

Introduction to (untyped)

lambda calculus

Syntax

$t ::=$

x

$\lambda x. t$

variable

abstraction

$t t$

application

true | false

boolean constants

if t then t else t

conditional

\mathbb{I}

integer constants

$t \text{ op } t$

op $::= + | - | < | = | \dots$

$v ::=$

$\lambda x. t$

values

true | false

\mathbb{I}

Semantics

Specified as a set of rewrite rules:

1. $(\lambda x. t) v, \rightarrow [x \mapsto v] t, \text{ [E-App Abs]}$

- $[x \mapsto v] t,$ replaces all occurrences of

x in $t,$ with $v,$

- For simplicity we assume that each different ' x ' in the term uses a distinct variable name.

2.

$$\underline{t_1 \rightarrow t'_1}$$

[E-App1]

$$t_1 t_2 \rightarrow t'_1 t_2$$

Semantics - II

3. $\frac{t_2 \rightarrow t_2'}{\vee_1 t_2 \rightarrow \vee_1 t_2'} \quad [E-App^2]$

4. $\text{if true then } t_2 \text{ else } t_3 \rightarrow t_2 \quad [E-IfTrue]$

5. $\text{if false then } t_2 \text{ else } t_3 \rightarrow t_3 \quad [E-IfFalse]$

6. $\frac{t_1 \rightarrow t_1'}{\text{if } t_1 \text{ then } t_2 \text{ else } t_3 \rightarrow \text{if } t_1' \text{ then } t_2 \text{ else } t_3} \quad [E-If]$

7. $\frac{t_1 \rightarrow t_1'}{t_1 \text{ op } t_2 \rightarrow t_1' \text{ op } t_2} \quad [E-Add1]$

Semantics - III

$$8. \frac{t_2 \rightarrow t_2'}{\sqrt_1 \text{ op } t_2 \rightarrow \sqrt_1 \text{ op } t_2'} \quad \{ E - \text{Arith2} \}$$

$$9. \frac{[\text{op}](\sqrt_1, \sqrt_2) = \sqrt_3}{\sqrt_1 \text{ op } \sqrt_2 \rightarrow \sqrt_3} \quad \{ E - \text{Arith3} \}$$

[At each step, one of the rules should be applied at the root of the term.]

Examples

$$1. (((\lambda x. \lambda y. x + y) 5) 6) \rightarrow ((\lambda y. 5 + y) 6) \rightarrow \\ (5 + 6) \rightarrow 11$$

$$2. (\lambda f. (f 6)) (((\lambda x. \lambda y. x + y) 5) \rightarrow \\ (\lambda f. (f 6)) (\lambda y. 5 + y) \rightarrow$$

$$((\lambda y. 5 + y) 6) \rightarrow 5 + 6 \rightarrow 11$$

$$3. (\lambda x. x x) (\lambda x. x x) \rightarrow (\lambda x. x x) (\lambda x. x x) \\ \rightarrow \dots$$

[This term can keep reducing for ever,
without ever reaching a normal form]

Examples - II

$$4(a). (\lambda y. z) (\underline{(\lambda x. x \ x)} (\lambda x. x \ x)) \xrightarrow{E\text{-app}^2} (\lambda y. z) (\underline{(\lambda x. x \ x)} (\lambda x. x \ x)) \xrightarrow{E\text{-app}^2} \dots$$

4(b). If Rule E-AppAbs had allowed
the argument to be not a value:

$$\underline{(\lambda y. z) ((\lambda x. x \ x) (\lambda x. x \ x))} \rightarrow z$$

[This shows that the set of rules chosen
can influence termination.

However, rule E-AppAbs does not
allow this reduction ;]

$$5. ((\lambda x. (\lambda f. (f x))) 5) \quad 5) \quad ((\lambda t. (\lambda z. z + t)) 1)$$

Type Systems

What are type systems?

- An algorithmic technique to verify programs
- An alternative to abstract interpretation
- Normally applied to functional languages. Can be applied to imperative languages without arbitrary control flow.
- Operational semantics of underlying language needs to be specified using rewrite rules
- A set of values (subset of normal forms)
 - Intuitively, values are meaningful normal forms.

Simply Typed Lambda Calculus

Types:

$T ::= \text{Bool}$

Int

$T \rightarrow T$

Type annotations:

$\lambda x.t,$ What is the type of x ?

(Not clear. Need annotation.)

$\lambda x:\text{type}. t,$ 'type' is a member of the T language. E.g. Int , Bool , $\text{Int} \rightarrow \text{Bool}$, $(\text{Int} \rightarrow \text{Int}) \rightarrow \text{Bool}$

Definitions

- Typing relation: an element of the domain
 $\text{Terms} \rightarrow \text{Types}$ (or, $\text{Environment} \times \text{Terms} \rightarrow \text{Types}$)
- Type system:
 - Underlying language & its operational semantics +
 - Domain of types (e.g., T in previous slides) +
 - Typing rules/constraints
- A term t is well-typed in a Type System if
 \exists a typing relation R and a type T such that
 - $t:T \in R$
 - R satisfies typing rules

Definitions (contd.)

- Typing Algorithm
 - Given a term t and an environment (which gives types to all free variables in the term)
 - Either returns "Ill Typed", or
 - Assigns types to t (and to all subterms of t), such that
 - The types assigned to t & its subterms constitute a typing relation R such that
 - R satisfies the typing rules
 - (I.e., algorithm is sound)

Definitions (contd.)

- Soundness of typing rules:

If a term t is well typed there exists no finite rewrite sequence that takes t to a stuck state (a normal form that's not a value)

Typing rules ~~Dealing with free variables...~~

$\dots \rightarrow 2, \neg 1, 0, 1, 2, \dots : \text{Int}$ (T-Int)

 true : Bool (T-TRUE)

 false : Bool (T-FALSE)

$$\frac{t_1 : \text{Bool} \quad t_2 : T \quad t_3 : T}{\text{if } t_1 \text{ then } t_2 \text{ else } t_3 : T} \quad (\text{T-IF})$$
$$\frac{\lambda x : T_1. t_2 : T_1 \rightarrow T_2}{\text{???}} \quad (\text{T-ABS})$$

Cannot be simply $t_2 : T_2$, because x occurs free inside t_2 . t_2 's type cannot be checked unless some assumption is made on the type of x .

~~... by introducing context information.~~

Therefore, we introduce environments into typing rules.

The context Γ (Gamma) is a (finite) mapping of variables to types

$$\Gamma \vdash \text{true} : \text{Bool} \quad (\text{T-TRUE})$$

$$\Gamma \vdash \text{false} : \text{Bool} \quad (\text{T-FALSE})$$

$$\frac{\Gamma \vdash t_1 : \text{Bool} \quad \Gamma \vdash t_2 : T \quad \Gamma \vdash t_3 : T}{\Gamma \vdash \text{if } t_1 \text{ then } t_2 \text{ else } t_3 : T} \quad (\text{T-IF})$$

$$\frac{\Gamma, x:T_1 \vdash t_2 : T_2}{\Gamma \vdash \lambda x:T_1. t_2 : T_1 \rightarrow T_2} \quad (\text{T-ABS})$$

$$\frac{x:T \in \Gamma}{\Gamma \vdash x : T} \quad (\text{T-VAR})$$

$$\frac{\Gamma \vdash t_1 : T_{11} \rightarrow T_{12} \quad \Gamma \vdash t_2 : T_{11}}{\Gamma \vdash t_1 \ t_2 : T_{12}} \quad (\text{T-APP})$$

Using a derivation tree to prove that
a term is well-typed

$$\frac{x : B \rightarrow B \in \{x : B \rightarrow B, y : B\} \quad y : B \in \{x : B \rightarrow B, y : B\}}{\{x : B \rightarrow B, y : B\} \vdash x : B \rightarrow B \quad \{x : B \rightarrow B, y : B\} \vdash y : B} \text{[T-Var]}$$
$$\frac{\{x : B \rightarrow B, y : B\} \vdash x : B \rightarrow B \quad \{x : B \rightarrow B, y : B\} \vdash y : B}{\{x : B \rightarrow B\}, y : B \vdash (x y) : B} \text{[T-App]}$$
$$\frac{\phi, x : B \rightarrow B \vdash (\lambda y : B. (x y)) : B \rightarrow B}{\phi \vdash (\lambda x : B \rightarrow B. \lambda y : B. (x y)) : (B \rightarrow B) \rightarrow (B \rightarrow B)} \text{[T-Abs]}$$

Updated definitions

A typing relation is now a partial function $\text{Environment} \times \text{Terms} \rightarrow \text{Types}$

We say $\Gamma \vdash t : T$ if there exists typing relation R that respects the rules and such that $R(\Gamma, t) = T$

We say $t : T$ iff $\emptyset \vdash t : T$

We say $\Gamma \vdash t$ is well typed if there exists a type T such that $\Gamma \vdash t : T$. We say t is well typed if $\emptyset \vdash t$ is well typed.

Properties

- The two key properties are:
 - Progress:

A closed, well-typed term is not stuck

If $\vdash t : T$, then either t is a value or else $t \rightarrow t'$ for some t' .

- Preservation:

If $\Gamma \vdash t : T$ and $t \rightarrow t'$, then $\Gamma \vdash t' : T$.

These two properties imply Soundness of the type system.

- To prove them, we proceed in a similar way as for expressions

Inversion Lemma

1. If $\Gamma \vdash \text{true} : R$, then $R = \text{Bool}$.
2. If $\Gamma \vdash \text{false} : R$, then $R = \text{Bool}$.
3. If $\Gamma \vdash \text{if } t_1 \text{ then } t_2 \text{ else } t_3 : R$, then $\Gamma \vdash t_1 : \text{Bool}$ and $\Gamma \vdash t_2, t_3 : R$.
4. If $\Gamma \vdash x : R$, then $x : R \in \Gamma$.
5. If $\Gamma \vdash \lambda x : T_1. t_2 : R$, then $R = T_1 \rightarrow R_2$ for some R_2 with $\Gamma, x : T_1 \vdash t_2 : R_2$.
6. If $\Gamma \vdash t_1 \ t_2 : R$, then there is some type T_{11} such that $\Gamma \vdash t_1 : T_{11} \rightarrow R$ and $\Gamma \vdash t_2 : T_{11}$.

Uniqueness and canonical forms

- Uniqueness:
 - In a given context Γ , if a term is typable, then it is **only in one way**
This means there is a unique maximal typing relation R that satisfies all the rules.
- Canonical Forms:
 1. If v is a value of type `Bool`, then v is either `true` or `false`.
 2. If v is a value of type $T_1 \rightarrow T_2$, then v has the form $\lambda x:T_1.t_2$.

Progress

- Progress theorem:

Theorem: Suppose t is a closed, well-typed term (that is, $\vdash t : T$ for some T). Then either t is a value or else there is some t' with $t \rightarrow t'$.

- Proof is by induction on the ^{height of the} typing derivation
- Note: if the term is not closed, progress can fail

Preservation

- Substitution Lemma:

Lemma: Types are preserved under substitution.

That is, if $\Gamma, x:S \vdash t : T$ and $\Gamma \vdash s : S$, then $\Gamma \vdash [x \mapsto s]t : T$.

- Preservation Theorem:

Theorem: If $\Gamma \vdash t : T$ and $t \rightarrow t'$, then $\Gamma \vdash t' : T$.

- Proof by induction on typing derivation

height of the
~

Algorithm

TypeCheck(Γ, t) {

switch (t) {

case v :

if ($\exists T. ((v:T) \in \Gamma)$)

return T

else

return NO;

case $\lambda x:T. e$:

$T' = \text{TypeCheck}((\Gamma, x:T), e)$;

if ($T' = \text{NO}$)

return NO;

else

return $T \rightarrow T'$;

case true; case false:

return Bool;

case t_1, t_2 :

$T_1 = \text{TypeCheck}(\Gamma, t_1)$;

$T_2 = \text{TypeCheck}(\Gamma, t_2)$;

if (T_1 is of the form $T_2 \rightarrow T_4$ for some T_4)

return T_4

else

return NO;

case "if t_1 then t_2 else t_3 ":

$T_i = \text{TypeCheck}(\Gamma, t_i)$, $i = 1, 2, 3$

if ($T_1 = \text{Bool}$ and $T_2 = T_3$ and $T_2 \neq \text{NO}$)

return T_2

else

return NO;

3 3
3

Soundness of Algorithm

Theorem: If $\text{TypeCheck}(\Gamma, t)$ returns a type T (other than 'NO'), then There exists a proof tree rooted at $\Gamma \vdash t : T$.

In other words, T is a valid type for t under the environment Γ .