Interprocedural Analysis: Sharir-Pnueli’s
Call-strings Approach

Deepak D'Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

10 September 2018

Outline

© Motivation

© Call-strings method

© Correctness

e Approximate call-string method

© Bounded call-string method

Motivation

Handling programs with procedure calls

How would we extend an abstract interpretation to handle
programs with procedures?

main(){ £0O{ gO{
x := 0; X 1= x+1; £0O;
£0; return; return;
gO; } }
print x;

}

Motivation

Handling programs with procedure calls

How would we extend an abstract interpretation to handle
programs with procedures?

main(){ £0O{ gO{
x := 0; X 1= x+1; £0O;
£0; return; return;
gO; } }
print x;

}

Question: what is the collecting state before the print x
statement in main?

Motivation

Handling programs with procedure calls

How would we extend an abstract interpretation to handle
programs with procedures?

main(){ £0O{ gO{
x := 0; X 1= x+1; £0O;
£0; return; return;
gO; } }
print x;

}

Question: what is the collecting state before the print x
statement in main? Answer: x — 2.

Motivation

Handling programs with procedure calls

@ Add extra edges
o call edges: from
call site (call
p) to start of
procedure (p)

TTce-dcall £

iU
X omy
J =0
+ A
-
.
jes)
r’ —
v
4

»
o ret edges: from E ret L <

return statement et Lo

(in p) to point call g l--__ T

after call sites N

(“ret sites") e

(call p).

€y

Y4

Motivation

Handling programs with procedure calls

@ Assume variables
are uniquely named

f g
across program.
. 70\ O\
@ Transfer functions ~F $ LR
o H N
for call /return D,
edges? Gt L
ret /’ ret
E - -
L.

Motivation

Handling programs with procedure calls

@ Assume variables
are uniquely named
across program.

@ Transfer functions
for call /return
edges? Identity if
we assume no
parameters/return
values; else treat
like assignment
statement.

Motivation

Handling programs with procedure calls

@ Assume variables
are uniquely named

across program. ' ¢
) FACN O\,

@ Transfer functions F ; S
for call /return D, : ﬁ
edges? ldentity if G L
we assume no ret e ret
parameters/return E o
values; else treat RO
like assignment - K

statement.

@ Now compute JOP
in this extended
control-flow graph.

Motivation

Problem with JOP in this graph

Ex. 1. Actual collecting
state at C7

Motivation

Problem with JOP in this graph

Ex. 1. Actual collecting
state at C? {x — 2}.

Motivation

Problem with JOP in this graph

Ex. 1. Actual collecting
state at C? {x — 2}.
Ex. 2. JOP at C using
collecting analysis?

Motivation

Problem with JOP in this graph

Ex. 1. Actual collecting
state at C? {x — 2}.

Ex. 2. JOP at C using £ g
collecting analysis? /<¢>\ N
.~ F N
x—1 x—=2 x— H
G
¢ Do
ret .~ ret
E_/ -
L

Motivation

Problem with JOP in this graph

Ex. 1. Actual collecting
state at C? {x — 2}.

Ex. 2. JOP at C using main £ g
collecting analysis? /;ci\ Lo
x—=1, x—=2, x— ’ JH
%
. | S
@ JOP is sound but ret - o
very imprecise. E =
L

@ Reason: Some
paths don't
correspond to
executions of the
program: Eg.
ABDFGILC.

Motivation

Problem with JOP in this graph

Ex. 1. Actual collecting
state at C? {x — 2}.

Ex. 2. JOP at C using main £ g
collecting analysis? /<¢>\ e
.~ F S~
x—=1, x—2, x—
Sy '
@ JOP is sound but et L .
very imprecise. E =
L

@ Reason: Some
paths don't
correspond to
executions of the
program: Eg.
ABDFGILC.

What we want is Join over “Interprocedurally-Valid” Paths (JVP).

Motivation

Interprocedurally valid paths and their call-strings

@ Informally a path p in the extended CFG G’ is
inter-procedurally valid if every return edge in p “corresponds”
to the most recent “pending” call edge.

@ For example, in the example program the ret edge E
corresponds to the call edge D.

@ The call-string of a valid path p is a subsequence of call edges
which have not been “returned” as yet in p.

@ For example, cs(ABDFGEKJHF) is “"KH".

Motivation

Interprocedurally valid paths and their call-strings

@ A path p = ABDFGEKJHF in IVP ¢ for example program:

@ Associated call-string ¢s(p) is KH.
e For p = ABDFGEK cs(p) = K.
e For p = ABDFGE cs(p) = e.

Motivation

Sharir and Pnueli’s approaches to interprocedural
analysis

Micha Sharir and Amir Pnueli: Two approaches to interprocedural
data flow analysis, in Program Flow Analysis: Theory and
Applications (Eds. Muchnick and Jones) (1981).

Motivation

Interprocedurally valid paths and their call-strings

More formally: Let p be a path in G’. We define when p is
interprocedurally valid (and we say p € IVP(G’)) and what is its
call-string cs(p), by induction on the length of p.

@ If p =€ then p € IVP(G’). In this case cs(p) = e.
o If p=p'- N then p € IVP(G') iff p/ € IVP(G’) with
cs(p') =~y say, and one of the following holds:
@ N is neither a call nor a ret edge.
In this case cs(p) = 7.
Q N is a call edge.
In this case cs(p) =7 - N.
© N is ret edge, and 7 is of the form 4/ - C, and N corresponds
to the call edge C.
In this case cs(p) = 7'.

@ We denote the set of (potential) call-strings in G’ by I'. Thus
I = C*, where C is the set of call edges in G'.

Motivation

Join over interprocedurally-valid paths (JVP)

Let P be a given program, with extended CFG G'.

Let path; \(G') be the set of paths from the initial point / to
point N in G'.

Let A= ((D, <), fmn, do) be a given abstract interpretation.

Then we define the join over all interprocedurally valid paths
(JVP) at point N in G’ to be:

| fp(o).

p € path, y(G")NIVP(G')

Motivation

One approach to obtain JVP

e Find JOP over
same graph, but

modify the abs int. inain ¢ .

@ Modify transfer [X PN Oy
functions for o F ¢ LH ! ¢
call/ret edges to * 0 e
detect and ? °4 L
invalidate invalid ’/ . ret _f?t
edges. B o L

® Augment]
underlying data
values with some =
information for this.

@ Natural thing to \VY4

try: “call-strings”.

Call-strings method

Overall plan

@ Define an abs int A’ which extends
given abs int A with call-string data. LFP(6’, A")
[]
@ Show that JOP of A’ on G’ coincides
with JVP of A on G.
@ Use Kildall (or any other technique) to o ——

compute LFP of A" on G’. This value JOP(G’, A') JVP(G', A)
over-approximates JVP of A on G’.

Call-strings method

Call-string abs int A’: Lattice (D', <')

@ Elements of D’ are maps £ : [— D

e o o | oo
£

d | & dy ds

@ Ordering on D’: <’ is the pointwise extension of < in D.
@ Thatis & <’ & iff for each vy € T, &1(y) < &(7).

€ 1 c1cp c1cpcp
[SEERS

Ho U egdy L ey [dp Liey [d3 Lleg

T T

€ c c1cp | cpee € <1 cicp | cpec

&1 &
do dp da d3 € er e 3

Call-strings method

Call-string abs int A’: Lattice (D', <')

@ Elements of D’ are maps £ : [— D

e o o | oo
£

d | & dy ds

@ Ordering on D’: <’ is the pointwise extension of < in D.
@ Thatis & <’ & iff for each vy € T, &1(y) < &(7).

€ 1 c1cp c1cpcp
[SEERS

Ho U egdy L ey [dp Liey [d3 Lleg

T T

€ c c1cp | cpee € <1 cicp | cpec

&1 &
do dp da d3 € er e 3

@ Check that (D, <') is also a complete lattice.

Call-strings method

Meaning of abstract values in A’

@ A call-string table £ at program point N represents the fact
that, for each call-string ~, there are some initial paths with
call-string v reaching N, and the join of the abstract states
(obtained by propagating dp) along these paths is (7).

@ The transfer functions of A’ should keep this meaning in mind.

— € Cl Cl (.'2 '1 C2 (.‘2
~_ Prog Pt M

dg | dyp | dp | d3

€ c1 |c1ef1000] Prog Pt N

Call-strings method

Call-string abs int A’: Initial value &

@ Initial value &y is given by

_f do ify=ce
So(7) = { 1 otherwise.

€ 1 c1cp cjepcp
o

d | L 1 1

Call-strings method

Call-string abs int A": transfer functions

@ Transfer functions for non-call/ret edge N:

frn(§) = fun o €.
@ Transfer functions for call edge N:

’ _ W) ify=4"-N
fun (&) = . { 1 otherwise

@ Transfer functions for ret edge N whose corresponding call
edge is C:
fun(§) = A.&(v - €)

@ Transfer functions f{,, is monotonic (distributive) if each fyy
is monotonic (distributive).

Call-strings method

H /
Transfer functions f,,,, for example program

@ Non-call/ret edge B:

&g = fapoéa.

o Call edge D:

@ Return edge E:

ée(r) = &6(1 D).

otherwise - Lo

Call-strings method

Exercise 1

Let A be the standard collecting state analysis. For brevity, represent a set of concrete
states as {0, 1} (meaning the 2 concrete states x — 0 and x — 1). Assume an initial
value dy = {0}.
Show the call-string tagged abstract states (in the lattice .A’) along the paths

@ ABDFGEKJHFGIL (interprocedurally valid)

@ ABDFGIL (interprocedurally invalid).

main

Call-strings method

Exercise 2

Use Kildall's algo to compute the LFP of the A’ analysis for the
example program. Start with initial value dp = {0}.

main f g

on

Call-strings method

Exercise 2

Use Kildall's algo to compute the LFP of the A’ analysis for the
example program. Start with initial value dp = {0}.

main

on
ag

on

Call-strings method

Exercise 2

Use Kildall's algo to compute the LFP of the A’ analysis for the
example program. Start with initial value dp = {0}.

main

on
ag

onm

Call-strings method

Exercise 2

Use Kildall's algo to compute the LFP of the A’ analysis for the
example program. Start with initial value dp = {0}.

main

on
ag

onm

Correctness

Correctness claim

Assumption on A: Each transfer function satisfies fyn(L) = L.

Let N be a point in G'. Then

JVPA(N) = |_| JOP4(N)(%).

yer

Proof: Use following lemmas
to prove that LHS dominates
RHS and vice-versa.

IVP Paths reaching N Paths reaching N

Correctness

Correctness claim: Lemma 1

Let p be a path in /VPg/. Then

, . f,(do) ify = cs(p)
fo60) = A { 1 otherwise.

a cs(p) | c1e2ep

L L d L

Proof: by induction on the length of p.

Correctness

Correctness claim: Lemma 2

Let p be a path not in /VPg/. Then

fo(&0) = M. L.

€ c o crcpc

L L L L

Proof:
@ p must have an invalid prefix.
@ Consider smallest such prefix o - N. Then it must be that « is
valid and N is a return edge not corresponding to cs(«).
@ Using previous lemma it follows that £ , (&) = Avy.L.

@ But then all extensions of « along p must also have transfer
function A\y. L.

Correctness

Computing JOP for abs int A’

@ Problem is that D’ is infinite in general (even if D were
finite). So we cannot use Kildall's algo to compute an
over-approximation of JOP.

@ We give two methods to bound the number of call-strings

o Use “approximate” call-strings.
o Give a bound on largest call-string needed.

Approximate call-string method

Approximate (suffix) call-string method

Idea:
o Consider only call-strings of up to length </, that may

additionally be prefixed by a “x".
A “x" prefix means that we have left out some initial calls.

For | = 2, call strings can be of the form “cic” or "¢
etc. So each table £ is now a finite table.

Transfer functions for non-call /ret edges remain same.
Transfer functions for call edge C: Shift y entry to v - C if
|y - C| < I; else shift it to % -7/ - C where ~ is of the form
A -+, for some call A.

@ Transfer functions for ret edge N:
o If v=1+"-C and N corresponds to call edge C, then shift
~" - C entry to ' entry.
o If v = % then copy its entry to * entry at the return site.

Approximate call-string method

Available expressions analysis

@ 0 (not available)

1 (available)

o—=0—>

1
Lattice for Av-Exp
analysis.

@ Is axb available at
program point N7

Approximate call-string method

Available expressions analysis

@ 0 (not available)

1 (available)

o—=0—>

1
Lattice for Av-Exp
analysis.

@ Is axb available at
program point N7

@ No if we consider all
paths.

Approximate call-string method

Available expressions analysis

@ 0 (not available)

1 (available)

o—=0—>

1

Lattice for Av-Exp
analysis.

@ Is axb available at
program point N7

@ No if we consider all
paths.

@ Yes if we consider
interprocedurally
valid paths only.

Approximate call-string method

Exercise: approximate call-strings

Assume approximate call-string length of 2. Use Kildall's algo to
compute the £ table values for the example program. Start with
initial value do = 0.

Approximate call-string method

Exercise: approximate call-strings

Assume approximate call-string length of 2. Use Kildall's algo to
compute the £ table values for the example program. Start with
initial value do = 0.

onm

Approximate call-string method

Exercise: approximate call-strings

Assume approximate call-string length of 2. Use Kildall's algo to
compute the £ table values for the example program. Start with
initial value do = 0.

onm

=

Approximate call-string method

Exercise: approximate call-strings

Assume approximate call-string length of 2. Use Kildall's algo to
compute the £ table values for the example program. Start with
initial value do = 0.

onm

=

Approximate call-string method

Exercise: approximate call-strings

Assume approximate call-string length of 2. Use Kildall's algo to
compute the £ table values for the example program. Start with
initial value do = 0.

onm

=

Bounded call-string method

Bounded call-string method for finite underlying
lattice D

@ Possible to bound length of call-strings I' we need to consider.

@ For a number /, we denote the set of call-strings (for the given
program P) of length at most /, by I'}.

@ Define a new analysis A" (M-bounded call-string analysis) in
which call-string tables have entries only for 'y, for a certain
constant M, and transfer functions ignore entries for
call-strings of length more than M.

e We will show that JOP(G’, A”) = JOP(G', A').

LFP(G’, A")
LFP(G', A") °
[)
ﬁ [] []

JOP(G', A”) JOP(G', A") JVP(G’, A)

Bounded call-string method

LFP of A" is more precise than LFP of A’

Consider any fixpoint V'’ (a vector of tables) of A’

Truncate each entry of V'’ to (call-strings of) length M, to get
V.

Clearly V' dominates V”.

Further, observe that V" is a post-fixpoint of the transfer
functions for A”.

@ By Knaster-Tarski characterisation of LFP, we know that V”
dominates LFP(A").

LFP(G’, A")
LFP(G’, A") °
[)
ﬁ [] []

JOP(G’, A”") JOP(G',A") JVP(G’, A)

Bounded call-string method

Sufficiency (or safety) of bound

Let k be the number of call sites in P.
Claim

For any path p in IVP(r1, N) with a prefix g such that
lcs(q)| > k|D|?> = M there is a path p’ in IVP(r1, N) with
les(q')| < M for each prefix g’ of p/, and f,(do) = fy(dp).

Paths with bounded call-strings

N

Bounded call-string method

Proving claim

For any path p in IVP(ry, N) such that for some prefix g of p,
les(q)| > M = k|D|?, there is a path p’ in IVPr,,(r1, N) with
for (do) = 1p(db).

o Sufficient to prove:

For any path p in IVP(ry, N) with a prefix g such that
les(q)| > M, we can produce a smaller path p’ in IVP(r1, N) with
fpr (do) = fp(db).

@ ..since if |p| < M then p € IVPr,,.

Bounded call-string method

Proving subclaim: Path decomposition

A path p in IVP(r1, n) can be decomposed as

pill(er rpo)llp2ll(c2; rs)llosll - - [(cj1, 7)) -

where each p; (i <) is a valid and complete path from rp; to ¢;,
and p; is a valid and complete path from rp, to n. Thus

C1,...,Cj—1 are the unfinished calls at the end of p.
4
30—
) < P4
] P3
1 @ o
! P2
0

Bounded call-string method

Proving subclaim

Let pg be the first prefix of p where |cs(po)| > M.

Let decomposition of pg be

prll(er, ro)llp2ll(e2, rs)llosll - - - [I(cj-1s 7)) [-

Tag each unfinished-call ¢ in py by (¢, fg.c(do), fq.cqre(d0))
where e is corresponding return of ¢ in p.

If no return for c in p tag with (c, fg.c(do), L).
Number of distinct such tags is k - |D|?.

@ So there are two calls gc and gcqg’c with same tag values.

Bounded call-string method

Proving subclaim — tag values are |

,,,,,,,,,,,,,,, Procedure F

Bounded call-string method

Proving subclaim — tag values are not |

ffffffffff ----ProcF

Bounded call-string method

Example

Transfer functions f;,, for Example

Bounded call-string method

@ Non-call/ret edge C:
§c = fc o &-
@ Call edge O:

1 otherwise

o(y) = { tc(y) ify=7"-

@ Return edge N:

En(y) =&y - 0).

	Motivation
	Call-strings method
	Correctness
	Approximate call-string method
	Bounded call-string method

