Interprocedural, finite, distributive, subset (IDFS) problems [Reps-Horwitz-Sagiv-95]

K. V. Raghavan

IISc

Summary of Sharir-Pneuli approaches

- Requirements of all three approaches (call-strings, functional, iterative)
 - Transfer functions are monotonic
- Additional requirements of functional approach
 - Functions be represented as data-structures
 - The operations of join, composition, and equality-checking be defined on the representation
- Additional requirements of call-strings and iterative approach
 - L is finite
- What they all compute: LFP in general, JVP for distributive functions.

Efficiency of the known algorithms

- Lattice for available expressions analysis for a single expression: $AV \equiv \{\bot, 1, 0\}.$
- Lattice for *k* expressions?

Efficiency of the known algorithms

- Lattice for available expressions analysis for a single expression: $AV \equiv \{\bot, 1, 0\}.$
- Lattice for k expressions? AV^k

Efficiency of the known algorithms

- Lattice for available expressions analysis for a single expression: $AV \equiv \{\bot, 1, 0\}.$
- Lattice for k expressions? AV^k
 - Call-strings approach would need a very high bound. Iterative approach would need 2^k "columns".
 - Very expensive
- Main insight: If we analyze for each expression separately using AV lattice, we would get same results as analyzing all of them together using AV^k lattice.

Gen-kill problems

- Definition of gen-kill problem:
 - Lattice $L = 2^D$, where D is a finite set
 - Transfer functions are distributive
 - Join is union or intersection
 - For each transfer function f and for each $d \in D$, $f(\{d\}) = f(\emptyset)$ (i.e., f does not "transmit" d) or $f(\{d\}) = f(\emptyset) \cup \{d\}$ (i.e., f "transmits" d).

(The elements of D that are in $f(\emptyset)$ are said to be "generated" by f. Any element of D that is neither transmitted nor generated by f is said to be "killed" by f.)

• Examples of gen/kill problems: reaching definitions, unitialized variables, live variables (backwards analysis).

More on gen-kill problems

- Another equivalent definition of gen-kill problem:
 - Lattice $L = 2^D$, where D is a finite set
 - Join is union or intersection
 - For each node n, there exist two sets gen_n and $kill_n$, both being subsets of D, such that

$$f_n = \lambda S.(S - kill_n) \cup gen_n$$

Strategy for solving gen-kill problems efficiently

- **①** Do abstract interpretation separately using lattice $2^{\{d\}}$, for each $d \in D$.
- ② At any program point *p*, final JOP is union of JOP's using individual analyses.
- **o** Can do all the |D| analyses together also
 - Does not change the order-complexity, but could be more efficient in practice
 - ullet We would need 2|D| "columns" with iterative approach

Requirements of [RHS95] approach

- The abstract lattice $L = 2^D$, where D is a finite set
- Transfer functions are distributive (approach is undefined for non-distributive functions)
- Join (in the *L* lattice) is union or intersection.
 - Paper focuses on union problems. Every intersection problem has a complement problem whose join is union.
- Examples of IDFS problem that is not a gen/kill problem: Possibly uninitialized variables, copy-constant propagation, truly live variables (backward analysis).
- The RHS algorithm computes JVP for IDFS frameworks.

Representing dataflow functions

Definition 3.1. The *representation relation of f*, $R_f \subseteq (D \cup \{0\}) \times (D \cup \{0\})$, is a binary relation (*i.e.*, graph) defined as follows:

$$R_f =_{\hat{d}f} \begin{cases} \{(\mathbf{0}, \mathbf{0})\} \\ \cup \{(\mathbf{0}, y) \mid y \in f(\emptyset)\} \\ \cup \{(x, y) \mid y \in f(\{x\}) \text{ and } y \notin f(\emptyset)\}. \end{cases}$$

Representation relation can be thought of as a Graph with 2(D+1) nodes.

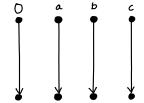
Representing dataflow functions

Definition 3.1. The *representation relation of* f, $R_f \subseteq (D \cup \{0\}) \times (D \cup \{0\})$, is a binary relation (*i.e.*, graph) defined as follows:

$$R_f =_{\widehat{df}} \{ (\mathbf{0}, \mathbf{0}) \}$$

$$\cup \{ (\mathbf{0}, y) \mid y \in f(\emptyset) \}$$

$$\cup \{ (x, y) \mid y \in f(\{x\}) \text{ and } y \in f(\emptyset) \}.$$



Identity function $f = \lambda S.S$

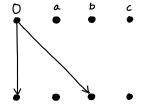
(Credit: Prof. Reps)

Representing dataflow functions

Definition 3.1. The *representation relation of f*, $R_f \subseteq (D \cup \{0\}) \times (D \cup \{0\})$, is a binary relation (*i.e.*, graph) defined as follows:

$$R_f =_{\widehat{df}} \begin{cases} \{(\mathbf{0}, \mathbf{0})\} \\ \cup \{(\mathbf{0}, y) \mid y \in f(\emptyset)\} \\ \cup \{(x, y) \mid y \in f(\{x\}) \text{ and } y \notin f(\emptyset)\}. \end{cases}$$

Constant function $f = \lambda S.\{b\}$



(Credit: Prof. Reps)

Representing dataflow functions - II

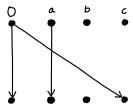
Try constructing the representation relation without the definition!

$$f = \lambda S.(S - \{b\}) \cup \{c\}$$

Representing dataflow functions - II

Try constructing the representation relation without the definition!

$$f = \lambda S.(S - \{b\}) \cup \{c\}$$



(Credit: Prof. Reps)

```
• f = \lambda S.if a \in S

then S \cup \{b\}

else S - \{b\}

• f = \lambda S.if a \in S OR b \in S

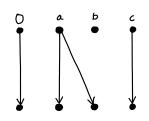
then S \cup \{c\}

else S - \{c\}
```

$$f = \lambda S.if \ a \in S$$

then $S \cup \{b\}$
else $S - \{b\}$

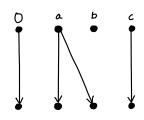
$$\begin{aligned} \mathbf{f} &= \lambda S. \text{if } a \in S \\ &\quad \text{then } S \cup \{b\} \\ &\quad \text{else } S - \{b\} \end{aligned}$$



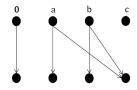
$$f = \lambda S.$$
 if $a \in S$ OR $b \in S$
then $S \cup \{c\}$
else $S - \{c\}$

$$f = \lambda S.if \ a \in S$$

then $S \cup \{b\}$
else $S - \{b\}$



$$f = \lambda S.$$
if $a \in S OR b \in S$
then $S \cup \{c\}$
else $S - \{c\}$



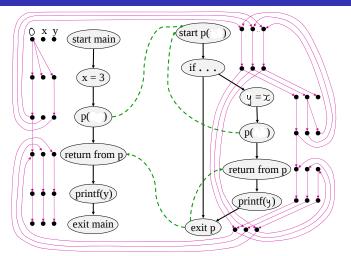
Properties of representation relations

• Interpretation $[[R]]: 2^D \to 2^D$ of a representation relation $R \subseteq (D \cup \{\mathbf{0}\}) \times (D \cup \{\mathbf{0}\})$:

$$[[R]] =_{df} \lambda X.(\{y \mid \exists x \in X.((x,y) \in R)\}) \cup \{y \mid (\mathbf{0},y) \in R\}) - \{\mathbf{0}\}$$

• Given a collection of functions $f_i: 2^D \to 2^D$ for $1 \le i \le j$, $f_1 \circ f_2 \circ \ldots f_j = [[R_{f_j}; R_{f_{j-1}}; \ldots; R_{f_1}]]$, where the composition operation ';' on representation relations is as in Definition 3.4 in the paper.

An example exploded graph for possibly-uninitialized variables using RHS approach



Initial fact is given as $\{x,y\}$. Hence, exploded edges are added from $\langle s_{main}, \mathbf{0} \rangle$ to \langle "x=3", $\langle \mathbf{0} \rangle$, \langle "x=3", $\langle \mathbf{0} \rangle$, and \langle "x=3", $\langle \mathbf{0} \rangle$.

Property of exploded graph

Theorem 3.8: Given a super graph G^* for an IDFS problem IP with lattice D, and its corresponding exploded super graph $G^\#$, for any $d \in D, d \in JVP$ at node n in G^* iff there is an interprocedurally valid path from $\langle s_{main}, \mathbf{0} \rangle$ to $\langle n, d \rangle$ in $G^\#$. \square

Follows from the property that for $1 \le i \le j$, $f_1 \circ f_2 \circ \dots f_j = [[R_{f_j}; R_{f_{j-1}}; \dots; R_{f_1}]].$

In other words, they have reduced dataflow analysis to graph reachability (along inter-procedurally valid paths).

Algorithm

- Objective : to compute the nodes reachable from $\langle s_{main}, \mathbf{0} \rangle$ via interprocedurally valid paths in the exploded super graph $G^{\#}$.
- Worklist based algorithm
- Iteratively computes two sets : PathEdge and SummaryEdge using dynamic programming.
- The set PathEdge stores special edges called path edges. Every path edge begins at entry point of a procedure, and ends at some point in the procedure.
- First path edge added to the worklist: $< s_{main}, \mathbf{0} > \rightarrow < s_{main}, \mathbf{0} >$.
- In each iteration, a path edge $\langle s_p, d_1 \rangle \to \langle n, d_2 \rangle$ is removed from the worklist, and new path edge(s) and/or summary edge are added based on the type of n. (See Figures 3 and 4 in the paper)

Property of path edges

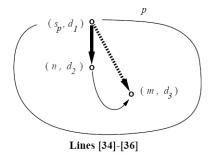
- Path edge $\langle s_{procOf(N)}, d_1 \rangle \rightarrow \langle N, d_2 \rangle$ iff
 - there is an inter-procedurally valid path from $< s_{main}, \mathbf{0} >$ to $< s_{procOf(N)}, d_1 >$, and
 - there is an inter-procedurally valid and complete path from $< s_{procOf(N)}, d_1 >$ to $< N, d_2 >$.

Property of path edges

- Path edge $\langle s_{procOf(N)}, d_1 \rangle \rightarrow \langle N, d_2 \rangle$ iff
 - there is an inter-procedurally valid path from $< s_{main}, \mathbf{0} >$ to $< s_{procOf(N)}, d_1 >$, and
 - there is an inter-procedurally valid and complete path from $< s_{procOf(N)}, d_1 >$ to $< N, d_2 >$.
- After the algorithm terminates, for any node N, the following set is equal to JVP_N : $\{d_2 \in D \mid \exists d_1 \in (D \cup \{\mathbf{0}\}) \text{ such that } (\langle s_{procOf(N)}, d_1 \rangle, \langle N, d_2 \rangle) \in \mathit{PathEdge} \}$

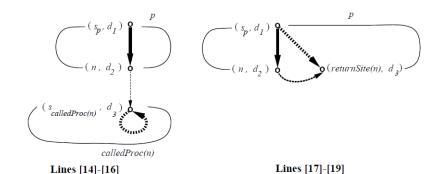
Algorithm - n is not a call or exit node

```
 \begin{array}{l} \mathbf{case} \ n \in (N_p - Call_p - \{\,e_p\,\}) : \\ \mathbf{for} \ \mathrm{each} \ \langle m, \ d_3 \rangle \ \mathrm{such} \ \mathrm{that} \ \langle n, \ d_2 \rangle \rightarrow \langle m, \ d_3 \rangle \in E^\# \ \mathbf{do} \\ \mathrm{Propagate}(\langle s_p, \ d_1 \rangle \rightarrow \langle m, \ d_3 \rangle) \\ \mathbf{od} \\ \mathbf{end} \ \mathbf{case} \end{array}
```



Algorithm - n is a call node

```
 \begin{array}{l} \textbf{case } n \in Call_p : \\ \textbf{for } \operatorname{each} d_3 \operatorname{such} \operatorname{that} \langle n, \ d_2 \rangle \to \langle s_{calledProc(n)}, \ d_3 \rangle \in E^\# \operatorname{\mathbf{do}} \\ \operatorname{Propagate}(\langle s_{calledProc(n)}, \ d_3 \rangle \to \langle s_{calledProc(n)}, \ d_3 \rangle) \\ \textbf{od} \\ \textbf{for } \operatorname{each} d_3 \operatorname{such} \operatorname{that} \langle n, \ d_2 \rangle \to \langle returnSite(n), \ d_3 \rangle \in (E^\# \cup \operatorname{SummaryEdge}) \operatorname{\mathbf{do}} \\ \operatorname{Propagate}(\langle s_p, \ d_1 \rangle \to \langle returnSite(n), \ d_3 \rangle) \\ \textbf{od} \\ \textbf{end } \operatorname{\mathbf{case}} \\ \end{array}
```



Algorithm - *n* is an exit node

```
case n = e_p:

for each c \in callers(p) do

for each d_4, d_5 such that \langle c, d_4 \rangle \rightarrow \langle s_p, d_1 \rangle \in E^{\#} and \langle e_p, d_2 \rangle \rightarrow \langle returnSite(c), d_5 \rangle \in E^{\#} do

if \langle c, d_4 \rangle \rightarrow \langle returnSite(c), d_5 \rangle \in SummaryEdge then

Insert \langle c, d_4 \rangle \rightarrow \langle returnSite(c), d_5 \rangle into SummaryEdge

for each d_3 such that \langle s_{procOf(c)}, d_3 \rangle \rightarrow \langle c, d_4 \rangle PathEdge do

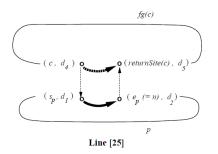
Propagate(\langle s_{procOf(c)}, d_3 \rangle \rightarrow \langle returnSite(c), d_5 \rangle)

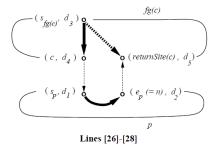
od

od

od

end case
```





A note about summary edges

- Lines 17-19 and Lines 26-28 both add a path edge to a return site. Is there redundancy here? Answer is no.
- Say in Step k of the algorithm Lines 25-28 execute (see fourth rule in Fig. 4). Say in some previous step i (i < k), the path edge to the call-site node (c, d_4) was removed from the worklist. The summary edge from from (c, d_4) to (returnSite(c), d_5) is being added just now, in Step k. Therefore, in Step i, this summary edge would not have existed. Therefore, in Step i, Lines 17-19 would not have added the path edge to (returnSite(c), d_5). Therefore, in Step k, we need Lines 26-28 to add this path edge.
- The converse situation is also possible. Say in Step k a path edge to a call-site node (n,d_2) gets added (see second rule in Fig. 4). It is possible that in an earlier Step i (i < k), the summary edge from (n,d_2) to $(returnSite(n), d_3)$ was already added. At Step i Lines 26-28 would not have added the path edge to $(returnSite(n), d_3)$, because the path edge to (n,d_2) did not exist at that time. Therefore, Lines 17-19 need to add the path edge to $(returnSite(n), d_3)$ in Step k.

Algorithm Correctness

Theorem 4.1: Let $X_N = \{d_2 \in D \mid \exists d_1 \in (D \cup \{\mathbf{0}\}) \text{ such that } (\langle s_{procOf(N)}, d_1 \rangle, \langle N, d_2 \rangle) \in PathEdge\}$ for the node N after the algorithm terminates. Then $X_N = JVP_N$.

Proof of Theorem 4.1: First direction

- Given: $\exists d_1 \in D \cup \{\mathbf{0}\}$ such that $(\langle s_{procOf(N)}, d_1 \rangle, \langle N, d_2 \rangle) \in PathEdge$ when the tabulation algorithm terminates.
- Invoking Theorem 3.8, it suffices to show that there is an inter-procedurally valid path in the exploded super graph from $\langle s_{main}, \mathbf{0} \rangle$ to $\langle N, d_2 \rangle$.
- Argument is by induction on the number iterations of the main loop in the algorithm.
- Induction hypothesis:

$$\forall N, d_1, d_2, (\langle s_{procOf(N)}, d_1 \rangle, \langle N, d_2 \rangle) \in \textit{PathEdge} \Rightarrow$$

- there is an inter-procedurally valid path from $< s_{main}, \mathbf{0} >$ to $< s_{procOf(N)}, d_1 >$, and
- there is an inter-procedurally valid and complete path from $< s_{procOf(N)}, d_1 >$ to $< N, d_2 >$.

Proof of Theorem 4.1: The other direction

- Given there is an interprocedurally valid path from $\langle s_{main}, \mathbf{0} \rangle$ to $\langle N, d_2 \rangle$)
- To show that there exists $d_1 \in (D \cup \{\mathbf{0}\})$ such that $(\langle s_{procOf(N)}, d_1 \rangle, \langle N, d_2 \rangle) \in PathEdge$ when the tabulation algorithm terminates.
- Induction on the length of the path
- Induction hypothesis: $\forall N, d_2$, if there is an inter-procedurally valid path of length j from $\langle s_{main}, \mathbf{0} \rangle$ to $\langle N, d_2 \rangle$, then there exists $(\langle s_{procOf(N)}, d_1 \rangle, \langle N, d_2 \rangle) \in PathEdge$ when the tabulation algorithm terminates.

Efficiency

Complexity

- $O(ED^3)$ for general IDFS problems
- O(ED) for gen-kill problems (a special class of problems that includes available expressions, reaching definitions and live variables); comparable to best known algorithm specialized for gen-kill problems.

How it compares to iterative approach

- Plain iterative would need time proportional to |L|, which is $2^{|D|}$.
- It's possible to produce a variant of iterative approach that works with values from D, instead of values from L. Still, its complexity is likely to be worse than $O(ED^3)$.