
Interprocedural, finite, distributive, subset (IDFS)
problems [Reps-Horwitz-Sagiv-95]

K. V. Raghavan

IISc

K. V. Raghavan (IISc) Solving IDFS prob. using graph reachability 1 / 26

Summary of Sharir-Pneuli approaches

Requirements of all three approaches (call-strings, functional,
iterative)

Transfer functions are monotonic

Additional requirements of functional approach

Functions be represented as data-structures
The operations of join, composition, and equality-checking be defined
on the representation

Additional requirements of call-strings and iterative approach

L is finite

What they all compute: LFP in general, JVP for distributive
functions.

K. V. Raghavan (IISc) Solving IDFS prob. using graph reachability 2 / 26

Efficiency of the known algorithms

Lattice for available expressions analysis for a single expression:
AV ≡ {⊥, 1, 0}.
Lattice for k expressions?

AV k

Call-strings approach would need a very high bound. Iterative approach
would need 2k “columns”.
Very expensive

Main insight: If we analyze for each expression separately using AV
lattice, we would get same results as analyzing all of them together
using AV k lattice.

K. V. Raghavan (IISc) Solving IDFS prob. using graph reachability 3 / 26

Efficiency of the known algorithms

Lattice for available expressions analysis for a single expression:
AV ≡ {⊥, 1, 0}.
Lattice for k expressions? AV k

Call-strings approach would need a very high bound. Iterative approach
would need 2k “columns”.
Very expensive

Main insight: If we analyze for each expression separately using AV
lattice, we would get same results as analyzing all of them together
using AV k lattice.

K. V. Raghavan (IISc) Solving IDFS prob. using graph reachability 3 / 26

Efficiency of the known algorithms

Lattice for available expressions analysis for a single expression:
AV ≡ {⊥, 1, 0}.
Lattice for k expressions? AV k

Call-strings approach would need a very high bound. Iterative approach
would need 2k “columns”.
Very expensive

Main insight: If we analyze for each expression separately using AV
lattice, we would get same results as analyzing all of them together
using AV k lattice.

K. V. Raghavan (IISc) Solving IDFS prob. using graph reachability 3 / 26

Gen-kill problems

Definition of gen-kill problem:

Lattice L = 2D , where D is a finite set
Transfer functions are distributive
Join is union or intersection
For each transfer function f and for each d ∈ D,
f ({d}) = f (∅) (i.e., f does not “transmit” d) or
f ({d}) = f (∅) ∪ {d} (i.e., f “transmits” d).

(The elements of D that are in f (∅) are said to be “generated” by f .
Any element of D that is neither transmitted nor generated by f is said
to be “killed” by f .)

Examples of gen/kill problems: reaching definitions, unitialized
variables, live variables (backwards analysis).

K. V. Raghavan (IISc) Solving IDFS prob. using graph reachability 4 / 26

More on gen-kill problems

Another equivalent definition of gen-kill problem:

Lattice L = 2D , where D is a finite set
Join is union or intersection
For each node n, there exist two sets genn and killn, both being subsets
of D, such that

fn = λS .(S − killn) ∪ genn

K. V. Raghavan (IISc) Solving IDFS prob. using graph reachability 5 / 26

Strategy for solving gen-kill problems efficiently

1 Do abstract interpretation separately using lattice 2{d}, for each
d ∈ D.

2 At any program point p, final JOP is union of JOP’s using individual
analyses.

3 Can do all the |D| analyses together also
Does not change the order-complexity, but could be more efficient in
practice
We would need 2|D| “columns” with iterative approach

K. V. Raghavan (IISc) Solving IDFS prob. using graph reachability 6 / 26

Requirements of [RHS95] approach

The abstract lattice L = 2D , where D is a finite set

Transfer functions are distributive (approach is undefined for
non-distributive functions)

Join (in the L lattice) is union or intersection.

Paper focuses on union problems. Every intersection problem has a
complement problem whose join is union.

Examples of IDFS problem that is not a gen/kill problem: Possibly
uninitialized variables, copy-constant propagation, truly live variables
(backward analysis).

The RHS algorithm computes JVP for IDFS frameworks.

K. V. Raghavan (IISc) Solving IDFS prob. using graph reachability 7 / 26

Representing dataflow functions

Representation relation can be thought of as a Graph with 2(D +1) nodes.

K. V. Raghavan (IISc) Solving IDFS prob. using graph reachability 8 / 26

Representing dataflow functions

Identity function
f = λS .S

(Credit: Prof. Reps)

K. V. Raghavan (IISc) Solving IDFS prob. using graph reachability 9 / 26

Representing dataflow functions

Constant function
f = λS .{b}

(Credit: Prof. Reps)

K. V. Raghavan (IISc) Solving IDFS prob. using graph reachability 10 / 26

Representing dataflow functions - II

Try constructing the representation relation without the definition!

f = λS .(S − {b}) ∪ {c}

(Credit: Prof. Reps)

K. V. Raghavan (IISc) Solving IDFS prob. using graph reachability 11 / 26

Representing dataflow functions - II

Try constructing the representation relation without the definition!

f = λS .(S − {b}) ∪ {c}

(Credit: Prof. Reps)

K. V. Raghavan (IISc) Solving IDFS prob. using graph reachability 11 / 26

Representing dataflow functions - Exercise

f = λS .if a ∈ S
then S ∪ {b}
else S − {b}

f = λS .if a ∈ S OR b ∈ S
then S ∪ {c}
else S − {c}

K. V. Raghavan (IISc) Solving IDFS prob. using graph reachability 12 / 26

Representing dataflow functions - Exercise

f = λS .if a ∈ S
then S ∪ {b}
else S − {b}

f = λS .if a ∈ S OR b ∈ S
then S ∪ {c}
else S − {c}

K. V. Raghavan (IISc) Solving IDFS prob. using graph reachability 13 / 26

Representing dataflow functions - Exercise

f = λS .if a ∈ S
then S ∪ {b}
else S − {b}

f = λS .if a ∈ S OR b ∈ S
then S ∪ {c}
else S − {c}

K. V. Raghavan (IISc) Solving IDFS prob. using graph reachability 13 / 26

Representing dataflow functions - Exercise

f = λS .if a ∈ S
then S ∪ {b}
else S − {b}

f = λS .if a ∈ S OR b ∈ S
then S ∪ {c}
else S − {c}

K. V. Raghavan (IISc) Solving IDFS prob. using graph reachability 13 / 26

Properties of representation relations

Interpretation [[R]] : 2D → 2D of a representation relation
R ⊆ (D ∪ {0})× (D ∪ {0}) :

[[R]] =df λX .({y | ∃x ∈ X .((x , y) ∈ R)}) ∪ {y | (0, y) ∈ R})− {0}

Given a collection of functions fi : 2
D → 2D for 1 ≤ i ≤ j ,

f1 ◦ f2 ◦ . . . fj = [[Rfj ;Rfj−1
; . . . ;Rf1]],

where the composition operation ’;’ on representation relations is as
in Definition 3.4 in the paper.

K. V. Raghavan (IISc) Solving IDFS prob. using graph reachability 14 / 26

An example exploded graph for possibly-uninitialized
variables using RHS approach

x = 3

p(x,y)

return from p

printf(y)

start main

exit main

start p(a,b)

if . . .

b = a

p(a,b)

return from p

printf(b)

exit p

x yΛ Λ a b

Initial fact is given as {x,y}. Hence, exploded edges are added from
⟨smain, 0⟩ to ⟨ “x=3”, 0⟩, ⟨ “x=3”, x ⟩, and ⟨ “x=3”, y⟩.

K. V. Raghavan (IISc) Solving IDFS prob. using graph reachability 15 / 26

Property of exploded graph

Theorem 3.8 : Given a super graph G ∗ for an IDFS problem IP with
lattice D, and its corresponding exploded super graph G#, for any
d ∈ D, d ∈ JVP at node n in G ∗iff there is an interprocedurally valid path
from ⟨smain, 0⟩ to ⟨n, d⟩ in G#. □

Follows from the property that for 1 ≤ i ≤ j ,
f1 ◦ f2 ◦ . . . fj = [[Rfj ;Rfj−1

; . . . ;Rf1]].

In other words, they have reduced dataflow analysis to graph reachability
(along inter-procedurally valid paths).

K. V. Raghavan (IISc) Solving IDFS prob. using graph reachability 16 / 26

Algorithm

Objective : to compute the nodes reachable from ⟨smain, 0⟩ via
interprocedurally valid paths in the exploded super graph G#.

Worklist based algorithm

Iteratively computes two sets : PathEdge and SummaryEdge using
dynamic programming.

The set PathEdge stores special edges called path edges. Every path
edge begins at entry point of a procedure, and ends at some point in
the procedure.

First path edge added to the worklist: < smain, 0 >→< smain, 0 >.

In each iteration, a path edge ⟨sp, d1⟩ → ⟨n, d2⟩ is removed from the
worklist, and new path edge(s) and/or summary edge are added based
on the type of n. (See Figures 3 and 4 in the paper)

K. V. Raghavan (IISc) Solving IDFS prob. using graph reachability 17 / 26

Property of path edges

Path edge < sprocOf (N), d1 >→< N, d2 > iff

there is an inter-procedurally valid path from < smain, 0 > to
< sprocOf (N), d1 >, and
there is an inter-procedurally valid and complete path from
< sprocOf (N), d1 > to < N, d2 >.

After the algorithm terminates, for any node N, the following set is
equal to JVPN : {d2 ∈ D | ∃d1 ∈
(D ∪ {0}) such that (⟨sprocOf (N), d1⟩, ⟨N, d2⟩) ∈ PathEdge}

K. V. Raghavan (IISc) Solving IDFS prob. using graph reachability 18 / 26

Property of path edges

Path edge < sprocOf (N), d1 >→< N, d2 > iff

there is an inter-procedurally valid path from < smain, 0 > to
< sprocOf (N), d1 >, and
there is an inter-procedurally valid and complete path from
< sprocOf (N), d1 > to < N, d2 >.

After the algorithm terminates, for any node N, the following set is
equal to JVPN : {d2 ∈ D | ∃d1 ∈
(D ∪ {0}) such that (⟨sprocOf (N), d1⟩, ⟨N, d2⟩) ∈ PathEdge}

K. V. Raghavan (IISc) Solving IDFS prob. using graph reachability 18 / 26

Algorithm - n is not a call or exit node

K. V. Raghavan (IISc) Solving IDFS prob. using graph reachability 19 / 26

Algorithm - n is a call node

K. V. Raghavan (IISc) Solving IDFS prob. using graph reachability 20 / 26

Algorithm - n is an exit node

K. V. Raghavan (IISc) Solving IDFS prob. using graph reachability 21 / 26

A note about summary edges

Lines 17-19 and Lines 26-28 both add a path edge to a return site. Is
there redundancy here? Answer is no.
Say in Step k of the algorithm Lines 25-28 execute (see fourth rule in Fig.
4). Say in some previous step i (i < k), the path edge to the call-site
node (c , d4) was removed from the worklist. The summary edge from
from (c , d4) to (returnSite(c), d5) is being added just now, in Step k .
Therefore, in Step i , this summary edge would not have existed.
Therefore, in Step i , Lines 17-19 would not have added the path edge to
(returnSite(c), d5). Therefore, in Step k , we need Lines 26-28 to add this
path edge.
The converse situation is also possible. Say in Step k a path edge to a
call-site node (n, d2) gets added (see second rule in Fig. 4). It is possible
that in an earlier Step i (i < k), the summary edge from (n, d2) to
(returnSite(n), d3) was already added. At Step i Lines 26-28 would not
have added the path edge to (returnSite(n), d3), because the path edge
to (n, d2) did not exist at that time. Therefore, Lines 17-19 need to add
the path edge to (returnSite(n), d3) in Step k .

K. V. Raghavan (IISc) Solving IDFS prob. using graph reachability 22 / 26

Algorithm Correctness

Theorem 4.1: Let XN = {d2 ∈ D | ∃d1 ∈
(D ∪ {0}) such that (⟨sprocOf (N), d1⟩, ⟨N, d2⟩) ∈ PathEdge} for the node
N after the algorithm terminates. Then XN = JVPN .

K. V. Raghavan (IISc) Solving IDFS prob. using graph reachability 23 / 26

Proof of Theorem 4.1: First direction

Given: ∃d1 ∈ D ∪{0} such that (⟨sprocOf (N), d1⟩, ⟨N, d2⟩) ∈ PathEdge
when the tabulation algorithm terminates.

Invoking Theorem 3.8, it suffices to show that there is an
inter-procedurally valid path in the exploded super graph from
⟨smain, 0⟩ to ⟨N, d2⟩.
Argument is by induction on the number iterations of the main loop
in the algorithm.

Induction hypothesis:
∀N, d1, d2, (⟨sprocOf (N), d1⟩, ⟨N, d2⟩) ∈ PathEdge ⇒

there is an inter-procedurally valid path from < smain, 0 > to
< sprocOf (N), d1 >, and
there is an inter-procedurally valid and complete path from
< sprocOf (N), d1 > to < N, d2 >.

K. V. Raghavan (IISc) Solving IDFS prob. using graph reachability 24 / 26

Proof of Theorem 4.1: The other direction

Given there is an interprocedurally valid path from ⟨smain, 0⟩ to
⟨N, d2⟩)
To show that there exists d1 ∈ (D ∪ {0}) such that
(⟨sprocOf (N), d1⟩, ⟨N, d2⟩) ∈ PathEdge when the tabulation algorithm
terminates.

Induction on the length of the path

Induction hypothesis: ∀N, d2, if there is an inter-procedurally valid
path of length j from ⟨smain, 0⟩ to ⟨N, d2⟩, then there exists
(⟨sprocOf (N), d1⟩, ⟨N, d2⟩) ∈ PathEdge when the tabulation algorithm
terminates.

K. V. Raghavan (IISc) Solving IDFS prob. using graph reachability 25 / 26

Efficiency

Complexity

O(ED3) for general IDFS problems

O(ED) for gen-kill problems (a special class of problems that includes
available expressions, reaching definitions and live variables);
comparable to best known algorithm specialized for gen-kill problems.

How it compares to iterative approach

Plain iterative would need time proportional to |L|, which is 2|D|.

It’s possible to produce a variant of iterative approach that works
with values from D, instead of values from L. Still, its complexity is
likely to be worse than O(ED3).

K. V. Raghavan (IISc) Solving IDFS prob. using graph reachability 26 / 26

