
Lecture notes – Kildall’s algorithm

September 12, 2022

Slide 2 (of 62). Say an abstract interpreta-
tion framework (D, fD, γD) is a consistent abstrac-
tion of another framework (C, fC , γC). By def-
inition, for any c0, d0 such that γDC(d0) ≥ c0,
γ(JOPD) ≥ JOPC . Therefore, if we can compute
some over-approximation of the JOPD (as shown by
the “*” in the figure), then the γ image of this over-
approximation would be an over-approximation of
JOPC . The aim of Kildall’s algorithm is to compute
such an over-approximation of JOPD.

Slide 3. This slide shows Kildall’s algorithm.

Slides 4-15. These slides illustrate Kildall’s al-
gorithm on an example program, using the odd-even
lattice. The most-precise transfer functions for this
lattice are used. Even though the transfer function
for “+” is not distributive, in this example the algo-
rithm happens to compute the precise JOP.

Slides 16-26. These slides illustrate Kildall’s al-
gorithm on another example program, this time using
the CP lattice. The most-precise transfer functions
for this lattice are used. In this example the algo-
rithm happens to over-approximate the precise JOP.

Slides 21, 22 illustrate how the early joining at the
point before Node 3 (which has a non-distributive
transfer function) makes it impossible to infer the
fact ‘(y ,1)’ after Node 3. The abstract JOP, on the
other hand, performs late joining, using the results
of all paths that come to each point. However, in
general, the abstract JOP is not computable.

Slide 28. This slide is about proving the termi-
nation of Kildall’s algorithm when the lattice D has
no infinite chains. Let di be the vector such that
the Nth element of this vector is the dataflow value
at program point N after i steps (i.e., iterations) of
Kildall’s algorithm. Consider step i + 1 of the al-

gorithm. The value v that’s chosen at this step for
propagation gets unmarked. Now, there are two pos-
sibilities. Case 1: di+1 > di. Case 2: di+1 = di.
Case 2 can happen only when no successor value of
v changes. That is, none of the successor values of v
that was previously unmarked gets marked. That is,
the total number of marks decreases.

The plot in the slide illustrates the above scenarios.
In the x-axis are the steps of the algorithm. The y-
axis denotes elements of D. At each value i of the x-
axis the point shown in the figure denotes di. Thus,
if the points corresponding to steps i and i+1 are at
the same height then we are in Case 2, else we are in
Case 1.

Since each di+1 is ≥ di, the points in the figure (not
counting duplicated points in “horizontal” portions)
constitute a chain of the lattice chain in D. It can
be shown that if the lattice D has only finite chains,
then D also contains only finite chains. Therefore,
the points in the figure cannot climb an infinite num-
ber of times. Furthermore, each contiguous horizon-
tal sequence has at most M points, where M is the
number of program points. Therefore, the algorithm
is guaranteed to terminate on all programs whenever
D has no infinite chains.

Note, on some programs the algorithm could ter-
minate even in the presence of infinite chains. In par-
ticular, the algorithm always terminates on loop-free
programs. Also, a technique called widening can be
used to ensure termination (with over-approximation
of results) in the presence of infinite chains. Widen-
ing is not in the syllabus of our course.

Slide 29-30. Any program P induces a set of
dataflow equations. These equations are mathemati-
cal equations, involving mathematical variables. The

1



domains of the variables are the given lattice D; i.e.,
any solution to these equations maps each variable
to an element of D. Each equation has a variable on
the LHS, and an expression involving zero or more
variables or specific lattice elements on the rhs.
The variables in the equations correspond to the

program points. Each variable xN , corresponding to
program point N , appears in the lhs of atmost one
equation, as described below.

� If point N is the initial program point I of the
program, the equation is simply ‘xI = d0’, where
d0 is the given initial dataflow value.

� If point N is the successor of a point M , and the
node n that is in between M and N is not a join
node, then the equation is ‘xN = fn(xM )’.

� Finally, if N comes after a join node, and L and
M are the points that precede the join node, the
equation is ‘xN = xL ⊔ xM ’.

Note that the equations are derived from the pro-
gram P , the given initial value d0, as well as the given
transfer functions.
The idea behind forming these equations is as fol-

lows: Rather than compute the JOP directly, Kil-
dall’s algorithm attempts to find a solution to these
equations. We will later on relate this solution to the
JOP.
Slides 32-33. In this example we use the collect-

ing semantics lattice as the domain for the variables,
and the concrete (i.e., nstate ′ transfer functions). Let
d0 be any set of (initial) concrete states. It turns out
there are two solutions to the induced equations:

1. xA = d0, xB = {2}, xC = {i|i ≥ 2},
xD = {i|i ≥ 3}.

2. xA = d0, xB = {2}, xC = Z, xD = Z

There are no other solutions to the induced equa-
tions. Note that the first solution above corresponds
to the collecting semantics of the program, and is
dominated by the second solution. In fact, the col-
lecting semantics will always be the least solution
to the induced equations if we use the collecting-
semantics lattice and transfer functions. (We will
prove this later.)

Slides 34-35. Consider any set of equations such
that (a) the lhs of each equation is a variable, and the
rhs is an expression involving zero or more variables,
as well as operators and functions, and (b) each vari-
able appears in the lhs of a unique equation. These
equations could be the induced equations from a pro-
gram, or somehow otherwise given. Let D be the
domain of the variables.

The equations induce a function f from DM to
DM , where M is the number of variables. (We also
denote DM as D.) If the equations are induced by a
program, this function f is called the induced vector-
ized transfer function of the program.

The definition of this function is given in the slide.
The input to the function is a vector (dI , dB , . . . , dM ).
The function returns a vector; the ith element of the
returned vector is nothing but the rhs of the dataflow
equation whose lhs is xi, with each variable xj occur-
ring in this expression replaced by dj .

It is easy to see that an element of the domain D
is a solution to the equations iff it is a fix-point of f .

If D is a complete lattice then so is D. Also, if
all the operators and functions that appear in the
rhs’s of the dataflow equations are monotone, then
so is the function f . Therefore, the Knaster-Tarski
theorem applies, and tells us that f (a) has at least
one fix-point, and (b) has a unique least fix-point.
(This is the relevance of the Knaster-Tarski theorem
to program analysis!)

The Kleene iteration is the procedure of generat-

ing the ascending chain ⊥D, f(⊥D), f
2
(⊥D), . . .. It

is easy to prove that if this chain stabilizes at some
value then that value is the lfp of f . It is also easy to
prove the this chain will stabilize if D has no infinite
chains.

We prove later on that Kildall’s algorithm, when-
ever it terminates, identifies the lfp of the set of equa-
tions given to it (or equivalently, the lfp of the func-
tion f induced by these equations). It is an interest-
ing fact that Kildall’s algorithm need not be applied
to program analysis alone. It can be used to find
the lfp of any set of equations that have the struc-
ture described above, or equivalently, the lfp of any
function f of the form described above provided f is
monotone.

2



Slide 36. This figure summarizes the results that
we are going to prove subsequently.

Slide 37 – Definitions. We are already aware
of the definitions of monotonic and distributive func-
tions. It is easy to show every distributive function
is also monotone.

An infinitely distributive function f is one such
that for any subset S of the lattice D, f(⊔S) =
⊔{f(s)|s ∈ S}, where S is of finite or infinite size.
Note that if D is a finite lattice then every distribu-
tive function on it is also infinitely distributive. Oth-
erwise, every infinitely distributive function is dis-
tributive, but the converse does not hold necessarily.

Slides 38-41. Let (D, fD, γD) be an abstract in-
terpretation framework, and let d0 ∈ D be an initial
value. Let f : D → D be the induced vectorized
transfer function of a program P wrt initial value d0.
Let c ∈ D be any fix-point of f . Let d ∈ D be the ab-
stract JOP at all points of program P using d0 as the
initial value. We prove now that d ≤ c. We denote
c[M ] as cM , c[N ] as cN , etc.

First, we prove using induction on the lengths of
program paths, the following claim: For any path
p in the program that ends at a point N , fp(d0) is
dominated by cN .

The base case is the path of length 0. For this path,
fp(d0) is d0. c[I], where I is the initial point in the
program, is also equal to d0, because of the equation
xI = d0.

Now, consider a path p of length i + 1 that ends
at a point N ; also let p be equal to a shorter path
p′ of length i that ends at a point M , followed by a
transition through a node n that lies between M and
N . Let d ≡ fp(d0), d

′ ≡ fp′(d0), and cM ≡ c[M ].

Consider the case where node n is a non-join node.
By the inductive hypothesis:

d′ ≤ cM (1)

By definition of d, d′:

d = fMN (d′) (2)

Program points M,N induce a dataflow equation
xN = fMN (xM ). Since c is a solution to the equa-
tions, it follows that:

cN = fMN (cM ) (3)

Now, by equations 1-3 above, and by monotonicity
of fMN , it follows that d ≤ cN .

Consider the other case, where node n is a join
node. In this case, since n has an id transfer function,
it follows that:

d′ = d (1)
Let M,L be the points that precede n. The

dataflow equation induced by n is ‘xN = xM ⊔ xL’.
Since c is a solution to the equations, it follows that
cN = cM ⊔ cL. That is:

cM ≤ cN (2)
By the inductive hypothesis:
d′ ≤ cM (3)
From equations 1-3 above it follows that d ≤ cN .
Hence we have proved our claim.
It follows from the above claim that the dataflow

facts that arrive at any point N due to any path
ending at N are all dominated by cN . Therefore, it
follows that d[N ] ≤ cN . Therefore, any technique
(e.g., Kildall’s algorithm, or Kleene iteration) that
computes any fix-point of f can be used to safely
over-approximate the JOP d.

Slides 42-45. We continue to use the terms in-
troduced above. We now prove that if the dataflow
functions of all the edges in a program are infinitely
distributive, then the abstract JOP d is a fix-point
of the function f induced by the program. It follows
from this result and from the previously proved result
that the lfp of f coincides with the JOP d.

Let N be any arbitrary program point. We will
argue, using two cases below, that d satisfies the data
flow equation who left hand side is the variable xN .
The first case is that N is preceded by a non-join

node. Let M be the point that precedes this node.
Therefore, the data flow equation whose lhs is xN

is “xN = fMN (xM )”. Let SM be the (potentially
infinite) set of abstract states (i.e., elements of D)
that arrive at M along paths that end at M by start-
ing with the abstract state d0. Similarly, let SN be
the (potentially infinite) set of abstract states that
arrive at N along paths that end at N by start-
ing with the abstract state d0. It is clear that SN

= {fMN (s)|s ∈ SM} (see Slide 43). Therefore, be-
cause fMN is infinitely distributive, it follows that
(⊔SN ) = fMN (⊔SM ). Now, by definition of JOP,
(⊔SM ) = d[M ] and (⊔SN ) = d[N ]. Therefore, we
have shown that d[N ] = fMN (d[M ]). In other words,
d satisfies the equation mentioned above.

3



Going on to the case where N is preceded by a
join node, let M,P be the points that precede this
join-node. In this case, the data flow equation whose
lhs is xN is “xN = xM ⊔ xP ”. It can be argued (see
Slide 44) that d[N ] = d[M ] ⊔ d[P ]. Therefore, the d
satisfies the equation mentioned above.
Therefore, we have shown that d satisfies all

the dataflow equations induced by the program P .
Therefore, d is a fix-point of f .
Slide 46.
A note about the collecting semantics: Let (C, fC)

be the collecting-semantics framework. That is, C is
the collecting-semantics lattice, and fC is the set of
nstate ′ transfer functions. C, being a power set lat-
tice, is a complete lattice. The nstate ′ functions can
all be shown to be distributive. Therefore, the JOP
using this framework, which is nothing but the col-
lecting semantics, is the lfp of the dataflow equations
built using the nstate ′ transfer functions.
Slides 47-55. In these slides we show that at any

point in the algorithm the vector of values d com-
puted so far by the algorithm is dominated by the
lfp l of f . We do this using induction on the number

of steps completed by the algorithm. d
0
has d0 in

the Ith slot and ⊥ in all other slots (this is the algo-
rithm’s initialization). From the equations, it follows
that any fix point assigns d0 to variable xI . There-
fore, the base case is proved.

We now assume that d
i ⊑ l, and prove that

d
i+1 ⊑ l. Let N be the program point whose value

gets updated at Step i + 1. The argument proceeds
in two cases.
The first case is that the node preceding N is a

non-join node. Let M be the program point that

precedes this node. Let diM denote d
i
[M ], diN denote

d
i
[N ], lM denote l[M ], lN denote l[N ], etc.. By the

inductive hypothesis:
diM ≤ lM (1)
diN ≤ lN (2)
Points M,N induce the dataflow equation ‘xN =

fMN (xM )’. Therefore, since l is a solution to the
equations, we get:
lN = fMN (lM ) (3)
From equations 1 and 3, and by monotonicity of

fMN , we get:

fMN (diM ) ≤ lN (4)

Clearly the value di+1
N at point N after step i + 1

is diN ⊔ fMN (diM ). From equations 2 and 4 it follows
that

di+1
N ≤ lN (5)

All other components of vector d (other than the
Nth component) remain the same after i+1 steps as
they were at the end of i steps. Therefore, we have

shown that d
i+1

is dominated by l.

The next case is that N is a join node. This case
is explained in Slide 52-55.

Slides 56-57.

We now show that d is a post fix-point of f .

LetN be any program point. We need to show that
(dN = d[N ]) ⊑ f(d)[N ]. The argument proceeds in
two cases.

The first case is that the node that precedes N is a
non-join node. Let M be the point that precedes this
node. Say the dataflow value at M got unmarked for
the last time in step i of the algorithm (it must have
gotten unmarked in some step because the algorithm
has terminated and initially all points were marked).
Clearly, since M never got marked again,

(dM ≡ d[M ]) = diM (1)

Now, at the end of step i the value at point N be-
comes diN ≡ (fMN (diM )⊔ di−1

N ). Therefore, it follows
that

diN ≥ fMN (diM ) (2)

The value at any program point can change in a
step only if a predecessor of this point gets unmarked
at this step. Since M is the only predecessor of N ,
and since we have assumed that M never gets un-
marked after step i, the value at N does not change
after Step i. Therefore,

dN = diN (3)

Due to the equation xN = fMN (xM ), it follows
that

(f(d))[N ] = fMN (dM ) (4)

From (1), (2), (3), and (4), it follows that

dN ≥ (f(d))[N ] (5)

The other case is that the node that precedes point
N is a join node. Let M and P be the program
points that precede this join node. Wolog, assume
that M gets unmarked for the last time at a step i
and P gets unmarked for the last time at a later step

4



j (j > i). After Step i the value at N must dominate
the final value at M , i.e., must dominate dM . In any
subsequent steps after step i the value at N can only
move upwards in the lattice (this is true of every step
in the algorithm, due to the joining at each step).
Finally, after step j, the value at N must dominate
the final value at P , namely, dP . Therefore, the final
value at N , i.e., dN , dominates dM as well as dP . In
other words,

dN ≥ dM ⊔ dP (6)

Due to the equation xN = xM ⊔xP , it is clear that
(f(d))[N ] is equal to dM ⊔ dP . This, in conjunction

with (6) above, gives us:
dN ≥ (f(d))[N ] (7)
From (5) and (7), it follows that d ≥ f(d). There-

fore, we have shown that d is a post fix-point of f .
Slide 58.
As per Knaster-Tarski theorem, the least fix-point

is dominated by all post fix-points. Therefore, it fol-
lows that d ≥ l.

This, in conjunction with our previous result that
d ≤ l gives us our final result that d = l.
Slides 60-62. These are a summary of the mate-

rial discussed so far.

5


