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Summary of Sharir-Pneuli approaches

@ Requirements of all three approaches (call-strings, functional,
iterative)
e Transfer functions are monotonic
@ Additional requirements of functional approach

e Functions be represented as data-structures
e The operations of join, composition, and equality-checking be defined
on the representation

o Additional requirements of call-strings and iterative approach
e L is finite
@ What they all compute: LFP in general, JVP for distributive
functions.
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Efficiency of the known algorithms

o Lattice for available expressions analysis for a single expression:
AV ={L1,1,0}.

@ Lattice for k expressions?
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Efficiency of the known algorithms

o Lattice for available expressions analysis for a single expression:
AV ={L1,1,0}.
o Lattice for k expressions? AVK
o Call-strings approach would need a very high bound. Iterative approach
would need 2% “columns” .
e Very expensive
@ Main insight: If we analyze for each expression separately using AV
lattice, we would get same results as analyzing all of them together
using AVX lattice.
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Gen-kill problems

@ Definition of gen-kill problem:

Lattice L = 2P, where D is a finite set

Transfer functions are distributive

Join is union or intersection

For each transfer function f and for each d € D,
f({d}) = f(0) (i.e., f does not “transmit” d) or
f{d}) =f(0)u{d} (i.e., f “transmits” d).

(The elements of D that are in () are said to be “generated” by f.

Any element of D that is neither transmitted nor generated by f is said
to be “killed” by f.)

e Examples of gen/kill problems: reaching definitions, unitialized
variables, live variables (backwards analysis).
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More on gen-kill problems

@ Another equivalent definition of gen-kill problem:
o Lattice L = 2P, where D is a finite set

e Join is union or intersection
o For each node n, there exist two sets gen,, and kill,, both being subsets

of D, such that

fo = AS.(S — kill,) U gen,,
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Strategy for solving gen-kill problems efficiently

© Do abstract interpretation separately using lattice 219}, for each
deD.

@ At any program point p, final JOP is union of JOP’s using individual
analyses.

@ Can do all the |D| analyses together also
e Does not change the order-complexity, but could be more efficient in

practice
o We would need 2|D| “columns” with iterative approach
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Requirements of [RHS95] approach

@ The abstract lattice L = 202, where D is a finite set

@ Transfer functions are distributive (approach is undefined for
non-distributive functions)

@ Join (in the L lattice) is union or intersection.

e Paper focuses on union problems. Every intersection problem has a
complement problem whose join is union.

e Examples of IDFS problem that is not a gen/kill problem: Possibly
uninitialized variables, copy-constant propagation, truly live variables
(backward analysis).

@ The RHS algorithm computes JVP for IDFS frameworks.
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Representing dataflow functions

Definition 3.1. The representation relation of f,
Rec(Dw{0)x(Dw{0}), is a binary relation (i.e.,
graph) defined as follows:

Rr=g {(0.0)}
v {0y) |vef(D)}
Uiy |yef(x}andy e f(D)}. O

Representation relation can be thought of as a Graph with 2(D + 1) nodes.
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Representing dataflow functions

Definition 3.1. The representation relation of f,
Ryc(Dw{0})x(Dw{0}), is a binary relation (ie.,
graph) defined as follows:

Rr=qr {(0,0)}
v A0, | ves(@}
v i@ y)|yef{x})andy € f(D)}. O

®) o b c

Identity function
f=2MAS.S

(Credit: Prof. Reps)
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Representing dataflow functions

Definition 3.1. The representation relation of f.
Rrc(Du{0})x(Dw{0}), is a binary relation (ie.,
graph) defined as follows:

Ri=y  {(0.0)}
TS0y yer@n

v {y)|yef{x}andy € f (D)} |
9] o b c
[ ] [ ] ®

Constant function
f=AS.{b}

(Credit: Prof. Reps)
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Representing dataflow functions - I

Try constructing the representation relation without the definition!

f=AS.(S—{b})U{c}
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Representing dataflow functions - I

Try constructing the representation relation without the definition!

0 o b c
f=AS.(S— {b})U{c}

(Credit: Prof. Reps)
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Representing dataflow functions - Exercise

o f=M\Sifaes
then SU {b}
else S — {b}
o f=ASifacSORbcS
then SU {c}
else S —{c}
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Representing dataflow functions - Exercise

f=MAS.ifae$S
then SU {b}
else S — {b}

K. V. Raghavan (lISc) Solving IDFS prob. using graph reachability



Representing dataflow functions - Exercise

O o b c
)
f=MAS.ifae$S
then SU {b}
else S — {b}

f=ASifacSORbeS
then SU {c}
else S —{c}
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Representing dataflow functions - Exercise

o

o)

f=MAS.ifae$S

then SU {b}

else S — {b}

a b

f=ASifacSORbeS i

then SU {c}

else S —{c}

e

c
¢

(=}
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Properties of representation relations

o Interpretation [[R]] : 2P — 2P of a representation relation
R C (Du{0}) x (DU{0}) :

[[R]] =ar AX.({y | Ix € X.((x,y) € )} U{y | (0,y) € R}) — {0}

@ Given a collection of functions f; : 2P — 2P for 1 < i <,
fioho...fj= [[Rfj‘.;Rf}_l;...;Rfl]],

where the composition operation ';
in Definition 3.4 in the paper.

on representation relations is as
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An example exploded graph for possibly-uninitialized
variables using RHS approach

Initial fact is given as {x,y}. Hence, exploded edges are added from
(Smain, 0) to { “x=3",0), ( “x=3", x ), and { "x=3", y).

K. V. Raghavan (IISc) Solving IDFS prob. using graph reachability



Property of exploded graph

Theorem 3.8 : Given a super graph G* for an IDFS problem /P with
lattice D, and its corresponding exploded super graph G#, for any

d € D,d € JVP at node n in G*iff there is an interprocedurally valid path
from (Smain, 0) to (n,d) in G#. O

Follows from the property that for 1 </ <,
fioho...f= [[RG;RGil;...;Rﬁ]].

In other words, they have reduced dataflow analysis to graph reachability
(along inter-procedurally valid paths).
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Algorithm

@ Objective : to compute the nodes reachable from (s.in, 0) via
interprocedurally valid paths in the exploded super graph G7.

o Worklist based algorithm

o lIteratively computes two sets : PathEdge and SummaryEdge using
dynamic programming.

@ The set PathEdge stores special edges called path edges. Every path
edge begins at entry point of a procedure, and ends at some point in
the procedure.

o First path edge added to the worklist: < spain, 0 >—< Smajn, 0 >.

@ In each iteration, a path edge (sp, d1) — (n, d2) is removed from the
worklist, and new path edge(s) and/or summary edge are added based
on the type of n. (See Figures 3 and 4 in the paper)
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Property of path edges

e Path edge < spocor(n), d1 >—< N, dy > iff
e there is an inter-procedurally valid path from < s;4i,,0 > to
< SprocOf(N)» d1 >, and
e there is an inter-procedurally valid and complete path from
< Sprocof(N), d1 > to < N, dr >.
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Property of path edges

e Path edge < spocor(n), d1 >—< N, dy > iff
e there is an inter-procedurally valid path from < s;4i,,0 > to
< SprocOf(N)» d1 >, and
e there is an inter-procedurally valid and complete path from
< Sprocof(N), d1 > to < N, dr >.
@ After the algorithm terminates, for any node N, the following set is
equal to JVPy: {d, € D | 3dy €
(D U{0}) such that ({sprocor(n), d1); (N, d2)) € PathEdge}
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Algorithm - nis not a call or exit node

casen € (N, — Call, — {e, }):
for each <1;” d )such that (n. dy) = (m. d;)e E* do
Propagate((s,. d;) — (m. d3))
od
end case

Lines [34] [36]
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Algorithm - n is a call node

casen e Call, : )
for each d5 such that (n. d,) — (Scatreaproc (ny- d3) € E” do
(Fropaga[e(<ScaHedec (n)- d?v — \ScalledProc(n)- d} )
0
for each d such that {n, d,) — (refurnSite (n). d;)€ (E” v SummaryEdge) do
Propagate((s,. d ;) — (returnSite (n). d5))
od
end case
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"9 (returnSite(n), dj)

C(sp,dl)o
(n, 0’2) :
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=, s
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calledProc(n)
Lines [14]-[16] Lines [17]-[19]
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Algorithm - n is an exit node

casen =g, !
for each ¢ € callers (p) do )
for each dy. ds such that (c. dy) — (s,. dy) € E* and (ey. d») = (rerurnSite(c). ds)ye E7 do
if {c, d,) — {returnSite (). ds) & SmemyEdge then
Insert (c. d4) — {renurnSite (c), d ) into SummaryEdge
for each d5 such that {s,,c0r (). d3) — {c. d4) € PathEdge do
Propagate({Sprocor c)- d3) — (refmn.Srfe (€).ds))

od
fi
od

od
end case
fe(c)
(s
(e, dy) "-......-'D(’EWWD : ‘ + O
p
Line [25] Lines [26]-[28]
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A note about summary edges

@ Lines 17-19 and Lines 26-28 both add a path edge to a return site. Is
there redundancy here? Answer is no.

@ Say in Step k of the algorithm Lines 25-28 execute (see fourth rule in Fig.
4). Say in some previous step i (i < k), the path edge to the call-site
node (c, ds) was removed from the worklist. The summary edge from
from (c, da) to (returnSite(c), ds) is being added just now, in Step k.
Therefore, in Step i, this summary edge would not have existed.
Therefore, in Step i, Lines 17-19 would not have added the path edge to
(returnSite(c), ds). Therefore, in Step k, we need Lines 26-28 to add this
path edge.

@ The converse situation is also possible. Say in Step k a path edge to a
call-site node (n, d») gets added (see second rule in Fig. 4). It is possible
that in an earlier Step 7 (i < k), the summary edge from (n, d2) to
(returnSite(n), d3) was already added. At Step i Lines 26-28 would not
have added the path edge to (returnSite(n), d3), because the path edge
to (n, d) did not exist at that time. Therefore, Lines 17-19 need to add
the path edge to (returnSite(n), d3) in Step k.
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Algorithm Correctness

Theorem 4.1: Let Xy = {dr € D | 3d; €
(D U{0}) such that ((sprocor(n) d1), (N, d2)) € PathEdge} for the node
N after the algorithm terminates. Then Xy = JVPy.
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Proof of Theorem 4.1: First direction

e Given: dd; € DU{0} such that (<Sprocof(N), di), (N, d»)) € PathEdge
when the tabulation algorithm terminates.

@ Invoking Theorem 3.8, it suffices to show that there is an
inter-procedurally valid path in the exploded super graph from
<5main7 0) to <N, d2>.

@ Argument is by induction on the number iterations of the main loop
in the algorithm.
@ Induction hypothesis:
VN’ dla d27 (<5Pr0cOf(N)a d1>7 <N7 d2>) S PathEdge =
o there is an inter-procedurally valid path from < sp,i,,0 > to
< SprocOf(N)s dy >, and
e there is an inter-procedurally valid and complete path from
< Sprocof(N), d1 > to < N, dy >.
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Proof of Theorem 4.1: The other direction

@ Given there is an interprocedurally valid path from (smnain, 0) to
(N, d))

@ To show that there exists d; € (D U {0}) such that
({Sprocof(n), d1), (N, d2)) € PathEdge when the tabulation algorithm
terminates.

@ Induction on the length of the path

@ Induction hypothesis: VN, db, if there is an inter-procedurally valid
path of length j from (spmain, 0) to (N, d>), then there exists

({Sprocor(N), d1), (N, d2)) € PathEdge when the tabulation algorithm
terminates.
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Complexity
o O(ED?3) for general IDFS problems

e O(ED) for gen-kill problems (a special class of problems that includes
available expressions, reaching definitions and live variables);
comparable to best known algorithm specialized for gen-kill problems.

How it compares to iterative approach
o Plain iterative would need time proportional to |L|, which is 2!P.

@ It's possible to produce a variant of iterative approach that works
with values from D, instead of values from L. Still, its complexity is
likely to be worse than O(ED3).
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