Lecture Notes on Program Analysis and
Verification

Deepak D’Souza and K V Raghavan
Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

7 August 2013

Contents

1 Lattices and the Knaster-Tarski Theorem

1.1 Why study lattices in program analysis
1.2 Partial orders and lattices

1.3 Monotonic functions and the Knaster-Tarski Theorem

1.4 Computing the LFP

2 Interprocedural Analysis

2.1 Motivationo
2.2 Interprocedurally valid paths
2.3 Call-Strings approach
2.4 Correctness of call-strings approach
2.5 Computing JOP/LFP

2.5.1 Bounded call-string method

Chapter 1

Lattices and the
Knaster-Tarski Theorem

In this chapter we recall some of the basic concepts from lattice theory that we
make use of later in these lectures. We begin with some motivation for why we
need lattices, introduce and illustrate the basic definitions, and finally state and
prove the well-known Knaster-Tarski fixpoint theorem.

1.1 Why study lattices in program analysis

In program analysis we are typically interested in finding a “safe” approxima-
tion (or an “over-approximation”) of the set of concrete states that may arise
at a program point due to different executions of the program. A natural way
to obtain this “collecting state” at a point N in a program is to take the union
of the set of states reached along each (initial) path in the program leading
to the point N. For example, in the program of Fig. 1.2(a), the (single) ex-
ecution of the program visits point 5 several times, leading to concrete states
{(5,2),(6,4),(7,6), (8,8)}. We represent a concrete state in which x is mapped
to 5 and y is mapped to 2, by simply (5, 2).

When dealing with abstract states, we want to collect the abstract states
reached by “abstractly executing” or “interpreting” each path in the program
that leads to point N, and then take a union of the set of concrete states they
represent. This latter step corresponds to taking the “join” of the abstract
states collected at point N. If the abstract states have a “complete” lattice
structure, then this join is guaranteed to exist. This value at point N is called
the “join over all paths” (JOP) at point N. For example, we could interpret
the program using the lattice of abstract values shown in Fig. 1.2(b), where an
abstract value of the form (o, 0e) represents the set of concrete states in which
p is mapped to an odd value and q is mapped to any (odd or even) value. Thus,
along the path 12345, the resulting abstract value at point 5 is (e, e). The only
other abstract value at point 5 is (0,e) (via path 12345345 for example). The
join over all paths at point 5 is just the join of the elements (e, e) and (o,e),
which is the abstract element (oe, e).

Why are we interested in certain functions on lattices having fixpoints? It
turns out that instead of finding the JOP values for a given program and abstract

{1,2,3}
[

DT N

N\

v .QT/ v “ |
| \./
] s
(a) Subsets of {1,2,3} (b) Odd and even
under “subset of” or- ordered by “con-
dering. tained in.”

Figure 1.1: Some example lattices.

(oe, oe)

1: p= 5; (0,0¢e)&0e,0) e (e, oe)
2: q=2;
3: while (p > q) {
4. p := p+1; (0,0) @ (0,e)® (e,0) @ (e, e)
5: q := q+2;

}
6: print p; 1

(a) (b)

Figure 1.2: (a) Example program and (b) parity lattice.

analysis, it is more convenient to find a fixpoint of a certain function (induced by
the abstract analysis and given program) on a lattice. Under certain conditions
this fixpoint is guaranteed to over-approximate the actual JOP value. The
Knaster-Tarski theorem gives us sufficient conditions under which a function
on a complete lattice is guaranteed to have a fixpoint. It also tells us the
structure of these fixpoints and gives us a characterisation of the greatest and
least fixpoints.

1.2 Partial orders and lattices

An order is a relationship among elements of a set. The usual order on numbers,
1 <2 <3, is called a total order, since each pair of elements is ordered. Some
domains are naturally “partially” ordered, as shown in Fig. 1.3: for example the
“subset of” or “containment” ordering on the the set of all subsets of a three
element set. Notice that the subsets {1,2} and {2,3} are unordered as neither
is a subset of the other.

A partially ordered set is a non-empty set D along with a partial order < on

12
L]
{1,2,3}
L]
/ \ 4 e ®6
{1,2} ¢ {1,3)e ® (2,3} T/T o
{>< ><[s * / \
{1} O{o/‘ {3} 2\ /3 oe . c
[K \./
0 1 1
(a) Subsets of {1,2,3}, (b) Divisors (c) Odd/even, or-
“subset” of 12, or- der by “contained
dered under in”
“divides”

Figure 1.3: Some example partial orders

D. Thus < is a binary relation on D satisfying:
e < is reflexive (d < d for each d € D)
e < is transitive (d < d’ and d’ < d” implies d < d”)
e < is anti-symmetric (d < d' and d’ < d implies d = d').

It is convenient to view a partial order as a graph, or what is commonly
called its “Hasse diagram.” To begin with, we can view a binary relation on a
set as a directed graph. For example, the binary relation

{(a,a),(a,b), (b,c), (b,e),(d,e), (d,c), (e, f)}

can be represented as the graph:

Vay
A

o= o

e f

A partial order is then a special kind of directed graph, as shown in Fig. 1.4(a),
in which reflexivity means a self-loop on each node, antisymmetry means no
non-trivial cycles, and transitivity means “transitivity” of edges.

Let (D, <) be a partially ordered set.

e An element u € D is an upper bound of a set of elements X C D, if x < u
for all x € X.

e u is the least upper bound (or lub or join) of X if u is an upper bound for
X, and for every upper bound y of X, we have u < y. We write u =| | X.

-
N\

: %P 2
CA\ /A0
R

(a) Graph repre- (b) Hasse

sentation diagram
represen-
tation

Figure 1.4: Graph and Hasse diagram representation of the divisors of 12 poset.

Figure 1.5: An example partial order

e Similarly, v = MX (v is the greatest lower bound or glb or meet of X).

The above definitions are well-illustrated in the example partial order of
Fig. 1.5: the pair of elements a and b have both d and ¢ as upper bounds, but
have no lub.

A lattice is a partially order set in which every pair of elements has an lub
and a glb. A complete lattice is a lattice in which every subset of elements has
a lub and glb.

The examples of Fig. 1.3 are all complete lattices. So also is the parity lattice
of Fig. 1.2(b). Fig. 1.6 has some examples that illustrate the definitions.

We note that a complete lattice must have a least element, which we denote
1, being the glb of the whole set D, and similarly a greatest element, denoted
T, which is the lub of the empty set.

Figure 1.6: (a) A partial order that is not a lattice, (b) the simplest partial
order that is not a lattice, and (c¢) a lattice that is not complete.

1.3 Monotonic functions and the Knaster-Tarski
Theorem

Let (D, <) be a partially ordered set, and X be a non-empty subset of D. Then
X induces a partial order, which we call the partial order induced by X in
(D, <), and defined to be (X, < N(X x X)). As an example, the partial order
induced by the set X = {2,3,12} in the partial order of Fig. 1.3(b) is shown
below in Fig. 1.7:

12

2
Figure 1.7: The partial order induced by {2,3,12} in the partial order of
Fig. 1.3(b).

Let (D, <) be a partially ordered set. A function f : D — D is monotonic
or order-preserving (wrt (D, <)) if for each x,y € D, whenever < y we have
f(z) < f(y). Fig. 1.8 illustrates a monotone function on the divisor lattice.

Let f be a function on a partial order (D, <). Then:

e A fizpoint of a function f : D — D is an element x € D such that
f(x) = z. In Fig. 1.8, the fixpoints of the function are a and f.

o A pre-fizpoint of f is an element x such that z < f(x). In Fig. 1.8, the
pre-fixpoints are a, b, d, and f.

o A post-fixpoint of f is an element x such that f(x) < z. In Fig. 1.8, the
post-fixpoints are b, e, and f.

L

d

]

€

|
/

a

tb

(&)

f

Figure 1.8: A monotone function on a partial order. The image of an element
under the function is shown by a dotted arrow.

Figure 1.9: The structure of fixpoints (denoted by stars) according to the
Knaster-Tarski theorem.

Theorem 1 (Knaster-Tarski [2]) Let (D,<) be a complete lattice, and f :
D — D a monotonic function on (D,<). Then:

(a) [has a fizpoint. In fact, f has a least fizpoint which coincides with the
glb of the set of postfixpoints of f, and a greatest fixrpoint which coincides
with the lub of the prefixpoints of f.

(b) The set of fizpoints P of f itself forms a complete lattice under <. More
precisely, the partial order induced by P in (D, <) forms a complete lattice.

Fig. 1.9 illustrates the Knaster-Tarski theorem. The fixpoints of f are shown
as stars.

Exercise Consider the complete lattice and monotone function f of Fig. 1.8
1. Mark the pre-fixpoints with up-triangles (A).
2. What is the lub of the pre-fixpoints?
3. Mark post-fixpoints with down-triangles (V).

The fixpoints are the stars (X). O

We now prove the Knaster-Tarski theorem. Let (D, <) be a complete lattice
and f : D — D be a monotone function on D. We first prove part (a) of
the theorem. Let Pre denote the set of pre-fixpoints of f. Note that Pre is
non-empty since L is a pre-fixpoint of f. Let g be the lub of Pre, which is
guaranteed to exist since (D, <) is a complete lattice. We show that g is the
greatest fixpoint of f.

We first show that g is a fixpoint of f (i.e. f(g) = g). We first argue that
g < f(g). It is sufficient to show that f(g) is an upper bound of Pre, since then
by virtue of g being the lub of Pre, we must have g < f(g). To show that f is
an upper bound of Pre, let x be any element of Pre. Thus x is a pre-fixpoint
of f, and hence x < f(z) (see Fig. 1.10(a)). Now, since z < g (remember that
g is the lub of Pre), by monotonicity of f we have f(z) < f(g). By transitivity
it follows that « < f(g).

Pre

(a) (b)

Figure 1.10: Proof of Knaster-Tarski theorm Part (a) and (b).

We now argue that f(g) < g. It is sufficient to show that f(g) is a pre-
fixpoint of f. We have just shown that ¢ is itself a pre-fixpoint since g < f(g).
But then by monotonicity of f, we must have f(g) < f(f(g)). This completes
the proof that g is a fixpoint of f.

We now argue that g must be the greatest fixpoint of f. Let i be any other
fixpoint of f. Then in particular, h is a pre-fixpoint of f, and hence h € Pre,
and hence h < g which is the lub of Pre. Thus g dominates all other fixpoints
of f, and hence is the greatest fixpoint of f.

In a similar manner one can show that the glb of the set Post of post-fixpoints
of f is the least fixpoint of f.

Coming now to Part (b) of the theorem, Let P be the set of fixpoints of f,
which we know to be non-empty by the first part of the theorem. We show that
(P, <) is a complete lattice. Firstly, (P, <) forms a partial order, since restricting
the ordering of a partial order to any subset of it maintains the partially ordered
structure. To argue that (P, <) is a complete lattice, we need to show that each
subset of P has a lub and glb.

Let X C P. We first show there is an lub of X in (P, <). Let u be the lub
of X in (D, <). Consider the “interval” of elements I between w and T:

I=[u,T]={x€D|u<uz}.

Then it is easy to see that (I, <) is also a complete lattice. Further, f restricted
to I is a function on I, in the sense that for any = € I, f(x) € I. To see this,
let « € I, and consider f(z). We will show f(x) is an upper bound of the set
X: this follows since for any p € X, we have p < z (since z dominates u which
in turn dominates each p € X), and hence p = f(p) < f(z) by monotonicity of
f. But since u is the lub of X, we must have u < f(x), and hence f(x) € I.

Further, f : I — I is a monotonic function on (I, <). Hence, by Part (a) of
the theorem, f has a least fixpoint in I, say v. We can now argue that v is the
lub of X in (P, <). To begin with v is clearly an upper bound of X since u is an
upper bound of X and u < v. To see that v is the least of all fixpoints that are
also upper bounds of X, let v’ be any other fixpoint upper bound of X. Then
v’ must also be in I and hence a fixpoint of f in (I, <). By choice of v, we must
have v < .

In a similar way we can show that X has a glb as well. Thus (P, <) forms
a complete lattice. This completes the proof of part (b) of the Knaster-Tarski
theorem. 0

1.4 Computing the LFP

e A chain in a partial order (D, <) is a totally ordered subset of D.
e An ascending chain is an infinite sequence of elements of D of the form:

do <dy <dy <o

An ascending chain {(d;) is eventually stable if there exists ng such that
d; = dy,, for each i > ng.

(D, <) has finite height if each chain is finite.

(D, <) has bounded height if there exists k such that each chain in D has
height at most k (i.e. the number of elements in each chain is at most
k+1.)

Characterising 1fp’s and gfp’s of a function f in a complete lattice (D, <):

e fis continuous if for any ascending chain X in D,
fUx) = Loreo).
o If f is continuous then

ip(f) = | |(Fi(L)).

i>0

e If f is monotonic and (D, <) has finite height then we can compute Ifp(f)
by finding the stable value of the asc. chain

L<fO) <P <r<-
Monotonicity, distributivity, and continuity:

e f is monotone:
r<y = f(z) < f(y)

o f is distributive:

flxuy) = f(z)U f(y).

e fis continuous: For any asc chain X:
fUx =),
e f is infinitely distributive: For any X C D:

LX) =)

10

Pre

o LI(fH(L)

o f(f(L)
* (L)
(D) S)

1

Figure 1.11: Computing the LFP.

AR AN

Monotonic Distributive
. . N
|° 4
Continuous Inf-Distributive

Figure 1.12: Illustrating the definitions of monotonicity, distributivity, continu-
ity and infinite distributivity.

11

Chapter 2

Interprocedural Analysis

2.1 Motivation

In interprocedural data-flow analysis we are interested in analysing programs
with procedures. As before we would like to come up with data-flow facts that
safely over-approximate the set of program states that could arise at a program
point via different executions of the program.

main() { £0O { g {
x := 0; X 1= x+1; £0;
£0O; return; return;
gO; } }
print x;

}

Figure 2.1: Example program with two procedures £ and g.

12

g
7O O,
L F$ U SN
oH i
G¢ \
[\
ret /’ ret /
E _ -
.-
L.
7
- K

Figure 2.2: The extended CFG for the program of Fig. 2.1.

As a first attempt, we could extend a given data-flow analysis to programs
with procedures as follows: To begin with, we build an extended CFG for the
given program in which we add edges from call statements to the beginning of
the called function (so-called “call edges”), and edges from return statements
to the “return sites” in the calling procedure (the so-called “return edges”).
These new edges can be given appropriate transfer functions. Fig. 2.1 shows
an example program with procedures, and Fig. 2.2 shows the extended CFG
for it. We can now compute the JOP for the given analysis in this extended
control-flow graph.

The problem with this approach is that while it gives us a sound result,
it is far too imprecise in general. To illustrate this, suppose we want to do a
“collecting state” analysis for the example program of Fig. 2.1, starting with
the initial abstract state {x — 0}. Since there is only one (maximal) execution
of the program corresponding to the path ABDFGEKJHFGIL, the collecting
state at point C is simply {x — 2}. However, if we compute the JOP for
this analysis, we will get the infinite set of states {x — 0,x — 1,x — 3,...}
at C. This is because there are several paths (in this case infinitely many)
that don’t correspond to any execution of the program, for example the path
ABDFGEKJHFGEKJHFGIL (which produces the state x — 3). The first path
is interprocedurally valid, while the second is interprocedurally invalid, in the
sense that it takes the return edge E when it should have taken I given that the
last pending call was H. The path ABDFGILC is another interprocedurally
invalid path which produces the state x — 1.

13

Figure 2.3: A path p = ABDFGEKJHF in IVP¢ for the example program in
Fig. 2.2. The call-string cs(p) associated with p is KH. For p = ABDFGEK
we have ¢s(p) = K, and for p = ABDFGE we have cs(p) = e.

Instead, what we would like to compute is the “Join over Interprocedurally
Valid Paths” (JVP) where we consider only interprocedurally valid paths that
reach the given program point.

2.2 Interprocedurally valid paths

We define the JVP more formally in this section. We begin by defining inter-
procedurally valid paths and their associated “call-strings.” Informally, a path
p in the extended CFG G’ is inter-procedurally valid if every return edge in
p “corresponds” to the most recent “pending” call edge. For example, in the
example program the return edge E corresponds to the call edge D. The call-
string of an interprocedurally valid path p is a subsequence of call edges which
have not “returned” as yet in p. For example, the call-string associated with the
path ABDFGEKJHF , written cs(ABDFGEKJHF), is “KH”. Fig. 2.3 shows an
interprocedurally valid path in the extended CFG of Fig. 2.2. The y-axis plots
the number of pending calls for each prefix of the path.

Definition 1 (Interprocedurally valid paths and their call-strings) Let
p be a path in an extended CFG G'. We define when p is interprocedurally valid
(and we say p € IVP(G")) and what is its call-string cs(p), by induction on the
length of p.

o Ifp=c then p € IVP(G'). In this case cs(p) = e.

o Ifp=p'-N then p € IVP(G") iff p' € IVP(G’) with cs(p') =7 say, and
one of the following holds:

1. N is neither a call nor a ret edge.
In this case cs(p) = 7.

2. N 1is a call edge.
In this case cs(p) =7 - N.

3. N is ret edge, and v is of the form v - C, and N corresponds to the
call edge C.
In this case cs(p) =7'.

e We denote the set of (potential) call-strings in G' by T'. Thus T = C*,
where C is the set of call edges in G'.

14

c1c2

N € | crlciegheach
- ~ Prog Pt M

dg | dy | d2 | d3

e | cqleiegeach Prog Pt N

? ? ? ?

Figure 2.4: The meaning of a call-string table

Definition 2 (Join over interprocedurally-valid paths (JVP)) Let A =
(D, <), fun,do) be a given abstract interpretation and let G' be an extended
CFG. Let path; n(G') be the set of paths from the initial point I to point N
in G'. Then we define the join over all interprocedurally valid paths (JVP) at
point N in G’ to be:

I_I) p(dO)-

p € path; n(G)NIVP(G')

2.3 Call-Strings approach

We now describe the first of several approaches to interprocedural analysis pro-
posed by Sharir and Pnueli [1]. One approach to obtain the JVP is to find the
JOP over same graph, but modify the abstract interpretation. We can modify
the transfer functions for call/ret edges to detect and invalidate (interprocedu-
rally) invalid edges. We need to augment underlying data values with some
information for this. Natural thing to try is “call-strings”.

The abstract data elements of the call-string analysis will be maps (or a
“table”) from call-strings to abstract data values of the underlying analysis. A
call-string table £ at program point N represents the fact that, for each call-
string +, there are some (initial) paths with call-string « reaching N, and the
join of the abstract states (obtained by propagating dy) along these paths is
dominated by £(). This meaning is illustrated in Fig. 2.4. It will be useful
to keep this meaning in mind, while designing the transfer functions of the
call-string analysis.

The overall plan is to define an abstract interpretation A’ which extends
the given abstract interpretation, say A, with call-string data. We then show
that the JOP of A" on G’ coincides with the JVP of A on G’. We could use
Kildall (or any other technique) to compute the LFP of A" on G’. This value is
guaranteed to over-approximate the JVP of A on G’.

15

€ cy ciecg |epegeg

dg dy da d3
(a)
€ c1 cieg |cpeges

§1 U &

o Uegdr Uejds Ueglds Ueg

/\

e cq cico |epegen € cq cieo |eregey
€1 ¢ [
do | d1 da d3 €0 e1 e2 e3

(b)

Figure 2.5: The call-string-tagged data values and their join.

€ cq cjcg |cpegeg
€o:

dg | L 1 L

Figure 2.6: The intial value of the call-string-tagged analysis.

The call-string-tagged abstract interpretation A’ is defined as follows. The
lattice is (D’, <’) where elements of D’ are maps £ : ' — D. The ordering <’
on D’ is the pointwise extension of < in D. That is & <’ & iff for each v € T,
&1(y) < &(y). This induces a join operation that is the point-wise join of the
table entries, and is illustrated in Fig. 2.5. It is easy to check that (D', <’) is
also a complete lattice.

The initial value &y of the analysis A’ Initial value & is given by

_ do if Y =€
So(y) = { 1 otherwise.

It is illustrated in Fig. 2.6
The transfer functions of the analysis A’ are given as follows.

e Transfer functions for non-call/ret edge N:
fIIwN(f) = fun o&.
e Transfer functions for call edge N:

fun() = /\7.{ i(V/) ify=9"N

otherwise

e Transfer functions for ret edge IV whose corresponding call edge is C:
fun(€) = .&(v-0)

Note that the transfer functions f},, are monotonic (distributive) if each

fa N is monotonic (distributive). Hence A’ forms a valid abstract interpretation.

16

c1 | es(p) |eregen

L L d 1

Figure 2.7: Proving correctness of the call-string analysis.

Example: Transfer functions f},, for example program

e Non-call/ret edge B:
{g = fapo&a.

e Call edge D:
gD('Y):{ 53(’7/) if’}/:’y/-D

1 otherwise
e Return edge E:
€e(7) =& (v D).

Exercise

1. Let A be the standard collecting state analysis, and consider the program
of Fig. 2.2. For brevity, represent a set of concrete states as {0,1} (meaning
the 2 concrete states x — 0 and = — 1). Assume an initial value dy = {0}.

17

Show the call-string tagged abstract states (in the lattice A’) along the
paths

(a) ABDFGEKJHFGIL (interprocedurally valid)
(b) ABDFGIL (interprocedurally invalid).

2. Use Kildall’s algo to compute the LFP of the A’ analysis for the example
program of Fig. 2.2. Start with initial value dy = {0}.

(]

2.4 Correctness of call-strings approach

Without loss of generality, we assume that the transfer functions of the under-
lying analysis satisfy the property that the L element of the (D, <) lattice is
mapped to L (i.e. fayn(L)= L for each farn).

Theorem 2 Let N be a point in an extended graph G'. Then

JVPA(N) = || JOP4(N)(7).
~el’

Proof. Use following lemmas to prove that LHS dominates RHS and vice-versa.

O
Lemma 3 Let p be a path in IVPg:. Then
ey foldo) ify=cs(p)
Tolé0) = /\7'{ € otherwise.
Proof. By induction of length of p. |

Lemma 4 Let p be a path not in IVPgs. Then
fo(60) = M. L.

€ cq cg |cpegeg

L L L 1

Proof. Since p is invalid, it must be the case that p has an invalid prefix. Con-
sider the smallest such prefix o - N. Then it must be the case that « is valid
and N is a return edge not corresponding to c¢s(«). Using the previous lemma
it follows that f/ (&) = Avy.L. But then all extensions of a along p must also
have transfer function \y.L.]

2.5 Computing JOP/LFP

The problem with the call-strings approach above is that D’ is infinite in general
(even if D were finite). So we cannot use Kildall’s algo to compute an over-
approximation of JOP. In this section we give two methods to bound the number
of call-strings. The first uses “approximate” call-strings, while the second uses
a safe bound on length of call-strings needed.

18

@ 0 (not available)
@ | (available)

o L

Figure 2.8: Lattice for available expression analysis.

Consider only call-strings of upto length < [, that may additionally be pre-
fixed by a “x”. A “x” prefix means that we have left out some initial calls. For
example, for [= 2, call strings can be of the form “cyce” or “xcycs” ete. So each
table £ is now a finite table.

The transfer functions for non-call/ret edges remain same. For a call edge
C': Shift v entry to v - C if |y - C| < I; else shift it to % -4’ - C where 7 is of the
form A -+', for some call A.

For a return edge INV:

e If y =+'-C and N corresponds to call edge C, then shift 7/ - C entry to
~' entry.

e If v = % then copy its entry to x entry at the return site.

Exercise An expression (like a*b in the program below) is available at a point
N in an execution p if there is a point before N in p where the expression is
computed and since then till N none of its constituent variables (like a or b
in the example expression above) are written to. In an “available expression”
analysis, we want to say whether an expression is available at a given program
point (meaning that in all executions of the program reaching that point the
expression is available), or not. If we are interested in the availability of a single
expression, we could use a lattice like in Fig. 2.8.
Consider the program whose extended graph is shown below:

Is axb available at program point N? Yes it is, if we consider interprocedu-
rally valid paths only.

19

Figure 2.9: Paths with bounded call-strings

Do an interprocedural analysis for the availability of the expression axb,
using approximate call-strings (assume a length of 2) for the program below.
Use Kildall’s algo to compute the £ table values representing the LFP of the
analysis. Start with initial value dy = 0. O

2.5.1 Bounded call-string method

When the underlying lattice (D, <) is finite, it is possible to bound the length
of call strings I we need to consider.

For a number [, we denote the set of call strings (for the given program P) of
length at most I, by I';. Define a new analysis A" (called the bounded call-string
analysis) in which the call-string tables have entries only for I'j; for a certain
constant M. We will show that JOP(G’, A”) = JOP(G’, A’). This is illustrated
in Fig. 2.12.

Let k be the number of call sites in the given program P. In the example
program of Fig.2.2 for example there are 3 call sites.

Lemma 5 For any path p in IVP(r1,N) such that |cs(q)] > M = k|D|?* for
some prefix q of p, there is a path p' in IVPrp,,(r1, N) with fp(do) = fp(do).

Proof. Tt is sufficient to prove that for any path p in IVP(rq, N) with a prefix
¢q such that |cs(q)| > M, we can produce a smaller path p’ in IVP(ry1, N) with
fo (do) = fp(dp). Since, if |p| < M then p € IVPrp,,.

20

A path p in IVP(r1,n) can be decomposed as

pllCer,mp,)llp2ll(c2, mpsllosll - - [1(ej—1,7p,)llpj-

where each p; (i < j) is a valid and complete path from r,, to ¢;, and p; is a
valid and complete path from r;,. to n. Thus c1,...,c; are the unfinished calls
at the end of p.

c1

To prove the subclaim, Let py be the first prefix of p where |cs(pg)| > M.
Let the decomposition of py be

pullCer,mpo)llp2ll(e2, mpgllosll - - [1(ej -1, 7p,)llj-

Tag each unfinished-call ¢; in pg by (ci, fg.c;(do), fg-ciqeisi (do)) Where e;11 is
corresponding return of ¢; in p. If there is no return for ¢; in p tag it with
(C, fQ'Ci (d0)7 J—)

The number of possible distinct such tags is k - |[D|?. So there must be two
calls gc and gcq’c with same tag values. There are two cases: both calls don’t
return (that is their tag values are L) or they do return and abstract value at
that point is d’. In both cases we can argue that we can cut out a portion of the
path, as shown in the Figs.2.10 and 2.11, and preserve the final value computed
along the paths.

|

We can argue that the LFP of A” is no less precise than that of A’. Consider
any fixpoint V' (a vector of tables) of A’. Truncate each entry of V' to (call-
strings of) length M, to get V. Clearly V' dominates V”. Further, observe
that V" is a post-fizpoint of the transfer functions for A”. By the Knaster-
Tarski characterisation of LFP, we know that V" dominates LFP(A”). This is
illustrated in Fig. 2.12

21

,,,,,,,,,,,,,,, Procedure F

Figure 2.10: Proving subclaim — tag values are L.

ffffffffff ----ProcF

Figure 2.11: Proving subclaim — tag values are not L.

22

LFP(G’, A")

LFP(G’, A" °
[)
[] [] [)

JOP(G', A”) JOP(G',A') IVP(G',A)

Figure 2.12: Relation between the JOP’s and LFP of the different call-string
based analyses.

23

Bibliography

[1] Micha Sharir and Amir Pnueli. Two approaches to interprocedural data flow
analysis. In Steven S. Muchnick and Neil D. Jones, editors, Program Flow
Analysis: Theory and Applications, chapter 7, pages 189-234. Prentice-Hall,
Englewood Cliffs, NJ, 1981.

[2] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications.
Pacific Journal of Mathematics, 5:285-309, 1955.

24

