
BATCH PROCESSING
WITH MAP REDUCE

Prasad M Deshpande

Patterns in processing

Processing

Synchronous Asynchronous

Synchronous vs Asynchronous

■ Synchronous

– Request is processed and response sent back immediately
– Client blocks for a response
– Example - REST apis, GRPC

■ Asynchronous

– Request is sent as an event/message
– Client does not block
– Event is put in a queue/file and processed later
– Response is generated as another event
– Consumer of response event can be a different service
– Example - Kafka, Callbacks

Patterns in processing

Processing

Synchronous Asynchronous

Streaming Batch

Data at rest Vs Data in motion

■ At rest:

– Dataset is fixed (file)
– bounded
– can go back and forth (iterate) on

the data
■ In motion:

– continuously incoming data
(queue)

– unbounded
– too large to store and then

process
– need to process in one pass

Batch processing

■ Problem statement :

– Process this entire data
– give answer for X at the end

■ Characteristics

– Access to entire data
– Split decided at the launch

time.
– Capable of doing complex

analysis (e.g. Model training)
– Optimize for Throughput

(data processed per sec)
■ Example frameworks : Map

Reduce, Apache Spark

Stream processing

■ Problem statement :

– Process incoming stream of

data
– to give answer for X at this 

moment.

■ Characteristics

– Results for X are based on the

current data

– Incremental processing
– Computes function on one

record or smaller window.
– Optimizations for latency (avg.

time taken for a record)
■ Example frameworks: Apache

Storm, Apache Flink, Amazon
Kinesis, Kafka, Pulsar

Batch vs Streaming

■ Find stats about a group in a
closed room

■ Analyze sales data for last month
to make strategic decisions

■ Count number of runners
crossing a point in a marathon

■ Monitoring the health of a data
center

When to use Batch vs Streaming

■ Batch processing is designed for ‘data at rest’. ‘Data in motion’ becomes stale;
if processed in batch mode.

■ Real-time processing is designed for ‘data in motion’. Can be used for ‘data at
rest’ as well (in many cases).

Ingest Store Analyze

Big data flow

Streaming Batch

Design goals of batch processing
systems
■ Fast processing

– Data ought to be in primary storage, or even better, RAM
■ Scalable

– Should be able to handle growing data volumes
■ Reliable

– Should be able to handle failures gracefully
■ Ease of programming

– Right level of abstractions to help build applications
■ Low cost

➢ Need a whole ecosystem

Processing flows

■ Flow of work through a directed, acyclic
graph

■ Different operators for coordinating the flow

■ Lets look at some common patterns

Copier

■ Duplicate input to multiple outputs

■ Useful when different independent

processing steps need to be done on same
input

Example use case: process raw video files - transcode at 1080p and 4k resolution

Filter

■ Select a subset of the input items

■ Usually based on a predicate on the input

attribute values

Example use case: process raw video files - filter out all odd number items

Splitter

■ Split input set into two or more different
output sets

■ Partitioning vs copy

■ Usually based on some predicate – different

processing to be done for each partition

Example use case: separate out email from text notifications

Sharding

■ Split based on some sharding function

■ Same processing for all parititions

■ Reasons for sharding

– To distribute load among multiple
processors

– Resilience to failures

Example use case: parallelise the processing when identical processing is needed on all
items

Merge

■ Combine multiple input sets into a single
output set

■ A simple union

Merge

Example use case: combine the work done in parallel

Join

■ Barrier synchronization

■ Ensures that previous step is complete

before starting the next step

■ Reduces parallelism

Example use case: send out a summary email after all the work is done

Reduce

■ Group and merge multiple input items into a
single output item

■ Usually, some form of aggregation

■ Need not wait for all input to be ready

Reduce

Example use case: count the number of emails and text messages sent

A simple problem

■ Find transactions with sale >= 10

■ Which patterns will you use?

■ How will you parallelize?

Product Sale

P1 10

P2 15

P1 5

P2 40

P5 15

P1 55

P2 10

P5 30

P3 25

P3 15

Copy, Filter, Split, Shard, Merge, Join, Reduce
Copy, Filter, Split, Shard, Merge, Join, Reduce

Copy, Filter, Split, Shard, Merge, Join, Reduce
Copy, Filter, Split, Shard, Merge, Join, Reduce

A simple problem - extended

■ Find total sales by category for transactions
with sale >= 10

■ Which patterns will you use?

■ How to parallelize?

Product Sale

P1 10

P2 15

P1 5

P2 40

P5 15

P1 55

P2 10

P5 30

P3 25

P3 15

Category Product
PC1 P1, P3
PC2 P2, P4, P5

Copy, Filter, Split, Shard, Merge, Join, Reduce
Copy, Filter, Split, Shard, Merge, Join, Reduce

e.g.: PC1, 105

Copy, Filter, Split, Shard, Merge, Join, Reduce
Copy, Filter, Split, Shard, Merge, Join, Reduce

Challenges in parallelization

■ How to break a large problem into smaller tasks?

■ How to assign tasks to workers distributed across machines?

■ How to ensure that workers get the data they need?

■ How to coordinate synchronization across workers?

■ How to share partial results from one worker to another?

■ How to handle software errors and hardware faults?

Programmer should not be burdened with all these details => need an abstraction

Map-reduce

Abstraction

Two processing layers/stages

■ map: (k1, v1)  [(k2, v2)]

■ reduce: (k2, [v2])  [(k3, v3)]

Revisiting the problem
public class ProductMapper extends
Mapper<LongWritable, Text, Text, IntWritable> { 
 
 @Override 
 public void map(LongWritable key, Text value,
Context context) 
 throws IOException,
InterruptedException { 
 String line = value.toString(); 
 String parts[] = line.split(","); 
 
 String product = parts[0]; 
 Integer sale = Integer.valueOf(parts[1]); 
 
 if (sale >= 10) { 
 String category = getCategory(product); 
 context.write(new Text(category), new
IntWritable(sale)); 
 } 
 } 
}

 
public class ProductReducer extends
ReducerReducer<Text, IntWritable, Text,
IntWritable> { 
 
 @Override 
 public void reduce(Text key, Iterable<IntWritable>
values, Context context) 
 throws IOException, InterruptedException { 
 int total = 0; 
 for (IntWritable val : values) { 
 total += val; 
 } 
 context.write(key, new IntWritable(total)); 
 } 
 
}

Processing stages

Scaling out

Multiple reduce tasks

Product Sale

P1 10

P2 15

P1 5

Category Sale

PC1 10

PC2 15

PC1 5

Product Sale

P2 40

P5 15

P1 55

P2 10

Product Sale

P5 30

P3 25

P3 15

Category Sale

PC2 40

PC2 15

PC1 55

PC2 10

Category Sale

PC2 30

PC1 25

PC1 15 Category Product

PC1 P1, P3

PC2 P2, P4, P5

Our example - Mappers

Shuffle, sort and partition
■ PC1, 10

■ PC1, 55	 	 Partition [reducer] 1 ➔ PC1, 105

■ PC1, 25

■ PC1, 15

■ PC2, 15

■ PC2, 40
■ PC2, 15

■ PC2, 10 Partition [reducer] 2 ➔ ???

■ PC2, 30;

Category Sale

PC1 10

PC2 15

Category Sale

PC2 40

PC2 15

PC1 55

PC2 10

Category Sale

PC2 30

PC1 25

PC1 15

Partitions [reducers] ➔by product category

Can it be optimized further?

Data from Mappers:

■ PC1, 10; PC2, 15;
■ PC2, 40; PC2, 15; PC1, 55;

PC2, 10
■ PC2, 30; PC1, 25; PC1, 15

Combiner

■ Runs on the output of mapper

■ No guarantee on how many times it will be called by the framework

■ Calling the combiner function zero, one, or many times should produce the

same output from the reducer.

■ Contract for combiner – same as reducer

– (k2, [v2])  [(k3, v3)]
■ Reduces the amount of data shuffled between the mappers and reducers

Combiner example
Category Sale

PC1 10

PC2 15

Category Sale

PC2 40

PC2 15

PC1 55

PC2 10

Category Sale

PC2 30

PC1 25

PC1 15

Category Sale

PC1 10

PC2 15

PC1 5

Category Sale

PC2 65

PC1 55

Category Sale

PC2 30

PC1 40

After combining

Framework design

■ So where should execution of mapper happen ?

■ And how many map tasks ?

“Where to execute?” : Data Locality

■ Move computation close to the data rather than data to computation”.

■ A computation requested by an application is much more efficient if it is executed
near the data it operates on when the size of the data is very huge.

■ Minimizes network congestion and increases the throughput of the system

■ Hadoop will try to execute the mapper on the nodes where the block resides.
– In case the nodes [think of replicas] are not available, Hadoop will try to pick a node that is

closest to the node that hosts the data block.
– It could pick another node in the same rack, for example.

Data locality

Data-local (a), rack-local (b), and off-
rack (c) map tasks

How many mapper tasks?

Number of mappers set to run are completely dependent on :

1) File Size and

2) Block [split] Size

Internals

■ Mapper writes the output to the local disk of the machine it is working.

– This is the temporary data. Also called intermediate output.

■ As mapper finishes, data (output of the mapper) travels from mapper node to
reducer node. Hence, this movement of output from mapper node to reducer
node is called shuffle.

■ An output from mapper is partitioned into many partitions;

– Each of this partition goes to a reducer based on some conditions

Map Internals

InputSplits are created by
InputFormat. Example formats
– FileInputFormat,
DBInputFormat

RecordReader’s responsibility is to
keep reading/converting data into
key-value pairs until the end; which
is sent to the mapper.

Number of map tasks will be equal to
the number of InputSplits

Mapper on any node should be able to
access the split  need a distributed
file system (HDFS)

Intermediate output is written to local
disks

Same with Output Formats and
Record Writers

MR Algorithm design

Pseudo-code for a basic word count algorithm

Improvement – local within document
aggregation

Local across document aggregation

No longer pure functional programming – state maintained across function calls!

Do we still need combiners?

■ Limitations of in-mapper combining

– State needs to be maintained
– Scalability – size of the state can grow without bounds

■ Keep bounded state

– Write intermediate results
– Use combiners

Summary

■ MR – powerful abstraction for parallel computation

■ Framework handles the complexity of distribution, data transfer, coordination,

failure recovery

Reading list

■ Designing Distributed Systems, Brendan Burns

– Chapters 11 and 12, except Hands on sections

■ Distributed and cloud computing, Kai Hwang, Geoffrey C Fox, Jack J Dongarra

– Sections 6.2.2 except 6.2.2.7

■ Optional reading

– Data-Intensive Text Processing with MapReduce

■ Sections 2.1 to 2.4

