Correctness of Abstract Interpretation

Deepak D'Souza and K. V. Raghavan

IISc

Recollection of Abstract Interpretation

It is a tuple (D, F_D, γ) , such that

- (D, \leq) is a complete join semi-lattice (aka the abstract lattice), with a least element \perp .
- Concretization function $\gamma_D:D\to 2^{State}$
- Monotone transfer function $(f_{LM}: D \to D) \in F_D$ for each node n and incoming edge L into n and outgoing edge M from n.
 - Junction nodes have identity transfer function.

An aside: Collecting semantics stated as an abstract interpretation

- Concrete lattice $C: (2^{State}, \subseteq), \perp = \emptyset, \top = State, \sqcup = \cup.$
- Transfer function $f_{LM} = nstate'_{LM}$ for each node n and incoming edge L into n and outgoing edge M from n.
- $\gamma: C \to C$ is identity

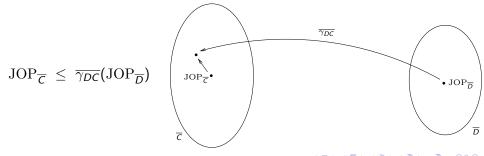
An aside: Collecting semantics stated as an abstract interpretation

- Concrete lattice $C: (2^{State}, \subseteq), \perp = \emptyset, \top = State, \sqcup = \cup.$
- Transfer function $f_{LM} = nstate'_{LM}$ for each node n and incoming edge L into n and outgoing edge M from n.
- $\gamma: C \to C$ is identity
- As seen earlier, collecting states at any point N = JOP at this point using this interpretation
- This particular abstract interpretation is also known as the concrete interpretation.

Definition: consistent abstractions

An A.I. $(D, F_D, \gamma_D : D \to 2^{State})$ is said to be a consistent abstraction of (or, be correct wrt) another A.I. $(C, F_C, \gamma_C : C \to 2^{State})$ under a pair of monotone functions $\gamma_{DC} : D \to C$ and $\alpha_{CD} : C \to D$ iff: (a) $(\alpha_{CD}, \gamma_{DC})$ form a Galois connection, and

(b) for all programs, and for all $d_0 \in D$ and $c_0 \in C$ such that $\gamma_{DC}(d_0) \geq c_0$:



Definition - contd.

where

- $JOP_{\overline{C}}$ is obtained by using (C, f_C) , with c_0 as the initial state,
- $\mathrm{JOP}_{\overline{D}}$ is by obtained using (D, f_D) , with d_0 as the initial state, and
- \overline{x} is the "vectorized" form of x, i.e., x for all points in a program.

Note: Throughout remaining slides we use γ to mean γ_{DC} and α to mean α_{CD} .

Definition: (α, γ) form Galois Connection

- ullet α and γ are monotonic
- $\gamma(\alpha(e)) \ge e$, for all $e \in C$
- $\alpha(\gamma(d)) = d$, for all $d \in D$

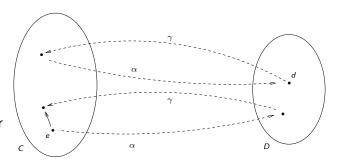


Illustration of consistent abstraction

- Consider the lattices L_1 and L_2 from the introduction slides.
- L_1 is a consistent abstraction of L_2 under the following (α, γ) :

$$\alpha(S \in L_2) = \bot, \text{ if } S = \emptyset$$

$$= (coll(\{x \mid (x,y) \in S\}), coll(\{y \mid (x,y) \in S\})),$$
otherwise
$$\gamma((c,d) \in L_1) = \{(x,y) \mid \text{if } c \text{ is oe then } x = o \lor x = e \text{ else } x = c,$$
if d is oe then $y = o \lor y = e \text{ else } y = d\}$

where

$$coll(W) = o, \text{ if } W = \{o\}$$

= $e, \text{ if } W = \{e\}$
= $oe, \text{ if } W = \{o, e\}$

Another illustration of consistent abstraction

Constant propagation (CP) is a consistent abstraction of the concrete interpretation, under the following (α, γ) :

$$\begin{array}{ll} \alpha(S \in 2^{\mathit{State}}) &=& \bot, \\ & \text{if } S \text{ is empty} \\ &=& \{(x,c) \mid \forall e \in S: \ e(x) = c\}, \\ & \text{otherwise} \\ \\ \gamma(p) &=& \emptyset, \\ & \text{if } p = \bot \\ &=& \{e \in \mathit{State} \mid \text{for each } (x,c) \in p: e(x) = c\}, \\ & \text{if } p \text{ is any other element of the lattice} \end{array}$$

Properties of consistent abstractions

- Theorem A (correctness): If an abstract interpretation $(D, F_D, \gamma_D : D \rightarrow 2^{State})$ is a consistent abstraction of $(2^{State}, nstate', identity)$ under (γ_D, α) for some α , then $(D, F_D, \gamma : D \rightarrow 2^{State})$ is correct.
 - Recall that an abstract interpretation D is said to be correct if for any program, and for any program point N in the program, $\gamma_D(d_N) \supseteq$ the collecting semantics at N using $\gamma_D(d_0)$ as initial set of concrete states, where d_N is the abstract JOP using given d_0 as initial value.
 - This theorem follows from the observation made in the previous slide deck that the collecting semantics at any point N with initial set of states S_0 is equal to the JOP at N using initial value S_0 and using *nstate'* as the transfer function at every node.

Properties of consistent abstractions - II

- Theorem B (correctness): If $(D, F_D, \gamma_D : D \to 2^{State})$ is a consistent abstraction of $(C, F_C, \gamma_C : C \to 2^{State})$ under $(\gamma_{DC}, \alpha_{CD})$, and $(C, F_C, \gamma_C : C \to 2^{State})$ is correct, then $(D, F_D, \gamma_D : D \to 2^{State})$ is also correct if γ_D is $\gamma_C \circ \gamma_{DC}$.
- Theorem (transitivity): If $(D, F_D, \gamma_D : D \to 2^{State})$ is a consistent abstraction of $(C, F_C, \gamma_C : C \to 2^{State})$ under $(\gamma_{DC} : D \to C, \alpha_{CD} : C \to D)$ and $(C, F_C, \gamma_C : C \to 2^{State})$ is a consistent abstraction of $(B, F_B, \gamma_B : B \to 2^{State})$ under $(\gamma_{CB} : C \to B, \alpha_{BC} : B \to C)$, then $(D, F_D, \gamma_D : D \to 2^{State})$ is a consistent abstraction of $(B, F_B, \gamma_B : B \to 2^{State})$ under $(\gamma_{CB} \circ \gamma_{DC}, \alpha_{CD} \circ \alpha_{BC})$.

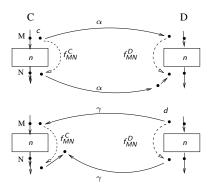
A sufficient condition for correctness

Theorem 1: An abstract interpretation (D, F_D, γ_D) is a consistent abstraction of another abstract interpretation (C, F_C, γ_C) under a pair (α, γ) if

- \bullet (α, γ) form a Galois connection, and
- Each transfer function $f_{MN}^D \in F_D$ is an abstraction of the corresponding function $f_{MN}^D \in F_C$.

Definition: f_{MN}^D is an abstraction of f_{MN}^C

 f_{MN}^{C} and f_{MN}^{D} satisfy one of the following (each of them implies the other):

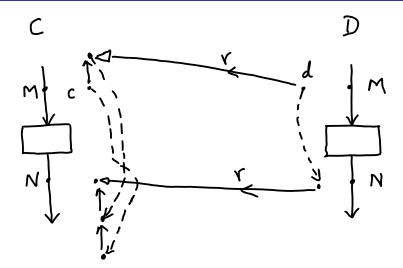


- For each MN, $\forall c. \alpha(f_{MN}^C(c)) \leq f_{MN}^D(\alpha(c))$
- For each MN, $\forall d. \gamma(f_{MN}^D(d)) \geq f_{MN}^C(\gamma(d))$

Lemma 1

Statement: Consider any edge $M \to N$. If d is any element of D and c is any element of C such that $\gamma(d) \geq c$, then $\gamma(f_{MN}^D(d)) \geq f_{MN}^C(c)$. **Proof:** The second condition on transfer functions tells us that $\gamma(f_{MN}^D(d)) \geq f_{MN}^C(\gamma(d))$. Using the lemma's prerequisite $\gamma(d) \geq c$, and by monotonicity of f_{MN}^C , we get $\gamma(f_{MN}^D(d)) \geq f_{MN}^C(c)$.

Lemma 1 proof illustration



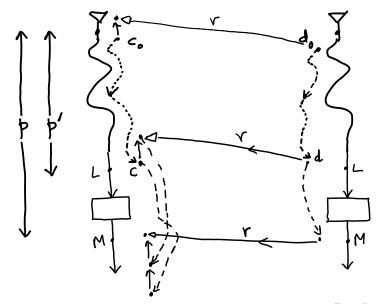
Lemma 2

Lemma 2: If $\gamma(d_0) \geq c_0$, then for any path p, $\gamma(f_p^D(d_0)) \geq f_p^C(c_0)$. **Proof:**

The proof is by induction on the length of the path p. Let i be the length of the path p.

- Base case (i = 0): The property to prove reduces to $\gamma(d_0) \ge c_0$. Recall that this is a pre-requisite of this lemma.
- Inductive case i>0: Let p' denote the prefix of path p that excludes the last edge of p. The inductive hypothesis is that $\gamma(f_{p'}^D(d_0)) \geq f_{p'}^C(c_0)$. Let the last edge of p be $L \to M$. Applying Lemma 1 on this edge we get $\gamma(f_{LM}^D(f_{p'}^D(d_0))) \geq f_{LM}^C(f_{p'}^C(c_0))$. This reduces to $\gamma(f_p^D(d_0)) \geq f_p^C(c_0)$. The inductive case is done.

Illustration of inductive case of Lemma 2



Proof of Theorem 1

Given $d_0 \in D$ and $c_0 \in C$ such that $\gamma(d_0) \geq c_0$. Pick any point N in the given program. Let P_N be the set of paths that begin at point I and end at N.

- By Lemma 2, for any path $p \in P_N$, we infer $\gamma(f_p^D(d_0)) \ge f_p^C(c_0)$.
- The result above implies:

$$\bigsqcup_{p \in P_N} (\gamma(f_p^D(d_0))) \ge \bigsqcup_{p \in P_N} (f_p^C(c_0)) \tag{1}$$

ullet By monotonicity of γ , we infer:

$$\gamma(\bigsqcup_{p\in P_N} (f_p^D(d_0))) \ge \bigsqcup_{p\in P_N} (\gamma(f_p^D(d_0)))$$
 (2)

Proof of Theorem 1 – continued

• Using transitivity, Equations (1) and (2) imply:

$$\gamma(\bigsqcup_{p\in P_N} (f_p^D(d_0))) \ge \bigsqcup_{p\in P_N} (f_p^C(c_0)) \tag{3}$$

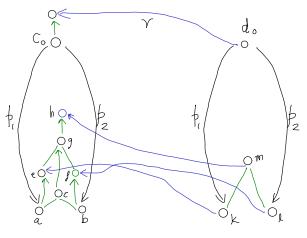
• Using the definition of abstract JOP, we infer:

$$\gamma(\mathrm{JOP}_D^N) \ge \mathrm{JOP}_C^N \tag{4}$$

• Hence, we get:

$$\overline{\gamma_{DC}}(JOP_{\overline{D}}) \ge JOP_{\overline{C}}$$
 (5)

Proof of Theorem 1 - illustration



- $e \ge a$ and $f \ge b$ by Lemma 2
- Therefore, by property of LUB, $g \ge c$
- $\bullet \ \ h \geq g \ \ {\rm by} \\ {\rm monotonicity \ of \ } \gamma$
- Therefore, $h \ge c$

More theorems

1. If α, γ form a Galois connection between (D, F_D, γ_D) and (C, F_C, γ_C) , then for all $d_1, d_2 \in D$, $\gamma(d_1 \sqcap d_2) = \gamma(d_1) \sqcap \gamma(d_2)$.

This has an interesting application:

- If $d_{1,N}$ is the JOP at a point N due to a correct abstract interpretation $(D, F_{1,D}, \gamma_D)$ and if $d_{2,N}$ is the JOP at point N due to another correct abstract interpretation $(D, F_{2,D}, \gamma_D)$ (both JOPs computed using a common entry value $d_0 \in D$), then $d_{1,N} \sqcap d_{2,N}$ is more precise than $d_{1,N}$ or $d_{1,N}$ individually as an abstract JOP, while still over-approximating the collecting semantics.
- Alternatively, for each edge MN, we can use the "meet" transfer function $f_{MN} \equiv f_{1,MN} \sqcap f_{2,MN}$, and compute the abstract JOP using these "meet" transfer functions. The abstract JOP obtained this way will be $\leq d_{1,N} \sqcap d_{2,N}$ mentioned in the preceding bullet, and will also over-approximate the collecting semantics.

More theorems

- 2. If α, γ is a Galois connection between $(D, F_D, \gamma_D \text{ and } (C, F_C, \gamma_C)$, then for any $d \in D$, $\gamma(d)$ is equal to $\sqcup \{c \in C \mid \alpha(c) \sqsubseteq d\}$, and for any $c \in C$, $\alpha(c)$ is equal to $\sqcap \{d \in D \mid \gamma(d) \supseteq c\}$.
 - Note, this does *not* imply that for every monotone function γ (resp. α), there exists an α (resp. γ) such that (α, γ) form a Galois connection.
- 3. If (α, γ) form a Galois connection, and each transfer function $f_{LM}^D \in F_D$ is an abstraction of the corresponding function $f_{LM}^C \in F_C$, then: γ -image of least solution of dataflow equations using (D, F_D, γ_D) dominates least solution of dataflow equations using (C, F_C, γ_C) .