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ABSTRACT

Static analysis (aka offline analysis) of a model of an IP net-
work is useful for understanding, debugging, and verifying
packet flow properties of the network. Data-flow analysis is
a method that has typically been applied to static analysis
of programs. We propose a new, data-flow based approach
for static analysis of packet flows in networks. We also in-
vestigate an application of our analysis to the problem of
inferring a high-level policy from the network, which has
been addressed in the past only for a single router.

1. INTRODUCTION

Analysis of the flow of packets across an IP network is an
important problem. It has varied applications, such as iden-
tifying anomalies in configuration files in routers [14], testing
of router implementations [3], checking whether a network
configuration satisfies a high-level policy of a network ad-
ministrator by querying properties of the configuration [8,
10], and inferring such a high-level policy automatically from
the network configuration [11, 4]. However, such an analysis
is challenging, because packet routing in an IP network is a
complex activity. Routers intervene between subnets (i.e.,
fully connected collections of hosts), and perform operations
on packets such as filtering, routing to adjacent routers or
subnets, and transformation, e.g., for network address trans-
lation (NAT). Each operation performed by a router is pred-
icated (i.e., guarded) by the current content of the header
of the packet, which, due to transformations, changes as the
packet flows through the network. Furthermore, a NATing
rule may write any value from a specified range of values,
and a firewall may have a choice in which interface to send
a packet out of; this increases the number of alternative
packet-flow scenarios that could occur during network oper-
ation. All of this means that it is quite difficult to precisely
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analyze the flow of packets across the network.

The state-of-practice for analyzing reachability is to send
test packets in the actual network, using commercially avail-
able tools. However, testing does not give complete infor-
mation about all possible packet flow outcomes, because it
is infeasible to send all possible packets across a network.
Several static (or offline) analysis approaches, e.g., [13, 14,
1], have been reported in the literature in order to overcome
this disadvantage; these approaches analyze a specification
of the network topology and router configurations (i.e., a
model of the network), and emit information about possi-
ble packet flows in the network. Model checking is another
technique that has been widely used in the literature [9,
5, 1] for static analysis of networks; while the former two
approaches model the flow of a single packet through the
network, Al Shaer’s approach [1] models transitions of the
set of all packets in a network.

1.1 Contributions

1) Our primary contribution is a novel approach for de-
termining packet reachability precisely in an IP network,
which we formulate as an instance of the data-flow analysis
framework [6]. The previous static analysis techniques for IP
networks that most closely resemble ours are the ones based
on transitive closure analysis [13], and graph propagation
with bounded unfolding of cycles [8, 10, 14]. All of these ap-
proaches are unsound, i.e., can miss certain packet flows, in
the presence of certain kinds of cycles in the network. Data-
flow analysis involves an iterative analysis until a fix-point
is reached, and hence cleanly addresses this situation.

2) We also show how our analysis can be applied for in-
ferring a high level-policy from a distributed network of fire-
walls. In previous work [11, 4] researchers have formulated
the problem of inferring a high-level policy from a single
router. We first generalize this problem to the setting of a
network of multiple routers, and then show how to solve it
using our reachability analysis.

Due to space constraints we omit from this writeup several
aspects of our problem and approach, and refer the reader
to an accompanying technical report [7] for more details.

2. MODEL AND TERMINOLOGY

A concrete packet is an IP packet in a network. We only
model the headers of packets; let pkSz be the total number



of bits in a packet header, partitioned into nFlds fields. We
denote the fields of a packet p as p.f1,p.f2,...,p.fp. These
fields include the source address and port, and destination
address and port.

A network consists of a set of nodes N, which are parti-
tioned into two categories: a set of zomes (i.e. subnets) Z,
which are terminal nodes, and a set of firewalls (i.e., routers)
IF, which are intermediate nodes. We use zones to model or-
ganizational subnets as single units; i.e., we assume that
each zone z has a set of publicly visible IP addresses addr .
(with the sets of distinct zones being non-overlapping). We
use n,n;, etc., to represent individual nodes, z, z;, etc., to
denote individual zones, and f, f;, etc., to denote individ-
ual firewalls. Each zone has a single interface connected to
one or more firewalls, while each firewall has a set of one or
more interfaces. When we say (m,i1) — (n,i2), we mean
interface i1 belongs to node m, interface i2 belongs to node
n, m and n are distinct nodes, and i1 and i3 are physically
linked. Since physical links are undirected, the presence of
the link (m,i1) — (n,i2) implies the presence of the link
(n7i2) - (m7i1)'

Our model of a firewall is based on the widely used package
Iptables [2]. Each firewall f has four tables: a Destination
NATing table f.dnat, a filtering table f.filt, a Source NAT-
ing table f.snat, and a routing table f.rt. Each packet en-
tering f through any of its interfaces goes through the above
tables in the given order. We assume that firewalls are pure
routers; i.e., they don’t create or ultimately accept packets.
A filtering table is a sequence of filtering rules, while each of
the two NATing tables is a sequence of NATing rules. Each
rule r (filtering or NATing) has two components: its “guard”
r.grd, which is a propositional formula on the bits in a packet
header, and “action” r.act. A packet c is said to match a rule
r if ¢ satisfies the formula p.grd. A packet entering a table
is matched against each rule in the table sequentially until
a matching rule is found; the matching rule’s action is then
taken on the packet, and the remaining rules in the table
are ignored (for this packet). The final rule in any filtering
table has the guard true (i.e., is a default rule). For filtering
rules the action is either “drop” or “accept”. For a NATing
rule, the action part specifies the field f; (source/destination
address/port) to modify, as well as a range r of (new) values
for the field. At run time the system chooses one of the val-
ues from this range and overwrites field f; of the matched
packet to this value. The default rule in a NATing table does
no transformation of the packet. The routing table f.rt of
firewall f is a function from the interfaces in f to formulas,
each of which is a constraint on destination addresses; i.e.,
if a packet ¢, after having gone through the DNAT, filtering,
and SNAT tables in f, has destination address d, it is then
sent out of one of the interfaces ¢ of f such that d satisfies
the formula f.rt(7).

Note in the discussion above that choices may have to be
made at run time by NATing rules as well as during the
final routing step. We do not model how these choices are
made during network operation, and instead, in our analysis,
assume that all choices are possible. Also, we assume the
following on the flow of concrete packets in the network: (a)
There is no IP spoofing; i.e., every packet leaving a zone z
has a source address that matches addr,, and a source port
that is within the valid port-range of z. (b) Every packet
that enters the network either reaches a zone or is dropped
by a firewall filtering rule.

1. p.curr: Formula representing the current contents of the set
of concrete packets represented by p.

2. p.orig: Formula representing the original contents of the
set of packets leaving a zone that, after flowing through the
network, become the packets represented by p.curr.

3. p.ifNated: A vector of bits, one per field in a packet header.
p.ifNated.b; is 1 if p.curr.f; contains a value overwritten by
NATing (by some firewall).

(a)

1: Inputs: (1) A network configuration, (2) an originating zone
20, and (3) an “initial” abstract packet pg at zone zg.

2: Outputs: At each node m in the network a set of abstract
packets n.abs, which represents all concrete packets that
may reach n along some path during actual network opera-
tion.

: Initialize zg.abs to {po}. Mark zp.
: For all nodes n other than zg initialize n.abs to the empty
set.
: while there exist marked nodes do
Choose a marked node m, and unmark it.
for all links (m,i1) — (n,i2) do
Replace n.abs with n.abs U ff (;, ;,)(m.abs).
If node n was unmarked and if the new value of n.abs
is different from the old value, then mark n.
11:  end for
12: end while

SO TEw

(b)

Figure 1: (a) Fields in an abstract packet p € AbsPk
(b) Propagation of abstract packets.

3. THE BASE ALGORITHM
3.1 The data-flow lattice

Instantiating a data-flow analysis requires us to specify (a)
a directed graph on which the analysis is to be performed,
(b) a data lattice L, whose elements are called abstract val-
ues, which is closed wrt a join operation (written as “LJ”),
(c) transfer functions for the edges in the graph, each of
which is a function from L to L, (d) the initial abstract
value at some designated originating node of the graph. In
our setting the nodes in the network are the graph nodes,
and each link (m,i1) — (n,i2) in the network results in a
graph edge m — n. The originating zone zp, and an abstract
value po that leaves this zone, are assumed to be a given. In
our setting each abstract value is a set of abstract packets,
from the domain AbsPk, where each abstract packet in turn
intuitively represents a set of concrete packets. The join op-
eration on abstract values is set union. For us po has to be a
single abstract packet, which represents all concrete packets
that may originate from 2z, during actual network opera-
tion, and that have destination addresses of other zones in
the network.

We show the data-flow analysis algorithm in Figure 1(b);
this is basically Kildall’s algorithm [6], instantiated to our
setting. When the algorithm terminates, the set of abstract
packets n.abs computed at each node n represents all con-
crete packets that may potentially enter n (through any in-
terface of n) through some path beginning at zo.

Each abstract packet p € AbsPk is a structure with a
three fields curr, orig and ifNated; see Fig. 1(a). p.curr is a
propositional formula on the bits bo, b1, . .., byrs. in a packet
header. Due to NATing, the current form of the packets (as



represented by p.curr) could be different from their origi-
nal form when they originally left the designated originating
zone zo. Therefore, p.orig is a formula that represents the
original forms of the packets represented by p when they left
zo. The field ifNated is a bit vector with one bit for each
field in the packet header. If a bit i is set to 1 it means that
the i*" field of concrete packets represented by p have been
overwritten by some NATing rule along some path.

The formal correctness guarantee of the algorithm is that
if an abstract packet p is in the set n.abs at some node n,
then for every concrete packet c¢; that satisfies the formula
p.orig and for every concrete packet ce that satisfies the
formula p.curr there is a path in the network from z¢ to
some of interface ¢ of n such that c; satisfies po.curr and c;
becomes transformed to c2 by the time it reaches i along the
path. We assume that po.curr = po.orig.

3.2 Transfer functions of links

The transfer function ff;, ., for a link (m,i1) — (n,i2)
is the composition of transfer functions for the DNAT table
of m, filtering table of m, SNAT table of m, followed by a
filtering rule which only accepts concrete packets whose des-
tination address satisfies m.rt(4;). The transfer function of
a table operates as follows. An abstract packet that matches
a rule in the table is transformed by the rule’s transfer func-
tion and then sent directly to the end of the table. On
the other hand, an abstract packet that represents concrete
packets that don’t match a rule is sent to the next rule in
the table. Note that a single abstract packet’s formula may
partially overlap a rule’s guard; in this case the packet is
specialized into two packets, one that matches the rule and
one that doesn’t; then, both the packets are processed as de-
scribed above. We omit formal specifications of the transfer
functions due to lack of space, and instead illustrate them
below using the example network in Figure 2(a).

In the example we have annotated each of the zones Z1,
Z2, and Z3 with the address(es) of the hosts in the zone.
Part (b) of the figure shows the filtering and NATing rules
in the two firewalls. The guard s=pat (d=pat) matches pack-
ets whose source (destination) address matches pat. In the
Action part of the NATing rules, “SNAT r” means that the
rule overwrites the source address of the matching packet
with an address from the range r.

We use the notation p = <[sc:dc],[S0:do]> to represent
an abstract packet p, where the s’s (d’s) are formulas
(i.e., ranges) for the source (destination) address field. We
ignore port numbers for now. The first pair of square
brackets represents p.curr, whereas the second pair rep-
resents p.orig. Let zone Z1 be the originating zone, and
consider the abstract packet po = <[10.192.29.1-255:¢rue],
[10.192.29.1-255:true]> leaving this zone. This abstract
packet is shown in the first row in Part (c) of the figure.
When this abstract packet enters firewall F1, it gets refined
into the packet p1 = <[10.192.29.1-255:-{209.85.153.85}],
[10.192.29.1-255: —{209.85.153.85}]> by filtering Rule 1,
and flows out of the filtering table. Subsequently, this
abstract packet matches SNATing Rule 3, and leaves F1
as p2 = < [202.67.34.6-10:-{209.85.153.85}], [10.192.29.1-
255: —{209.85.153.85}]>. (Note that if Rule 3’s guard had
matched a subset of packets represented by p1 then we would
have had an additional abstract packet leaving F1, repre-
senting un-NATed packets that did not match Rules 3 or 4.)
Subsequently, F1 forwards ps to Z2, F2, and Z4. Consider

10.l9t(2).29.1
10.192.29.255

10. 19[3428.1 Outside organisation

10.192.28.255
202.65.23.2
(a)
# | Guard [ Action
F1 filtering table:
T. [ s=10.192.29.[1-255], DROP
d=209.85.153.85
2. | s=10.192.28.[1-255], DROP
d=209.85.153.85

F1 SNAT table:
3. | s=10.192.29.[1-255]
4. | s=10.192.28.[1-255]
F2 filtering table:
5. [ s=202.67.34.[6-10] | DROP
(b)

< [10.192.29.1-255 : true], [10.192.29.1-255 : true] >
< [202.67.34.6-10 : 10.192.28.1-255],

[10.192.29.1-255 : 10.192.28.1-255] >

(c)

SNAT 202.67.34.[6-10]
SNAT 202.67.34.[1-5]

Z1.abs
Z2.abs

Figure 2: (a) Example network (b) Firewalls con-
figuration (c) Reached abstract packets, with Z1 as
origin

Z2; p2 gets refined as shown in the second row of Part (c) of
the figure when it reaches Z2. Let’s call this abstract packet
ps. Note that the destination address component of both the
“curr” formula and the “orig” formula of p3 have gotten re-
fined to Z2’s address range. (If, on other hand, some firewall
between F1 and Z2 had DNATed p2’s destination address to
72’s address range, then p3’s “orig” formula’s destination ad-
dress component would have remained as it was in p; and
p2, because even packets originally not addressed to Z2 could
end up reaching Z2 due to this DNATing.)

4. APPLICATION: INFERRING HIGH
LEVEL POLICY OF A NETWORK

Real-life networks can be large, with 5-500 intermediate
routers [13]. Configuring these routers correctly is a com-
plex and error-prone task. In a study of 37 real firewalls
Wool [12] found that each one of them was misconfigured,
and had security vulnerabilities. Therefore, it is important
for network administrators to have access to tools that in-
fer a compact, high-level policy from a network that has
already been setup, to help them debug and validate the
configuration. Tongaonkar et al [11] and Horowitz et al [4]
have proposed inferring a policy from a single firewall. In
both these approaches the initial step is to find the rules that
have overlapping guards, and then to present a transformed,
or differently organized version of the ruleset. While Ton-
gaonkar et al flatten the ruleset, by eliminating all overlap
between them, Horowitz et al organize the rules hierarchi-
cally, with rules with weaker guards placed “above” rules
with stronger guards. These ideas do not extend cleanly to
the setting of multiple firewalls connected as a network. Be-
cause different sets of rules may be correlated along different



paths in a network, it is not clear that rule correlations can
be presented in a natural, compact manner in this setting.

Our hypothesis is that in many cases it would help the
administrator if for each zone z, they are simply given an
“accept” formula that characterizes the set of packet headers
that leave z that eventually reach some other zone, and a
“reject” formula that characterizes the set of packet headers
leaving z that get dropped by some rule. The two sets may,
in general, be overlapping; a non-empty overlap should be
a matter of concern to the administrator, because packets
matching both these formulas may reach some zone, or none
at all, depending on the (non-deterministic) route they take
through the network. This pair of formulas for zone z is a
high-level policy, in the sense that it is compact, and conveys
useful end-to-end information whose representation is not
tied to the actual way in the which the network configuration
has been set up.

The first step in determining this high-level policy is to run
our analysis treating z as the “originating” zone zo. Then,
the “accept” formula for zone z is simply

\/ z;.abs.orig
z;€Z—{z}
If the set of all filtering rules in the network with DROP
as the action is represented by D then the “drop” formula
for z is

\/ r.dropped_packets
reD

where r.dropped_packets is defined as follows, and is intu-
itively the set of packets (in their original form) that match
(and are hence dropped by) rule r.

\/ p.orig

p|pEr.absAp.currAr.grd

Note that for this application the algorithm as shown in
Figure 1 needs to be extended slightly to record the set of
abstract packets r.abs that reach each rule r in each firewall,
in addition to recording the packets that reach each node n.

In the example in Fig. 2, the “accept” formula for origin
zone 71 is:

[10.192.29.1-255:-{10.192.29.1-255, 209.85.153.85, 202.65.23.2}]
which corresponds to, Z2.abs.orig V Z4.abs.orig.

The “reject” formula for Z1 is:

[10.192.29.1-255:{202.65.23.2, 209.85.153.85}]

which corresponds to: 1.dropped_packets V
5.dropped_packets, where 1 and 5 are rule numbers in
Fig. 2. Rule 1 drops all packets with destination address
209.85.153.85. Of the remaining packets originating from
Z1, F1 forwards only the packets that have Z3’s address
(i.e., 202.65.23.2) as their destination field towards F2
(following the information in its routing table, which is not
shown in the figure); before forwarding these packets to F2
F1 NATSs their source address field to 202.67.34.6-10. F2
drops all these packets. Hence the above reject formula
(which represents all packets dropped by F1 or by F2, in
their original form when they left Z1).

5.  CONCLUSIONS AND FUTURE WORK

We presented a novel, precise, data-flow analysis for com-
puting packet reachability in IP networks. We also presented

an application of this analysis to inferring a high-level pol-
icy from a distributed firewall. In the future we would like
to extend the analysis to address more complex issues such
as connection-oriented routing (i.e., stateful filters), and also
to answer (restricted) forms of temporal properties of packet
flows.
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