Lecture notes — Introduction to abstract interpretation

August 29, 2019

Slide 3/18 — collecting semantics. A state is a
snapshot of the memory of a program. In the simplest
setting, a state is an element of of Var — Val, where
Var is the set of program variables and Val the set
of all possible values. We use State to denote the set
of all possible states.

In case we have heap memory, pointers, record
structures, etc., then states are more complex. In
this setting addresses would need to be treated as
values. Also, we would need to map each address
(plus an offset, indicating a field) to a value. In gen-
eral, any other resource that the program has access
to (e.g., file pointers) would also need to be mod-
eled. Furthermore, the structure of states can be ex-
tended, when required, to encode information that is
not present in memory at run time; e.g., along with
each address, one might track the statement number
of the last statement that wrote to that address. In
the rest of this lecture we stick to the simple notion
of states outlined earlier.

Let I be the initial program point in a program,
and let SS(I) be the set of initial states possible at
T (this has to be given; in the slides we also refer to
SS(I) as Sp). The collecting semantics of a program
is a specification of the concrete meaning of the pro-
gram. It is a map from program points to sets of
states; i.e., each program point N is mapped to the
precise set of all possible states SS(V) that can arise
at the point N due to all paths that end at N when
the program is run from any initial state in a given
set of initial states SS(I).

Note that in general an infinite number of paths
may end at a point N. Also, an infinite number of
possible states may arise at N even due to a single
path (e.g., due to non-deterministic functions such

as odd() and even()). In general, it is impossible to
compute the precise collecting semantics of programs.

In the example in the slide, each state is a pair of
values, one for variable p and other for variable q. In
this example it does not matter what the initial set
of states SS(I) is, because p and q are both defined
being used. Initially, we show the set of states that
arise at the end of each path in the program. Finally,
at each program point, we collect all the states that
arise at that point due to all paths that end there.
This is the collecting semantics.

Slide 4 — An abstract interpretation. The ab-
stract interpretation is a 3-tuple, and is given to the
analysis. The analysis designer needs to provide this.
The analysis subsequently proceeds automatically us-
ing this.

Note that when we say that the lattice D needs
to be given, we mean not only the elements of D,
but also the definitions of the operators meet and
join (actually, join alone is sufficient). The designer
needs to provide a finite representation of the lattice
(even if it is infinite), as well as some representation
of the join operator.

The designer needs to provide transfer functions
for each kind of statement and condition. Again, al-
though the number of unique statements expressible
in a language is infinite, the designer needs to give
a finite representation of the transfer functions of all
possible statements and conditionals. This is typi-
cally done by giving transfer functions for the indi-
vidual operators in the language (see the Introduc-
tion slides), and then defining transfer functions for
expressions recursively using the transfer functions of
the individual operators.

The function «v is actually not used during analy-

sis. It is used only to express the correctness of the
analysis (more on this later).

Slide 5 — example. This slide shows an abstract
interpretation 3-tuple for odd-even analysis.

The lattice D is shown at the top of the figure.
In the slide we show only the transfer function of
an assignment statement. In general, the designer
would also need to provide a transfer function for
each branch of a conditional. For e.g.,

If M N is the “true” edge of the conditional “p ==
27’

fun(s) = (e sld))
If M N is the “true” edge of the conditional “p ==

b2

q
fun(s) = L,if s[p]is o and s[q] is e

or vice versa
(s[p], s[p]), else if s[p] is 0 or e
(s[d], sld]), else if s[q] is 0 or e
(oe, oe), otherwise

If M N is the “true” edge of the conditional “p ==
2l[q==3

fun(s) = s

and so on.

In this slide the lattice, transfer functions, and
~ map shown are for programs with two variables,
named p and q. This raises the question, is an ab-
stract interpretation only suitable for a class of pro-
grams with the same number of variables, same vari-
ables names, etc.? A “yes” answer would not be so
good. Actually, what can be done is to design ab-
stract interpretations that are parameterizable. That
is, the analysis designer could somehow provide a
generic abstract interpretation 3-tuple, and also a
mechanical way to instantiate it for any given pro-
gram. For simplicity we ignore this issue in our slides.
The example abstract interpretation 3-tuples that we
show are already instantiated for specific classes of
programs.

Slide 6 — collecting abstract values. In this
slide we illustrate the notion of abstract join-over-all-
paths (i.e., abstract JOP) solution.

An initial abstract value dy at the entry of the pro-
gram needs to be given. Let’s take it as (oe, oe) in
this example (again, because all the variables are de-
fined before being used, it does not matter in this

example what initial abstract value is used).

Initially, we show the abstract state (i.e., element
of D) that arises at the end of each path. For
e.g., the abstract state at the end of path ABC is
ch(fAB (fIA(do))), where [is the initial point. f;4
is the transfer function of the first assignment node;
it returns (o, €) no matter what its argument is. fap
and fpc are the transfer functions of the merge node
and the true branch of the condition node, respec-
tively; both of these transfer functions happen to
be identify. Therefore, the above computation yields
(0,€).

Then, on the right side, we show against each pro-
gram point the join of the abstract states at the end
of all paths that end at that point. This is the ab-
stract JOP (analogous to the collecting semantics).

Note that we have not yet talked about how to
compute the abstract JOP. It is computable pre-
cisely only when the given abstract interpretation
3-tuple uses distributive transfer functions (more on
this later).

Slide 7 — comparison of abstract JOP states
and collecting states. Here, we show that at each
program point the v image of the abstract JOP is
a superset of the corresponding collecting semantics
(i.e., set of concrete states).

At most points, it is a strict superset, thus illustrat-
ing the fundamental fact that abstract interpretation
is basically an approximate analysis.

Slide 8

Here we state the fundamental definition of when
an abstract interpretation is said to be correct. Intu-
itively, for any program, at all program points, the
image of the abstract JOP at that point needs to be
a superset of the collecting semantics at that point.

Slide 9 — another example program. Shows
collecting semantics for another example program.

Slides 10 — abstract interpretation 3-tuple
for constant propagation. This slide shows the
abstract lattice for the classical problem of constant
propagation (used in compilers).

The lattice shown is for programs with two vari-
ables, x and y. The lattice is an infinite lattice (but
of bounded height). Only a selection of elements of
the lattice are actually shown in the figure.

Each element of the lattice, except L, is a partial
function from variable names to values. For conve-
nience we denote each partial function as a set of
pairs, where each pair can be seen as a constraint on
the value of the corresponding variable. Thus, e.g.,
indicates that neither of the variables is constrained.
Using this notation the join of any two non-l ele-
ments can be seen as set-intersection.

The given v map is shown at the bottom of the
slide.

In general, v needs to monotonic. That is, for any
two lattice elements di and dy such that di < do,
~(dy) needs to be a subset of y(dy). Also, typically,
~v(L) is the empty set while v(T) is the set of all
concrete states.

Slide 11 — transfer functions

The definition of the transfer function in Slide 11
is self-explanatory. Again, the transfer functions for
conditionals have been omitted (although they are
very interesting).

Here are a few illustrations of the transfer function

shown, for the statement n = “x :=x + y”:
fn(L) = 1
fu((2,1)) =0
.fn({(xvl)’(y72)}) - {(1‘73),(31,2)}

In general the transfer functions need to be mono-
tonic.

Also, they need to satisfy the following correctness
property: for any element di; € D, if f,(d1) = da,
then for every concrete state s € y(dy), nstate,(s)
needs to be contained in y(dz), where nstate,, is the
concrete semantics of the statement n.

It is in order to satisfy the above property that
fn((2,1)) has to return @). (No other lattice element
exists such that it’s 7 image is a superset of the set
{(,)i =7+1})

Slides 12 and 13

Slides 12-13 are analogous to Slides 6 and 7. It is
noted that the imprecision in the analysis is funda-
mentally due to the abstract lattice being an approx-
imation of the concrete domain (which is (25t C)).

In other words, imprecision results because the ab-
stract lattice cannot make all distinctions that the

concrete domain can, even though we use the best
possible abstract transfer functions for this abstract
lattice. (This same fact holds in the example in Slide
7 also.)

This imprecision is the price to pay for attempting
to solve an undecidable problem.

Slides 14-16. These slides contain formalism, and
are mostly self-explanatory.

A few comments on Slide 15: For the conditional
node, we will need two transfer functions, fras and
fon. Similarly, for the join node, we will need two
transfer functions frxy and fry (both being iden-
tity).

Slide 17. The definition of the function nstate
falls out of the concrete semantics of expressions and
assignments as specified by the programming lan-
guage.

A natural thought is that nstate should have the
signature State — State. However, our formulation
allows a statement to yield no states on certain in-
puts (e.g., on inputs that cause a divide-by-zero ex-
ception). Also, it supports non-deterministic state-
ments that return one among a set of possible output
states for a given input state, e.g., an input state-
ment or a call to a random number generator. For
any state s, during actual runtime, any execution of
the node/branch that is in between program points
M and N using s as the incoming state should be
guaranteed to produce an outgoing state that is an
element of nstateyy(s).

Note that if L is the program point that precedes
a conditional node, and if M and N are its two suc-
cessor program points, then, provided the condition
checked in the node is deterministic, for any concrete
state s, s would be present in at most one of the sets
nstatepnr(s) or nstaterny(s). It is possible that s is
present in neither set (this will happen if evaluation
of the condition on the incoming state s causes the
conditional node to terminate the execution of the
program).

