
Data-flow Analysis / Abstract Interpretation

Deepak D’Souza and K. V. Raghavan

IISc

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 1 / 18

What is data-flow analysis

“Computing ‘safe’ approximations to the set of values / behaviours
arising dynamically at run time, statically or at compile time.”

Typically used by compiler writers to optimize running time of
compiled code.

Constant propagation: Is the value of a variable constant at a
particular program location.
Replace x := y + z by x := 17 during compilation.

More recently, used for verifying properties of programs.

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 2 / 18

Collecting semantics – example

Collecting semantics of a program = set of (concrete) states occurring at each
program point.

B

print p,q

p > q

A

C

D

E

G

q := q+2

p = odd()

q = even()

Fp := p+1

I

Path Concrete states
I {(i , j)} (given)

IA {(i , j)|i is odd, j is even}
IAB {(i , j)|i is odd, j is even}
IABC {(i , j)|i is odd, j is even, i > j}
IABCD {(i , j)|i is even, j is even, i > j + 1}
IABCDE {(i , j)|i is even, j is even, i ≥ j}
IABCDEB {(i , j)|i is even, j is even, i ≥ j}
IABCDEBC {(i , j)|i is even, j is even, i > j}
IABCDEBCD {(i , j)|i is odd, j is even, i > j + 1}
. . .

Therefore, collecting semantics:
I {(i , j)}
A {(i , j)|i odd, j even}
B {(i , j)|i odd, j even} ∪ {(i , j)|i even, j even, i ≥ j}
C {(i , j)|j even, i > j}
D {(i , j)|j even, i > j + 1}
E {(i , j)|j even, i ≥ j}
F {(i , j)|i odd, j even, i < j} ∪ {(i , j)|i even, j even, i = j}

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 3 / 18

Collecting semantics – example

Collecting semantics of a program = set of (concrete) states occurring at each
program point.

B

print p,q

p > q

A

C

D

E

G

q := q+2

p = odd()

q = even()

Fp := p+1

I

Path Concrete states
I {(i , j)} (given)
IA {(i , j)|i is odd, j is even}

IAB {(i , j)|i is odd, j is even}
IABC {(i , j)|i is odd, j is even, i > j}
IABCD {(i , j)|i is even, j is even, i > j + 1}
IABCDE {(i , j)|i is even, j is even, i ≥ j}
IABCDEB {(i , j)|i is even, j is even, i ≥ j}
IABCDEBC {(i , j)|i is even, j is even, i > j}
IABCDEBCD {(i , j)|i is odd, j is even, i > j + 1}
. . .

Therefore, collecting semantics:
I {(i , j)}
A {(i , j)|i odd, j even}
B {(i , j)|i odd, j even} ∪ {(i , j)|i even, j even, i ≥ j}
C {(i , j)|j even, i > j}
D {(i , j)|j even, i > j + 1}
E {(i , j)|j even, i ≥ j}
F {(i , j)|i odd, j even, i < j} ∪ {(i , j)|i even, j even, i = j}

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 3 / 18

Collecting semantics – example

Collecting semantics of a program = set of (concrete) states occurring at each
program point.

B

print p,q

p > q

A

C

D

E

G

q := q+2

p = odd()

q = even()

Fp := p+1

I

Path Concrete states
I {(i , j)} (given)
IA {(i , j)|i is odd, j is even}
IAB {(i , j)|i is odd, j is even}

IABC {(i , j)|i is odd, j is even, i > j}
IABCD {(i , j)|i is even, j is even, i > j + 1}
IABCDE {(i , j)|i is even, j is even, i ≥ j}
IABCDEB {(i , j)|i is even, j is even, i ≥ j}
IABCDEBC {(i , j)|i is even, j is even, i > j}
IABCDEBCD {(i , j)|i is odd, j is even, i > j + 1}
. . .

Therefore, collecting semantics:
I {(i , j)}
A {(i , j)|i odd, j even}
B {(i , j)|i odd, j even} ∪ {(i , j)|i even, j even, i ≥ j}
C {(i , j)|j even, i > j}
D {(i , j)|j even, i > j + 1}
E {(i , j)|j even, i ≥ j}
F {(i , j)|i odd, j even, i < j} ∪ {(i , j)|i even, j even, i = j}

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 3 / 18

Collecting semantics – example

Collecting semantics of a program = set of (concrete) states occurring at each
program point.

B

print p,q

p > q

A

C

D

E

G

q := q+2

p = odd()

q = even()

Fp := p+1

I

Path Concrete states
I {(i , j)} (given)
IA {(i , j)|i is odd, j is even}
IAB {(i , j)|i is odd, j is even}
IABC {(i , j)|i is odd, j is even, i > j}

IABCD {(i , j)|i is even, j is even, i > j + 1}
IABCDE {(i , j)|i is even, j is even, i ≥ j}
IABCDEB {(i , j)|i is even, j is even, i ≥ j}
IABCDEBC {(i , j)|i is even, j is even, i > j}
IABCDEBCD {(i , j)|i is odd, j is even, i > j + 1}
. . .

Therefore, collecting semantics:
I {(i , j)}
A {(i , j)|i odd, j even}
B {(i , j)|i odd, j even} ∪ {(i , j)|i even, j even, i ≥ j}
C {(i , j)|j even, i > j}
D {(i , j)|j even, i > j + 1}
E {(i , j)|j even, i ≥ j}
F {(i , j)|i odd, j even, i < j} ∪ {(i , j)|i even, j even, i = j}

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 3 / 18

Collecting semantics – example

Collecting semantics of a program = set of (concrete) states occurring at each
program point.

B

print p,q

p > q

A

C

D

E

G

q := q+2

p = odd()

q = even()

Fp := p+1

I

Path Concrete states
I {(i , j)} (given)
IA {(i , j)|i is odd, j is even}
IAB {(i , j)|i is odd, j is even}
IABC {(i , j)|i is odd, j is even, i > j}
IABCD {(i , j)|i is even, j is even, i > j + 1}

IABCDE {(i , j)|i is even, j is even, i ≥ j}
IABCDEB {(i , j)|i is even, j is even, i ≥ j}
IABCDEBC {(i , j)|i is even, j is even, i > j}
IABCDEBCD {(i , j)|i is odd, j is even, i > j + 1}
. . .

Therefore, collecting semantics:
I {(i , j)}
A {(i , j)|i odd, j even}
B {(i , j)|i odd, j even} ∪ {(i , j)|i even, j even, i ≥ j}
C {(i , j)|j even, i > j}
D {(i , j)|j even, i > j + 1}
E {(i , j)|j even, i ≥ j}
F {(i , j)|i odd, j even, i < j} ∪ {(i , j)|i even, j even, i = j}

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 3 / 18

Collecting semantics – example

Collecting semantics of a program = set of (concrete) states occurring at each
program point.

B

print p,q

p > q

A

C

D

E

G

q := q+2

p = odd()

q = even()

Fp := p+1

I

Path Concrete states
I {(i , j)} (given)
IA {(i , j)|i is odd, j is even}
IAB {(i , j)|i is odd, j is even}
IABC {(i , j)|i is odd, j is even, i > j}
IABCD {(i , j)|i is even, j is even, i > j + 1}
IABCDE {(i , j)|i is even, j is even, i ≥ j}

IABCDEB {(i , j)|i is even, j is even, i ≥ j}
IABCDEBC {(i , j)|i is even, j is even, i > j}
IABCDEBCD {(i , j)|i is odd, j is even, i > j + 1}
. . .

Therefore, collecting semantics:
I {(i , j)}
A {(i , j)|i odd, j even}
B {(i , j)|i odd, j even} ∪ {(i , j)|i even, j even, i ≥ j}
C {(i , j)|j even, i > j}
D {(i , j)|j even, i > j + 1}
E {(i , j)|j even, i ≥ j}
F {(i , j)|i odd, j even, i < j} ∪ {(i , j)|i even, j even, i = j}

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 3 / 18

Collecting semantics – example

Collecting semantics of a program = set of (concrete) states occurring at each
program point.

B

print p,q

p > q

A

C

D

E

G

q := q+2

p = odd()

q = even()

Fp := p+1

I

Path Concrete states
I {(i , j)} (given)
IA {(i , j)|i is odd, j is even}
IAB {(i , j)|i is odd, j is even}
IABC {(i , j)|i is odd, j is even, i > j}
IABCD {(i , j)|i is even, j is even, i > j + 1}
IABCDE {(i , j)|i is even, j is even, i ≥ j}
IABCDEB {(i , j)|i is even, j is even, i ≥ j}

IABCDEBC {(i , j)|i is even, j is even, i > j}
IABCDEBCD {(i , j)|i is odd, j is even, i > j + 1}
. . .

Therefore, collecting semantics:
I {(i , j)}
A {(i , j)|i odd, j even}
B {(i , j)|i odd, j even} ∪ {(i , j)|i even, j even, i ≥ j}
C {(i , j)|j even, i > j}
D {(i , j)|j even, i > j + 1}
E {(i , j)|j even, i ≥ j}
F {(i , j)|i odd, j even, i < j} ∪ {(i , j)|i even, j even, i = j}

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 3 / 18

Collecting semantics – example

Collecting semantics of a program = set of (concrete) states occurring at each
program point.

B

print p,q

p > q

A

C

D

E

G

q := q+2

p = odd()

q = even()

Fp := p+1

I

Path Concrete states
I {(i , j)} (given)
IA {(i , j)|i is odd, j is even}
IAB {(i , j)|i is odd, j is even}
IABC {(i , j)|i is odd, j is even, i > j}
IABCD {(i , j)|i is even, j is even, i > j + 1}
IABCDE {(i , j)|i is even, j is even, i ≥ j}
IABCDEB {(i , j)|i is even, j is even, i ≥ j}
IABCDEBC {(i , j)|i is even, j is even, i > j}

IABCDEBCD {(i , j)|i is odd, j is even, i > j + 1}
. . .

Therefore, collecting semantics:
I {(i , j)}
A {(i , j)|i odd, j even}
B {(i , j)|i odd, j even} ∪ {(i , j)|i even, j even, i ≥ j}
C {(i , j)|j even, i > j}
D {(i , j)|j even, i > j + 1}
E {(i , j)|j even, i ≥ j}
F {(i , j)|i odd, j even, i < j} ∪ {(i , j)|i even, j even, i = j}

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 3 / 18

Collecting semantics – example

Collecting semantics of a program = set of (concrete) states occurring at each
program point.

B

print p,q

p > q

A

C

D

E

G

q := q+2

p = odd()

q = even()

Fp := p+1

I

Path Concrete states
I {(i , j)} (given)
IA {(i , j)|i is odd, j is even}
IAB {(i , j)|i is odd, j is even}
IABC {(i , j)|i is odd, j is even, i > j}
IABCD {(i , j)|i is even, j is even, i > j + 1}
IABCDE {(i , j)|i is even, j is even, i ≥ j}
IABCDEB {(i , j)|i is even, j is even, i ≥ j}
IABCDEBC {(i , j)|i is even, j is even, i > j}
IABCDEBCD {(i , j)|i is odd, j is even, i > j + 1}
. . .

Therefore, collecting semantics:
I {(i , j)}
A {(i , j)|i odd, j even}
B {(i , j)|i odd, j even} ∪ {(i , j)|i even, j even, i ≥ j}
C {(i , j)|j even, i > j}
D {(i , j)|j even, i > j + 1}
E {(i , j)|j even, i ≥ j}
F {(i , j)|i odd, j even, i < j} ∪ {(i , j)|i even, j even, i = j}

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 3 / 18

Collecting semantics – example

Collecting semantics of a program = set of (concrete) states occurring at each
program point.

B

print p,q

p > q

A

C

D

E

G

q := q+2

p = odd()

q = even()

Fp := p+1

I

Path Concrete states
I {(i , j)} (given)
IA {(i , j)|i is odd, j is even}
IAB {(i , j)|i is odd, j is even}
IABC {(i , j)|i is odd, j is even, i > j}
IABCD {(i , j)|i is even, j is even, i > j + 1}
IABCDE {(i , j)|i is even, j is even, i ≥ j}
IABCDEB {(i , j)|i is even, j is even, i ≥ j}
IABCDEBC {(i , j)|i is even, j is even, i > j}
IABCDEBCD {(i , j)|i is odd, j is even, i > j + 1}
. . .

Therefore, collecting semantics:
I {(i , j)}
A {(i , j)|i odd, j even}
B {(i , j)|i odd, j even} ∪ {(i , j)|i even, j even, i ≥ j}
C {(i , j)|j even, i > j}
D {(i , j)|j even, i > j + 1}
E {(i , j)|j even, i ≥ j}
F {(i , j)|i odd, j even, i < j} ∪ {(i , j)|i even, j even, i = j}

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 3 / 18

An abstract interpretation

Components of an abstract interpretation:

Set of abstract states D, forming a complete lattice.

“Concretization” function γ : D → 2State , which associates a set of
concrete states with each abstract state.

Transfer function fn : D → D for each type of node n, which
“interprets” each program statement using the abstract states.

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 4 / 18

Abstract interpretation – example

Abstract lattice D

(e, oe)

⊥

(e, e)

(oe, oe)

(o, oe) (oe, o) (oe, e)

(o, e) (e, o)(o, o)

Transfer function for an assignment node n: p := p+q

fn(s) =



⊥ if s is ⊥
(o, s[q]) if s[p] is o and s[q] is e,

or s[p] is e and s[q] is o
(e, s[q]) if both s[p] and s[q] are o

or both s[p] and s[q] are e
(oe, s[q]) otherwise

The concretization function γ

γ((oe, oe)) =

State, γ(⊥) = ∅, γ((o, oe)) = {(m, n) | m is odd}
γ((o, e)) = {(m, n) | m is odd and n is even}, . . .

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 5 / 18

Abstract interpretation – example

Abstract lattice D

(e, oe)

⊥

(e, e)

(oe, oe)

(o, oe) (oe, o) (oe, e)

(o, e) (e, o)(o, o)

Transfer function for an assignment node n: p := p+q

fn(s) =



⊥ if s is ⊥
(o, s[q]) if s[p] is o and s[q] is e,

or s[p] is e and s[q] is o
(e, s[q]) if both s[p] and s[q] are o

or both s[p] and s[q] are e
(oe, s[q]) otherwise

The concretization function γ

γ((oe, oe)) = State, γ(⊥) =

∅, γ((o, oe)) = {(m, n) | m is odd}
γ((o, e)) = {(m, n) | m is odd and n is even}, . . .

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 5 / 18

Abstract interpretation – example

Abstract lattice D

(e, oe)

⊥

(e, e)

(oe, oe)

(o, oe) (oe, o) (oe, e)

(o, e) (e, o)(o, o)

Transfer function for an assignment node n: p := p+q

fn(s) =



⊥ if s is ⊥
(o, s[q]) if s[p] is o and s[q] is e,

or s[p] is e and s[q] is o
(e, s[q]) if both s[p] and s[q] are o

or both s[p] and s[q] are e
(oe, s[q]) otherwise

The concretization function γ

γ((oe, oe)) = State, γ(⊥) = ∅, γ((o, oe)) =

{(m, n) | m is odd}
γ((o, e)) = {(m, n) | m is odd and n is even}, . . .

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 5 / 18

Abstract interpretation – example

Abstract lattice D

(e, oe)

⊥

(e, e)

(oe, oe)

(o, oe) (oe, o) (oe, e)

(o, e) (e, o)(o, o)

Transfer function for an assignment node n: p := p+q

fn(s) =



⊥ if s is ⊥
(o, s[q]) if s[p] is o and s[q] is e,

or s[p] is e and s[q] is o
(e, s[q]) if both s[p] and s[q] are o

or both s[p] and s[q] are e
(oe, s[q]) otherwise

The concretization function γ

γ((oe, oe)) = State, γ(⊥) = ∅, γ((o, oe)) = {(m, n) | m is odd}
γ((o, e)) =

{(m, n) | m is odd and n is even}, . . .

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 5 / 18

Abstract interpretation – example

Abstract lattice D

(e, oe)

⊥

(e, e)

(oe, oe)

(o, oe) (oe, o) (oe, e)

(o, e) (e, o)(o, o)

Transfer function for an assignment node n: p := p+q

fn(s) =



⊥ if s is ⊥
(o, s[q]) if s[p] is o and s[q] is e,

or s[p] is e and s[q] is o
(e, s[q]) if both s[p] and s[q] are o

or both s[p] and s[q] are e
(oe, s[q]) otherwise

The concretization function γ

γ((oe, oe)) = State, γ(⊥) = ∅, γ((o, oe)) = {(m, n) | m is odd}
γ((o, e)) = {(m, n) | m is odd and n is even}, . . .

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 5 / 18

Collecting abstract values – example

B

print p,q

p > q

A

C

D

E

G

q := q+2

p = odd()
q = even()

Fp := p+1

I

Path Abstract
value

I (oe, oe)
(given)

IA (o, e)
IAB (o, e)
IABC (o, e)
IABCD (e, e)
IABCDE (e, e)
IABCDEB (e, e)
IABCDEBC (e, e)
IABCDEBCD (o, e)
IABCDEBCDE (o, e)
IABF (o, e)
IABCDEBF (e, e)

Therefore, joining all abstract val-
ues at each point:

I (oe, oe)
A (o, e)
B (o, e) t (e, e) = (oe, e)
C (o, e) t (e, e) = (oe, e)
D (e, e) t (o, e) = (oe, e)
E (e, e) t (o, e) = (oe, e)
F (o, e) t (e, e) = (oe, e)

This is abstract join-over-all-paths
(JOP) solution.

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 6 / 18

Collecting abstract values – example

B

print p,q

p > q

A

C

D

E

G

q := q+2

p = odd()
q = even()

Fp := p+1

I

Path Abstract
value

I (oe, oe)
(given)

IA (o, e)

IAB (o, e)
IABC (o, e)
IABCD (e, e)
IABCDE (e, e)
IABCDEB (e, e)
IABCDEBC (e, e)
IABCDEBCD (o, e)
IABCDEBCDE (o, e)
IABF (o, e)
IABCDEBF (e, e)

Therefore, joining all abstract val-
ues at each point:

I (oe, oe)
A (o, e)
B (o, e) t (e, e) = (oe, e)
C (o, e) t (e, e) = (oe, e)
D (e, e) t (o, e) = (oe, e)
E (e, e) t (o, e) = (oe, e)
F (o, e) t (e, e) = (oe, e)

This is abstract join-over-all-paths
(JOP) solution.

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 6 / 18

Collecting abstract values – example

B

print p,q

p > q

A

C

D

E

G

q := q+2

p = odd()
q = even()

Fp := p+1

I

Path Abstract
value

I (oe, oe)
(given)

IA (o, e)
IAB (o, e)

IABC (o, e)
IABCD (e, e)
IABCDE (e, e)
IABCDEB (e, e)
IABCDEBC (e, e)
IABCDEBCD (o, e)
IABCDEBCDE (o, e)
IABF (o, e)
IABCDEBF (e, e)

Therefore, joining all abstract val-
ues at each point:

I (oe, oe)
A (o, e)
B (o, e) t (e, e) = (oe, e)
C (o, e) t (e, e) = (oe, e)
D (e, e) t (o, e) = (oe, e)
E (e, e) t (o, e) = (oe, e)
F (o, e) t (e, e) = (oe, e)

This is abstract join-over-all-paths
(JOP) solution.

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 6 / 18

Collecting abstract values – example

B

print p,q

p > q

A

C

D

E

G

q := q+2

p = odd()
q = even()

Fp := p+1

I

Path Abstract
value

I (oe, oe)
(given)

IA (o, e)
IAB (o, e)
IABC (o, e)

IABCD (e, e)
IABCDE (e, e)
IABCDEB (e, e)
IABCDEBC (e, e)
IABCDEBCD (o, e)
IABCDEBCDE (o, e)
IABF (o, e)
IABCDEBF (e, e)

Therefore, joining all abstract val-
ues at each point:

I (oe, oe)
A (o, e)
B (o, e) t (e, e) = (oe, e)
C (o, e) t (e, e) = (oe, e)
D (e, e) t (o, e) = (oe, e)
E (e, e) t (o, e) = (oe, e)
F (o, e) t (e, e) = (oe, e)

This is abstract join-over-all-paths
(JOP) solution.

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 6 / 18

Collecting abstract values – example

B

print p,q

p > q

A

C

D

E

G

q := q+2

p = odd()
q = even()

Fp := p+1

I

Path Abstract
value

I (oe, oe)
(given)

IA (o, e)
IAB (o, e)
IABC (o, e)
IABCD (e, e)

IABCDE (e, e)
IABCDEB (e, e)
IABCDEBC (e, e)
IABCDEBCD (o, e)
IABCDEBCDE (o, e)
IABF (o, e)
IABCDEBF (e, e)

Therefore, joining all abstract val-
ues at each point:

I (oe, oe)
A (o, e)
B (o, e) t (e, e) = (oe, e)
C (o, e) t (e, e) = (oe, e)
D (e, e) t (o, e) = (oe, e)
E (e, e) t (o, e) = (oe, e)
F (o, e) t (e, e) = (oe, e)

This is abstract join-over-all-paths
(JOP) solution.

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 6 / 18

Collecting abstract values – example

B

print p,q

p > q

A

C

D

E

G

q := q+2

p = odd()
q = even()

Fp := p+1

I

Path Abstract
value

I (oe, oe)
(given)

IA (o, e)
IAB (o, e)
IABC (o, e)
IABCD (e, e)
IABCDE (e, e)

IABCDEB (e, e)
IABCDEBC (e, e)
IABCDEBCD (o, e)
IABCDEBCDE (o, e)
IABF (o, e)
IABCDEBF (e, e)

Therefore, joining all abstract val-
ues at each point:

I (oe, oe)
A (o, e)
B (o, e) t (e, e) = (oe, e)
C (o, e) t (e, e) = (oe, e)
D (e, e) t (o, e) = (oe, e)
E (e, e) t (o, e) = (oe, e)
F (o, e) t (e, e) = (oe, e)

This is abstract join-over-all-paths
(JOP) solution.

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 6 / 18

Collecting abstract values – example

B

print p,q

p > q

A

C

D

E

G

q := q+2

p = odd()
q = even()

Fp := p+1

I

Path Abstract
value

I (oe, oe)
(given)

IA (o, e)
IAB (o, e)
IABC (o, e)
IABCD (e, e)
IABCDE (e, e)
IABCDEB (e, e)

IABCDEBC (e, e)
IABCDEBCD (o, e)
IABCDEBCDE (o, e)
IABF (o, e)
IABCDEBF (e, e)

Therefore, joining all abstract val-
ues at each point:

I (oe, oe)
A (o, e)
B (o, e) t (e, e) = (oe, e)
C (o, e) t (e, e) = (oe, e)
D (e, e) t (o, e) = (oe, e)
E (e, e) t (o, e) = (oe, e)
F (o, e) t (e, e) = (oe, e)

This is abstract join-over-all-paths
(JOP) solution.

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 6 / 18

Collecting abstract values – example

B

print p,q

p > q

A

C

D

E

G

q := q+2

p = odd()
q = even()

Fp := p+1

I

Path Abstract
value

I (oe, oe)
(given)

IA (o, e)
IAB (o, e)
IABC (o, e)
IABCD (e, e)
IABCDE (e, e)
IABCDEB (e, e)
IABCDEBC (e, e)

IABCDEBCD (o, e)
IABCDEBCDE (o, e)
IABF (o, e)
IABCDEBF (e, e)

Therefore, joining all abstract val-
ues at each point:

I (oe, oe)
A (o, e)
B (o, e) t (e, e) = (oe, e)
C (o, e) t (e, e) = (oe, e)
D (e, e) t (o, e) = (oe, e)
E (e, e) t (o, e) = (oe, e)
F (o, e) t (e, e) = (oe, e)

This is abstract join-over-all-paths
(JOP) solution.

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 6 / 18

Collecting abstract values – example

B

print p,q

p > q

A

C

D

E

G

q := q+2

p = odd()
q = even()

Fp := p+1

I

Path Abstract
value

I (oe, oe)
(given)

IA (o, e)
IAB (o, e)
IABC (o, e)
IABCD (e, e)
IABCDE (e, e)
IABCDEB (e, e)
IABCDEBC (e, e)
IABCDEBCD (o, e)

IABCDEBCDE (o, e)
IABF (o, e)
IABCDEBF (e, e)

Therefore, joining all abstract val-
ues at each point:

I (oe, oe)
A (o, e)
B (o, e) t (e, e) = (oe, e)
C (o, e) t (e, e) = (oe, e)
D (e, e) t (o, e) = (oe, e)
E (e, e) t (o, e) = (oe, e)
F (o, e) t (e, e) = (oe, e)

This is abstract join-over-all-paths
(JOP) solution.

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 6 / 18

Collecting abstract values – example

B

print p,q

p > q

A

C

D

E

G

q := q+2

p = odd()
q = even()

Fp := p+1

I

Path Abstract
value

I (oe, oe)
(given)

IA (o, e)
IAB (o, e)
IABC (o, e)
IABCD (e, e)
IABCDE (e, e)
IABCDEB (e, e)
IABCDEBC (e, e)
IABCDEBCD (o, e)
IABCDEBCDE (o, e)

IABF (o, e)
IABCDEBF (e, e)

Therefore, joining all abstract val-
ues at each point:

I (oe, oe)
A (o, e)
B (o, e) t (e, e) = (oe, e)
C (o, e) t (e, e) = (oe, e)
D (e, e) t (o, e) = (oe, e)
E (e, e) t (o, e) = (oe, e)
F (o, e) t (e, e) = (oe, e)

This is abstract join-over-all-paths
(JOP) solution.

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 6 / 18

Collecting abstract values – example

B

print p,q

p > q

A

C

D

E

G

q := q+2

p = odd()
q = even()

Fp := p+1

I

Path Abstract
value

I (oe, oe)
(given)

IA (o, e)
IAB (o, e)
IABC (o, e)
IABCD (e, e)
IABCDE (e, e)
IABCDEB (e, e)
IABCDEBC (e, e)
IABCDEBCD (o, e)
IABCDEBCDE (o, e)
IABF (o, e)

IABCDEBF (e, e)

Therefore, joining all abstract val-
ues at each point:

I (oe, oe)
A (o, e)
B (o, e) t (e, e) = (oe, e)
C (o, e) t (e, e) = (oe, e)
D (e, e) t (o, e) = (oe, e)
E (e, e) t (o, e) = (oe, e)
F (o, e) t (e, e) = (oe, e)

This is abstract join-over-all-paths
(JOP) solution.

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 6 / 18

Collecting abstract values – example

B

print p,q

p > q

A

C

D

E

G

q := q+2

p = odd()
q = even()

Fp := p+1

I

Path Abstract
value

I (oe, oe)
(given)

IA (o, e)
IAB (o, e)
IABC (o, e)
IABCD (e, e)
IABCDE (e, e)
IABCDEB (e, e)
IABCDEBC (e, e)
IABCDEBCD (o, e)
IABCDEBCDE (o, e)
IABF (o, e)
IABCDEBF (e, e)

Therefore, joining all abstract val-
ues at each point:

I (oe, oe)
A (o, e)
B (o, e) t (e, e) = (oe, e)
C (o, e) t (e, e) = (oe, e)
D (e, e) t (o, e) = (oe, e)
E (e, e) t (o, e) = (oe, e)
F (o, e) t (e, e) = (oe, e)

This is abstract join-over-all-paths
(JOP) solution.

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 6 / 18

Collecting abstract values – example

B

print p,q

p > q

A

C

D

E

G

q := q+2

p = odd()
q = even()

Fp := p+1

I

Path Abstract
value

I (oe, oe)
(given)

IA (o, e)
IAB (o, e)
IABC (o, e)
IABCD (e, e)
IABCDE (e, e)
IABCDEB (e, e)
IABCDEBC (e, e)
IABCDEBCD (o, e)
IABCDEBCDE (o, e)
IABF (o, e)
IABCDEBF (e, e)

Therefore, joining all abstract val-
ues at each point:

I (oe, oe)
A (o, e)
B (o, e) t (e, e) = (oe, e)
C (o, e) t (e, e) = (oe, e)
D (e, e) t (o, e) = (oe, e)
E (e, e) t (o, e) = (oe, e)
F (o, e) t (e, e) = (oe, e)

This is abstract join-over-all-paths
(JOP) solution.

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 6 / 18

Collecting abstract values – example

B

print p,q

p > q

A

C

D

E

G

q := q+2

p = odd()
q = even()

Fp := p+1

I

Path Abstract
value

I (oe, oe)
(given)

IA (o, e)
IAB (o, e)
IABC (o, e)
IABCD (e, e)
IABCDE (e, e)
IABCDEB (e, e)
IABCDEBC (e, e)
IABCDEBCD (o, e)
IABCDEBCDE (o, e)
IABF (o, e)
IABCDEBF (e, e)

Therefore, joining all abstract val-
ues at each point:

I (oe, oe)
A (o, e)
B (o, e) t (e, e) = (oe, e)
C (o, e) t (e, e) = (oe, e)
D (e, e) t (o, e) = (oe, e)
E (e, e) t (o, e) = (oe, e)
F (o, e) t (e, e) = (oe, e)

This is abstract join-over-all-paths
(JOP) solution.

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 6 / 18

Comparison of abstract JOP states and collecting states

Abstract JOP:
A (o, e)
B (oe, e)
C (oe, e)
D (oe, e)
E (oe, e)
F (oe, e)

Collecting states:
A {(i , j)|i odd, j even}
B {(i , j)|i odd, j even} ∪ {(i , j)|i even, j even, i ≥ j}
C {(i , j)|j even, i > j}
D {(i , j)|j even, i > j + 1}
E {(i , j)|j even, i ≥ j}
F {(i , j)|i odd, j even, i < j} ∪ {(i , j)|i even, j even, i = j}

Note that at each point γ image of abstract solution is over-
approximation of collecting states.

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 7 / 18

Comparison of abstract JOP states and collecting states

Abstract JOP:
A (o, e)
B (oe, e)
C (oe, e)
D (oe, e)
E (oe, e)
F (oe, e)

Collecting states:
A {(i , j)|i odd, j even}
B {(i , j)|i odd, j even} ∪ {(i , j)|i even, j even, i ≥ j}
C {(i , j)|j even, i > j}
D {(i , j)|j even, i > j + 1}
E {(i , j)|j even, i ≥ j}
F {(i , j)|i odd, j even, i < j} ∪ {(i , j)|i even, j even, i = j}

Note that at each point γ image of abstract solution is over-
approximation of collecting states.

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 7 / 18

A given abstract interpretation is said to be correct if, for all
abstract states d0 ∈ D, for all programs P and for all program
points p in P,

γ image of join of all abstract states arising at p (i.e., abstract
JOP solution at p), with d0 as the initial abstract value at P’s

entry
⊇

collecting semantics at p, with γ(d0) as the initial set of
concrete states at P’s entry

We will study later certain sufficient conditions for a given abstract
interpretation to be correct.

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 8 / 18

A given abstract interpretation is said to be correct if, for all
abstract states d0 ∈ D, for all programs P and for all program
points p in P,

γ image of join of all abstract states arising at p (i.e., abstract
JOP solution at p), with d0 as the initial abstract value at P’s

entry
⊇

collecting semantics at p, with γ(d0) as the initial set of
concrete states at P’s entry

We will study later certain sufficient conditions for a given abstract
interpretation to be correct.

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 8 / 18

Another example program

B

D

x := 1

y := x*x

x := −1

C

E

2

3

4

0

1

I

Path Characterization of concrete states
l true (given)
lB x = 1
lBC x = 1
lBCD x = 1 ∧ y = 1
lBCDE x = -1 ∧ y = 1
lBCDEC x = -1 ∧ y = 1
lBCDECD x = -1 ∧ y = 1
. . . x = -1 ∧ y = 1

Therefore, collecting semantics:
Point Characterization of concrete states
l true
B x = 1
C (x = 1) ∨ (x = -1 ∧ y = 1)
D (y = 1) ∧ (x = -1 ∨ x = 1)
E x = -1 ∧ y = 1

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 9 / 18

Abstract interpretation for constant propagation

Abstract lattice D

.

.

∅

{(x, 1), (y, 1)} {(x, 1), (y,−1)}

⊥

{(y, 1)}

{(y,−1)} {(x, 1)}

Concretization function: What is γ(d)?

⊥ 7→ {}
∅ 7→ State
{(x , c)} 7→ {(c, j)| j is any value}
{(x , c), (y , d)} 7→ {(c, d)}

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 10 / 18

Abstract interpretation for constant propagation

Abstract lattice D

.

.

∅

{(x, 1), (y, 1)} {(x, 1), (y,−1)}

⊥

{(y, 1)}

{(y,−1)} {(x, 1)}

Concretization function: What is γ(d)?

⊥ 7→ {}
∅ 7→ State
{(x , c)} 7→ {(c, j)| j is any value}
{(x , c), (y , d)} 7→ {(c, d)}

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 10 / 18

Abstract interpretation for constant propagation – contd.

Transfer function for assignment node n of the form x := exp.

fn(P) = ⊥, if P is ⊥
= {(y , c) ∈ P | y 6= x} ∪ {(x , d)},

if all variables in exp have constant values in P, and if
exp evaluates to d with these constant values

= {(y , c) ∈ P | y 6= x}, otherwise

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 11 / 18

JOP using abstract lattice

B

D

x := 1

y := x*x

x := −1

C

E

2

3

4

0

1

I

Path Abstract value at end of path
I ∅

IB {(x , 1)}
IBC {(x , 1)}
IBCD {(x , 1), (y , 1)}
IBCDE {(x ,−1), (y , 1)}
IBCDEC {(x ,−1), (y , 1)}
IBCDECD {(x ,−1), (y , 1)}
. . . {(x ,−1), (y , 1)}

Point Abstract JOP value
I ∅
B {(x , 1)}
C ∅
D {(y , 1)}
E {(x ,−1), (y , 1)}

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 12 / 18

JOP using abstract lattice

B

D

x := 1

y := x*x

x := −1

C

E

2

3

4

0

1

I

Path Abstract value at end of path
I ∅
IB {(x , 1)}

IBC {(x , 1)}
IBCD {(x , 1), (y , 1)}
IBCDE {(x ,−1), (y , 1)}
IBCDEC {(x ,−1), (y , 1)}
IBCDECD {(x ,−1), (y , 1)}
. . . {(x ,−1), (y , 1)}

Point Abstract JOP value
I ∅
B {(x , 1)}
C ∅
D {(y , 1)}
E {(x ,−1), (y , 1)}

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 12 / 18

JOP using abstract lattice

B

D

x := 1

y := x*x

x := −1

C

E

2

3

4

0

1

I

Path Abstract value at end of path
I ∅
IB {(x , 1)}
IBC {(x , 1)}

IBCD {(x , 1), (y , 1)}
IBCDE {(x ,−1), (y , 1)}
IBCDEC {(x ,−1), (y , 1)}
IBCDECD {(x ,−1), (y , 1)}
. . . {(x ,−1), (y , 1)}

Point Abstract JOP value
I ∅
B {(x , 1)}
C ∅
D {(y , 1)}
E {(x ,−1), (y , 1)}

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 12 / 18

JOP using abstract lattice

B

D

x := 1

y := x*x

x := −1

C

E

2

3

4

0

1

I

Path Abstract value at end of path
I ∅
IB {(x , 1)}
IBC {(x , 1)}
IBCD {(x , 1), (y , 1)}

IBCDE {(x ,−1), (y , 1)}
IBCDEC {(x ,−1), (y , 1)}
IBCDECD {(x ,−1), (y , 1)}
. . . {(x ,−1), (y , 1)}

Point Abstract JOP value
I ∅
B {(x , 1)}
C ∅
D {(y , 1)}
E {(x ,−1), (y , 1)}

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 12 / 18

JOP using abstract lattice

B

D

x := 1

y := x*x

x := −1

C

E

2

3

4

0

1

I

Path Abstract value at end of path
I ∅
IB {(x , 1)}
IBC {(x , 1)}
IBCD {(x , 1), (y , 1)}
IBCDE {(x ,−1), (y , 1)}

IBCDEC {(x ,−1), (y , 1)}
IBCDECD {(x ,−1), (y , 1)}
. . . {(x ,−1), (y , 1)}

Point Abstract JOP value
I ∅
B {(x , 1)}
C ∅
D {(y , 1)}
E {(x ,−1), (y , 1)}

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 12 / 18

JOP using abstract lattice

B

D

x := 1

y := x*x

x := −1

C

E

2

3

4

0

1

I

Path Abstract value at end of path
I ∅
IB {(x , 1)}
IBC {(x , 1)}
IBCD {(x , 1), (y , 1)}
IBCDE {(x ,−1), (y , 1)}
IBCDEC {(x ,−1), (y , 1)}

IBCDECD {(x ,−1), (y , 1)}
. . . {(x ,−1), (y , 1)}

Point Abstract JOP value
I ∅
B {(x , 1)}
C ∅
D {(y , 1)}
E {(x ,−1), (y , 1)}

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 12 / 18

JOP using abstract lattice

B

D

x := 1

y := x*x

x := −1

C

E

2

3

4

0

1

I

Path Abstract value at end of path
I ∅
IB {(x , 1)}
IBC {(x , 1)}
IBCD {(x , 1), (y , 1)}
IBCDE {(x ,−1), (y , 1)}
IBCDEC {(x ,−1), (y , 1)}
IBCDECD {(x ,−1), (y , 1)}

. . . {(x ,−1), (y , 1)}

Point Abstract JOP value
I ∅
B {(x , 1)}
C ∅
D {(y , 1)}
E {(x ,−1), (y , 1)}

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 12 / 18

JOP using abstract lattice

B

D

x := 1

y := x*x

x := −1

C

E

2

3

4

0

1

I

Path Abstract value at end of path
I ∅
IB {(x , 1)}
IBC {(x , 1)}
IBCD {(x , 1), (y , 1)}
IBCDE {(x ,−1), (y , 1)}
IBCDEC {(x ,−1), (y , 1)}
IBCDECD {(x ,−1), (y , 1)}
. . . {(x ,−1), (y , 1)}

Point Abstract JOP value
I ∅
B {(x , 1)}
C ∅
D {(y , 1)}
E {(x ,−1), (y , 1)}

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 12 / 18

JOP using abstract lattice

B

D

x := 1

y := x*x

x := −1

C

E

2

3

4

0

1

I

Path Abstract value at end of path
I ∅
IB {(x , 1)}
IBC {(x , 1)}
IBCD {(x , 1), (y , 1)}
IBCDE {(x ,−1), (y , 1)}
IBCDEC {(x ,−1), (y , 1)}
IBCDECD {(x ,−1), (y , 1)}
. . . {(x ,−1), (y , 1)}

Point Abstract JOP value
I ∅

B {(x , 1)}
C ∅
D {(y , 1)}
E {(x ,−1), (y , 1)}

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 12 / 18

JOP using abstract lattice

B

D

x := 1

y := x*x

x := −1

C

E

2

3

4

0

1

I

Path Abstract value at end of path
I ∅
IB {(x , 1)}
IBC {(x , 1)}
IBCD {(x , 1), (y , 1)}
IBCDE {(x ,−1), (y , 1)}
IBCDEC {(x ,−1), (y , 1)}
IBCDECD {(x ,−1), (y , 1)}
. . . {(x ,−1), (y , 1)}

Point Abstract JOP value
I ∅
B {(x , 1)}

C ∅
D {(y , 1)}
E {(x ,−1), (y , 1)}

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 12 / 18

JOP using abstract lattice

B

D

x := 1

y := x*x

x := −1

C

E

2

3

4

0

1

I

Path Abstract value at end of path
I ∅
IB {(x , 1)}
IBC {(x , 1)}
IBCD {(x , 1), (y , 1)}
IBCDE {(x ,−1), (y , 1)}
IBCDEC {(x ,−1), (y , 1)}
IBCDECD {(x ,−1), (y , 1)}
. . . {(x ,−1), (y , 1)}

Point Abstract JOP value
I ∅
B {(x , 1)}
C ∅

D {(y , 1)}
E {(x ,−1), (y , 1)}

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 12 / 18

JOP using abstract lattice

B

D

x := 1

y := x*x

x := −1

C

E

2

3

4

0

1

I

Path Abstract value at end of path
I ∅
IB {(x , 1)}
IBC {(x , 1)}
IBCD {(x , 1), (y , 1)}
IBCDE {(x ,−1), (y , 1)}
IBCDEC {(x ,−1), (y , 1)}
IBCDECD {(x ,−1), (y , 1)}
. . . {(x ,−1), (y , 1)}

Point Abstract JOP value
I ∅
B {(x , 1)}
C ∅
D {(y , 1)}

E {(x ,−1), (y , 1)}

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 12 / 18

JOP using abstract lattice

B

D

x := 1

y := x*x

x := −1

C

E

2

3

4

0

1

I

Path Abstract value at end of path
I ∅
IB {(x , 1)}
IBC {(x , 1)}
IBCD {(x , 1), (y , 1)}
IBCDE {(x ,−1), (y , 1)}
IBCDEC {(x ,−1), (y , 1)}
IBCDECD {(x ,−1), (y , 1)}
. . . {(x ,−1), (y , 1)}

Point Abstract JOP value
I ∅
B {(x , 1)}
C ∅
D {(y , 1)}
E {(x ,−1), (y , 1)}

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 12 / 18

Correctness in previous example

Verify that

at points I, B and E
γ(abstract JOP value) = collecting semantics.

at points C and D
γ(abstract JOP value) ⊃ collecting semantics.

the abstract transfer functions given are the best possible for the
given lattice L. That is, imprecision is due to the lattice, not the
transfer functions.

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 13 / 18

Formal definition of control-flow graphs

Programs are finite directed graphs with following nodes (statements):

Nodes or statements in a program

x := e y > 1

L

M

L

M

N

L

M

K
I

Expressions:
e ::= c | x | e + e |e − e | e ∗ e.

Boolean expressions:

be ::= tt | ff | e ≤ e |e = e | ¬be | be ∨ be | be ∧ be.

Assume unique initial program point I .

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 14 / 18

Formal definition of an abstract interpretation

Complete join semi-lattice (D,≤), with a least
element ⊥.

Concretization function γ : D → 2State

⊥ ∈ D represents unreachability of the program
point (i.e., γ(⊥) should be equal to ∅). Also, γ(>)
should be State.

(D,≤)

⊥

We require transfer functions fLM , fLN , fKM for all scenarios below:

x := e y > 1

L

M

L

M

N

L

M

K
I

We assume transfer functions are monotonic, and satisfy f (⊥) = ⊥.

For junction nodes, both transfer functions should be identity

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 15 / 18

What we want to compute for a given program

Path in a program: Sequence of connected edges or program points,
beginning at initial point I

Transfer functions extend to paths in program:

fIBCD = fCD ◦ fBC ◦ fIB .

where (fa ◦ fb)(x) is defined as fa(fb(x)).

fp is λd .⊥ ⇒ path p is infeasible.

Join over all paths (JOP) definition: For each program point N

dN =
⊔

paths p from I to N

fp(d0).

where d0 is a given initial abstract value at entry node.

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 16 / 18

Formalization of collecting semantics

Let Val be the set of all concrete values; e.g., Integer ∪ Boolean.

State is normally the domain Var → Val . However, in general, it can
be any semantic domain.

Program semantics is given by the
functions nstateMN : State → 2State

M

N

nstate

S2

s1

These induce the functions nstate ′ : 2State → 2State

nstate ′MN(S1 ∈ 2State) =
⋃

s1∈S1

nstateMN(s1)

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 17 / 18

Formalization of collecting semantics – contd.

Collecting semantics SS is a map ProgramPoints → 2State

At each program point N,

SS(N) =
⋃

p path from I to N

nstate ′p(S0).

where I is entry point of CFG, S0 is the given initial set of states, and
nstate ′p is composition of nstate ′ functions of edges that constitute p.

Deepak D’Souza and K. V. Raghavan (IISc) Data-flow Analysis / Abstract Interpretation 18 / 18

	Abstract Interpretation (aka Data-flow)

