HADOOQOP - HDFS
AND YARN

Prasad M Deshpande

Design goals of batch processing
systems

= Fast processing
— Data ought to be in primary storage, or even better, RAM

= Scalable
— Should be able to handle growing data volumes

= Reliable
— Should be able to handle failures gracefully

= Ease of programming
— Right level of abstractions to help build applications

= |Low cost

> Need a whole ecosystem

How to scale?

——

Speed

Scalability

Reliability

Ease of programming

Low cost

Vertical D

Scaling ['=—

Horizontal
Scaling

80 passengers

80 passengers

Ways to Scale

= Jo scale horizontally (or scale out) means to add more
nodes to a system, such as adding a new computer to a
distributed software application.

= Jo scale vertically (or scale up) means to add resources
to a single node in a system, typically involving the
addition of CPUs or memory to a single computer.

What are the advantages and disadvantages?

What is Hadoop?

» Hadoop is an open source framework, from the Apache foundation, capable of
processing large amounts of heterogeneous data sets in a distributed fashion
across clusters of commodity computers and hardware using a simplified
programming model.

= The Hadoop framework is based closely on the following principle:

-

-

~
In pioneer days they used oxen for heavy pulling, and when one ox couldn't budge a log, they didn't try to
grow a larger ox. We shouldn't be trying for bigger computers, but for more systems of computers.
~Grace Hopper

y,

Hadoop Timeline

YaHoO!
Fastest sort of a TB, 3.5mins
over 910 nodes

sl
Doug Cutting adds DFS & 4

_ Distributed Storage MapReduce support to Nutch

HDFS - Reliable Shared Storage Fastest sortofa T8

- w 62secs over 1,460 nodes

L . NY Times converts 4TB of Sorted a PBin 16.25hours
MapReduce - Distributed Computation Doug Cutting & Mike Cafarella
) image archives over 100 EC2s over 3,658 nodes
— Parallel processing . started working on Nutch g T T
— I >

CrhErbED 2002 | 2003 2004 | 2005 | 2006 | 2007 | 2008 009

Google publishes GFS & ' . Dous Cuttin
MapReduce papers Yahoo! hires Cutting, cloudera g g

Hadoop spins out of Nutch Founded joins Cloudera

Google el
Facebooks launches Hive:
SQL Support for Hadoop Hadoop S‘meit 2009

m 750 attendees

Hadoop has its origins in Apache Nutch, an open source web search engine, itself
a part of the Lucene project.

Hardware

Rack

The rack contains multiple mounting
slots called bays

A single rack can contain multiple
servers stacked one above the

other, consolidating network resources
and minimizing the required floor
space.

The rack server configuration also
simplifies cabling among network
components.

Switch

A switch, in the context of networking
is a high-speed device that receives
incoming data packets and redirects
them to their destination on a local
area network (LAN).

Essentially, switches are the traffic
cops of a simple local area network

Switch is limited to node-to-node
communication on the same network.

Hub & Spoke Hardware

Aggregation switch

-<+—» 8 gigabit
< . 1 ai .

Hadoop Characteristics

Speed
Scalability
Reliability
= Distribute data initially Ease of programming
— Let processors / nodes work on local data Low cost

— Minimize data transfer over network
— Replicate data multiple times for increased availability

= Write applications at a high level

— Programmers should not have to worry about network programming, low
level infrastructure, etc

= Minimize talking between nodes (share-nothing)

Eco-system

Parallel Computing Flink, Map-Reduce, MR2, Spark, Hama

\\\\\\\\\\\\\\\\\\

Resource Management (0S) YARN

HDFS STORAGE (Persistence)

NI O [

i ‘INGESTION
' Sqoop, Flume, Chukwa

HDFS design goals

Designed for Not good for

= \ery large files (petabytes) = |Low latency data access

= Write once, read many times = Small files

= Append only = Update intensive workloads

m [Fault tolerance

HDFS is an open-source implementation of Google file system (GFS)

Design decisions

= Break files in very large blocks (128 MB)
— compare with 1024 bytes in a Linux file system

= Fault tolerance
— Replicate the blocks (x3)
— Replica placement
— Periodic status - heartbeat and block report messages

= Two types of nodes — NameNode and DataNode
= How many blocks and of what size would a file of size 600 MB have?

Background: Google File System

(GFS)

file A file...
L 2
L/ ...IS made of 64MB
Y Y Y YVYVYYYYYYYY VY VI 1 |chunks...
\ " ...that are replicated
Y\Y Y Y VY Vv VvYVYVYYYyYYyYVvAs v v v v v |Tforfaultolerance
N ' Differences from
0 traditional file system
* Write once, read many
chunkserver chunkserver chunkserver chunkserver tlmeS
TN 7 * Append only
Checkpoint Operation The master manages the file .
Image log system namespace ° Large block size

master [

In-memory FS metadata

J

HDFS

FS/NMM%paw/VM»{w ops

Secondary
%4—»{ NameNode NameNode }
\ \

Nawmespoce backunp

DataNode | DataNode | | DataNode | | DataNode | ‘ DataNode |

2eea O0s oa.

"”’ﬁl‘w - J A)

- -

NameNode

= Metadata in Memory
— The entire metadata is in main memory

= Types of metadata
— List of files
— List of Blocks for each file
— List of Data Nodes for each block
— File attributes, e.q. creation time, replication factor

= A Transaction Log
— Records file creations, file deletions etc

Block Replica Placement

= Current Strategy
— One replica on local node
— Second replica on a remote rack
— Third replica on same remote rack
— Additional replicas are randomly placed

= (Clients read from nearest replicas
= Policy is pluggable

Heartbeat and Rebalancing

= Heart beats
— Data Nodes send heart beat to the Name Node
— Once every 3 seconds
— Name Node uses heartbeats to detect Data Node failure

= Rebalancing: % disk full on Data Nodes should be similar
— Usually run when new Data Nodes are added
— Cluster is online when Rebalancer is active
— Rebalancer is throttled to avoid network congestion
— Command line tool

= Any problems you foresee wrt the design we have seen so far?

= Memory requirement
— Rule of thumb — 1000 MB per Million Blocks of file storage

= Example:
— How many blocks in a 200 node cluster with each node having 24 TB Disk?
— 200 * 24,000,000 MB / [128MB * 3] ~ 12 million blocks
— What is the memory requirement?

HDFS 2.0: Name Node Federatio
Elaborated

Block Storage Namespace

<

Common Storage

= Multiple independent Namenodes and Namespace Volumes in a cluster
— Namespace Volume = Namespace + Block Pool

= Block Storage as generic storage service

— Set of blocks for a Namespace Volume is called a Block Pool
— DNs store blocks for all the Namespace Volumes — no partitioning

Faillure scenarios

s Data node failure
= Name node failure

HDFS 2.0: High Availabillity
Elaborated

25 SN)
< —{/ \ -// >
Leader election
Failover ™. Failover ™
Controller Controller
. Active . Standby
— Cmds editlog) VSRR
Monitor Health — Monitor Health
‘ editlogs
NN (fencing) NN
Active Standby
. p
'\'\\?\\ y
‘\\1?.15\\ Block Reports
DN \ DN ‘
A

Reference: Hadoop Summit 2012 | HDFS High Availability talk

Fallover

= In order to provide a fast failover, it is also necessary that the Standby
node have up-to-date information regarding the location of blocks in
the cluster.

= In order to achieve this, the DataNodes are configured with the
location of both NameNodes, and send block location information and
heartbeats to both.

Zookeeper

The ZKFailoverController (ZKFC) is a ZooKeeper client that also monitors and
manages the state of the NameNode.

Each of the hosts that run a NameNode also run a ZKFC.
The ZKFC is responsible for Health monitoring of Namenode

- the ZKFC contacts its local NameNode on a periodic basis with a health-check
command. So long as the NameNode responds promptly with a healthy status,
the ZKFC considers the NameNode healthy.

- If the NameNode has crashed, frozen, or otherwise entered an unhealthy state,
the health monitor marks it as unhealthy.

sales namespace

Active Standby

Namenode Namenode

HDFS 2.0: High Availability, Federated

analytics namespace

Active Standby
Namenode Namenode

Block Pool for Sales Namespace

St

[LN /f' it

-

A
=
|

Block Pool for Analytics Namespace

v

/

D \ |

Datanodel Datanode2

Datanode N

Common Storage Layer

http://pe-kay.blogspot.in/2016/02/configuring-federated-hdfs-cluster-

with.html

HDFS interface — CLI

= Similar to other file system commands

= E.Q.
— Hadoop fs -Is hdfs://localhost/user/tom

— hadoop fs -copyFromLocal input/docs/quangle.txt hdfs://localhost/user/
tom/quangle.txt

— hadoop fs -copyTolLocal quangle.txt quangle.copy.txt

HDFS Interface — Java FileSystem

Reading Data
= public static FileSystem get(URI uri, Configuration conf) throws IOException
= public FSDatalnputStream open(Path f) throws IOException

= public class FSDatalnputStream extends DatalnputStream implements Seekable,
PositionedReadable

Writing Data
= public FSDataOutputStream create(Path f) throws IOException
= public FSDataOutputStream append(Path f) throws IOException

= public class FSDataOutputStream extends DataOutputStream implements
Syncable

File read flow

Client JVM

Client node

4: read

¢4------=====d-=--

File write flow

1: create Distributed -1
HDFS > FileSystem
client T
< FSData
OutputStream
client JVM :

A

client node
4: write packet 5: ack packet
v
Pipeline of DataNode
datanodes

datanode

2: create

DataNode

datanode

NameNode

namenode

DataNode

datanode

YARN — Resource Manager

= Yet Another Resource Negotiator
= Replaces Job Tracker and Task Tracker architecture in MR1
= YARN designed to scale up to 10,000 nodes and 100,000 tasks.

= Under YARN, there is no distinction between resources available for maps and

resources available for reduces - all resources are available for both; the notion
of slots has been discarded

= Resources are now configured/allocated in terms of amounts of memory (in
megabytes) and CPU

HADOOP 1.0

MapReduce

(cluster resource management
& data processing)

HADOOP 2.0

MapReduce

(data processing)

Others

(data processing)

\ |

YARN

(cluster resource management)

Enables non-MapReduce tasks to work within a Hadoop

installation

|‘_I"

Data and compute distribution

HDFS 2

Distributed Data

Distributed
Processing

YARN

YARN Architecture

-~
»

I

L -

Node
| Manager

Resource |
Manager

MapReduce Status ————»

Job Submission

Node Status
Resource Request

Resource Manager

= acts as the sole arbitrator of cluster resources.
= ultimate authority that arbitrates resources among all the applications.

= responsible for optimizing cluster utilization

Node Manager

= per-machine slave [daemon]

= responsible for launching the applications’ containers,

= monitoring their resource usage (CPU, memory, disk, network)
= reports to the ResourceManager

= provides logging and other auxiliary services

Application Master

= per application
= negotiates appropriate resource containers with RM

= works with the NMs to execute and monitor the containers and their resource
consumption

= monitors progress

= The YARN system (RM and NM) needs to protect itself from faulty or malicious
AMs and resources granted to them

Container

= Container is the resource allocation [container ID, Node Manager], which is
K]I\?I successful result of the RM granting a speC|f|c ResourceRequest from

= RM responds to a resource request by granting a container, which satisfies
the requirements laid out by the AM in the initial ResourceRequest

= A ResourceRequest format:

~ <resource-name, priority, resource-requirement, number-of-
containers>
— Resource requirements: CPU and Memory

Launching the tasks

= AM presents the Container to the NM managing the host, on which the
container was allocated, to use the resources for launching its tasks
= The Container launch specification API is platform agnostic and contains:
— Command line to launch the process within the container.

— Environment variables

— Local resources necessary on the machine prior to launch, such as jars,
Shared-objects, auxiliary data files etc

Seqguence of actions

Application

o4

client

client node

1: submit

YARN

NodeManager

2b: Iaunchl

Container

-
I |
I I
: »| ResourceManager :
| |

|

|

application 1 resource manager node
4 [N

Application
process

node manager node

I 4a:start

| container :

NodeManager

4b: Iaunchl

Container

Application
process

MR on YARN

Job submission YARN Resource

-
- -
———— R e Tesa
-,-m-------—- T
~~~~~
""""
- -
™ -

NodeManaj er Container Laupch B L0

: —— Request
| MapReduce I

! LR AR k
ADP“Cltion T ::a“allﬂmi tion M‘p Task N
Master 'o...

Reduce Task M




Reading list

=  Hadoop The Definitive Guide, Tom White (

)
— Chapter 3 — The design of HDFS, HDFS Concepts, The Java Interface
(details can be skipped), Data Flow

— Chapter 4, except Scheduling in YARN



https://grut-computing.com/HadoopBook.pdf
https://grut-computing.com/HadoopBook.pdf

