Pointer Analysis

G. Ramalingam
Microsoft Research, India
&
K. V. Raghavan
Goals

• **Points-to Analysis**: Determine the set of possible values of a pointer-variable (at different points in a program)
 – what locations can a pointer point-to?

• **Alias Analysis**: Determine if two pointer-variables may point to the same location

• **Compute conservative approximation**

• **A fundamental analysis, required by most other static analyses**
A Constant Propagation Example

\[x = 3;\]
\[y = 4;\]
\[z = x + 5;\]

- \(x\) is always 3 here
- can replace \(x\) by 3
- and replace \(x + 5\) by 8
- and so on
A Constant Propagation Example
With Pointers

\[x = 3; \]
\[*p = 4; \]
\[z = x + 5; \]

• Is \(x \) always 3 here?
A Constant Propagation Example With Pointers

\[
p = &y; \\
x = 3; \\
*p = 4; \\
z = \boxed{x} + 5;
\]

\[
\text{if (?)} \\
p = &x; \\
\text{else} \\
p = &y; \\
x = 3; \\
\]

\[
p = &x; \\
x = 3; \\
*p = 4; \\
z = \boxed{x} + 5;
\]

- \(x\) is always 3
- \(x\) may be 3 or 4 (i.e., \(x\) is unknown in our lattice)
- Pointers affect most program analyses
- Always 4
A Constant Propagation Example

With Pointers

\(p = &y; \)
\(x = 3; \)
\(p\) always points-to \(y \)
\(*p = 4; \)
\(z = x + 5; \)

if (?)
\(p = &x; \)
else
\(p = &y; \)
\(x = 3; \)
\(*p = 4; \)
\(z = x + 5; \)

\(p\) may point-to \(x \) or \(y \)

\(p = &x; \)
\(x = 3; \)
\(*p = 4; \)
\(z = x + 5; \)

\(p\) always points-to \(x \)
Points-to Analysis

• Determine the set of targets a pointer variable could point-to (at different points in the program)
 - “p points-to x”
 • “p stores the value &x”
 • “*p denotes the location x”
 - targets could be variables or locations in the heap (dynamic memory allocation)
 • p = &x;
 • p = new Foo(); or p = malloc (...);
Algorithm A (may points-to analysis)
A Simple Example

```
p = &x;
q = &y;
if (?) {
    q = p;
}
x = &a;
y = &b;
z = *q;
```
Algorithm A (may points-to analysis)
A Simple Example

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>p = &x;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>q = &y;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>if (?) {</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>q = p;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x = &a;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y = &b;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z = *q;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Algorithm A (may points-to analysis) - A Simple Example

```c
x = &a;
y = &b;
if (?) {
p = &x;
} else {
p = &y;
}
x = &c;
p = &c;
```

How should we handle this statement? *(Try it!)*

- **Strong update**
 - `x: {a,c}`
 - `y: {b,c}`
 - `p: {x,y} a: c`

- **Weak update**
 - `x: a` (strong update)
 - `y: b` (strong update)
 - `p: {x,y} null`
Questions

• When is it correct to use a strong update? A weak update?

• Is this points-to analysis precise?

• We must formally define what we want to compute before we can answer many such questions
Points-To Analysis: An Informal Definition

• Let u denote a program-point

• Define $\text{IdealMayPT}(u)$ to be
 \[\{(p,x) \mid p \text{ points-to } x \text{ in some state at } u \text{ in some run}\} \]

• Algorithm should compute a set $\text{MayPT}(u)$ that over-approximates above set
Static Program Analysis

- A static program analysis computes approximate information about the runtime behavior of a given program:
 1. The set of valid programs is defined by the programming language syntax.
 2. The runtime behavior of a given program is defined by the programming language semantics.
 3. The analysis problem defines what information is desired.
 4. The analysis algorithm determines what approximation to make.
Programming Language: Syntax

• A program consists of
 – a set of variables \(\text{Var} \)
 – a directed graph \((V,E,\text{entry})\) with a
distinguished entry vertex, with every edge
labelled by a primitive statement

• A primitive statement is of the form
 • \(x = \text{null} \)
 • \(x = y \)
 • \(x = *y \)
 • \(x = &y; \)
 • \(*x = y \)
 • \text{skip} \\

(\text{where } x \text{ and } y \text{ are variables in } \text{Var})
Example Program

```c
x = &a;
y = &b;
if (?) {
    p = &x;
} else {
    p = &y;
}
*x = &c;
*p = &c;

Vars = \{x, y, p, a, b, c\}
```
Programming Language: Operational Semantics

• Operational semantics == an interpreter (defined mathematically)

• State
 – DataState ::= Var -> (Var U {null})
 – PC ::= V (the vertex set of the CFG)
 – ProgramState ::= PC x DataState

• Initial state:
 – (entry, \x. null)
Example States

\[\text{Vars} = \{x, y, p, a, b, c\} \]

1. \[x = \&a \]
2. \[y = \&b \]
3. \[p = \&x \]
4. \[p = \&y \]
5. \[\text{skip} \]
6. \[\text{skip} \]
7. \[\ast x = \&c \]
8. \[\ast p = \&c \]

Initial data-state

\[x: \text{N}, y: \text{N}, p: \text{N}, a: \text{N}, b: \text{N}, c: \text{N} \]

Initial program-state

\[<1, x: \text{N}, y: \text{N}, p: \text{N}, a: \text{N}, b: \text{N}, c: \text{N}> \]

Next program-state

\[<2, x: a, y: \text{N}, p: \text{N}, a: \text{N}, b: \text{N}, c: \text{N}> \]
Programming Language: Operational Semantics

• Meaning of primitive statements
 – $CS[\text{stmt}] : \text{DataState} \rightarrow 2^{\text{DataState}}$

• $CS[x = \text{null}] s = \{s[x \rightarrow \text{null}]\}$
• $CS[x = \&y] s = \{s[x \rightarrow y]\}$
• $CS[x = y] s = \{s[x \rightarrow s(y)]\}$
• $CS[x = \ast y] s = \ldots$

 ...

 ...

• $CS[\ast x = y] s = \ldots$

 \ldots

 = \ldots
Programming Language: Operational Semantics

- **Meaning of primitive statements**
 - \(CS[\text{stmt}] : \text{DataState} \rightarrow 2^{\text{DataState}} \)

- \(CS[x = \text{null}] s = \{ s[x \rightarrow \text{null}] \} \)
- \(CS[x = &y] s = \{ s[x \rightarrow y] \} \)
- \(CS[x = y] s = \{ s[x \rightarrow s(y)] \} \)
- \(CS[x = \ast y] s = \{ s[x \rightarrow s(s(y))] \} \),
 - if \(s(y) \) is not null
 - \(= \{ \}, \) otherwise
- \(CS[\ast x = y] s = \ldots \)
 - \(\ldots \)
 - \(\ldots \)
Programming Language: Operational Semantics

- Meaning of primitive statements
 - $CS[\text{stmt}] : \text{DataState} \rightarrow 2^{\text{DataState}}$

- $CS[\ x = \text{null} \] \ s = \{s[x \rightarrow \text{null}]\}$
- $CS[\ x = \& y \] \ s = \{s[x \rightarrow y]\}$
- $CS[\ x = y \] \ s = \{s[x \rightarrow s(y)]\}$
- $CS[\ x = * y \] \ s = \{s[x \rightarrow s(s(y))]\}$,
 \hspace{1cm} \text{if } s(y) \text{ is not null}
 \hspace{1cm} = \{\}, \text{otherwise}$
- $CS[\ * x = y \] \ s = \{s[s(x) \rightarrow s(y)]\}$,
 \hspace{1cm} \text{if } s(x) \text{ is not null}
 \hspace{1cm} = \{\}, \text{otherwise}$
Programming Language: Operational Semantics

• Meaning of program
 – a transition relation \rightarrow on program states
 – $\rightarrow \subseteq \text{ProgramState} \times \text{ProgramState}$
 – $\text{state}_1 \rightarrow \text{state}_2$ means that the execution of some edge in the program can transform state_1 into state_2

• Defining \rightarrow
 – $(u,s) \rightarrow (v,s')$ iff the program contains a control-flow edge $u \rightarrow v$ labelled with a statement stmt such that $\text{CS}[\text{stmt}]s = s'$
Programming Language: Operational Semantics

• A sequence of states \(s_1 s_2 \ldots s_n \) is said to be an execution (of the program) iff
 - \(s_1 \) is the Initial-State
 - \(s_i \rightarrow s_{i+1} \) for \(1 \leq i < n \)

• A state \(s \) is said to be a reachable state iff there exists some execution \(s_1 s_2 \ldots s_n \) is such that \(s_n = s \).

• Define \(RS(u) = \{ s \mid (u,s) \text{ is reachable} \} \)
Programming Language: Operational Semantics

- A sequence of states s_1, s_2, \ldots, s_n is said to be an execution (of the program) if:
 - s_1 is the Initial-State
 - $s_i \rightarrow s_{i+1}$ for $1 \leq i < n$
- A state s is said to be a reachable state iff there exists some execution $s_1 s_2 \ldots s_n$ such that $s_n = s$.
- Define $RS(u) = \{ s \mid (u,s) \text{ is reachable} \}$

This is the collecting semantics at point u.
Ideal Points-To Analysis: Formal Definition

• Let u denote a vertex in the CFG

• Define $\text{IdealMayPT}(u)$ to be

$$\\{ x \mid \text{exists } s \in \text{RS}(u). \ s(p) = x \}$$
May-Point-To Analysis: Problem statement

Compute MayPT: $V \rightarrow 2^{\text{Var'}}$ such that for every vertex u
$\text{MayPT}(u) \supseteq \text{IdealMayPT}(u)$
(where Var’ = Var U {null})
May-Point-To Algorithms

Compute MayPT: $V \rightarrow 2^{\text{Vars'}}$ such that

$$\text{MayPT}(u) \supseteq \text{IdealMayPT}(u)$$

- An algorithm is said to be **correct** if the solution MayPT it computes satisfies
 $$\forall u \in V. \text{MayPT}(u) \supseteq \text{IdealMayPT}(u)$$

- An algorithm is said to be **precise** if the solution MayPT it computes satisfies
 $$\forall u \in V. \text{MayPT}(u) = \text{IdealMayPT}(u)$$

- An algorithm that computes a solution MayPT1 is said to be **more precise** than one that computes a solution MayPT2 if
 $$\forall u \in V. \text{MayPT1}(u) \subseteq \text{MayPT2}(u)$$
Algorithm A: A Formal Definition
The “Data Flow Analysis” Recipe

• Define semi-lattice of abstract-values
 – AbsDataState ::= (Var -> (2^Var' – {})) U {bot}
 – f_1 U f_2 = \forall x. (f_1(x) U f_2(x))

• Define initial abstract-value
 – InitialAbsState = \forall x. {null}

• Define transformers for primitive statements
 • AS[stmt] : AbsDataState -> AbsDataState
Algorithm A: A Formal Definition
The "Data Flow Analysis" Recipe

• Let $st(v,u)$ denote stmt on edge $v \rightarrow u$

 $x(v)$ $x(w)$

 v w

 $st(v,u)$ $st(w,u)$

 u

 $x(u)$

• Compute the least-fixed-point of the following "dataflow equations"
 $- x(entry) = \text{InitialAbsState}$
 $- x(u) = \bigcup_{v \rightarrow u} \text{AS}(st(v,u)) \cdot x(v)$
Algorithm A: The Transformers

• Abstract transformers for primitive statements
 – AS[stmt] : AbsDataState → AbsDataState

 • AS[\(x = y \)] \(s = s[x \rightarrow s(y)] \)
 • AS[\(x = \text{null} \)] \(s = s[x \rightarrow \{\text{null}\}] \)
 • AS[\(x = \& y \)] \(s = s[x \rightarrow \{y\}] \)
 • AS[\(x = * y \)] \(s = s[x \rightarrow s^*(s(y) - \{\text{null}\})] \),
 if \(s(y) \) is not = \{null\}
 = \text{bot}, otherwise

where \(s^*(\{v_1, \ldots, v_n\}) = s(v_1) \cup \ldots \cup s(v_n) \),
Algorithm A

- \text{AS}[*x = y] s =

\begin{align*}
\begin{cases}
\text{bot} & \text{if } s(x) = \{\text{null}\} \\
 s[z \rightarrow s(y)] & \text{if } s(x) - \{\text{null}\} = \{z\} \\
 s[z_1 \rightarrow s(z_1) \cup s(y)] & \text{if } s(x) - \{\text{null}\} = \{z_1, \ldots, z_k\} \\
 [z_2 \rightarrow s(z_2) \cup s(y)] & (\text{where } k > 1) \\
 \vdots \\
 [z_k \rightarrow s(z_k) \cup s(y)]
\end{cases}
\end{align*}

- After fix-point solution is obtained, \text{AbsDataState}(u) is emitted as \text{MayPT}(u), for each program point \text{u}
An alternative algorithm: must points-to analysis

- AbsDataState is modified, as follows:
 - Each var is mapped to {} or to a singleton set
 - join is point-wise intersection

- Let MustPT(u) be fix-point at u

- Guarantee: \(\Upsilon(\text{MustPT}(u)) \supseteq \text{MayPT}(u) \supseteq \text{IdealMayPT}(u) \)

where \(\Upsilon(S) = S \),

\[\text{if } S \text{ is a singleton set} \]

\[= \text{Var'}, \text{ if } S = {} \]
Must points-to analysis algorithm

- **AS transfer functions same as in Algorithm A for** \(x = y, x = \text{null}, \text{ and } x = \&y \)

- **AS** \[x = *y \] \(\rightarrow \) \(s \)

 \[
 = \text{bot}, \quad \text{if } s(y) = \{\text{null}\}

 = s[x \rightarrow \{\}\], \quad \text{if } s(y) = \{

 = s[x \rightarrow s(z)], \quad \text{if } s(y) = \{z\}
 \]
Must points-to analysis algorithm

• AS[*x = y] s = bot,

 if s(x) = {null}
 = s[z \rightarrow s(y)]
 if s(x) = \{z\}
 = \forall. \{}
 otherwise

This analysis is less precise than the may-points-to analysis (Algorithm A), but is more efficient