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Kildall’s algorithm to compute over-approximation of JOP

Input: An instance (P, d0) of a monotone data-flow framework
((D,≤),F ).
Output: For each program point N in P, a data-value dN such
that JOPd0

N ≤ dN .

Initialize data value at each program point to ⊥, entry point
to d0.

Mark all points.

Repeat while there is a marked point:

Choose a marked point M with value dM , unmark it, and
“propagate” it to successor points. That is, for each successor
N of M: (1) replace old value at N by fMN(dM) ⊔ dN , and (2)
Mark N if it was already marked or if new value strictly
dominates than old value.

Return data values at each point as over-approx of JOP.
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Kildall’s algo on parity interpretation example
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Constant propagation example

∅
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⊥
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Kildall’s algo on CP example: 1
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Kildall’s algo on CP example: 2
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Kildall’s algo on CP example: 3
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Kildall’s algo on CP example: 4
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Kildall’s algo on CP example: 5

A

B

D

x := 1

y := x*x

x := −1

C

2

3

4

0

1

E

∅

{(x, 1)}

{(x, 1), (y , 1)}
{(x,−1), (y , 1)}

{(x, 1)}



Kildall’s algorithm Correctness of Kildall

Kildall’s algo on CP example: 6
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Kildall’s algo on CP example: 7
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Kildall’s algo on CP example: 8
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Kildall’s algo on CP example: 9
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Kildall’s algo vs Actual Constant data

ProgPt Actual JOP values Kildall’s data
A ∅ ∅
B {(x , 1)} {(x , 1)}
C ∅ ∅
D {(y , 1)} ∅
E {(x ,−1), (y , 1)} {(x ,−1)}

I

B

D

x := 1

y := x*x

x := −1

C

E

2

3

4

0

1

Note that Kildall’s values are ≥ the actual JOP values at all points.
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What Kildall’s algo computes

Always terminates if lattice has no infinite chains.

In general, computes the least solution to a system of
equations induced by the given instance of the analysis.

This value is always an over-approximation of the JOP for the
given instance.
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Termination of Kildall’s algo

Let d i be the vector of values after the i-th step of algo.
At step i + 1 either d i+1 strictly dominates d i , or d i+1 = d i .
In the latter case number of marks decreases.
The maximum length of any contiguous non-”climbing”
sequence is equal to the number of program points.
Moreover, the maximum number of “climbing” steps in
algorithm is at most the length of any chain in the lattice D.
Therefore, the algorithm is guaranteed to terminate on
finite-height lattices.

Steps of Kildall’s Algo

O
rd

e
r
in

g
o
n

D

d′
0

d′
1
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Induced Equations

The program induces a set of data-flow equations:

xI = d0 for entry point I
xN = fMN(xM) for an assignment or conditional node n with

with incoming point M and outgoing point N
xM = xK ⊔ xL for a junction node with incoming points K,L

and outgoing M.
· · · etc.

Note: The collecting semantics is a solution to the above
equations.
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Example equations

xI = d0
xB = fIB(xI )
xC = xB ⊔ xE
xD = fCD(xC )
xE = fDE (xD)

I

B

D

x := 1

y := x*x

x := −1

C

E

2

3

4

0

1
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Equations can have multiple solutions

Exercise: Give two solutions to equations induced for this program

Use lattice of subsets of concrete stores, with integer values
for x.
Write down induced equations.
Give two different solutions to the equations. Let d0 = State.

B

x := 2

C

x:=x+1

D

I

Note: collecting semantics of any program is the least solution to
its data-flow equations using the concrete lattice (to be shown).
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Function f induced by equations

Equations:

xI = d0
xB = fIB(xI )
xC = xB ⊔ xE
xD = fCD(xC )
xE = fDE (xD)

I

B

D

x := 1

y := x*x

x := −1

C

E

2

3

4

0

1

Corresponding f function:

f (dI , dB , dC , dD , dE ) = (d0, f1(dI ), dB ⊔ dE , f3(dC ), f4(dD))
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Natural ordering on solutions to Eq

Consider “vectorised” lattice D = (Dk ,≤), where D is the
underlying lattice.

Each solution to the equations is a point in this vectorised
lattice.

The solutions are precisely the fix-points of the function f :
D → D.

If D is a complete lattice and fi ’s are monotone, then D is
complete and f is monotone.

Note: Concrete analysis satisfies these properties. So do many
abstract interpretations.

Therefore, Knaster-Tarski theorem applies. Therefore, there
exists a least solution to f .

Kildall’s algorithm computes this lfp (if it terminates).

So does the Kleene iteration ⊥D , f (⊥D), f
2
(⊥D), . . . if it

reaches a stable value.
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Correctness

JOP

LFPLFP JOP=

Monotonic Framework Infinitely−Distributive Framework

(D,≤)

Kildall’s algo always computes LFP of f .
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Monotonicity, distributivity, and continuity

DistributiveMonotonic

S

Continuous Inf−Distributive
(S is any subset of the lattice,  

(including empty subset, or an infinite subset) 
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1. JOP ≤ LFP for monotone framework

Let c be any FP of f . Consider any program point N. Let
cN ≡ c[N].

Claim: For any path p, if N is the point at the end of p, cN
dominates d ≡ fp(d0) reaching N.
The argument is by induction on length of path p.

Base case |p| = 0: Then N = I , and d = cN = d0.
Let path p be of length i + 1. Let M be the program that p
passes through just before reaching N. Let d ′ be f Mp (d0),

where f Mp is the path transfer function of the prefix of path p
that ends at point M. The inductive hypothesis is that
d ′ ⊑ cM .
The rest of the proof is in two cases.
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1. JOP ≤ LFP for monotone framework

Case (node between M and N is not a join node):
Since c is a solution to the equations, and since the equation
for xN is xN = fMN(xM), we have cN = fMN(cM).

Now, since d = fMN(d
′), by monotinicity of fMN , and from the

hypothesis d ′ ⊑ cM , it follows that d ⊑ cN .

x := e

M

N

cN

cM

d′

d
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1. JOP ≤ LFP for monotone framework

Case (node between M and N is a join node):
Let P be the other predecessor of the join node.

1 d = d ′ (because join nodes have identity transfer
function)

2 The dataflow equation for xN is xN = xM ⊔ xP . Since c is
a solution to the equations, cN = cM ⊔ cP . That is,
CM ⊑ CN .

3 By inductive hypothesis, d ′ ⊑ cM .

The observations above imply that d ⊑ cN .
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1. JOP ≤ LFP for monotone framework

That is, for every path p that reaches a point N, fp(d0) ⊑ cN .

Therefore, JOP dN at N is ⊑ cN
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2. JOP = LFP for infinitely-distributive framework

Proof: Enough to show that the JOP d is a fixpoint of f . We denote d [M] as dM ,
d [N] as dN , etc.

Let N be any program point.
Case (the node before N is not a join node):

M

N

cond
assign /

dM

dN

SM

SN

Let SM (resp. SN) be the set of all facts that reach M (resp. N) along all
paths.
It is clear that SN = {fMN(s)|s ∈ SM}.
It is clear that the JOP dM at M is equal to ⊔SM , and the JOP dN at N is
equal to ⊔SN .
Therefore, by the previous two observations, and due to infinite distributivity, it
follows that dN = fMN(dM).
Therefore, d satisfies N’s equation, which is xN = fMN(xM).
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2. JOP = LFP for infinitely-distributive framework

Case (the node before N is a join node):

M P

N

SM SP

dM dP

dN

Say SM (resp. SP resp. SN) is the set of lattice values
reaching M along all paths (resp. reaching P resp. reaching
N).

Clearly, dM (resp. dP resp. dN) is equal to ⊔SM (resp. ⊔SP
resp. ⊔SN).
It is clear that SN = SM ∪ SP . Therefore, dN = dM ⊔ dP .

Therefore, d satisfies N’s equation, which is xN = xM ⊔ xP .
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2. JOP = LFP for infinitely-distributive framework

Since the argument in the previous two slides applies at all
points N, we have shown that the vector d satisfies all the
equations, and is hence a fix-point of f .

Note: Lattice is finite, and functions are pairwise distributive,
and fi (⊥) = ⊥ implies framework is infinitely distributive.
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Some examples

f CPn is not distributive for the node n with statement
y := x ∗ x .

Show two CP values P1 and P2 such that
fn(P1 ⊔ P2) ⊐ fn(P1) ⊔ fn(P2).

The nstate ′ functions are all infinitely distributive.

Therefore, collecting semantics is the LFP to the equations
when nstate’ transfer functions are used.
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3. Kildall’s algo computes LFP

Let d be values computed by Kildall’s algo upon termination,
and l be LFP of f . Let lN denote l [N], lM denote l [M], etc.

Intermediate vector d
i
after any step i is bounded above by l .

We prove this using induction on number of steps.

Let N by any program point whose value gets updated in Step
i + 1.
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3. Kildall’s algo computes LFP

Case (the node before N is a non-join node):

x := e

M

N

lN

lM

d i
M

d i
N

d i+1
N

Explanation:

d i
M ⊑ lM and d i

N ⊑ lN by inductive hypothesis.

lN = fMN(lM), because l is a solution to the equations and
because we have the equation xN = fMN(xM).

Therefore, due to monotonicity of fMN , fMN(d
i
M) ⊑ lN .

Since d i+1
N = d i

N ⊔ fMN(d
i
M), we derive d i+1

N ⊑ lN .
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3. Kildall’s algo computes LFP

Case (the node before N is a join node):

M P

N

lM

d i
M

lP

d i
P

lN

d i
N

Let M and P be the points that precede the join node. Let
d i
M , d i

P , d
i
N be the data values at the respective program

points after Step i .

Say propagation happens from M to N in Step i (argument is
similar if propagation happened from P to N).
Since l is a solution to the equations, and since we have the
equation xN = xM ⊔ xP , it follows that lN = lM ⊔ lP . In other
words, lM ⊑ lN . In conjunction with d i

M ⊑ lM (inductive
hypothesis), we get d i

M ⊑ lN .
By inductive hypothesis, d i

N ⊑ lN . Therefore,
(d i+1

N = (d i
M ⊔ d i

N)) ⊑ lN .

Thus it follows that d ≤ l .
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3. Kildall’s algo computes LFP

Let d be the vector computed by the algorithm upon termination.
We now show that d ≥ f (d) (i.e. d is a postfixpoint of f )
Let N be any program point.
Case (the node before N is a non-join node):

Let M be the point that precedes this node. By definition of
f , (f (d))[N] is equal to fMN(dM).
Since all points are unmarked, value dM must have been
propagated to N. That is, dN must dominate fMN(dM). That
is, dN dominates (f (d))[N].

Case (the node before N is a join node):

Let M and P be the points that precede the join node. By
definition of f , (f (d))[N] is equal to dM ⊔ dP .
Since all points are unmarked, value dM and dP must have
been propagated to N. That is, dN must dominate both dM
and dP . That is, dN dominates dM ⊔ dP . Hence, dN
dominates (f (d))[N].
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3. Kildall’s algo computes LFP

Therefore, by Knaster-Tarski
theorem, l = glb(Post), and
hence d ≥ l .

Post

Pre

lfp

gfp

(D,≤)

We have earlier proved that d ≤ l . Therefore, it follows that
d = l .
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Correctness

JOP

LFPLFP JOP=

Monotonic Framework Infinitely−Distributive Framework

(D,≤)

Kildall’s algo always computes LFP.
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Overview of correctness

Every program induces a set of equations on variables whose
domain is lattice D. The equations, in turn, induce a function
f : D → D.

If each fi is monotone and D is a complete lattice then f has
a least fix-point LFP(f ).

If each fi is infinitely distributive, then JOP = LFP(f ).
Otherwise, if each fi is only monotonic, JOP ≤ LFP(f ).

Kildall’s algorithm, for monotone frameworks:
Solution at any point during its execution is ≤ LFP(f )
If and when it terminates, solution is equal to LFP(f )
Note this is a stronger claim than “Kildall’s algo computes
JOP for distributive frameworks” [Killdall, ’POPL 73].
Kildall’s algorithm is not only for program analysis. It can be
used to find least solution to any set of simultaneous
equations, as long as (a) domain of variables’ values is a
complete lattice, (b) each variable occurs in the lhs of a unique
equation, and (c) all operators occurring in rhs’s are monotone.
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Summary of sufficient conditions

Termination LFP ≥ JOP LFP = JOP Kild computes LFP
upon termination

fMN ’s monotonic
√ √

No infinite chains
√

Inf. distributive
√

Each column is a property, and each row is a sufficient
condition

For a property to hold, each sufficient condition mentioned in
its column needs to hold
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