Kildall's algorithm for over-approximate JOP Deepak D'Souza and K.V. Raghavan Department of Computer Science and Automation Indian Institute of Science, Bangalore. # Why over-approximation of JOP in abstract lattice is useful # Kildall's algorithm to compute over-approximation of JOP Input: An instance (P, d_0) of a monotone data-flow framework $((D, \leq), F)$. Output: For each program point N in P, a data-value d_N such that $\mathrm{JOP}_N^{d_0} \leq d_N$. - Initialize data value at each program point to \perp , entry point to d_0 . - Mark all points. - Repeat while there is a marked point: - Choose a marked point M with value d_M , unmark it, and "propagate" it to successor points. That is, for each successor N of M: (1) replace old value at N by $f_{MN}(d_M) \sqcup d_N$, and (2) Mark N if it was already marked or if new value strictly dominates than old value. - Return data values at each point as over-approx of JOP. #### Underlying lattice Values computed coincide with JOP values. #### Constant propagation example #### Kildall's algo vs Actual Constant data | ProgPt | Actual JOP values | Kildall's data | |--------|--------------------|----------------| | A | Ø | Ø | | В | $\{(x,1)\}$ | $\{(x,1)\}$ | | C | Ø | Ø | | D | $\{(y,1)\}$ | Ø | | E | $\{(x,-1),(y,1)\}$ | $\{(x,-1)\}$ | | | | | Note that Kildall's values are \geq the actual JOP values at all points. # What Kildall's algo computes - Always terminates if lattice has no infinite chains. - In general, computes the least solution to a system of equations induced by the given instance of the analysis. - This value is always an over-approximation of the JOP for the given instance. # Termination of Kildall's algo - Let \overline{d}_i be the vector of values after the *i*-th step of algo. - At step i+1 either \overline{d}_{i+1} strictly dominates \overline{d}_i , or $\overline{d}_{i+1}=\overline{d}_i$. In the latter case number of marks *decreases*. - The maximum length of any contiguous non-"climbing" sequence is equal to the number of program points. - Moreover, the maximum number of "climbing" steps in algorithm is at most the length of any chain in the lattice \overline{D} . - Therefore, the algorithm is guaranteed to terminate on finite-height lattices. # **Induced Equations** The program induces a set of data-flow equations: $$x_I = d_0$$ for entry point I $x_N = f_{MN}(x_M)$ for an assignment or conditional node n with with incoming point M and outgoing point N $x_M = x_K \sqcup x_L$ for a junction node with incoming points K, L and outgoing M . # **Induced Equations** The program induces a set of data-flow equations: $$x_I = d_0$$ for entry point I $x_N = f_{MN}(x_M)$ for an assignment or conditional node n with with incoming point M and outgoing point N $x_M = x_K \sqcup x_L$ for a junction node with incoming points K, L and outgoing M etc. Note: The collecting semantics is a solution to the above equations. # **Example equations** $$x_{I} = d_{0}$$ $$x_{B} = f_{IB}(x_{I})$$ $$x_{C} = x_{B} \sqcup x_{E}$$ $$x_{D} = f_{CD}(x_{C})$$ $$x_{E} = f_{DE}(x_{D})$$ # **Equations can have multiple solutions** Exercise: Give two solutions to equations induced for this program - Use lattice of subsets of concrete stores, with integer values for x. - Write down induced equations. - Give two different solutions to the equations. Let $d_0 = State$. ## **Equations can have multiple solutions** Exercise: Give two solutions to equations induced for this program - Use lattice of subsets of concrete stores, with integer values for x. - Write down induced equations. - Give two different solutions to the equations. Let $d_0 = State$. Note: collecting semantics of any program is the least solution to its data-flow equations using the concrete lattice (to be shown). # Function \overline{f} induced by equations #### Equations: $$x_{I} = d_{0}$$ $$x_{B} = f_{IB}(x_{I})$$ $$x_{C} = x_{B} \sqcup x_{E}$$ $$x_{D} = f_{CD}(x_{C})$$ $$x_{E} = f_{DE}(x_{D})$$ Corresponding \overline{f} function: $$\overline{f}(d_I, d_B, d_C, d_D, d_E) = (d_0, f_1(d_I), d_B \sqcup d_E, f_3(d_C), f_4(d_D))$$ # Natural ordering on solutions to Eq - Consider "vectorised" lattice $\overline{D} = (D^k, \leq)$, where D is the underlying lattice. - Each solution to the equations is a point in this vectorised lattice. - The solutions are precisely the fix-points of the function \overline{f} : $\overline{D} \to \overline{D}$. - If D is a complete lattice and f_i 's are monotone, then \overline{D} is complete and \overline{f} is monotone. - Note: Concrete analysis satisfies these properties. So do many abstract interpretations. - Therefore, Knaster-Tarski theorem applies. Therefore, there exists a least solution to \overline{f} . - Kildall's algorithm computes this Ifp (if it terminates). - So does the Kleene iteration $\perp_{\overline{D}}, \overline{f}(\perp_{\overline{D}}), \overline{f}^2(\perp_{\overline{D}}), \ldots$ if it reaches a stable value. #### **Correctness** Kildall's algo always computes LFP of \overline{f} . # Monotonicity, distributivity, and continuity ### 1. $JOP \leq LFP$ for monotone framework - Let \overline{c} be any FP of \overline{f} . Consider any program point N. Let $c_N \equiv \overline{c}[N]$. - Claim: For any path p, if N is the point at the end of p, c_N dominates $d \equiv f_p(d_0)$ reaching N. The argument is by induction on length of path p. - Base case |p| = 0: Then N = I, and $d = c_N = d_0$. - Let path p be of length i+1. Let M be the program that p passes through just before reaching N. Let d' be $f_p^M(d_0)$, where f_p^M is the path transfer function of the prefix of path p that ends at point M. The inductive hypothesis is that $d' \sqsubseteq c_M$. The rest of the proof is in two cases. #### 1. $JOP \leq LFP$ for monotone framework Case (node between M and N is not a join node): Since \overline{c} is a solution to the equations, and since the equation for x_N is $x_N = f_{MN}(x_M)$, we have $c_N = f_{MN}(c_M)$. Now, since $d = f_{MN}(d')$, by monotinicity of f_{MN} , and from the hypothesis $d' \sqsubseteq c_M$, it follows that $d \sqsubseteq c_N$. #### 1. JOP ≤ LFP for monotone framework Case (node between M and N is a join node): Let P be the other predecessor of the join node. - d = d' (because join nodes have identity transfer function) - ② The dataflow equation for x_N is $x_N = x_M \sqcup x_P$. Since \overline{c} is a solution to the equations, $c_N = c_M \sqcup c_P$. That is, $C_M \sqsubseteq C_N$. - **3** By inductive hypothesis, $d' \sqsubseteq c_M$. The observations above imply that $d \sqsubseteq c_N$. ## 1. $JOP \leq LFP$ for monotone framework - That is, for every path p that reaches a point N, $f_p(d_0) \sqsubseteq c_N$. - Therefore, JOP d_N at N is $\sqsubseteq c_N$ Proof: Enough to show that the JOP \overline{d} is a fixpoint of \overline{f} . We denote $\overline{d}[M]$ as d_M , $\overline{d}[N]$ as d_N , etc. Proof: Enough to show that the JOP \overline{d} is a fixpoint of \overline{f} . We denote $\overline{d}[M]$ as d_M , $\overline{d}[N]$ as d_N , etc. Let N be any program point. Case (the node before N is not a join node): - Let S_M (resp. S_N) be the set of all facts that reach M (resp. N) along all paths. - It is clear that $S_N = \{f_{MN}(s) | s \in S_M\}$. - It is clear that the JOP d_M at M is equal to $\sqcup S_M$, and the JOP d_N at N is equal to $\sqcup S_N$. - Therefore, by the previous two observations, and due to infinite distributivity, it follows that $d_N = f_{MN}(d_M)$. - Therefore, \overline{d} satisfies N's equation, which is $x_N = f_{MN}(x_M)$. Case (the node before N is a join node): - Say S_M (resp. S_P resp. S_N) is the set of lattice values reaching M along all paths (resp. reaching P resp. reaching N). - Clearly, d_M (resp. d_P resp. d_N) is equal to $\sqcup S_M$ (resp. $\sqcup S_P$ resp. $\sqcup S_N$). - It is clear that $S_N = S_M \cup S_P$. Therefore, $d_N = d_M \sqcup d_P$. - Therefore, \overline{d} satisfies N's equation, which is $x_N = x_M \sqcup x_P$. - Since the argument in the previous two slides applies at all points N, we have shown that the vector \overline{d} satisfies all the equations, and is hence a fix-point of \overline{f} . - Note: Lattice is finite, and functions are pairwise distributive, and $f_i(\bot) = \bot$ implies framework is infinitely distributive. ## Some examples - f_n^{CP} is *not* distributive for the node n with statement y := x * x. - Show two CP values P_1 and P_2 such that $f_n(P_1 \sqcup P_2) \supset f_n(P_1) \sqcup f_n(P_2)$. - The *nstate* functions are all infinitely distributive. - Therefore, collecting semantics is the LFP to the equations when nstate' transfer functions are used. - Let \overline{d} be values computed by Kildall's algo upon termination, and \overline{l} be LFP of \overline{f} . Let l_N denote $\overline{l}[N]$, l_M denote $\overline{l}[M]$, etc. - Intermediate vector \overline{d}^i after any step i is bounded above by \overline{l} . We prove this using induction on number of steps. - Let N by any program point whose value gets updated in Step i+1. Case (the node before N is a non-join node): ### Explanation: • $d_M^i \sqsubseteq I_M$ and $d_N^i \sqsubseteq I_N$ by inductive hypothesis. Case (the node before N is a non-join node): ### Explanation: - $d_M^i \sqsubseteq I_M$ and $d_N^i \sqsubseteq I_N$ by inductive hypothesis. - $I_N = f_{MN}(I_M)$, because \bar{I} is a solution to the equations and because we have the equation $x_N = f_{MN}(x_M)$. Case (the node before N is a non-join node): #### Explanation: - $d_M^i \sqsubseteq I_M$ and $d_N^i \sqsubseteq I_N$ by inductive hypothesis. - $I_N = f_{MN}(I_M)$, because \bar{I} is a solution to the equations and because we have the equation $x_N = f_{MN}(x_M)$. - Therefore, due to monotonicity of f_{MN} , $f_{MN}(d_M^i) \sqsubseteq I_N$. Case (the node before N is a non-join node): ### Explanation: - $d_M^i \sqsubseteq I_M$ and $d_N^i \sqsubseteq I_N$ by inductive hypothesis. - $I_N = f_{MN}(I_M)$, because \bar{I} is a solution to the equations and because we have the equation $x_N = f_{MN}(x_M)$. - Therefore, due to monotonicity of f_{MN} , $f_{MN}(d_M^i) \sqsubseteq I_N$. - Since $d_N^{i+1} = d_N^i \sqcup f_{MN}(d_M^i)$, we derive $d_N^{i+1} \sqsubseteq I_N$. Case (the node before N is a join node): • Let M and P be the points that precede the join node. Let d_M^i, d_P^i, d_N^i be the data values at the respective program points after Step i. Case (the node before N is a join node): - Let M and P be the points that precede the join node. Let d_M^i, d_P^i, d_N^i be the data values at the respective program points after Step i. - Say propagation happens from M to N in Step i (argument is similar if propagation happened from P to N). Case (the node before N is a join node): - Let M and P be the points that precede the join node. Let d_M^i, d_P^i, d_N^i be the data values at the respective program points after Step i. - Say propagation happens from M to N in Step i (argument is similar if propagation happened from P to N). - Since \bar{l} is a solution to the equations, and since we have the equation $x_N = x_M \sqcup x_P$, it follows that $l_N = l_M \sqcup l_P$. In other words, $l_M \sqsubseteq l_N$. In conjunction with $d_M^i \sqsubseteq l_M$ (inductive hypothesis), we get $d_M^i \sqsubseteq l_N$. Case (the node before N is a join node): - Let M and P be the points that precede the join node. Let d_M^i, d_P^i, d_N^i be the data values at the respective program points after Step i. - Say propagation happens from M to N in Step i (argument is similar if propagation happened from P to N). - Since \overline{l} is a solution to the equations, and since we have the equation $x_N = x_M \sqcup x_P$, it follows that $l_N = l_M \sqcup l_P$. In other words, $l_M \sqsubseteq l_N$. In conjunction with $d_M^i \sqsubseteq l_M$ (inductive hypothesis), we get $d_M^i \sqsubseteq l_N$. - By inductive hypothesis, $d_N^i \sqsubseteq I_N$. Therefore, $(d_N^{i+1} = (d_M^i \sqcup d_N^i)) \sqsubseteq I_N$. Thus it follows that $\overline{d} < \overline{l}$. Let \overline{d} be the vector computed by the algorithm upon termination. We now show that $\overline{d} \geq \overline{f}(\overline{d})$ (i.e. \overline{d} is a postfixpoint of \overline{f}) Let N be any program point. Case (the node before N is a non-join node): - Let M be the point that precedes this node. By definition of \overline{f} , $(\overline{f}(\overline{d}))[N]$ is equal to $f_{MN}(d_M)$. - Since all points are unmarked, value d_M must have been propagated to N. That is, d_N must dominate $f_{MN}(d_M)$. That is, d_N dominates $(\overline{f}(\overline{d}))[N]$. Let \overline{d} be the vector computed by the algorithm upon termination. We now show that $\overline{d} \geq \overline{f}(\overline{d})$ (i.e. \overline{d} is a postfixpoint of \overline{f}) Let N be any program point. Case (the node before N is a non-join node): - Let M be the point that precedes this node. By definition of \overline{f} , $(\overline{f}(\overline{d}))[N]$ is equal to $f_{MN}(d_M)$. - Since all points are unmarked, value d_M must have been propagated to N. That is, d_N must dominate $f_{MN}(d_M)$. That is, d_N dominates $(\overline{f}(\overline{d}))[N]$. Case (the node before N is a join node): - Let M and P be the points that precede the join node. By definition of \overline{f} , $(\overline{f}(\overline{d}))[N]$ is equal to $d_M \sqcup d_P$. - Since all points are unmarked, value d_M and d_P must have been propagated to N. That is, d_N must dominate both d_M and d_P . That is, d_N dominates $d_M \sqcup d_P$. Hence, d_N dominates $(\overline{f(d)})[N]$. • Therefore, by Knaster-Tarski theorem, $\bar{l} = glb(Post)$, and hence $\bar{d} \geq \bar{l}$. • We have earlier proved that $\overline{d} \leq \overline{l}$. Therefore, it follows that $\overline{d} = \overline{l}$. #### **Correctness** Kildall's algo always computes LFP. #### **Overview of correctness** - Every program induces a set of equations on variables whose domain is lattice D. The equations, in turn, induce a function $\overline{f}: \overline{D} \to \overline{D}$. - If each f_i is monotone and D is a complete lattice then \overline{f} has a least fix-point LFP(\overline{f}). - If each f_i is infinitely distributive, then JOP = LFP(f). - Otherwise, if each f_i is only monotonic, $JOP \leq LFP(\overline{f})$. #### Overview of correctness - If each f_i is monotone and D is a complete lattice then \overline{f} has a least fix-point LFP(\overline{f}). - If each f_i is infinitely distributive, then $JOP = LFP(\overline{f})$. - Otherwise, if each f_i is only monotonic, $JOP \leq LFP(\overline{f})$. - Kildall's algorithm, for monotone frameworks: - Solution at any point during its execution is $\leq LFP(\overline{f})$ - If and when it terminates, solution is equal to LFP(\overline{f}) - Note this is a stronger claim than "Kildall's algo computes JOP for distributive frameworks" [Killdall, 'POPL 73]. - Kildall's algorithm is not only for program analysis. It can be used to find least solution to any set of simultaneous equations, as long as (a) domain of variables' values is a complete lattice, (b) each variable occurs in the lhs of a unique equation, and (c) all operators occurring in rhs's are monotone. # Summary of sufficient conditions | | Termination | LFP ≥ JOP | LFP = JOP | Kild computes LFP | |---|-------------|--------------|-----------|-------------------| | | | | | upon termination | | f _{MN} 's monotonic No infinite chains | / | \checkmark | | √ | | Inf. distributive | V | | | | - Each column is a property, and each row is a sufficient condition - For a property to hold, each sufficient condition mentioned in its column needs to hold