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Revisiting the word count problem

Find the top 10 most frequently used words across a set of documents

• Find the occurrence count for each word

• Find the top 10 words based on these counts



MR limitations

■ Verbose API

■ Low level abstraction – led to many layers built on top


– Hive, Impala for SQL 
– Storm for streaming 
– Giraph for graph data 
– Mahout for linear algebra, ML 

■ Efficiency



Spark – a unified engine

From McDonough Spark tutorial from Spark Summit 2013



Design goals

■ Speed

– Hold intermediate data in memory  
– DAG scheduler executes task in parallel 
– Code generation  

■ Ease of use

– Simple abstractions RDD, DataFrame, DataSet 
– Operations  

■ Modularity

– Components for various functionalities 
– Libraries in different languages 

■ Extensibility

– Decouples storage and compute 
– Can read data from many sources – Hadoop, Cassandra, HBase, etc



Quick comparison

Feature MapReduce Spark

Data Processing 
Location Primarily on disk Primarily in-memory

Processing Paradigm Two-stage (Map & 
Reduce)

DAG (Directed Acyclic 
Graph)

Ease of Use More complex, requires 
writing Java code

More user friendly. 
Supports multiple 
languages (Java, Scala, 
Python, R)



Unified stack



Spark Core

Responsible for:


✓ Memory Management and fault recovery


✓ Supports/implements key concepts of RDDs and Actions


✓ Scheduling, Monitoring, Distributing jobs on cluster [via YARN]



Architecture

Driver program

■ The process running the 

main() function of the 
application and creating 
the SparkContext


Executor

■ A process launched for 

an application on a 
worker node, that runs 
tasks and keeps data in 
memory or disk storage 
across them. 



Spark session



Resilient Distributed Data

■ Write programs in terms of transformations on distributed datasets

■ RDD – collection of objects spread across the cluster, stored in disk or memory

■ Built through parallel transformations

■ Automatically rebuilt on failure



Logical in memory vs Physical 
distribution



Lazy Transformations, Eager Actions

■ Populating of blocks into memory deferred until action is invoked

■ Action triggers actual evaluation of the RDD



Transformations vs Actions

Feature Transformations Actions

Purpose Define data operations Trigger 
computation

Output New Spark data 
structure Value or side effect

Execution Lazy (build DAG) Eager (execute 
DAG)

Example filter, map, join count, collect, save



Example

Transformations Actions
orderBy() show()
groupBy() take()
filter() count()
select() collect()
join() save()
map()
flatmap()

// In Scala
scala> import 
org.apache.spark.sql.functions._
scala> val strings = spark.read.text("../
README.md")
scala> val filtered = 
strings.filter(col("value").contains("Spark"
))
scala> filtered.count()
res5: Long = 20



Parallelizing Data

■ How many partitions my RDD is split into?

# In Python

print(log_df.rdd.getNumPartitions())


■ How to enforce “degree of parallelism”?

# In Python

log_df = spark.read.text("path_to_large_text_file").repartition(8)

print(log_df.rdd.getNumPartitions())



repartition vs coalesce

■ repartition : will shuffle the original partitions and repartition them 

■ coalesce : will just combine original partitions to the new number of partitions.  

shuffling could be very costly, but can be used to both increase and decrease number 
of partitions 
coalesce can be used to only to reduce the number of partitions



Narrow vs wide transformations

■ Narrow – single output partition 
can be computed from a single 
input partition is a narrow 
transformation


– E.g. Filter 
■ Wide – data from other partitions 

is read in, combined, and written 
to disk


– E.g. group-by 
– Similar to reduce of MR



Job, Stage, Task

• Job - A logical sequence of operations on a RDD

• Stage - A sequence of operations that can be performed together without the need for shuffling

• Task - Work unit to be done on a partition



Fault tolerance

■ DataFrames are immutable

■ Lineage is maintained

■ On failure, entire flow is run again



RDD ➔ DataFrames➔ DataSets

RDD 

■ characteristics


– Dependencies 
– Partitions (with some locality information) 
– Compute function: Partition => Iterator[T] 

■ Limitations

– Data type is opaque to spark 
– Compute function is also opaque



Dataframe 

■ Introduced in spark 1.3 release

■ Data organized into named columns (tabular format)

■ Computations expressed as high-level operations


– such as filtering, selecting, counting, aggregating, averaging, and grouping. 
■ Spark can optimize the query plan



Example RDD and DF

# In Python

# Create an RDD of tuples (name, age)

dataRDD = sc.parallelize([("Brooke", 
20), ("Denny", 31), ("Jules", 30), 
("TD", 35), ("Brooke", 25)])

# Use map and reduceByKey 
transformations with their lambda

# expressions to aggregate and then 
compute average

agesRDD = (dataRDD

.map(lambda x: (x[0], (x[1], 1)))

.reduceByKey(lambda x, y: (x[0] + y[0], 
x[1] + y[1]))

.map(lambda x: (x[0], x[1][0]/x[1][1])))

# Create a DataFrame

data_df = 
spark.createDataFrame([("Brooke", 20), 
("Denny", 31), ("Jules", 30),("TD", 
35), ("Brooke", 25)], ["name", "age"])

# Group the same names together, 
aggregate their ages, and compute an 
average

avg_df = 
data_df.groupBy("name").agg(avg("age"))

# Show the results of the final 
execution

avg_df.show()



Dataset

■ Extension of DataFrame API which provides 
type-safe [compile time], object-oriented 
programming interface


■ Maps the rows in DF into user defined class

■ One can seamlessly move between 

DataFrame or Dataset and RDDs by simple 
API method calls like .rdd  or .toDF or .as[T]


 

case class DeviceIoTData 
(battery_level: Long, c02_level: 
Long,cca2: String, cca3: String, cn: 
String, device_id: Long, device_name: 
String, humidity: Long, ip: String, 
latitude: Double, lcd: String, 
longitude: Double, scale:String, 
temp: Long, timestamp: Long)

val ds = spark.read.json("/
databricks-datasets/learning-spark-
v2/iot-devices/
iot_devices.json").as[DeviceIoTData]

val filterTempDS = ds.filter({d => 
{d.temp > 30 && d.humidity > 70})



Dataframe vs dataset

■ If you want strict compile-time type safety and don’t mind creating multiple case 
classes for a specific Dataset[T], use Datasets.


■ If your processing dictates relational transformations similar to SQL-like queries, 
use DataFrames.


■ If you want to take advantage of and benefit from Tungsten’s efficient 
serialization with Encoders, use Datasets.


■ If you want unification, code optimization, and simplification of APIs across 
Spark components, use DataFrames.



When are errors caught?



Glimpse into Spark ML

val lr = new LogisticRegression().setMaxIter(10).setRegParam(0.001)  

val pipeline = new Pipeline().setStages(Array(tokenizer, hashingTF, lr)) 
  
// Fit the pipeline to training documents.  
val model = pipeline.fit(training) 

 // Now we can optionally save the fitted pipeline to disk 
model.write.overwrite().save("/tmp/spark-logistic-regression-model")  

// Make predictions on test documents.  
model.transform(test) 



Relating back to YARN



https://data-flair.training/blogs/
how-apache-spark-works/



Client vs Cluster mode

■ Client mode – the driver runs in the client process on local machine, and the application 
master is only used for requesting resources from YARN.


■ Cluster mode – the Spark driver runs inside an application master process which is 
managed by YARN on the cluster, and the client can go away after initiating the 
application.


$ ./bin/spark-submit --class path.to.your.Class --master yarn --deploy-mode cluster [options] 
<app jar> [app options]

$ ./bin/spark-shell --master yarn --deploy-mode client



Code generation re-visted



Generic vs hand-written code

class Filter(child: Operator, predicate: 
(Row => Boolean)) extends Operator { 
   def next(): Row = { 
     var current = child.next() 
     while (current != null && !
predicate(current)) { 
       current = child.next() 
     } 
     return current 
   } 
}

https://databricks.com/blog/2016/05/23/
apache-spark-as-a-compiler-joining-a-
billion-rows-per-second-on-a-laptop.html



Summary – SPARK vs MR

■ Ease of use


■ Developer productivity


■ Speed


■ Ecosystem: Spark R, Spark MLLib, PySpark, SparkSQL


■ Lot of apache projects also moving to support/leverage Spark 



Reading material

■ Learning Spark, Jules S. Damji, Brooke Wenig, Tathagata Das, and Denny Lee 
(https://pages.databricks.com/rs/094-YMS-629/images/LearningSpark2.0.pdf)


– Chapter 1 
– Chapter 2 – Step 3, Transformations, Actions and Lazy Evaluation 
– Chapter 3 – Spark: What’s Underneath an RDD?, Structuring Spark, Dataset 

API – creating datasets, Dataframes vs Datasets

https://pages.databricks.com/rs/094-YMS-629/images/LearningSpark2.0.pdf

