
HADOOP – HDFS
AND YARN

Prasad M Deshpande

Design goals of batch processing
systems
■ Fast processing

– Data ought to be in primary storage, or even better, RAM
■ Scalable

– Should be able to handle growing data volumes
■ Reliable

– Should be able to handle failures gracefully
■ Ease of programming

– Right level of abstractions to help build applications
■ Low cost

➢ Need a whole ecosystem

How to scale?

380 passengers

40 passengers

80 passengers

Vertical

Scaling

Horizontal

Scaling

Requirements
Speed

Scalability
Reliability
Ease of programming
Low cost

Ways to Scale

■ To scale horizontally (or scale out) means to add more
nodes to a system, such as adding a new computer to a
distributed software application.

■ To scale vertically (or scale up) means to add resources
to a single node in a system, typically involving the
addition of CPUs or memory to a single computer.

4

What are the advantages and disadvantages?

What is Hadoop?

■ Hadoop is an open source framework, from the Apache foundation, capable of
processing large amounts of heterogeneous data sets in a distributed fashion
across clusters of commodity computers and hardware using a simplified
programming model.

■ The Hadoop framework is based closely on the following principle:

In pioneer days they used oxen for heavy pulling, and when one ox couldn't budge a log, they didn't try to
grow a larger ox. We shouldn't be trying for bigger computers, but for more systems of computers.
~Grace Hopper

Hadoop Timeline

Hadoop has its origins in Apache Nutch, an open source web search engine, itself
a part of the Lucene project.

Hardware

Rack

■ The rack contains multiple mounting

slots called bays

■ A single rack can contain multiple

servers stacked one above the
other, consolidating network resources
and minimizing the required floor
space.

■ The rack server configuration also
simplifies cabling among network
components.

Switch

■ A switch, in the context of networking

is a high-speed device that receives
incoming data packets and redirects
them to their destination on a local
area network (LAN).

■ Essentially, switches are the traffic
cops of a simple local area network

■ Switch is limited to node-to-node
communication on the same network.

Hub & Spoke Hardware

Aggregation switch

Rack switch

Hadoop Characteristics

■ Distribute data initially

– Let processors / nodes work on local data
– Minimize data transfer over network
– Replicate data multiple times for increased availability

■ Write applications at a high level

– Programmers should not have to worry about network programming, low

level infrastructure, etc
■ Minimize talking between nodes (share-nothing)

Requirements
Speed

Scalability
Reliability
Ease of programming
Low cost

Eco-system

HDFS design goals

Designed for

■ Very large files (petabytes)

■ Write once, read many times

■ Append only

■ Fault tolerance

Not good for

■ Low latency data access

■ Small files

■ Update intensive workloads

HDFS is an open-source implementation of Google file system (GFS)

Design decisions

■ Break files in very large blocks (128 MB)

– compare with 1024 bytes in a Linux file system

■ Fault tolerance

– Replicate the blocks (x3)
– Replica placement
– Periodic status - heartbeat and block report messages

■ Two types of nodes – NameNode and DataNode

■ How many blocks and of what size would a file of size 600 MB have?

Background: Google File System
(GFS)

Differences from
traditional file system

• Write once, read many

times

• Append only

• Large block size

HDFS

NameNode

■ Metadata in Memory

– The entire metadata is in main memory

■ Types of metadata

– List of files
– List of Blocks for each file
– List of Data Nodes for each block
– File attributes, e.g. creation time, replication factor

■ A Transaction Log

– Records file creations, file deletions etc

Block Replica Placement

■ Current Strategy

– One replica on local node
– Second replica on a remote rack
– Third replica on same remote rack
– Additional replicas are randomly placed

■ Clients read from nearest replicas

■ Policy is pluggable

Heartbeat and Rebalancing

■ Heart beats

– Data Nodes send heart beat to the Name Node
– Once every 3 seconds
– Name Node uses heartbeats to detect Data Node failure

■ Rebalancing: % disk full on Data Nodes should be similar

– Usually run when new Data Nodes are added
– Cluster is online when Rebalancer is active
– Rebalancer is throttled to avoid network congestion
– Command line tool

■ Any problems you foresee wrt the design we have seen so far?

■ Memory requirement

– Rule of thumb – 1000 MB per Million Blocks of file storage

■ Example:

– How many blocks in a 200 node cluster with each node having 24 TB Disk?
– 200 * 24,000,000 MB / [128MB * 3] ~ 12 million blocks
– What is the memory requirement?

HDFS 2.0: Name Node Federation
Elaborated

■ Multiple independent Namenodes and Namespace Volumes in a cluster

– Namespace Volume = Namespace + Block Pool

■ Block Storage as generic storage service

– Set of blocks for a Namespace Volume is called a Block Pool
– DNs store blocks for all the Namespace Volumes – no partitioning

Datanode	1 Datanode	2 Datanode	
m...

										NS1
... ...

										NS	k

												Block		Pools
Pool		nPool		kPool		1

NN-1 NN-k NN-n

Common	Storage
Bl

oc
k

St
or

ag
e

N
am

es
pa

ce

Failure scenarios

■ Data node failure

■ Name node failure

HDFS 2.0: High Availability
Elaborated

Re
fe

re
nc

e:
 H

ad
oo

p
Su

m
m

it
20

12
 |

H
DF

S
H

ig
h

Av
ai

la
bi

lit
y

ta
lk

Failover

■ In order to provide a fast failover, it is also necessary that the Standby
node have up-to-date information regarding the location of blocks in
the cluster.

■ In order to achieve this, the DataNodes are configured with the
location of both NameNodes, and send block location information and
heartbeats to both.

Zookeeper

The ZKFailoverController (ZKFC) is a ZooKeeper client that also monitors and
manages the state of the NameNode.

Each of the hosts that run a NameNode also run a ZKFC.

The ZKFC is responsible for Health monitoring of Namenode

- the ZKFC contacts its local NameNode on a periodic basis with a health-check
command. So long as the NameNode responds promptly with a healthy status,
the ZKFC considers the NameNode healthy.

- If the NameNode has crashed, frozen, or otherwise entered an unhealthy state,
the health monitor marks it as unhealthy.

HDFS 2.0: High Availability, Federated

ht
tp

://
pe

-k
ay

.b
lo

gs
po

t.i
n/

20
16

/0
2/

co
nf

ig
ur

in
g-

fe
de

ra
te

d-
hd

fs
-c

lu
st

er
-

w
ith

.h
tm

l

HDFS interface – CLI

■ Similar to other file system commands

■ E.g.

– Hadoop fs -ls hdfs://localhost/user/tom
– hadoop fs -copyFromLocal input/docs/quangle.txt hdfs://localhost/user/

tom/quangle.txt
– hadoop fs -copyToLocal quangle.txt quangle.copy.txt

HDFS Interface – Java FileSystem

Reading Data

■ public static FileSystem get(URI uri, Configuration conf) throws IOException

■ public FSDataInputStream open(Path f) throws IOException

■ public class FSDataInputStream extends DataInputStream implements Seekable,

PositionedReadable

Writing Data

■ public FSDataOutputStream create(Path f) throws IOException

■ public FSDataOutputStream append(Path f) throws IOException

■ public class FSDataOutputStream extends DataOutputStream implements

Syncable

File read flow

HDFS client
Distributed
Filesystem

FSData
InputStream

DataNode DataNode DataNode

Client JVM

Client node

NameNode

1: open 2: get block location3: read

4: read 5: read

6: close

File write flow

YARN – Resource Manager

■ Yet Another Resource Negotiator

■ Replaces Job Tracker and Task Tracker architecture in MR1

■ YARN designed to scale up to 10,000 nodes and 100,000 tasks.

■ Under YARN, there is no distinction between resources available for maps and

resources available for reduces – all resources are available for both; the notion
of slots has been discarded

■ Resources are now configured/allocated in terms of amounts of memory (in
megabytes) and CPU

Enables non-MapReduce tasks to work within a Hadoop
installation

Data and compute distribution

CLIENT

HDFS 2

Name Node

Distributed Data

CLIENT

I want to run some large job on
data that’s already there. Please

give me the processors &
memory I need.

YARN

Resource

ManagerDistributed

Processing

YARN Architecture

Resource Manager

▪ acts as the sole arbitrator of cluster resources.

▪ ultimate authority that arbitrates resources among all the applications.

▪ responsible for optimizing cluster utilization

Node Manager

▪ per-machine slave [daemon]

▪ responsible for launching the applications’ containers,

▪ monitoring their resource usage (CPU, memory, disk, network)

▪ reports to the ResourceManager

▪ provides logging and other auxiliary services

Application Master

■ per application

■ negotiates appropriate resource containers with RM

■ works with the NMs to execute and monitor the containers and their resource

consumption

■ monitors progress

■ The YARN system (RM and NM) needs to protect itself from faulty or malicious
AMs and resources granted to them

Container

■ Container is the resource allocation [container ID, Node Manager], which is
the successful result of the RM granting a specific ResourceRequest from
AM

■ RM responds to a resource request by granting a container, which satisfies
the requirements laid out by the AM in the initial ResourceRequest.

■ A ResourceRequest format:

	 <resource-name, priority, resource-requirement, number-of-
containers>

– Resource requirements: CPU and Memory

Launching the tasks

■ AM presents the Container to the NM managing the host, on which the
container was allocated, to use the resources for launching its tasks

■ The Container launch specification API is platform agnostic and contains:

– Command line to launch the process within the container.
– Environment variables
– Local resources necessary on the machine prior to launch, such as jars,

shared-objects, auxiliary data files etc

Sequence of actions

MR on YARN

Reading list

■ Hadoop The Definitive Guide, Tom White (https://grut-computing.com/
HadoopBook.pdf)

– Chapter 3 – The design of HDFS, HDFS Concepts, The Java Interface
(details can be skipped), Data Flow

– Chapter 4, except Scheduling in YARN

https://grut-computing.com/HadoopBook.pdf
https://grut-computing.com/HadoopBook.pdf

