E0:227, Program Analysis and Verification

3:1, August - December 2022
http://www.csa.tisc. ac. in/ raghavan/pav2022/

K. V. Raghavan and Deepak D'Souza

Software defects

® Defects are very common, and are a major bane of the
software industry.
® Some defects are ongoing irritants, while some are disastrous.
® Defects are hard to detect and fix
® Not enough good and usable tools for programmers
® Often get detected only after release

® When a program crashes or gives wrong answer, hard to
identify the root cause.

Software defects

® Defects are very common, and are a major bane of the
software industry.

® Some defects are ongoing irritants, while some are disastrous.
® Defects are hard to detect and fix

® Not enough good and usable tools for programmers

® Often get detected only after release

® When a program crashes or gives wrong answer, hard to

identify the root cause.

Testing, finding and fixing bugs (i.e., Quality Assurance) com-
sumes 50% of total cost and time of software development.

Kinds of defects

® | ow-level errors
® Null pointers, uninitialized values
Array index out of bounds, buffer overrun
Memory leaks
Misuse of pointers and buffers (in languages like C)
Unreachable code

Kinds of defects

® | ow-level errors
® Null pointers, uninitialized values
Array index out of bounds, buffer overrun
Memory leaks
Misuse of pointers and buffers (in languages like C)
Unreachable code

® High-level errors
® Does not satisfy user’s requirements
Algorithmic/design errors
Does not interact with other software or libraries correctly
Performs poorly

Ariane 5 explosion

n

Artane 5 explosion report

On 4 June 1996, the maiden flight of the Ariane 5
launcher ended in a failure about 40 seconds after
launch...

The failure of the Ariane 501 was caused by the
complete loss of guidance and attitude information ...
This loss of information was due to specification and
design errors in the software of the inertial reference
system.

The internal SRI* software exception was caused
during execution of a data conversion from 64-bit
floating point to 16-bit signed integer value. The
loati . I hict | had

value greater than what could be represented by a
16-bit signed integer.

A common approach to software validation: Testing

® A test suite (set of test cases) is created, and executed for
each version.

® Black box testing: Test cases are created manually by user,
or generated randomly.

® White box testing: Test cases are generated by an analysis of
the program code to increase code coverage.

® Typically needs tool support.
® What's good about testing? All bugs found are real bugs.

® What's bad about testing?

A common approach to software validation: Testing

® A test suite (set of test cases) is created, and executed for
each version.

® Black box testing: Test cases are created manually by user,
or generated randomly.

® White box testing: Test cases are generated by an analysis of
the program code to increase code coverage.

® Typically needs tool support.
® What's good about testing? All bugs found are real bugs.
® What's bad about testing?

® 100% coverage of the program’s behavior is impossible.
® Therefore, cannot find all bugs or prove the absence of bugs.

® Very hard to test the portion inside the “if" statement!
input x
if (hash(x) == 10) {

}

Program verification

The algorithmic discovery of properties of a program by inspection
of the source text.
— Manna and Pneuli, “Algorithmic Verification”

Program verification

The algorithmic discovery of properties of a program by inspection
of the source text.
— Manna and Pneuli, “Algorithmic Verification”

Also known as: static analysis, static program analysis, formal
methods, ...

Difficulty of program verification

® What will we prove?
® “Deep” specifications of complex software are as complex as
the software itself
® Are difficult to prove
® State of the art tools and automation are not good enough

® We will focus on “shallow” properties

® That is, we will prove “partial correctness”, or absence of
certain classes of low-level errors (e.g., null pointer
dereferences)

Elusive triangle

Large
programs
We will let
go of this
one!
Deep
properties Automation

Credit: Sriram Raiamani Microsoft Research India

Ezample: Determining whether variables are odd (o) or
even (e)

p = oddNatlnput() | (p,0)
q = evenNatlnput() | (p,o) (q.,e)
if (p > q) (p.o) (ae)
p=p*2+q (p.e) (ae)
write(p) (p.oe) (a.e)
if (p <= q) (p.o) (ae)
p=p+l (p.e) (ae)
write(p) (p.e) (ae)
q=gq+p (p.e) (ae)

A wverification approach: abstract interpretation

A kind of program execution in which variables store abstract
values from bounded domains, not concrete values

Input values are also from the abstract domains

Program statement semantics are modified to work on
abstract variable values

We execute the program on all (abstract) inputs and observe
the program properties from these runs

Example: An abstraction

Abstract value domain V4 for a single variable: {o, e, oe}.
Abstract domain:

Ly = Var— VWi
where Var is the set of variables in the program.

Modified operator semantics:

+ | o e oe * | o e oe
o| e o oe o| o e oe
el o e oe el e e e

oe|oe oe oe||oe|oe e oe

From the operator semantics, we can construct an abstract
transfer function, with signature L; — L1, for each possible
statement in the language.

Example: The abstract interpretation
Abstract interpretation, using domain L

<(p.0e), (q,0€)>

p=oddNatInput()

g=evenNatInput()

if (p > q)
P=p*2+q

write(p)

if (p <=q)

write(p)

q=9q+tp

Example: The abstract interpretation
Abstract interpretation, using domain L

<(p.0e), (q,0€)>

p=oddNatlnput() |<(p,0), (q,0€)>

g=evenNatInput()

if (p > q)
P=p*2+q

write(p)

if (p <=q)

write(p)

q=9q+tp

Example: The abstract interpretation
Abstract interpretation, using domain L

<(p,oe), (q,0€e)>
p=oddNatlnput() |<(p,0), (q,0€)>
g=evenNatInput()|<(p,0), (q,€)>
if (p > q)
P=p*2+q
write(p)
if (p <=q)
write(p)
q=9q+tp

Example: The abstract interpretation
Abstract interpretation, using domain L

<(p.0e), (q,0€)>
p=oddNatlnput() |<(p,0), (q,0€)>
g=evenNatInput()|<(p,0), (q,€)>
if (p > q) <(p.0), (a.6)>
=p*2 +q
write(p)
if (p <=q)
= p+1
write(p)
q=9q+tp

Example: The abstract interpretation
Abstract interpretation, using domain L

<(p.0e), (q,0€)>
p=oddNatlnput() |<(p,0), (q,0€)>
g=evenNatInput()|<(p,0), (q,€)>
if (p > q) <(p.0), (q.¢)>
=p*2 + g <(p.e), (q.€)>
write(p)
if (p <=aq)
= p+1
write(p)
q=9q+tp

Example: The abstract interpretation
Abstract interpretation, using domain L

<(p.0e), (q,0€)>
p=oddNatlnput() |<(p,0), (q,0€)>
g=evenNatInput()|<(p,0), (q,€)>
if (p > q) <(p.0), (q.¢)>
p=p*2+q <(p.e), (q.€)>
write(p) <(p,oe), (q,)>
if (p <=aq)
p=p+l
write(p)
q=9q+tp

Example: The abstract interpretation
Abstract interpretation, using domain L

<(p,0e), (q,0€)>
p=oddNatlnput() |<(p,0), (q,0e)>
g=evenNatlnput()|<(p,0), (q,€)>

if (p > q) <(p.0), (a,e)>
p=p*2+q <(p.€), (a.€)>
write(p) <(p,0€), (q,e)>
if (p <=q) <(p,0e), (a.e)>
= p+1
write(p)

q=9q+tp

Example: The abstract interpretation
Abstract interpretation, using domain L

<(p,0e), (q,0€)>
p=oddNatlnput() |<(p,0), (q,0e)>
g=evenNatlnput()|<(p,0), (q,€)>

if (p > q) <(p.0), (a,e)>
p=p*2+q <(p.€), (a.€)>
write(p) <(p,0€), (q,e)>
if (p <=q) <(p,0e), (a.e)>
= p+1 <(p,0€), (q,e)>
write(p)

q=9q+tp

Example: The abstract interpretation
Abstract interpretation, using domain L

<(p,0e), (q,0€)>
p=oddNatlnput() |<(p,0), (q,0e)>
g=evenNatlnput()|<(p,0), (q,€)>

if (p > q) <(p.0), (a,e)>

=p*2 +q <(p.€), (a.€)>
write(p) <(p,0€), (q,e)>
if (p <=q) <(p.0e), (q,)>

= p+1 <(p,0€), (q,e)>
write(p) <(p,oe), (q,)>

q=9q+tp

Ezxample: The abstract interpretation
Abstract interpretation, using domain L

<(p,0e), (q,0€)>
p=oddNatlnput() |<(p,0), (q,0e)>
g=evenNatlnput()|<(p,0), (q,€)>

if (p > q) <(p.0), (a,e)>
p=p*2+q <(p.€), (a.€)>
write(p) <(p,0€), (q,e)>
if (p <=q) <(p.0e), (q,)>
= p+1 <(p,0€), (q,e)>
write(p) <(p,oe), (q,)>

q=q+p <(p,o0e), (q,0e)>

Ezxample: The abstract interpretation

Abstract interpretation, using domain L

Ideal results

p=oddNatInput()

g=evenNatInput()

if (p > q)
P=p*2+q

write(p)

if (p <= q)
p=p+l

write(p)

q=9q+tp

<(p.0e), (q,0€)>
<(p,0), (a,0€)>
<(p,0), (a.e)>
<(p.0), (a,e)>

<(p,oe), (q,e)>
<(p,oe), (g,e)>

<(p.0e), (q,e)>
<(p,oe), (q,0€e)>

<(p.e), (a.e)>

<(p,oe), (a,e)>

(p.o) (a.e)
(p.e) (ae)
(p.e) (a.e)
(p.e) (ae)

Ezxample: The abstract interpretation

Abstract interpretation, using domain L Ideal result:
<(p.0e), (q,0€)>

p=oddNatlnput() |<(p,0), (q,0€)> (p.0)
g=evenNatInput()|<(p,0), (q,€)> (p.o) (g,e)
if (p > q) <(p.0), (a,e)> (p.0) (a.e)
p=p*2+q <(p.e), (a.e)> (p.e) (a.e)
write(p) <(p,0€), (q,e)> (p.oe) (q.e)
if (p <=q) X <(p,oe), (a,e)> (p.0) (a.e)
p=p+l X <(p,oe), (a.€)>| |(p.e) (a.e)
write(p) X <(p,oe), (q,€)> (p.e) (a.e)
q=gq+tp X <(p,0e), (a,0€)> (p.e) (a.e)

FExample: Another abstraction

Abstract value domain V5 for a single variable: {o, e}.
The alternative domain:
Lg — 2Var—>V2
where Var is the set of variables in the program.
Same operator tables as before.

From the operator semantics, we can construct an abstract
transfer function, L, — Ly, for each possible statement in the
language.

Example: The abstract interpretation
Abstract interpretation, using domain L;
{<(p.0), (a,0)>, <(p.0), (a,6)>
<(p.€), (a,0>, <(p.e), (a.6)>}
p=oddNatInput() ,
g=evenNatInput()
if (p > q)
P=p*2+q
write(p)
if (p <= q)
p=p+l
write(p)
q=g+p

Example: The abstract interpretation
Abstract interpretation, using domain L;
{<(p.0). (a.0)>, <(p.0), (a.€)>
<(p.e). (a.0)> <(p.€), (a.€)>}
p=oddNatlnput() |{<(p,0), (a,0)>, <(p.0), (a,€)>}
g=evenNatInput()
if (p > q)
P=p*2+q
write(p)
if (p <=q)
p=ptl
write(p)
q=gq+tp

Example: The abstract interpretation
Abstract interpretation, using domain L;
{<(p.0). (a.0)>, <(p.0). (a,€)>
<(p.e). (a.0)> <(p.€), (a.€)>}
p=oddNatlnput() |{<(p,0), (a,0)>, <(p,0), (a,€)>}
g=evenNatlnput()|{<(p,0), (q.€)>}
if (p > q)
P=p*2+q
write(p)
if (p <= q)
p=ptl
write(p)
q=gq+tp

Example: The abstract interpretation
Abstract interpretation, using domain L;
{<(p.0). (a.0)>, <(p.0). (a,€)>
<(p.€), (a,0)> <(p.e). (q.¢)>}
p=oddNatlnput() |{<(p,0), (a,0)>, <(p,0), (a,€)>}
g=evenNatlnput()|{<(p,0), (q.€)>}
if (p > q) {<(p.0). (a,e)>}
P=p*2+q
write(p)
if (p <= q)
p=ptl
write(p)
q=gq+tp

Example: The abstract interpretation
Abstract interpretation, using domain L;
{<(p.0). (a.0)>, <(p.0), (a.€)>
<(p.e), (a.0)>, <(p.e), (a.€)>}
p=oddNatlnput() |{<(p.0). (a,0)>, <(p.0), (q.€)>}
g=evenNatlnput()|{<(p,0), (q.€)>}
if (p > q) {<(p.0). (a,e)>}
p=p*2+q {<(p.e). (q.€)>}
write(p)
if (p <=q)
p=p+l1
write(p)
q=gq+tp

Example: The abstract interpretation
Abstract interpretation, using domain L;

{<(p.0). (a.0)>, <(p.0), (a.€)>
<(p.e), (a.0)>, <(p.e), (a.€)>}
p=oddNatlnput() |{<(p.0). (a,0)>, <(p.0), (q.€)>}
g=evenNatlnput()|{<(p,0), (q.€)>}
if (p > q) {<(p.0), (a.€)>}
p=p*2+q {<(p.e). (q.€)>}
write(p) {<(p.0). (a,6)>,
if (p <=q)
p=p+l1
write(p)
q=qtp

Example: The abstract interpretation
Abstract interpretation, using domain L;

{<(p.0). (a.0)>, <(p.0), (a.€)>
<(p.e), (a.0)>, <(p.e), (a.€)>}
p=oddNatlnput() |{<(p.0). (a,0)>, <(p.0), (q.€)>}
g=evenNatlnput()|{<(p,0), (q.€)>}
if (p > q) {<(p.0), (a.€)>}
p=p*2+q {<(p.e). (q.€)>}
write(p) {<(p.0). (a.e)>, <(p.e). (a,e)>}
if (p <=q)
p=p+l1
write(p)
q=qtp

Example: The abstract interpretation
Abstract interpretation, using domain L;

{<(p.0). (a.0)>, <(p.0), (a.€)>

<(p.e), (a.0)>, <(p.e), (a.€)>}
p=oddNatlnput() |{<(p.0). (a,0)>, <(p.0), (q.€)>}
g=evenNatlnput()|{<(p,0), (q.€)>}

if (p > q) {<(p.0), (a.e)>}
p=p*2+q {<(p.e), (a,e)>}
write(p) {<(p.0), (a.e)>, <(p.e) (q.e)>}
if (p <=q) {<(p.0), (a.e)>, <(p.e). (a.e)>}
p=p+l
write(p)

q=g+p

Example: The abstract interpretation
Abstract interpretation, using domain L;

{<(p.0). (a.0)>, <(p.0), (a.€)>

<(p.e), (a.0)>, <(p.e), (a.€)>}
p=oddNatlnput() |{<(p.0). (a,0)>, <(p.0), (q.€)>}
g=evenNatlnput()|{<(p,0), (q.€)>}

if (p > q) {<(p.0), (a.e)>}
p=p*2+q {<(p.e), (a,e)>}
write(p) {<(p.0), (a.e)>, <(p.e) (q.e)>}
if (p <=q) {<(p.0), (a.e)>, <(p.e). (a.e)>}
p =(p)+1 {<(p.e), (a.€)>, <(p.0) (q.€)>}
write(p

q=g+p

Example: The abstract interpretation
Abstract interpretation, using domain L;

{<(p.0). (a.0)>, <(p.0), (a.€)>

<(p.e), (a.0)>, <(p.e), (a.€)>}
p=oddNatlnput() |{<(p.0). (a,0)>, <(p.0), (q.€)>}
g=evenNatlnput()|{<(p,0), (q.€)>}

if (p > q) {<(p.0), (a.e)>}
p=p*2+q {<(p.e), (a,e)>}
write(p) {<(p.0), (a.e)>, <(p.e) (q.e)>}
if (p <=q) {<(p.0), (a.e)>, <(p.e). (a.e)>}
p=p+tl {<(p.e), (a.€)>, <(p.0) (q.€)>}
write(p) {<(p.e), (a,6)>, <(p,0), (q,6)>}

q=g+p

Example:

The abstract interpretation

Abstract interpretation, using domain L; Ideal results
{<(p.0), (4,0)>, <(p,0), (a.€)>
<(p.e), (a,0>, <(p.e), (a.,6)>}
p=oddNatInput() [{<(p.0), (9,0)>, <(p.0), (4,€)>} | |[(p.0)
q=evenNatInput()|{<(p,0), (a,e)>} (p.0) (a.e)
if (p > q) {<(p.0), (a.e)>} (p.o) (a.e)
p=p*2+q {<(p.e), (a.e)>} |(p.e) (a.e)
write(p) {<(p.0), (a.e)>, <(p.e), (a.e)>} | |(p.oe)(q.e)
if (p <=q) {<(p.0), (a.€)> <(p.e). (a.e)>} | |(p.0) (a.e)
p=p+tl {<(p.e), (a.e)>, <(p0), (a.€)>} | |(p.e) (a.e)
write(p) {<(p.e), (a,€)>, <(p,0), (a.€)>} | |(p.e) (a.e)
q=q+p {<(p.e), (a,6)>, <(p.0), (a.0)>} | |(p.e) (a.€)

Example:

The abstract interpretation

Abstract interpretation, using domain L; Ideal results
{<(p.0). (a.0)>, <(p.0), (a.€)>
<(p.e), (a,0>, <(p.e), (a.,6)>}
p=oddNatlnput() {<(p,0), (9,0)>, <(p,0), (q,€)>} (p.0)
q=evenNatInput()|{<(p,0), (a,e)>} (p.0) (a.e)
if (p > q) {<(p.0), (a.e)>} (p.o) (a.e)
p=p*2+q {<(p,e), (a.e)>}| |(pe) (ae)
write(p) {<(p.0), <(p.e), (a.e)>} (p,oe) (a.e)
if (p <=q) {<(p.0), X<(pye)y (a.€)>} |(p.o) (a.e)
p=p+tl {<(p.e), , X<(p,0), (a.e)>}| |(p.e) (a.e)
write(p) {<(p.e), >, X<(p,o), (a.e)>} |(p.e) (a.e)
q=q+p {<(p.e), >, X<(p,0), (a.0)>} |(p.e) (a.e)

Ezrample:

The abstract interpretation

Abstract interpretation, using domain L; Ideal results
{<(p.0), (4,0)>, <(p,0), (a.€)>
<(p.e), (a,0>, <(p.e), (a.,6)>}
p=oddNatlnput() {<(p,0), (9,0)>, <(p,0), (q,€)>} (p.0)
q=evenNatInput()|{<(p,0), (a,e)>} (p.0) (a.e)
if (p > q) {<(p.0), (a.e)>} (p.o) (a.e)
p=p*2+q {<(p.e), (a.e)>}]| |(p.e) (ae)
write(p) {<(p.0), (a.e)>, <(p.e) (q.e)>} (p,oe) (a.e)
if (p <=q) {<(p.0), (a.€)>, X<(p.e), (a.€)>} |(p.0) (a.€)
p=p+tl {<(p.e) (a.e)>, X<(p,0), (a.e)>}| |(p.e) (a.e)
write(p) {<(p.e), (q,6)>, X<(p,0), (a.e)>} |(p.e) (a.e)
q=q+p {<(p.e), (a,6)>, X<(p.0), (a.0)>} |(p.e) (q.€)

In comparison to the L; domain

® [, is a more precise domain. Result at the end of the program

was <(p,oe),(q,0€)> with L, which over-approximates

{<(p,e),(a,e) > <

(p,0),(q,0) >}

® However, Ly is more efficient.
® Both are less precise than ideal!

Other examples of verification problems

Analysis Abstract domain
Null-pointer deref. | Var — {not-pointer, null, non-null} x 2V
Array overruns Var — IntegerRanges
File 10 File-handles — Files, Files — {open, closed},
Reachability Reachability condition
Mutual exclusion set of locks taken

Other applications of program analysis

e Compilers
® Live variables analysis
® Useful, e.g., for register allocation
® Side-effect analysis of functions
® Useful, e.g., for code motion
® |nteraction between statements
® Useful, e.g., for separating sequential code into independent
threads
® Code development tools
® Refactoring; e.g., rename method, extract method
® Generating code automatically from specifications
® Automated generation of test cases

Overview of PAV course

Introduction
Lattice theory

Theory of abstract interpretation
Implementation of abstract interpretation:

® |ntra-procedural
® [nter-procedural

Pointer analysis
Program slicing

Type systems

(1 lecture)

Assertional reasoning — a first-order predicate logic for

proving facts about programs

Prerequisites

Discrete structures such as sets, relations, partially ordered
sets, functions

(Undergraduate level) algorithms
Mathematical logic (propositional, first-order)

General mathematical maturity: comfort with notation,
understanding and writing proofs

Familiarity with imperative languages like C or Java

Programming project will involve Java (only basic features of
Java)

What we will not cover

e Software engineering
® How to collect requirements from customers and prioritize
them
® Planning and management of software development
® Design, architecture, coding
® Programming languages

® Analysis of parallel/concurrent programs, distributed systems

Assignments and exams (tentative)

® 5-6 written assignments (40%)

® For each assignment, 25% of your marks obtained will be
deducted for each day of delay in submitting.

® Programming assignment: 20%
® Exams: mid-sem (15%), final (25%)

Misconduct policy

® Academic misconduct (e.g., copying) will not be tolerated
® Discussion in exams = automatic fail grade for both students
® Assignments
® Work individually.
® If necessary, you can seek clarifications on basic concepts from others
(preferably via chat on the class Teams forum)
® However, you must develop the solutions to the given problems on your
own (without discussions), and write the answers on your own.
® No looking at others solutions, no showing your solution to others!
® If you refer to general materials other than class lecture notes and text
books, mention them. However, do not search on the internet for
answers to assignment problems or for program fragments for the
project.
® Penalties
® For each instance of a violation of above policy =
Zero for the entire assignment, plus one grade-point reduction in final
grade (for the one who copied).
® Grade-point reductions over multiple violations will accumulate.

