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Recollection of Abstract Interpretation

It is a tuple (D, Fp,~y), such that

e (D, <) is a complete join semi-lattice (aka the abstract lattice), with
a least element L.

o Concretization function « : D — 25tate

@ Monotone transfer function (i : D — D) € Fp for each node n and
incoming edge L into n and outgoing edge M from n.

e Junction nodes have identity transfer function.
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An aside: Collecting semantics stated as an abstract

interpretation

o Concrete lattice C : (251, C), L = (), T = State, U = U.

o Transfer function fip = nstate;,, for each node n and incoming edge
L into n and outgoing edge M from n.

@ v: C — C isidentity
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An aside: Collecting semantics stated as an abstract

interpretation

Concrete lattice C : (2°%%%¢, C), L =), T = State, LI = U.

Transfer function fyp = nstate],, for each node n and incoming edge
L into n and outgoing edge M from n.

v : C — C is identity

Therefore, collecting states at any point N =
JOP at this point using this interpretation

This particular abstract interpretation is also known as the concrete
interpretation.
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Definition: consistent abstractions

An Al (D, Fp,vp : D — 25t€) is said to be a consistent abstraction of
(or, be correct wrt) another A.l. (C, Fc,vc : C — 2°t2%€) under a pair of
monotone functions ypc : D — C and acp : C — D iff:

(a) (aep,ypc) form a Galois connection, and

(b) for all programs, and for all dy € D and ¢y € C such that
Yoc(do) = co:
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Definition — contd.

where

e JOP¢ is obtained by using (C, fc), with ¢p as the initial state,
e JOPy is by obtained using (D, fp), with dp as the initial state, and
@ X is the “vectorized” form of x, i.e., x for all points in a program.

Note: Throughout remaining slides we use v to mean yp¢ and « to mean
acp.
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Definition: («, ) form Galois Connection

@ « and vy are
monotonic

e y(a(e)) > e, for
allee C

e a(v(d)) =d, for
allde D
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[[lustration of consistent abstraction

@ Consider the lattices L1 and L, from the introduction slides.

@ L; is a consistent abstraction of L under the following (v, 7):

a(S € Ly) = 1,ifS=0
= (coli({x | (x,y) € S}), coli({y | (x.y) € S})),
otherwise
Y((c,d) € L1) = {(x,y) |if cis oethen x=0V x =eelse x=c,

if disoetheny=0Vy=-eelsey=d}

where
coll(W) = o, if W={o}
= e, if W=/{e}
= oe, if W={o,e}
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Another illustration of consistent abstraction

Constant propagation (CP) is a consistent abstraction of the concrete
interpretation, under the following (a,7):

a(s c 2State) — J_,
if S is empty
= {(x,c) Vee S: e(x) = c},
otherwise
ifp=_1
= {e € State | for each (x,c) € p: e(x) = c},
if p is any other element of the lattice
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Properties of consistent abstractions

o Note: If an abstract interpretation (D, Fp,~ : D — 25%€) is a
consistent abstraction of (2°%2% nstate’, identity), then we say that
(D, Fp,~ : D — 25t3%€) is correct.

o Consistent-abstraction-of is a transitive property. That is, if
(D, Fp,~p : D — 25t3€) is a consistent abstraction of

(C,Fc,vc : C — 25 under yp¢ : D — C, and

(C,Fc,vc : C — 25t) is a consistent abstraction of

(B, Fg,vg : B — 2°2%¢) under ¢ : C — B, then

(

(
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Theorem 1: An abstract interpretation (D, Fp,~yp) is a consistent
abstraction of another abstract interpretation (C, F¢,~y¢) under a pair

(a,7) if

@ (a,~) form a Galois connection, and

@ Each transfer function fip p € Fp is an abstraction of the
corresponding function f p ¢ € Fc.
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Definition: f, p is an abstraction of f, ¢

fun,c and fyn p satisfy one of the following (each of them implies the
other):

C D
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Statement: Consider any edge M — N. If d is any element of D and c is
any element of C such that y(d) > ¢, then y(fun,p(d)) > fun,c(c).
Proof: The second condition on transfer functions tells us that
Y(fmn,p(d)) > fun,c(7v(d)). Using the lemma’s prerequisite v(d) > c,
and by monotonicity of fyn ¢, we get y(fun,p(d)) > fun,c(c).
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Lemma 1 proof illustration
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Lemma 2: If y(dp) > co, then for any path p, v(f, p(db)) > f5.c(co)-
Proof:
The proof is by induction on the length of the path p. Let i be the length

of the path p.

@ Base case (i = 0): The property to prove reduces to y(dp) > ¢p.
Recall that this is a pre-requisite of this lemma.

@ Inductive case i > 0: Let p’ denote the prefix of path p that excludes
the last edge of p. The inductive hypothesis is that
Y(fy,p(dob)) > fpr.c(co). Let the last edge of p be L — M. Applying
Lemma 1 on this edge we get y(fim,p(for.0(do))) > fim,c(for,c(0)).
This reduces to y(f,, p(do)) > f5,c(co). The inductive case is done.
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[llustration of inductive case of Lemma 2

Deepak D'Souza and K. V. Raghavan (ISc) Correctness of Abstract Interpretation 15/19



Proof of Theorem 1

Given dp € D and ¢y € C such that y(dy) > cp. Pick any point N in the

given program. Let Py be the set of paths that begin at point / and end
at V.

e By Lemma 2, for any path p € Py, we infer v(f, p(do)) > f5.c(co)-
@ The result above implies:

L] (0(fop(d0))) = | ] (Forc(0)) (1)

pEPN pEPN

@ By monotonicity of «y, we infer:

(L (Fon(d0))) > || (4(fo,0(ch))) ()

pEPN PEPN
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Proof of Theorem 1 — continued

e Using transitivity, Equations (1) and (2) imply:

v (Fop(d0))) = | (foc(e0)) (3)

pPEPN pEPN

@ Using the definition of abstract JOP, we infer:

v(JOPY) > JOPY (4)
@ Hence, we get:
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More theorems

1. If a, form a Galois connection between (D, Fp,~vp and (C, Fc,vc),
then for all di,d» € D, 'y(dl M d2) = 'y(dl) I ’y(dg).

This has an interesting application:

o If dy y is the JOP at a point N due to a correct abstract
interpretation (D, F1.p,vp) and if d y is the JOP at point N due to
another correct abstract interpretation (D, F» p,vp) (both JOPs
computed using a common entry value dy € D), then di y M da p is
more precise than di y or dy n individually as an abstract JOP, while
still over-approximating the collecting semantics.

@ Alternatively, for each edge MN, we can use the “meet” transfer
function fynyp = f1,mn M f2 mn, and compute the abstract JOP
using these “meet” transfer functions. The abstract JOP obtained
this way will be < d; y M d> y mentioned in the preceding bullet, and
will also over-approximate the collecting semantics.
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More theorems

2. If a, v is a Galois connection between (D, Fp,~vp and (C, Fc,v¢), then
for any d € D, y(d) is equal to LI{c € C|a(c) C d}, and for any c € C,
a(c) is equal to M{d € D|~(d) 3 c}.
o Note, this does not imply that for every monotone function ~ (resp.
@), there exists an « (resp. ) such that («,~) form a Galois
connection.

3. If (o, y) form a Galois connection, and each transfer function

fim,p € Fp is an abstraction of the corresponding function fip.c € Fc,
then:

~-image of least solution of dataflow equations using (D, Fp,vp)
dominates least solution of dataflow equations using (C, Fc,vc).
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