Pointer Analysis

G. Ramalingam
Microsoft Research, India
&

K. V. Raghavan

Goals

Pomts-to Analysis. Determine the set of
possible values of a pointer-variable (at
different points in a program)

— what locations can a pointer point-to?

Alias Analysis. Determine if two pointer -
variables may point to the same location

Compute conservative approximation

A fundamental analysis, required by most
other static analyses

A Constant Propagation Example

(e xis always 3 here h

* can replace x by 3

/

» and replace x+5 by 8

_ * and so on

X)+ 5; (N /

A Constant Propagation Example
With Pointers

x=3; * Is x always 3 I/\ere?]
*p = 4; /

A Constant Propagation Example
With Pointers

p = &y; if (?) p = &x;

x = 3: p = &x; X = 3;

*p = 4; else *p =4,

z =(%)+ 5; p = &; Z =)+ 5;

{ X = 3; /[
x 1s alway pointers affect always 4]

most program analyses
—

[X may be 3 or 4]

(i.e., x is unknown in our lattice)

A Constant Propagation Example

p always
points-to y

]

With Pointers

if (?)

p = &X;
else

p = &y;
X = 3;
)= 4;

7' X X + 5;

\

|

p always
points-to x

]

p may point-to x or y]

Points-to Analysis

» Determine the set of targets a pointer
variable could point-to (at different
points in the program)

— “p points-to x’
« “p stores the value &x’
« “*p denotes the location x’’

— targets could be variables or locations in
the heap (dynamic memory allocation)
* p = &X;
* p = new Foo(); or p = malloc (...);

Algorithm A (may points-to analysis)
A Simple Example

p = &x;
q = &y;
if (?) {

Algorithm A (may points-to analysis)
A Simple Example

P9 x|

p = &x;

q = &y;

if (?) {
d = Dp;

Algorithm A (may points-to analysis)
Simple Example

X = &a;
y = &b;
if (?) { How should we handle
D = &x; this statement? (Try it!)
} else { /
} Pz&} Weak update][Stromg update]
*x = &c;
*p = &C;

x:{a,c} y:{bc} p:{xy} ac

Questions

« When (s it correct to use a strong
update? A weak update?

* s this points-to analysis precise?

« We must formally define what we
want to compute before we can
answer many such questions

Points-To Analysis:
An Informal Definition

* Let u denote a program-point
 Define ldealMayPT (u) to be a function

\p. {x | p points-to x in some state at u in some run }

+ Algorithm should compute a function MayFPT(u)
that over-approximates above function

Static Program Analysis

* A static program analysis computes
approximate information about the
runtime behavior of a given program
1. The set of valid programs is defined by

the programming language syntax

2. The runtime behavior of a given program
is defined by the programming language
semantics

3. The analysis problem defines what
information is desired

4. The analysis algorithm determines what
approximation to make

Programming Language:
Syntax

* A program consists of
— a set of variables Var

— a directed graph (V,E entry) with a
distinguished entry vertex, with every edge
labelled by a primitive statement

+ A primitive statement is of the form

. ¥ = QMH Omitted (for now)
R « Dynamic memory allocation
L 83 , * Pointer arithmetic

); L 9 * Structures and. fields
L * Procedures
» skip =

~

)

(where x and y are variables in Var)

Example Program

x = &a: Vars = {x,y,p.a,b,c}

_ &b, x = &a
v = &b;
if (?) 1 y = &b

p = &x; i _
} else { P= X A
} p = &y; skip\,—/skip

*x = &¢

*x i &c;. *p = &C
*p = &c;

Programming Language:
Operational Semantics

» Operational semantics == an
interpreter (defined mathematically)

» State

— DataState ::= Var -> (Var U {null})
* Initial-state:

—\x. null

Example States

Vars = {x,y,p.a,b,c}

Initial data-state

x: N, y:N, p:N, a:N, b:N, ¢:N

Initial program-state

<1, [x: N, ¥:N, p:N, a:N, b:N, c:N

Next program-state

<2,|x:a,y:N, p:N, a:N, b:N, c:N

Programming Language:
Operational Semantics

+ Meaning of primitive statements
— CS[stmt] : DataState -> 2Patastate

o CS[x = null Js ={s[x - null]}
« CS[X =&y]s={s[x —>yl}

. CS[x—y]S“{S[X—)S(Hm'
« CS[x="y]Js=.

*» CS[*x =y]s = .

» CS[X
» CS[X

Programming Language:
Operational Semantics

+ Meaning of primitive statements
— CS[stmt] : DataState -> 2Patastate

null Ts = {s[x - null]}
&y Js = {s[x > yl}
* CS[x = g 1's = {s[x > s(y)I}
* CS[x =7y s ={s[x —>S(S(9)>J}
if s(y) is not null
= {}, otherwise
« CS[*x =y]Js=..

» CS[X
» CS[X

Programming Language:
Operational Semantics

+ Meaning of primitive statements
— CS[stmt] : DataState -> 2Patastate

null Ts = {s[x - null]}
&y Js = {s[x > yl}
* CS5[x = g] s = {s[x = s(y)I3
» CS[x =7y]s={s[x —>S(S(H)>J}
if s(y) is not null
= {1, otherwise
+ CS[*x =y Ts = (s[s(x) > sQTh
if s(x) is not null
= {1}, otherwise

Programming Language:
Operational Semantics
* Let u denote a vertex in the CFG

 Define RS(u) = { s | S IS a DataState
that can arise at point u in some
execution }

— [t is the collecting semantics at u

May-Point-To Analysis:
Problem statement

Compute MayPT: V -> 2Va such
that for every vertex u
MayPT(u) o ldealMayPT(u),
where Var' = Var U {null}.

Given two functions f and g, we
say f og, iff forall x

f(x) 2 g(x)

May-Point-To Algorithms

Compute MayPT: V -> 2Vars such
that
MayPT(u) o ldealMayPT(u)

« An algorithm is said to be correct if the solution
MayPT it computes satisfies

YueV. MayPT(u) o ldealMayPT(u)
* An algorithm is said to be precise if the solution
MayPT it computes satisfies

YueV. MayPT(u) = ldealMayPT{u)

* An algorithm that computes a solution MayPTL s
said to be more precise than one that computes a
solution MayPT2 if

YueV. MayPT1(u) < MayPT2(u)

Algorithm A: A Formal Definition
The “Data Flow Analysis” Recipe

« Define semi-lattice of abstract-values
— AbsDataState ::=
(Var -> (2Var — {1)) U {bot}
—-fLuf, =\x (fL.(¥) Uf, (X)
» Define initial abstract-value
— InrtialAbsState = \x. {null}

» Define transformers for primitive

statements
« AS[stmt] : AbsDataState -> AbsDataState

Algorithm A: A Formal Definition
The “Data Flow Analysis” Recipe

« Apply Kildalls algorithm, using
AbsDataState lattice, and AS transfer
functions.

Algorithm A:
The Transformers

» Abstract transformers for primitive
statements

— AS[stmt] : AbsDataState -> AbsDataState
© AS[x =y s = s[x ()]
« AS[x = null T s = s[x — {null}]
* AS[x = &y] s =s[x—>{y}]
» AS[x = *y] s = s[x — s*(s(y) -{null})],
if s(y) is not = {null}
= bot, otherwise
where s*({v,,...v,}) = s(vi) U ... U s(v,),

Algorithm A

« AS[*x =y]s =

/bot if s(x) = {null}

s[z = s(yY)] if s(x)-{null} = {z}

< s[z; — s(z1) U s(y)] if s(x)~{null} = {z, =z}
[z, = s(z;) U s(y)] (where k > 1)

\[Zk — S(21) VU s(Y)]
» After fix-point solution is obtained,

AbsDataState(u) is emitted as MayPT(u),
for each program point u

An alternative algorithm:
must points-to analysis

« AbsDataState (s modified, as follows:

— Each var is mapped to {} or to a singleton set
— join is point-wise intersection

+ Let MustPT(u) be fix-point at u

* Quarantee: Y(MustPT(u)) 2 MayPT(u) 2 ldealMayPT(u)

where Y(S) = S,
if S is a singleton set
= Var, if S ={}

Must points-to analysis
algorithm

« AS transfer functions same as in
Algorithm A for x = y, x = null, and
X = &y

*« AS[X =7y | s

= bot, if s(y) = {null}

= s[x — {}], if s(y) = {3

= s[x > 2], if (y) = 7}

Must points-to analysis
algorithm

+ AS[*x = y] s = bot,
if s(x) = {nulli
= s[z > s(Y)]
if s(x) = {z}
=\v. {},
otherwise

This analysis is less precise than the
may -points-to analysis (Algorithm A),
but is more efficient

