and that entered procedure p, such that γ is a prefix of
this call sequence, and such that the topmost entry of this call
sequence is σ(ni), then any fact of the form 〈γ, d〉 at ep would
definitely get propagated back to ni. That is, no propagations
that are required along return edges are missed.

Sharir and Pnueli, in their original paper [11] on the
call-strings approach, have given a generic framework for
creating sound approximations for this approach (Section 7-
6). As an instance of this framework, they have suggested
k-suffix approximation, but have not explicitly suggest prefix
approximations. It is future work for us to see if the technique
that we have proposed in this paper is an instance of their
generic framework. If it is, then the soundness of our technique
also follows from their proof of soundness of their generic
framework.

It is easy to see that due to the limit on the lengths of
call-strings, our approach always terminates (whenever the
underlying analysis is terminating).

Finally, it is straightforward to combine our prefix approx-
imation with k-suffix approximation. In the interest of space
we omit a specification of the combined transfer functions.

IV. IMPLEMENTATION AND EVALUATION

A. Implementation

We have implemented the call-strings approach in conjunc-
tion with our k-prefix approximation, the context insensitive

analysis, the full call strings approach, as well as the call-strings
approach with k-suffix approximation. (We have not evaluated
the variable length prefix technique that we mentioned in
Section III-C, primarily because an evaluation of that technique
would require user knowledge about the benchmark programs
that are to be analyzed.) Our implementation is targeted at
analyzing Cobol programs. Cobol programs are very prevalent
in large enterprises [14]. Another motivating factor for this
choice is that one of the authors of this paper has extensive
professional experience with developing and maintaining Cobol
applications. We have implemented our analyses on top of
a proprietary program analysis framework Prism [15]. This
framework provides the parser for Cobol, internal representation
(IR), and ICFG. Our implementation is in Java. We have also
implemented possibly-uninitialized variables analysis [13] as
a client analyses. We performed our experiments on a 64-bit
Windows desktop with an Intel i5 processor and 8 GB RAM.

B. Benchmark Programs

We have selected a set of seven large, proprietary programs,
which are being used in different financial institutions, as
benchmarks for evaluation. These programs all implement
banking-related functionalities such as payment processing,
transaction posting, and account settlement. Key statistics about
these programs are provided in Table I. The meanings of
columns (b), (c), and (f) are self-explanatory. In legacy Cobol
programs almost all variables tend to be declared as global
variables. Column (d) depicts the number of declared global
variables in the programs. Note the extremely high numbers of
variables in these programs, which is idiomatic of legacy Cobol
programs. This poses a major challenge to efficient analysis,
because each dataflow fact at each program point needs to
capture information about some or all of these variables. A
variable reference in a program is an occurrence of a variable
in an expression anywhere in the program. Column (e) depicts
the total number of variables references in each program.

Columns (g)-(i) provide statistics about the complexity
of context-sensitive analysis. This complexity is typically a
function not only of the program’s structure, but also of the
underlying client analysis that is chosen. Therefore, in order
to report these numbers in a manner that is as independent of
the client analysis as possible, we implemented a very simple
reachability analysis. In this analysis the underlying lattice
values are 0 (unreachable) and 1 (reachable), with 1 dominating
0. The numbers in columns (g)-(i) were obtained using a full
call-strings approach that was wrapped around this analysis.
Column (g) depicts the total number of 〈call-string, fact〉 pairs
across all program points. Column (h) depicts the length of the
longest call-string that was ever generated. Column (i) depicts
the maximum number of 〈call-string, fact〉 pairs at any single
program point. All these numbers were determined after the
analysis reached a fix-point. These numbers give a feel for the
high complexity of context-sensitive analysis.

We use our client analysis (possibly uninitialized variables)
to compare the time requirement, memory requirement, as well
as precision of the four analysis variants that were mentioned
at the beginning of this section. For each of these programs,
we choose apriori a value of k, and use this value of k with
both the k-suffix as well as the k-prefix techniques. We chose
k = 2 for Prog2 and Prog7, whereas we chose k = 4 for all



TABLE I. BENCHMARK PROGRAM DETAILS.

Program Total No. of No. of No. of No. of Total Max. Max.
name LOC CFG program variable call facts call facts at

nodes variables references sites string any node
length

(a) (b) (c) (d) (e) (f) (g) (h) (i)
Prog1 9017 3353 2275 1365 299 29211 10 395
Prog2 16080 6857 4997 3110 238 15874 6 219
Prog3 17826 9376 5048 4014 518 57704 21 608
Prog4 22766 12044 4263 3724 615 760823 22 13073
Prog5 23183 13039 10115 4130 633 454595 10 25846
Prog6 37151 11999 8272 4860 562 158419 24 1484
Prog7 49857 34092 31276 4328 523 67007 5 1893
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Fig. 4. Normalized running time, relative to context insensitive analysis.

other programs (because they had a higher value of maximum
call sequence depth). In all our figures, whenever we use the
labels “k-suffix” or “k-prefix” against a benchmark program,
we refer to the chosen value of k for that program.

C. Running Time

The running time requirements of the four analysis variants
are summarized in Figure 4. For each benchmark program
this figure depicts the normalized running times of 2-suffix,
k-suffix, k-prefix, and full context sensitive analysis, relative to
the running time of context-insensitive analysis on that program.
We evaluated 2-suffix approximation also on the programs for
which we chose k = 4, because 2-suffix approximation is likely
to be more efficient than 4-suffix approximation. For Prog5,
the k-suffix running time is actually 36x the context insensitive
running time; however, in the figure, we cut the bar off at 12x
to save space. At the top of the figure, for each program, we
mention the absolute running time of the context-insensitive
analysis, in minutes.

The full context sensitive approach could not scale up to
analyze programs Prog4, Prog5, and Prog6. We killed the
analysis on these programs after it had run for nearly 15 hours.

Our observations about the running times of the various
analyses are as follows:

• k-prefix approximation is very efficient. On four

programs, namely, Prog2, Prog3, Prog5, and Prog6,
this variant took time that was similar to or even less
than that of context insensitive analysis. The worst it
did was on the smallest program, Prog1, where it took
6x the time as context insensitive analysis.

• The k-suffix and 2-suffix techniques are much less
efficient. Not counting Prog1, the k-suffix technique
took between 1.6x to 36x the time of the k-prefix
technique. Not counting Prog1 and Prog4, the 2-suffix
technique took between 1.7x to 7x the time of the
k-prefix technique.

D. Memory Requirement

We measured the memory consumption of the analyses
at the point of time when the fix-point solution was just
reached. Due to space constraints we do not depict the full
results. The k-prefix technique was much more memory efficient
than the suffix approximated variants. Not counting Prog1, 2-
suffix approximation consumed between 1x to 3.5x as much
memory as the k-prefix technique, while k-suffix approximation
consumed between 1.4x to 9.2x as much memory as the k-
prefix technique. On the program that needed the most memory
for analysis, namely, Prog5, the context-insensitive, 2-suffix,
k-suffix, and k-prefix techniques consumed 219 MB, 1226 MB,
3504 MB, and 350 MB, respectively.

E. Precision

We now discuss the precision of the different analysis
variants. Our objective was to measure not only overall
precision, but also precision separately at outer-level and
inner-level procedures. Therefore, for each program, we first
classified its procedures as outer-level procedures or inner-
level procedures. Ideally, this should have been done in a
program-specific manner, using human expertise. However, that
would have required extensive manual effort. Therefore, for
each program, we characterized each procedure that was at a
maximum call-depth of k or less from the main procedure as an
outer-level procedure (this k-value being program specific), and
characterized all other procedures as inner-level procedures.

Figure 5 summarizes the precision results. Each bar in the
figure represents the results from an analysis variant, namely,
context insensitive (C.I.), k-suffix, k-prefix, or full context
sensitive, on a benchmark program. The number on top of each
bar indicates the percentage of all variable references in the
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Fig. 5. %-age of variable references reported as possibly uninitialized (-PUI) or initialized (-I), for outer-level procedures (OLP) and inner-level procedures (ILP).

program that have been identified as possibly uninitialized1.
Here, lower numbers indicate higher precision. Each bar is
further split into four parts, as follows: “OLP-PUI” indicates
the percentage of all variable references that are in outer-level
procedures and that are identified as possibly uninitialized.
“OLP-I” indicates the percentage of all variable references that
are in outer-level procedures and that are identified as definitely
initialized. “ILP-PUI” and “ILP-I” indicate analogous numbers,
but with respect to inner-level procedures.

Our observations on the precision of the different techniques
are as follows:

• k-prefix approximation resulted in equal or better
precision than k-suffix approximation at outer-level
procedures in all the programs except Prog2. In fact,
in the case of Prog5 and Prog7, k-prefix approxima-
tion did significantly better, not only on outer-level
procedures, but even overall.

• On the other hand, k-suffix approximation gave better
overall precision than k-prefix approximation on the
five programs other than Prog5 and Prog7. In particular,
on four of these five programs (i.e., the ones excluding
Prog6), the overall precision of k-prefix approximation
was closer to that of the context insensitive approach
than to that of k-suffix approximation. Among these
four programs, on Prog1 and Prog4, k-prefix approxi-
mation also took significantly more running time than
the context insensitive analysis.

• Prog3, Prog4 and Prog6 have very small numbers of
variable references in outer-level procedures. This is
essentially because of the deep call sequences in these
programs, and also because outer-level procedures are

1In Cobol, each variable corresponds to a memory range. We report a variable
reference as possibly uninitialized if any portion of the range corresponding
to this reference is possibly uninitialized.

small in size and have low fan-out. Ideally, in order to
gain more precision, our technique should be applied
with higher values of k on these programs. However,
due to certain inefficiencies in our current implementa-
tion (especially regarding the check “ci ∈ Region(cl)”
that was shown in Figure 3(b)), our technique currently
does not scale very well to higher values of k.

• Due to lack of space, we have not explicitly depicted
the precision of the 2-suffix technique in Figure 5. Sur-
prisingly, 2-suffix approximation gave similar precision
as 4-suffix approximation on four programs, and did
somewhat worse only on Prog3 (where it reported 38%
of all variable references as possibly uninitialized).

• The percentage of variable references reported as
possibly uninitialized is unfortunately high with all
of the variants. There are several reasons for this,
including that we perform a standard path-insensitive
analysis, and handle references to arrays and calls to
unavailable external routines (which are both prevalent
in Cobol programs) very conservatively. Note that our
primary objective was to compare the four variants
using the same client analysis, and not necessarily to
engineer a very precise client analysis.

• Full context sensitivity reduces the number of reported
uninitialized variables by around 13% (on Prog1)
to around 38% (on Prog3) when compared to the
results from context insensitive analysis. This is a
significant gain, but is less than our own expectations.
However, our result is generally in agreement with
the detailed comparisons of context sensitive analysis
vs. context insensitive analysis done by Lhotak et
al. [10]. In fact, in their results, when call-graph
construction and virtual-call resolution were used as
clients, the improvement due to context sensitivity
was less than 10% on most benchmarks. With yet



another client analysis that they evaluated, namely, cast
safety, the improvement was somewhat more significant
(extending to about 65% in one benchmark).

F. Takeaways

k-prefix approximation is much more efficient than the
suffix approximation technique, both in terms of running
time and in terms of memory consumption. Its precision on
outer-level procedures was equal to or better than that of
suffix approximation on six out of seven benchmarks. On
programs that do not have very deep calling sequences, k-
prefix approximation is overall a better performer. This is
essentially because the procedures on which it gives better
precision, namely procedures at a maximum call-depth of k or
less, account for a large proportion of all the variable references
in these programs.

V. RELATED WORK

While suffix approximations were suggested in Sharir and
Pneuli’s original paper [11] itself, prefix approximations have
not been explored significantly in the literature. The existing
idea of analyzing regions of the call-graph that form SCCs
(strongly-connected components) context insensitively [16],
[17] can be thought of as a specific kind of prefix approximation.
However, the objective in the two approaches mentioned above
was to ensure termination, and not to use prefix approximation
in general and flexible ways to make an analysis efficient while
minimizing the loss of precision. The prefix approximation we
propose is flexible, in that certain lower layers in a program
or certain regions of the program can be treated context
insensitively even in the absence of recursion. In summary, SCC
collapsing is not an alternative to general prefix approximation
(or suffix approximation).

It is noteworthy that in addition to collapsing SCCs, Souter
et al. [16] also mention the potential to use general prefix
approximation in the context of their approach. However, their
approach is specifically formulated only to compute context-
aware def-use information in inter-procedural programs. In
contrast, we show how to incorporate prefix approximation in
the generic call-strings approach, which therefore can be applied
in conjunction with any given client analysis. Correspondingly,
the changes we make to the transfer functions of the call-strings
approach are very different from the changes they incorporate to
their original (approximation-free) approach in order to achieve
prefix approximation.

We have shown an instantiation of our prefix approximation
idea for the call-strings approach. The reasons for our choice of
the call-strings approach are that it is a classical approach, yet
simple, flexible, and general. It is simple in that it directly wraps
around a given underlying intra-procedural analysis, without
requiring any changes to the lattice or transfer functions of
the underlying analysis. It is flexible in that it easily admits
varied approximation schemes, such as ours. It also flexible
in that it readily extends to languages (such as Cobol) with
overlapping procedures, procedures with return- as well as
fall-through exits, etc. It is general, in that it places almost
no restrictions on the form of the underlying analysis. This

said, there exist other generic approaches to inter-procedural
analysis such as the functional approach of Sharir and Pneuli,
the IFDS approach [13], the object sensitivity approach [12],
and the modified call-strings approach of Khedker et al. [18].
From among these approaches, we hypothesize that prefix
approximation could be integrated into the object sensitivity
approach in a natural way, and could give interesting results
in practice. It is future work for us to explore this extension
in-depth.
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