Pointer Analysis

G. Ramalingam Microsoft Research, India & K. V. Raghavan

Goals

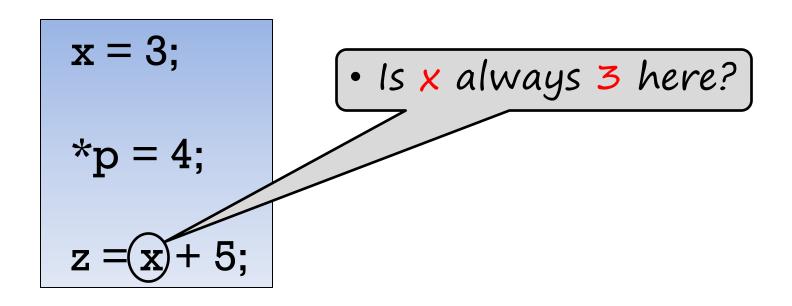
- Points-to Analysis: Determine the set of possible values of a pointer-variable (at different points in a program)
 - what locations can a pointer point-to?
- Alias Analysis: Determine if two pointervariables may point to the same location
- · Compute conservative approximation
- A fundamental analysis, required by most other static analyses

A Constant Propagation Example

$$x = 3;$$

• x is always 3 here
• can replace x by 3
• and replace $x+5$ by 8
• and so on

A Constant Propagation Example With Pointers



A Constant Propagation Example With Pointers

$$p = &y$$

 $x = 3;$
 $*p = 4;$
 $z = x + 5;$

```
if (?)
  p = &x;
else
  p = &y;
x = 3;
```

x is alway

pointers affect most program analyses always 4

x may be 3 or 4 (i.e., x is unknown in our lattice)

A Constant Propagation Example With Pointers

```
p = &y;
x = 3;
*p = 4;
z = x + 5;
```

p always points-to y

```
if (?)
 p = &x;
else
 p = &y;
x = 3;
 (p) = 4;
  x + 5;
```

p may point-to x or y

Points-to Analysis

- Determine the set of targets a pointer variable could point-to (at different points in the program)
 - "p points-to x"
 - "p stores the value &x"
 - "*p denotes the location x"
 - -targets could be variables or locations in the heap (dynamic memory allocation)
 - p = &x;
 - p = new Foo(); or p = malloc (...);

Algorithm A (may points-to analysis) A Simple Example

```
p = &x;
q = &y;
if (?) {
 q = p;
x = &a;
y = \&b;
z = *q;
```

Algorithm A (may points-to analysis) A Simple Example

	P	9	×	Y	Z
p = &x					
p = &x q = &y					
if (?) {					
q = p;					
}					
x = &a					
y = &b z = *q;					
4,					

Algorithm A (may points-to analysis)

Simple Example

```
x = &a;
y = &b;
                How should we handle
if (?) {
                this statement? (Try it!)
 p = &x;
} else {
 p = &y;
                Weak update Strong update
                             p: {x,y}
             x: a
                                       null
*x = &c:
                             p: {x,y}
             x: a
*p = &c;
             x: {a,c} y: {b,c}
                             p: {x,y}
```

Questions

• When is it correct to use a strong update? A weak update?

· Is this points-to analysis precise?

 We must formally define what we want to compute before we can answer many such questions

Points-To Analysis: An Informal Definition

- · Let u denote a program-point
- Define IdealMayPT (u) to be a function

\p. $\{x \mid p \text{ points-to } x \text{ in some state at } u \text{ in some run } \}$

 Algorithm should compute a function MayPT(u) that over-approximates above function

Static Program Analysis

- A static program analysis computes approximate information about the runtime behavior of a given program
 - 1. The set of valid programs is defined by the programming language syntax
 - 2. The runtime behavior of a given program is defined by the programming language semantics
 - 3. The analysis problem defines what information is desired
 - 4. The analysis algorithm determines what approximation to make

Programming Language: Syntax

- · A program consists of
 - a set of variables Var
 - a directed graph (V,E,entry) with a distinguished entry vertex, with every edge labelled by a primitive statement
- · A primitive statement is of the form
 - x = null
 - $\cdot x = y$
 - x = *y
 - x = &y;
 - *x = y
 - skip

Omitted (for now)

- Dynamic memory allocation
- · Pointer arithmetic
- · Structures and fields
- Procedures

(where x and y are variables in Var)

Example Program

```
x = &a;
y = \&b;
if (?) {
 p = &x;
} else {
 p = &y;
*x = &c;
```

```
Vars = \{x,y,p,a,b,c\}
                           x = &a
                           y = &b
                 p = &x
                           *x = &c
                           *p = &c
```

- Operational semantics == an interpreter (defined mathematically)
- State
 - DataState ::= Var -> (Var U {null})
- Initial-state:
 - \x . null

Example States

Initial data-state

x: N, y:N, p:N, a:N, b:N, c:N

Initial program-state

<1, x: N, y:N, p:N, a:N, b:N, c:N

Next program-state

<2, x: a, y:N, p:N, a:N, b:N, c:N

- Meaning of primitive statements
 CS[stmt]: DataState -> 2^{DataState}
- CS[x = null]s = {s[x → null]}
 CS[x = &y]s = {s[x → y]}
 CS[x = y]s = {s[x → s(y)]}
 CS[x = *y]s = ...

• CS[*x = y]s = ...

= ...

- Meaning of primitive statements
 CS[stmt]: DataState -> 2^{DataState}
- CS[*x = y] s = ...

• • •

...

 Meaning of primitive statements - CS[stmt]: DataState -> 2DataState • $CS[x = null]s = \{s[x \rightarrow null]\}$ • $CS[x = &y]s = \{s[x \to y]\}$ • $CS[x = y]s = \{s[x \to s(y)]\}$ • $CS[x = *y]s = \{s[x \to s(s(y))]\},$ if s(y) is not null = {}, otherwise • $CS[*x = y] s = \{s[s(x) \rightarrow s(y)]\},$ if s(x) is not null = {}, otherwise

· Let u denote a vertex in the CFG

- Define $RS(u) = \{ s \mid s \text{ is a DataState} \}$ that can arise at point u in some execution $\}$
 - It is the collecting semantics at u

May-Point-To Analysis: Problem statement

Compute MayPT: V -> 2^{Var'} such that for every vertex u MayPT(u) ⊇ IdealMayPT(u), where Var' = Var U {null}.

Given two functions f and g, we say $f \supseteq g$, iff for all x $f(x) \supseteq g(x)$

May-Point-To Algorithms

Compute MayPT: $V \rightarrow 2^{Vars'}$ such that $MayPT(u) \supseteq IdealMayPT(u)$

 An algorithm is said to be correct if the solution MayPT it computes satisfies

 $\forall u \in V. MayPT(u) \supseteq IdealMayPT(u)$

 An algorithm is said to be precise if the solution MayPT it computes satisfies

 $\forall u \in V. MayPT(u) = IdealMayPT(u)$

 An algorithm that computes a solution MayPT1 is said to be more precise than one that computes a solution MayPT2 if

 $\forall u \in V. MayPT1(u) \subseteq MayPT2(u)$

Algorithm A: A Formal Definition The "Data Flow Analysis" Recipe

- · Define semi-lattice of abstract-values
 - AbsDataState ::=

$$(Var -> (2^{Var'} - \{\})) \cup \{bot\}$$

$$-f_1 \cup f_2 = \xdot x. (f_1(x) \cup f_2(x))$$

- · Define initial abstract-value
 - Initial Abs State = $\xspace x$. {null}
- Define transformers for primitive statements
 - AS[stmt] : AbsDataState -> AbsDataState

Algorithm A: A Formal Definition The "Data Flow Analysis" Recipe

 Apply Kildall's algorithm, using AbsDataState lattice, and AS transfer functions.

Algorithm A: The Transformers

- Abstract transformers for primitive statements
 - AS[stmt]: AbsDataState -> AbsDataState
- AS[x = y] $s = s[x \rightarrow s(y)]$
- AS[x = null] $s = s[x \rightarrow \{null\}]$
- $AS[x = &y]s = s[x \to {y}]$
- AS[x = *y] $s = s[x \rightarrow s*(s(y) {null})],$ if s(y) is not = {null} = bot, otherwise

where
$$s^*(\{v_1,...,v_n\}) = s(v_1) \cup ... \cup s(v_n)$$
,

Algorithm A

```
• AS[*x = y]s =
      bot s[z \rightarrow s(y)]
                                                  if s(x) = \{null\}
                                                  if s(x) - \{null\} = \{z\}

\begin{array}{c}
s[z_1 \to s(z_1) \cup s(y)] \\
[z_2 \to s(z_2) \cup s(y)]
\end{array}

                                                  if s(x) - \{null\} = \{z_{1, ...,} z_k\}
                                                  (where k > 1)
        [z_k \to s(z_k) \cup s(y)]
```

 After fix-point solution is obtained, AbsDataState(u) is emitted as MayPT(u), for each program point u

An alternative algorithm: must points-to analysis

- AbsDataState is modified, as follows:
 - Each var is mapped to {} or to a singleton set
 - join is point-wise intersection
- Let MustPT(u) be fix-point at u
- Guarantee: $\Upsilon(MustPT(u)) \supseteq MayPT(u) \supseteq IdealMayPT(u)$

```
where \Upsilon(S) = S,

if S is a singleton set

= Var', if S = \{\}
```

Must points-to analysis algorithm

- AS transfer functions same as in Algorithm A for x = y, x = null, and x = &y
- AS[x = *y]s= bot, if $s(y) = {null}$ = $s[x \to {}]$, if $s(y) = {}$ = $s[x \to s(z)]$, if $s(y) = {}z$

Must points-to analysis algorithm

```
• AS[*x = y] s = bot,

if s(x) = \{null\}

= s[z \rightarrow s(y)]

if s(x) = \{z\}

= \{v, \{\}, \}

otherwise
```

This analysis is less precise than the may-points-to analysis (Algorithm A), but is more efficient