
E0:227, Program Analysis and Verification
3:1, August - December 2022

http://www.csa.iisc.ac.in/~raghavan/pav2022/

K. V. Raghavan and Deepak D’Souza



Software defects

• Defects are very common, and are a major bane of the
software industry.

• Some defects are ongoing irritants, while some are disastrous.
• Defects are hard to detect and fix

• Not enough good and usable tools for programmers
• Often get detected only after release
• When a program crashes or gives wrong answer, hard to

identify the root cause.

Testing, finding and fixing bugs (i.e., Quality Assurance) com-
sumes 50% of total cost and time of software development.



Software defects

• Defects are very common, and are a major bane of the
software industry.

• Some defects are ongoing irritants, while some are disastrous.
• Defects are hard to detect and fix

• Not enough good and usable tools for programmers
• Often get detected only after release
• When a program crashes or gives wrong answer, hard to

identify the root cause.

Testing, finding and fixing bugs (i.e., Quality Assurance) com-
sumes 50% of total cost and time of software development.



Kinds of defects

• Low-level errors
• Null pointers, uninitialized values
• Array index out of bounds, buffer overrun
• Memory leaks
• Misuse of pointers and buffers (in languages like C)
• Unreachable code

• High-level errors
• Does not satisfy user’s requirements
• Algorithmic/design errors
• Does not interact with other software or libraries correctly
• Performs poorly



Kinds of defects

• Low-level errors
• Null pointers, uninitialized values
• Array index out of bounds, buffer overrun
• Memory leaks
• Misuse of pointers and buffers (in languages like C)
• Unreachable code

• High-level errors
• Does not satisfy user’s requirements
• Algorithmic/design errors
• Does not interact with other software or libraries correctly
• Performs poorly



Ariane 5 explosion



Ariane 5 explosion report

3R���.YRI�������XLI�QEMHIR��MKLX�SJ�XLI�%VMERI���
PEYRGLIV�IRHIH�MR�E�JEMPYVI�EFSYX����WIGSRHW�EJXIV�
PEYRGL���

8LI�JEMPYVI�SJ�XLI�%VMERI�����[EW�GEYWIH�F]�XLI�
GSQTPIXI�PSWW�SJ�KYMHERGI�ERH�EXXMXYHI�MRJSVQEXMSR�����
8LMW�PSWW�SJ�MRJSVQEXMSR�[EW�HYI�XS�WTIGM�GEXMSR�ERH�
HIWMKR�IVVSVW�MR�XLI�WSJX[EVI�SJ�XLI�MRIVXMEP�VIJIVIRGI�
W]WXIQ�

8LI�MRXIVREP�76-��WSJX[EVI�I\GITXMSR�[EW�GEYWIH�
HYVMRK�I\IGYXMSR�SJ�E�HEXE�GSRZIVWMSR�JVSQ����FMX�
�SEXMRK�TSMRX�XS����FMX�WMKRIH�MRXIKIV�ZEPYI��8LI�
�SEXMRK�TSMRX�RYQFIV�[LMGL�[EW�GSRZIVXIH�LEH�E�
ZEPYI�KVIEXIV�XLER�[LEX�GSYPH�FI�VITVIWIRXIH�F]�E�
���FMX�WMKRIH�MRXIKIV��



A common approach to software validation: Testing
• A test suite (set of test cases) is created, and executed for

each version.

• Black box testing: Test cases are created manually by user,
or generated randomly.
• White box testing: Test cases are generated by an analysis of

the program code to increase code coverage.
• Typically needs tool support.

• What’s good about testing? All bugs found are real bugs.

• What’s bad about testing?

• 100% coverage of the program’s behavior is impossible.
• Therefore, cannot find all bugs or prove the absence of bugs.

• Very hard to test the portion inside the “if” statement!

input x

if (hash(x) == 10) {
...

}



A common approach to software validation: Testing
• A test suite (set of test cases) is created, and executed for

each version.

• Black box testing: Test cases are created manually by user,
or generated randomly.
• White box testing: Test cases are generated by an analysis of

the program code to increase code coverage.
• Typically needs tool support.

• What’s good about testing? All bugs found are real bugs.

• What’s bad about testing?

• 100% coverage of the program’s behavior is impossible.
• Therefore, cannot find all bugs or prove the absence of bugs.

• Very hard to test the portion inside the “if” statement!

input x

if (hash(x) == 10) {
...

}



Program verification

The algorithmic discovery of properties of a program by inspection
of the source text.

– Manna and Pneuli, “Algorithmic Verification”

Also known as: static analysis, static program analysis, formal
methods, . . .



Program verification

The algorithmic discovery of properties of a program by inspection
of the source text.

– Manna and Pneuli, “Algorithmic Verification”

Also known as: static analysis, static program analysis, formal
methods, . . .



Difficulty of program verification

• What will we prove?
• “Deep” specifications of complex software are as complex as

the software itself
• Are difficult to prove
• State of the art tools and automation are not good enough

• We will focus on “shallow” properties
• That is, we will prove “partial correctness”, or absence of

certain classes of low-level errors (e.g., null pointer
dereferences)



11

Elusive triangle

11

Large 
programs

Deep 
properties Automation

We will let 
go of this 
one!

Credit: Sriram Rajamani, Microsoft Research India



Example: Determining whether variables are odd (o) or
even (e)

p = oddNatInput() (p,o)
q = evenNatInput() (p,o) (q,e)
if (p > q) (p,o) (q,e)

p = p*2 + q (p,e) (q,e)
write(p) (p,oe) (q,e)
if (p <= q) (p,o) (q,e)

p = p+1 (p,e) (q,e)
write(p) (p,e) (q,e)
q = q+p (p,e) (q,e)



A verification approach: abstract interpretation

• A kind of program execution in which variables store abstract
values from bounded domains, not concrete values

• Input values are also from the abstract domains

• Program statement semantics are modified to work on
abstract variable values

• We execute the program on all (abstract) inputs and observe
the program properties from these runs



Example: An abstraction

• Abstract value domain V1 for a single variable: {o, e, oe}.
• Abstract domain:

L1 = Var → V1

where Var is the set of variables in the program.

• Modified operator semantics:

+ o e oe

o e o oe
e o e oe

oe oe oe oe

∗ o e oe

o o e oe
e e e e

oe oe e oe

• From the operator semantics, we can construct an abstract
transfer function, with signature L1 → L1, for each possible
statement in the language.



Example: The abstract interpretation
Abstract interpretation, using domain L1

<(p,oe), (q,oe)>
p=oddNatInput()

<(p,o), (q,oe)>

q=evenNatInput()

<(p,o), (q,e)>

if (p > q)

<(p,o), (q,e)>

p = p*2 + q

<(p,e), (q,e)>

write(p)

<(p,oe), (q,e)>

if (p <= q)

<(p,oe), (q,e)>

p = p+1

<(p,oe), (q,e)>

write(p)

<(p,oe), (q,e)>

q = q+p

<(p,oe), (q,oe)>

Ideal results

(p,o)
(p,o) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,oe) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,e) (q,e)
(p,e) (q,e)



Example: The abstract interpretation
Abstract interpretation, using domain L1

<(p,oe), (q,oe)>
p=oddNatInput() <(p,o), (q,oe)>
q=evenNatInput()

<(p,o), (q,e)>

if (p > q)

<(p,o), (q,e)>

p = p*2 + q

<(p,e), (q,e)>

write(p)

<(p,oe), (q,e)>

if (p <= q)

<(p,oe), (q,e)>

p = p+1

<(p,oe), (q,e)>

write(p)

<(p,oe), (q,e)>

q = q+p

<(p,oe), (q,oe)>

Ideal results

(p,o)
(p,o) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,oe) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,e) (q,e)
(p,e) (q,e)



Example: The abstract interpretation
Abstract interpretation, using domain L1

<(p,oe), (q,oe)>
p=oddNatInput() <(p,o), (q,oe)>
q=evenNatInput()<(p,o), (q,e)>
if (p > q)

<(p,o), (q,e)>

p = p*2 + q

<(p,e), (q,e)>

write(p)

<(p,oe), (q,e)>

if (p <= q)

<(p,oe), (q,e)>

p = p+1

<(p,oe), (q,e)>

write(p)

<(p,oe), (q,e)>

q = q+p

<(p,oe), (q,oe)>

Ideal results

(p,o)
(p,o) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,oe) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,e) (q,e)
(p,e) (q,e)



Example: The abstract interpretation
Abstract interpretation, using domain L1

<(p,oe), (q,oe)>
p=oddNatInput() <(p,o), (q,oe)>
q=evenNatInput()<(p,o), (q,e)>
if (p > q) <(p,o), (q,e)>

p = p*2 + q

<(p,e), (q,e)>

write(p)

<(p,oe), (q,e)>

if (p <= q)

<(p,oe), (q,e)>

p = p+1

<(p,oe), (q,e)>

write(p)

<(p,oe), (q,e)>

q = q+p

<(p,oe), (q,oe)>

Ideal results

(p,o)
(p,o) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,oe) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,e) (q,e)
(p,e) (q,e)



Example: The abstract interpretation
Abstract interpretation, using domain L1

<(p,oe), (q,oe)>
p=oddNatInput() <(p,o), (q,oe)>
q=evenNatInput()<(p,o), (q,e)>
if (p > q) <(p,o), (q,e)>

p = p*2 + q <(p,e), (q,e)>
write(p)

<(p,oe), (q,e)>

if (p <= q)

<(p,oe), (q,e)>

p = p+1

<(p,oe), (q,e)>

write(p)

<(p,oe), (q,e)>

q = q+p

<(p,oe), (q,oe)>

Ideal results

(p,o)
(p,o) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,oe) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,e) (q,e)
(p,e) (q,e)



Example: The abstract interpretation
Abstract interpretation, using domain L1

<(p,oe), (q,oe)>
p=oddNatInput() <(p,o), (q,oe)>
q=evenNatInput()<(p,o), (q,e)>
if (p > q) <(p,o), (q,e)>

p = p*2 + q <(p,e), (q,e)>
write(p) <(p,oe), (q,e)>
if (p <= q)

<(p,oe), (q,e)>

p = p+1

<(p,oe), (q,e)>

write(p)

<(p,oe), (q,e)>

q = q+p

<(p,oe), (q,oe)>

Ideal results

(p,o)
(p,o) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,oe) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,e) (q,e)
(p,e) (q,e)



Example: The abstract interpretation
Abstract interpretation, using domain L1

<(p,oe), (q,oe)>
p=oddNatInput() <(p,o), (q,oe)>
q=evenNatInput()<(p,o), (q,e)>
if (p > q) <(p,o), (q,e)>

p = p*2 + q <(p,e), (q,e)>
write(p) <(p,oe), (q,e)>
if (p <= q) <(p,oe), (q,e)>

p = p+1

<(p,oe), (q,e)>

write(p)

<(p,oe), (q,e)>

q = q+p

<(p,oe), (q,oe)>

Ideal results

(p,o)
(p,o) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,oe) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,e) (q,e)
(p,e) (q,e)



Example: The abstract interpretation
Abstract interpretation, using domain L1

<(p,oe), (q,oe)>
p=oddNatInput() <(p,o), (q,oe)>
q=evenNatInput()<(p,o), (q,e)>
if (p > q) <(p,o), (q,e)>

p = p*2 + q <(p,e), (q,e)>
write(p) <(p,oe), (q,e)>
if (p <= q) <(p,oe), (q,e)>

p = p+1 <(p,oe), (q,e)>
write(p)

<(p,oe), (q,e)>

q = q+p

<(p,oe), (q,oe)>

Ideal results

(p,o)
(p,o) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,oe) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,e) (q,e)
(p,e) (q,e)



Example: The abstract interpretation
Abstract interpretation, using domain L1

<(p,oe), (q,oe)>
p=oddNatInput() <(p,o), (q,oe)>
q=evenNatInput()<(p,o), (q,e)>
if (p > q) <(p,o), (q,e)>

p = p*2 + q <(p,e), (q,e)>
write(p) <(p,oe), (q,e)>
if (p <= q) <(p,oe), (q,e)>

p = p+1 <(p,oe), (q,e)>
write(p) <(p,oe), (q,e)>
q = q+p

<(p,oe), (q,oe)>

Ideal results

(p,o)
(p,o) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,oe) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,e) (q,e)
(p,e) (q,e)



Example: The abstract interpretation
Abstract interpretation, using domain L1

<(p,oe), (q,oe)>
p=oddNatInput() <(p,o), (q,oe)>
q=evenNatInput()<(p,o), (q,e)>
if (p > q) <(p,o), (q,e)>

p = p*2 + q <(p,e), (q,e)>
write(p) <(p,oe), (q,e)>
if (p <= q) <(p,oe), (q,e)>

p = p+1 <(p,oe), (q,e)>
write(p) <(p,oe), (q,e)>
q = q+p <(p,oe), (q,oe)>

Ideal results

(p,o)
(p,o) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,oe) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,e) (q,e)
(p,e) (q,e)



Example: The abstract interpretation
Abstract interpretation, using domain L1

<(p,oe), (q,oe)>
p=oddNatInput() <(p,o), (q,oe)>
q=evenNatInput()<(p,o), (q,e)>
if (p > q) <(p,o), (q,e)>

p = p*2 + q <(p,e), (q,e)>
write(p) <(p,oe), (q,e)>
if (p <= q) <(p,oe), (q,e)>

p = p+1 <(p,oe), (q,e)>
write(p) <(p,oe), (q,e)>
q = q+p <(p,oe), (q,oe)>

Ideal results

(p,o)
(p,o) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,oe) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,e) (q,e)
(p,e) (q,e)



Example: The abstract interpretation
Abstract interpretation, using domain L1

<(p,oe), (q,oe)>
p=oddNatInput() <(p,o), (q,oe)>
q=evenNatInput()<(p,o), (q,e)>
if (p > q) <(p,o), (q,e)>

p = p*2 + q <(p,e), (q,e)>
write(p) <(p,oe), (q,e)>
if (p <= q) X <(p,oe), (q,e)>

p = p+1 X <(p,oe), (q,e)>
write(p) X <(p,oe), (q,e)>
q = q+p X <(p,oe), (q,oe)>

Ideal results

(p,o)
(p,o) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,oe) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,e) (q,e)
(p,e) (q,e)



Example: Another abstraction

• Abstract value domain V2 for a single variable: {o, e}.
• The alternative domain:

L2 = 2Var→V2

where Var is the set of variables in the program.

• Same operator tables as before.

• From the operator semantics, we can construct an abstract
transfer function, L2 → L2, for each possible statement in the
language.



Example: The abstract interpretation
Abstract interpretation, using domain L2

{<(p,o), (q,o)>, <(p,o), (q,e)>
<(p,e), (q,o)>, <(p,e), (q,e)>}

p=oddNatInput()

{<(p,o), (q,o)>

,

<(p,o), (q,e)>}

q=evenNatInput()

{<(p,o), (q,e)>}

if (p > q)

{<(p,o), (q,e)>}

p = p*2 + q

{<(p,e), (q,e)>}

write(p)

{<(p,o), (q,e)>, <(p,e), (q,e)>}

if (p <= q)

{<(p,o), (q,e)>, <(p,e), (q,e)>}

p = p+1

{<(p,e), (q,e)>, <(p,o), (q,e)>}

write(p)

{<(p,e), (q,e)>, <(p,o), (q,e)>}

q = q+p

{<(p,e), (q,e)>, <(p,o), (q,o)>}

Ideal results

(p,o)
(p,o) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,oe) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,e) (q,e)
(p,e) (q,e)

In comparison to the L1 domain

• L2 is a more precise domain. Result at the end of the program
was <(p,oe),(q,oe)> with L1, which over-approximates
{< (p, e), (q, e) >,< (p, o), (q, o) >}.
• However, L1 is more efficient.
• Both are less precise than ideal!



Example: The abstract interpretation
Abstract interpretation, using domain L2

{<(p,o), (q,o)>, <(p,o), (q,e)>
<(p,e), (q,o)>, <(p,e), (q,e)>}

p=oddNatInput() {<(p,o), (q,o)>, <(p,o), (q,e)>}
q=evenNatInput()

{<(p,o), (q,e)>}

if (p > q)

{<(p,o), (q,e)>}

p = p*2 + q

{<(p,e), (q,e)>}

write(p)

{<(p,o), (q,e)>, <(p,e), (q,e)>}

if (p <= q)

{<(p,o), (q,e)>, <(p,e), (q,e)>}

p = p+1

{<(p,e), (q,e)>, <(p,o), (q,e)>}

write(p)

{<(p,e), (q,e)>, <(p,o), (q,e)>}

q = q+p

{<(p,e), (q,e)>, <(p,o), (q,o)>}

Ideal results

(p,o)
(p,o) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,oe) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,e) (q,e)
(p,e) (q,e)

In comparison to the L1 domain

• L2 is a more precise domain. Result at the end of the program
was <(p,oe),(q,oe)> with L1, which over-approximates
{< (p, e), (q, e) >,< (p, o), (q, o) >}.
• However, L1 is more efficient.
• Both are less precise than ideal!



Example: The abstract interpretation
Abstract interpretation, using domain L2

{<(p,o), (q,o)>, <(p,o), (q,e)>
<(p,e), (q,o)>, <(p,e), (q,e)>}

p=oddNatInput() {<(p,o), (q,o)>, <(p,o), (q,e)>}
q=evenNatInput() {<(p,o), (q,e)>}
if (p > q)

{<(p,o), (q,e)>}

p = p*2 + q

{<(p,e), (q,e)>}

write(p)

{<(p,o), (q,e)>, <(p,e), (q,e)>}

if (p <= q)

{<(p,o), (q,e)>, <(p,e), (q,e)>}

p = p+1

{<(p,e), (q,e)>, <(p,o), (q,e)>}

write(p)

{<(p,e), (q,e)>, <(p,o), (q,e)>}

q = q+p

{<(p,e), (q,e)>, <(p,o), (q,o)>}

Ideal results

(p,o)
(p,o) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,oe) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,e) (q,e)
(p,e) (q,e)

In comparison to the L1 domain

• L2 is a more precise domain. Result at the end of the program
was <(p,oe),(q,oe)> with L1, which over-approximates
{< (p, e), (q, e) >,< (p, o), (q, o) >}.
• However, L1 is more efficient.
• Both are less precise than ideal!



Example: The abstract interpretation
Abstract interpretation, using domain L2

{<(p,o), (q,o)>, <(p,o), (q,e)>
<(p,e), (q,o)>, <(p,e), (q,e)>}

p=oddNatInput() {<(p,o), (q,o)>, <(p,o), (q,e)>}
q=evenNatInput() {<(p,o), (q,e)>}
if (p > q) {<(p,o), (q,e)>}

p = p*2 + q

{<(p,e), (q,e)>}

write(p)

{<(p,o), (q,e)>, <(p,e), (q,e)>}

if (p <= q)

{<(p,o), (q,e)>, <(p,e), (q,e)>}

p = p+1

{<(p,e), (q,e)>, <(p,o), (q,e)>}

write(p)

{<(p,e), (q,e)>, <(p,o), (q,e)>}

q = q+p

{<(p,e), (q,e)>, <(p,o), (q,o)>}

Ideal results

(p,o)
(p,o) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,oe) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,e) (q,e)
(p,e) (q,e)

In comparison to the L1 domain

• L2 is a more precise domain. Result at the end of the program
was <(p,oe),(q,oe)> with L1, which over-approximates
{< (p, e), (q, e) >,< (p, o), (q, o) >}.
• However, L1 is more efficient.
• Both are less precise than ideal!



Example: The abstract interpretation
Abstract interpretation, using domain L2

{<(p,o), (q,o)>, <(p,o), (q,e)>
<(p,e), (q,o)>, <(p,e), (q,e)>}

p=oddNatInput() {<(p,o), (q,o)>, <(p,o), (q,e)>}
q=evenNatInput() {<(p,o), (q,e)>}
if (p > q) {<(p,o), (q,e)>}

p = p*2 + q {<(p,e), (q,e)>}
write(p)

{<(p,o), (q,e)>, <(p,e), (q,e)>}

if (p <= q)

{<(p,o), (q,e)>, <(p,e), (q,e)>}

p = p+1

{<(p,e), (q,e)>, <(p,o), (q,e)>}

write(p)

{<(p,e), (q,e)>, <(p,o), (q,e)>}

q = q+p

{<(p,e), (q,e)>, <(p,o), (q,o)>}

Ideal results

(p,o)
(p,o) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,oe) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,e) (q,e)
(p,e) (q,e)

In comparison to the L1 domain

• L2 is a more precise domain. Result at the end of the program
was <(p,oe),(q,oe)> with L1, which over-approximates
{< (p, e), (q, e) >,< (p, o), (q, o) >}.
• However, L1 is more efficient.
• Both are less precise than ideal!



Example: The abstract interpretation
Abstract interpretation, using domain L2

{<(p,o), (q,o)>, <(p,o), (q,e)>
<(p,e), (q,o)>, <(p,e), (q,e)>}

p=oddNatInput() {<(p,o), (q,o)>, <(p,o), (q,e)>}
q=evenNatInput() {<(p,o), (q,e)>}
if (p > q) {<(p,o), (q,e)>}

p = p*2 + q {<(p,e), (q,e)>}
write(p) {<(p,o), (q,e)>,

<(p,e), (q,e)>}

if (p <= q)

{<(p,o), (q,e)>, <(p,e), (q,e)>}

p = p+1

{<(p,e), (q,e)>, <(p,o), (q,e)>}

write(p)

{<(p,e), (q,e)>, <(p,o), (q,e)>}

q = q+p

{<(p,e), (q,e)>, <(p,o), (q,o)>}

Ideal results

(p,o)
(p,o) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,oe) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,e) (q,e)
(p,e) (q,e)

In comparison to the L1 domain

• L2 is a more precise domain. Result at the end of the program
was <(p,oe),(q,oe)> with L1, which over-approximates
{< (p, e), (q, e) >,< (p, o), (q, o) >}.
• However, L1 is more efficient.
• Both are less precise than ideal!



Example: The abstract interpretation
Abstract interpretation, using domain L2

{<(p,o), (q,o)>, <(p,o), (q,e)>
<(p,e), (q,o)>, <(p,e), (q,e)>}

p=oddNatInput() {<(p,o), (q,o)>, <(p,o), (q,e)>}
q=evenNatInput() {<(p,o), (q,e)>}
if (p > q) {<(p,o), (q,e)>}

p = p*2 + q {<(p,e), (q,e)>}
write(p) {<(p,o), (q,e)>, <(p,e), (q,e)>}
if (p <= q)

{<(p,o), (q,e)>, <(p,e), (q,e)>}

p = p+1

{<(p,e), (q,e)>, <(p,o), (q,e)>}

write(p)

{<(p,e), (q,e)>, <(p,o), (q,e)>}

q = q+p

{<(p,e), (q,e)>, <(p,o), (q,o)>}

Ideal results

(p,o)
(p,o) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,oe) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,e) (q,e)
(p,e) (q,e)

In comparison to the L1 domain

• L2 is a more precise domain. Result at the end of the program
was <(p,oe),(q,oe)> with L1, which over-approximates
{< (p, e), (q, e) >,< (p, o), (q, o) >}.
• However, L1 is more efficient.
• Both are less precise than ideal!



Example: The abstract interpretation
Abstract interpretation, using domain L2

{<(p,o), (q,o)>, <(p,o), (q,e)>
<(p,e), (q,o)>, <(p,e), (q,e)>}

p=oddNatInput() {<(p,o), (q,o)>, <(p,o), (q,e)>}
q=evenNatInput() {<(p,o), (q,e)>}
if (p > q) {<(p,o), (q,e)>}

p = p*2 + q {<(p,e), (q,e)>}
write(p) {<(p,o), (q,e)>, <(p,e), (q,e)>}
if (p <= q) {<(p,o), (q,e)>, <(p,e), (q,e)>}

p = p+1

{<(p,e), (q,e)>, <(p,o), (q,e)>}

write(p)

{<(p,e), (q,e)>, <(p,o), (q,e)>}

q = q+p

{<(p,e), (q,e)>, <(p,o), (q,o)>}

Ideal results

(p,o)
(p,o) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,oe) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,e) (q,e)
(p,e) (q,e)

In comparison to the L1 domain

• L2 is a more precise domain. Result at the end of the program
was <(p,oe),(q,oe)> with L1, which over-approximates
{< (p, e), (q, e) >,< (p, o), (q, o) >}.
• However, L1 is more efficient.
• Both are less precise than ideal!



Example: The abstract interpretation
Abstract interpretation, using domain L2

{<(p,o), (q,o)>, <(p,o), (q,e)>
<(p,e), (q,o)>, <(p,e), (q,e)>}

p=oddNatInput() {<(p,o), (q,o)>, <(p,o), (q,e)>}
q=evenNatInput() {<(p,o), (q,e)>}
if (p > q) {<(p,o), (q,e)>}

p = p*2 + q {<(p,e), (q,e)>}
write(p) {<(p,o), (q,e)>, <(p,e), (q,e)>}
if (p <= q) {<(p,o), (q,e)>, <(p,e), (q,e)>}

p = p+1 {<(p,e), (q,e)>, <(p,o), (q,e)>}
write(p)

{<(p,e), (q,e)>, <(p,o), (q,e)>}

q = q+p

{<(p,e), (q,e)>, <(p,o), (q,o)>}

Ideal results

(p,o)
(p,o) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,oe) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,e) (q,e)
(p,e) (q,e)

In comparison to the L1 domain

• L2 is a more precise domain. Result at the end of the program
was <(p,oe),(q,oe)> with L1, which over-approximates
{< (p, e), (q, e) >,< (p, o), (q, o) >}.
• However, L1 is more efficient.
• Both are less precise than ideal!



Example: The abstract interpretation
Abstract interpretation, using domain L2

{<(p,o), (q,o)>, <(p,o), (q,e)>
<(p,e), (q,o)>, <(p,e), (q,e)>}

p=oddNatInput() {<(p,o), (q,o)>, <(p,o), (q,e)>}
q=evenNatInput() {<(p,o), (q,e)>}
if (p > q) {<(p,o), (q,e)>}

p = p*2 + q {<(p,e), (q,e)>}
write(p) {<(p,o), (q,e)>, <(p,e), (q,e)>}
if (p <= q) {<(p,o), (q,e)>, <(p,e), (q,e)>}

p = p+1 {<(p,e), (q,e)>, <(p,o), (q,e)>}
write(p) {<(p,e), (q,e)>, <(p,o), (q,e)>}
q = q+p

{<(p,e), (q,e)>, <(p,o), (q,o)>}

Ideal results

(p,o)
(p,o) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,oe) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,e) (q,e)
(p,e) (q,e)

In comparison to the L1 domain

• L2 is a more precise domain. Result at the end of the program
was <(p,oe),(q,oe)> with L1, which over-approximates
{< (p, e), (q, e) >,< (p, o), (q, o) >}.
• However, L1 is more efficient.
• Both are less precise than ideal!



Example: The abstract interpretation
Abstract interpretation, using domain L2

{<(p,o), (q,o)>, <(p,o), (q,e)>
<(p,e), (q,o)>, <(p,e), (q,e)>}

p=oddNatInput() {<(p,o), (q,o)>, <(p,o), (q,e)>}
q=evenNatInput() {<(p,o), (q,e)>}
if (p > q) {<(p,o), (q,e)>}

p = p*2 + q {<(p,e), (q,e)>}
write(p) {<(p,o), (q,e)>, <(p,e), (q,e)>}
if (p <= q) {<(p,o), (q,e)>, <(p,e), (q,e)>}

p = p+1 {<(p,e), (q,e)>, <(p,o), (q,e)>}
write(p) {<(p,e), (q,e)>, <(p,o), (q,e)>}
q = q+p {<(p,e), (q,e)>, <(p,o), (q,o)>}

Ideal results

(p,o)
(p,o) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,oe) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,e) (q,e)
(p,e) (q,e)

In comparison to the L1 domain

• L2 is a more precise domain. Result at the end of the program
was <(p,oe),(q,oe)> with L1, which over-approximates
{< (p, e), (q, e) >,< (p, o), (q, o) >}.
• However, L1 is more efficient.
• Both are less precise than ideal!



Example: The abstract interpretation
Abstract interpretation, using domain L2

{<(p,o), (q,o)>, <(p,o), (q,e)>
<(p,e), (q,o)>, <(p,e), (q,e)>}

p=oddNatInput() {<(p,o), (q,o)>, <(p,o), (q,e)>}
q=evenNatInput() {<(p,o), (q,e)>}
if (p > q) {<(p,o), (q,e)>}

p = p*2 + q {<(p,e), (q,e)>}
write(p) {<(p,o), (q,e)>, <(p,e), (q,e)>}
if (p <= q) {<(p,o), (q,e)>, X<(p,e), (q,e)>}

p = p+1 {<(p,e), (q,e)>, X<(p,o), (q,e)>}
write(p) {<(p,e), (q,e)>, X<(p,o), (q,e)>}
q = q+p {<(p,e), (q,e)>, X<(p,o), (q,o)>}

Ideal results

(p,o)
(p,o) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,oe) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,e) (q,e)
(p,e) (q,e)

In comparison to the L1 domain

• L2 is a more precise domain. Result at the end of the program
was <(p,oe),(q,oe)> with L1, which over-approximates
{< (p, e), (q, e) >,< (p, o), (q, o) >}.
• However, L1 is more efficient.
• Both are less precise than ideal!



Example: The abstract interpretation
Abstract interpretation, using domain L2

{<(p,o), (q,o)>, <(p,o), (q,e)>
<(p,e), (q,o)>, <(p,e), (q,e)>}

p=oddNatInput() {<(p,o), (q,o)>, <(p,o), (q,e)>}
q=evenNatInput() {<(p,o), (q,e)>}
if (p > q) {<(p,o), (q,e)>}

p = p*2 + q {<(p,e), (q,e)>}
write(p) {<(p,o), (q,e)>, <(p,e), (q,e)>}
if (p <= q) {<(p,o), (q,e)>, X<(p,e), (q,e)>}

p = p+1 {<(p,e), (q,e)>, X<(p,o), (q,e)>}
write(p) {<(p,e), (q,e)>, X<(p,o), (q,e)>}
q = q+p {<(p,e), (q,e)>, X<(p,o), (q,o)>}

Ideal results

(p,o)
(p,o) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,oe) (q,e)
(p,o) (q,e)
(p,e) (q,e)
(p,e) (q,e)
(p,e) (q,e)

In comparison to the L1 domain

• L2 is a more precise domain. Result at the end of the program
was <(p,oe),(q,oe)> with L1, which over-approximates
{< (p, e), (q, e) >,< (p, o), (q, o) >}.
• However, L1 is more efficient.
• Both are less precise than ideal!



Other examples of verification problems

Analysis Abstract domain
Null-pointer deref. Var → {not-pointer, null, non-null} × 2Var

Array overruns Var → IntegerRanges
File IO File-handles → Files, Files → {open, closed},
Reachability Reachability condition
Mutual exclusion set of locks taken



Other applications of program analysis

• Compilers
• Live variables analysis

• Useful, e.g., for register allocation

• Side-effect analysis of functions
• Useful, e.g., for code motion

• Interaction between statements
• Useful, e.g., for separating sequential code into independent

threads

• Code development tools
• Refactoring; e.g., rename method, extract method
• Generating code automatically from specifications
• Automated generation of test cases



Overview of PAV course

• Introduction (1 lecture)

• Lattice theory (2)

• Theory of abstract interpretation (3)
• Implementation of abstract interpretation:

• Intra-procedural (2)
• Inter-procedural (9)

• Pointer analysis (2)

• Program slicing (4)

• Type systems (4)

• Assertional reasoning — a first-order predicate logic for
proving facts about programs (2)



Prerequisites

• Discrete structures such as sets, relations, partially ordered
sets, functions

• (Undergraduate level) algorithms

• Mathematical logic (propositional, first-order)

• General mathematical maturity: comfort with notation,
understanding and writing proofs

• Familiarity with imperative languages like C or Java

• Programming project will involve Java (only basic features of
Java)



What we will not cover

• Software engineering
• How to collect requirements from customers and prioritize

them
• Planning and management of software development
• Design, architecture, coding

• Programming languages

• Analysis of parallel/concurrent programs, distributed systems



Assignments and exams (tentative)

• 5-6 written assignments (40%)
• For each assignment, 25% of your marks obtained will be

deducted for each day of delay in submitting.

• Programming assignment: 20%

• Exams: mid-sem (15%), final (25%)



Misconduct policy
• Academic misconduct (e.g., copying) will not be tolerated
• Discussion in exams ⇒ automatic fail grade for both students
• Assignments

• Work individually.
• If necessary, you can seek clarifications on basic concepts from others

(preferably via chat on the class Teams forum)
• However, you must develop the solutions to the given problems on your

own (without discussions), and write the answers on your own.
• No looking at others solutions, no showing your solution to others!
• If you refer to general materials other than class lecture notes and text

books, mention them. However, do not search on the internet for
answers to assignment problems or for program fragments for the
project.

• Penalties
• For each instance of a violation of above policy ⇒

Zero for the entire assignment, plus one grade-point reduction in final
grade (for the one who copied).

• Grade-point reductions over multiple violations will accumulate.


