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The language under consideration

Language features that we consider

Scalar variables only.

No pointers, arrays, structures, and dynamic memory allocation.

Assignments; sequences of statements; “while” loops; “if then else”
statements.

No gotos, breaks, continues, and ”return” statements. No exceptions
(except terminating exceptions).

Procedures.

Each procedure has parameters, and can potentially return a value.
Global variables.

What to do about realistic languages?

Researchers have shown how to extend PDGs and slicing to address
these.

However, semantics and proofs become harder.

Initially, we restrict ourselves to single-procedure programs.
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Program Dependence Graph (PDG)

A program representation.

Originally proposed by Ottenstein and Ottenstein in 1984. Fully
described in their 1987 paper by Ferrante, Ottenstein, and Warren.

Originally proposed applications

Slicing. [O and O, 1984]
Compiler optimizations, such as detection of parallelism, code motion,
loop fusion, branch deletion, loop peeling and unrolling. [F, O, and W,
1987]
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Overview

Nodes in a PDG are nothing but nodes in CFG: assignments and
predicates.

Edges are of two kinds: control dependence and data dependence.

Data dependence edges, in turn, are of two kinds: flow dependences,
and def-order dependences.

(This part of the lecture is based on Section 2.1 in our primary reference.)
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Nodes in the PDG

Consider a (single-procedure) program P. Let GP be its PDG. Nodes in
GP are:

All assignments and predicates in P.

A distinguished entry vertex.

An initial definition vertex “x := InitialState(x)”, for each variable x
that is used in the program before being defined.

This vertex is treated as representing a (pseudo) assignment statement
in the program at the beginning of the program.

A final use vertex “FinalUse(x)” for each variable x whose final value
is of interest to the user.

This vertex is treated as representing a (pseudo) assignment statement
at the end of the program that reads x and writes to some dummy
variable.
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Control dependence edges

We have a control-dependence edge v1 →c v2 if

v1 is a predicate.
v2 is encountered in all paths from one of the edges out of v1 to the
program exit, but not in all paths from the other edge out of v1.

Paths are wrt the CFG.

The edge is labeled true or false, depending on the edge out of v1
along which v2 is guaranteed to be encountered. Also, we say that v2
is control-dependent on v1.

There is also a control-dependence edge (labeled true) from the entry
vertex to every vertex that is present in all paths from the entry of the
program to the exit of the program.
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Properties of control dependence edges

A node cannot be both true and false control-dependent on another
node.

For the language under consideration (i.e., when there are no jumps):

All edges going out of a “while” predicate are labeled true
Not counting true self-cycles from each “while” predicate to itself, the
control-dependence edges induce a tree that is rooted at the entry
vertex, and that mirrors the nesting structure of the program.
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Flow dependences

(This text, as well as several others that follow, copied from primary
reference.)
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Two types of flow dependence edges
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Need for making the distinction

Consider two different fragments:

v1: while (..) {
v2: sum = sum + x;
v4: if (..)
v3: x = x + 1;
}

v1: while (..) {
v4: if (..)
v3: x = x + 1;
v2: sum = sum + x;
}

If there was no distinction, both fragments would yield the PDG:

Two non-equivalent programs yield same PDG, which is bad!
With distinction, first fragment yields v3 →lc(L) v2, where L is the
loop in the fragment, while second fragment yields v3 →li v2 and
v3 →lc(L) v2.
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Def-order dependences

v3 is said to be the “witness” of the def-order edge.
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Need for def-order dependences

Consider two different fragments:
v1: if (p)
v2: x = 1;
v3: if (q)
v4: x = 2;
v5: y = x + 3;

v3: if (q)
v4: x = 2;
v1: if (p)
v2: x = 1;
v5: y = x + 3;

If there were no def-order edges, both fragments would yield the PDG
fragment:

Two non-equivalent programs yield same PDG, which is bad!

Otherwise, we get the edge v2 →do(v5) v4 with the first fragment and
v4 →do(v5) v2 with the second fragment.
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A PDG is a multi-graph

From a node vi to a node vj , there could be multiple loop-carried
edges, each one carried by a different loop.

From a node vi to a node vj , there could be multiple def-order edges,
each one having a different witness.
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Example PDG

T T
T

Bold arrows represent control dependence edges, dashed arrows represent
def-order dependence edges, solid arrows represent loop-independent flow
dependence edges, and solid arrows with a hash mark represent loop-carried
flow dependence edges.

K. V. Raghavan (IISc) PDGs and Slicing 15 / 32



Example PDG

T T
T

Bold arrows represent control dependence edges, dashed arrows represent
def-order dependence edges, solid arrows represent loop-independent flow
dependence edges, and solid arrows with a hash mark represent loop-carried
flow dependence edges.

K. V. Raghavan (IISc) PDGs and Slicing 15 / 32



Definition: sequence of values at a node

Consider a run of a program P on an initial state such that the program
halts.

At any point of time in the run, if execution is at a program point v ,
the value at v at that time point is defined to be

the value assigned to the lhs if v is an assignment statement
the boolean result if v is a predicate
the value in variable x if v is “FinalUse(x)”

the sequence of values computed by P at a program point v is the
(finite) sequence of values at v across the entire run.
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Adequacy of PDGs

PDGs are an abstract program representation. That is, in general
they contain less information than a program’s text or its CFG.

However, they are adequate to represent the semantics of a program.

That is, two programs with isomorphic PDGs are equivalent.
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Definition of PDG isomorphism

GP and GQ are isomorphic iff there exists a bijective function from V (GP)
to V (GQ) such that:

Each pair of mapped nodes have internal expressions of the same
structure. That is, corresponding operators and constants must
match. (Corresponding variable names need not be the same.)

An edge v1 → v2 exists in GP iff an edge exists from v ′1 to v ′2 in GQ ,
such that:

Both edges are of the same kind (control/flow/def-order).
The edge labels (i.e., true/false/li/lc) match.
If the two edges are lc, then the carrying loop’s headers are mapped
under the bijection.
If the two edges are def-order, then the witnesses are mapped under
the bijection.
If the two edges are flow dependence edges, they flow into
corresponding operand positions of v2/v

′
2.

where v ′1 is the vertex that v1 is mapped to and v ′2 is the vertex that
v2 is mapped to under the bijection.
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Adequacy of PDGs – formal statement

Theorem in Section 4.2.2:
Suppose that P and Q are programs for which GP ≈ GQ (i.e., GP and GQ

are isomorphic). If σ is a initial state on which P halts, then for any state
σ′ that agrees with σ on all variables for which there are initial-definition
vertices in P : (1) Q halts on σ′, (2) P and Q compute the same
sequences of values at corresponding program points, and (3) the final
states agree on all variables for which there are final-use vertices in GP .

Notes:

It is possible for two non-identical programs P and Q (i.e., with
non-isomorphic CFGs) to have isomorphic PDGs.

In this case, consider runs of P and Q on agreeing initial states σ and
σ′. Also, consider two corresponding instances of any node v in these
two runs:

The values at v in these two instances are guaranteed to be equal.
However, the entire memory states at these two instances may not
match.
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Illustration of PDG isomorphism and program equivalence

c = InitialState(c)
i = 0;
j = 0;
while (i < 100) {
  i = i + 2; // values: 2, 4, 6, 
  j = j - 2; // values: -2, -4, -6
  c = c + i + j;
}
finaluse(c)

c = InitialState(c)
i = 0;
j = 0;
while (i < 100) {
  j = j - 2;   // -2 -4, -6
  i = i  + 2; // 2, 4, 6
  c = c + i + j;
}
finaluse(c)
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What is a slice?

There are many different definitions of a slice in the literature. What
follows in one commonly used definition. (This definition is not available
in the paper.)
Let P be a program, and S be a criterion, namely, a subset of statements
and predicates in the program. A program Q is said to be a (correct) slice
of P wrt to S if

Q consists of some subset of the nodes in P.

Q includes all nodes in S .

The initial definition nodes in Q are a subset of the initial definition
nodes in P, and every variable that is used before being defined in Q
has an initial definition node in Q.

For any state σ on which P halts, and for any state σ′ that agrees
with σ on all variables for which there are initial-definition vertices in
Q: (1) Q halts on σ′, and (2) For each node v in Q, P computes the
same sequence of values at its copy of v as Q does at v .
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Approach described in our primary reference to compute a
slice

(This part of lecture derived from Section 2.2.)

For a vertex s of a PDG G , the operation “/”, discussed below,
produces a PDG G/s which is a slice of G wrt s.
G/s contains all vertices in G on which s has a transitive flow or
control dependence (i.e. all vertices that can reach s via flow or
control edges).
That is, V (G/s) = {w |w ∈ V (G ),w →∗c,f s}.
(Here, by flow edges, we mean both kinds of flow edges.)

The approach is extended to the setting where the criterion is a set of
vertices S as follows:

V (G/S) =
⋃
s∈S

V (G/s)

For any v 6∈ G , V (G/v) is defined as ∅.
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Approach – contd.

The edges in the graph G/S are essentially those in the subgraph of G
induced by V (G/S), with the exception that a def-order edge v →do(u) w
is only included if, in addition to v and w , V (G/S) also contains the
vertex u.
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Feasibility of a slice

(This part of the lecture is based on Section 3.)
Lemma (feasibility): For any program P and subset S of nodes in GP ,
GQ ≡ (GP/S) is a feasible PDG. That is, there exists a program Q whose
PDG is isomorphic to GQ .

K. V. Raghavan (IISc) PDGs and Slicing 24 / 32



Informal Proof of Feasibility Lemma

The proof is by showing a technique to construct a sliced program Q
by projecting out nodes from P, as follows. Initially, set Q be equal to
P itself. Then, from Q remove

each assignment statement whose node is not present in GP/S
each “if” or “while” block whose predicate is not present in GP/S

It is guaranteed that no node inside the block will be included in GP/S .

It can be shown that the PDG of the program Q produced above is
isomorphic to GP/S . (See proof in Section 3.)

A note about the construction above: Informally speaking, the
relative ordering of statements in Q is guaranteed to be the same as
that in P. Therefore, the approach works even if we exclude all
def-order edges from GP (and hence, from GQ).
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Another way to construct a sliced program

Say we have GP and GP/S , but don’t have access to (the CFG of) P.

In this setting, we would need to include def-order edges in GP and in
GP/S .

A naive approach to construct Q:

Enumerate by brute-force programs that have the same nesting
structure (i.e., the same control-dependence subgraph of the PDG) as
P, until a program is found whose PDG is isomorphic to GP/S .
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Correctness

Theorem 1: Any program whose PDG is isomorphic to GQ ≡ (GP/S)
is a correct slice of P wrt S . (Proof in Section 4.)

GQ in fact satisfies a stronger property, as follows (this property is not
mentioned in the paper). Say we construct a program Q ′ by
transforming certain nodes in P as follows:

Replace each assignment statement v ≡ “x = expr” in P that is not in
GQ with “x = ∗”, where “∗” is a non-deterministically chosen value.
Replace each predicate p in P that is not in GQ with “∗”, where “∗” is
a non-deterministically chosen boolean value.

Then, Q ′ generates the same sequence of values as P does at all
nodes that were not transformed as mentioned above, when P and Q ′

are run on agreeing initial states σ and σ′ such that both runs
terminate normally. (Note: Q ′ is a transformed version of P. Q ′ is
not a slice of P wrt S .)
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Notes about the strong property

Let Q be a correct slice of P wrt S such that Q’s PDG is not
isomorphic to GP/S (i.e., Q was not constructed by the PDG-based
approach presented above).

If we produce Q ′ by transforming nodes in P (as discussed in the
previous slide) that are not in Q, then such a Q ′ may not satisfy the
strong property.

In other words, the strong property is not satisfied by arbitrary slices.
It is satisfied only by slices produced by the PDG-based approach
presented above.
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An application of the strong property in the context of
debugging

Say during a run of a program P (using a test input) we are getting
an unexpected value at some instance of some node v (e.g., a printf
node).

As per the strong property, the bug cannot be fixed by modifying any
node of P that is not in GP/v . This is because Q ′ (constructed as
mentioned earlier, using GP/v) gives the same unexpected value for
the same test input as does P.
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Other applications of PDGs/slicing

Classifying changes to a program (between two versions of the
program) as textual changes vs. semantic changes.

Merging two different variants of a base version of a program.

Identifying duplicated code fragments.

Program testing

Selecting a subset of test cases (from a test suite) that still give high
coverage.
Selecting a subset of test cases (from a test suite) to cover recently
modified statements.

To reduce the size of a program in order to analyze it more efficiently
(when a criterion is known).

K. V. Raghavan (IISc) PDGs and Slicing 30 / 32



Other techniques to compute slices

[Weiser 1981] is the original technique. It is more expensive, and no
more precise than the PDG-based technique.

There are many subsequent techniques that are more precise than the
PDG-based technique.

They usually compute a “path sensitive” slice.

There can be no technique that always computes the most-precise
slice.
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Other kinds of slices

The kind of slice that we discussed so far was a static, syntactic, backward
slice.
Other kinds of slices:

A dynamic (as opposed to static) slice of P wrt S is a slice that is
correct only wrt to a given initial state σ.

Useful during debugging, and during dynamic analysis (i.e., analysis of
a program restricting attention to a specific run).

A semantic (as opposed to syntactic) slice is a program Q that is not
necessarily a projection of the given program P. It could be a
arbitrarily transformed version of P. The guarantees are that (1) the
nodes in S are present in Q, and (2) the same sequence of values is
computed at the nodes in S by P and by Q starting from initial states
σ and σ′ that agree on variables that have initial-definitions in P.

A forward (as opposed to backward) slice includes nodes in P that
depend on S , and not vice versa. The semantic properties of forward
slices are different from those of backward slices.
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