
Stronger Consistency Models
*stronger than eventual, weaker than serializable
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Consistency in Distributed Systems

Every replica / node in the distributed system should have the same 
view of the data at a given point of time.
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Consistency in Distributed Systems

Every client should have the same view of the data at a given point 
of time.
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Need for Consistency Guarantees

• In a distributed system, consistency 
conflicts arise due to concurrent read / 
writes to different replicas.

• To ensure consistency, system must 
synchronize data across the replicas.

• This can have a significant overhead, 
impacting the performance of a system.

4



Recap: CAP Theorem

• In distributed systems, Partition 
Tolerance is a must.

• We are left with two choices:

CP or AP

By JamieMcCarthy - Own work, CC BY-SA 4.0 (Wikimedia Commons)
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What is a Consistency Model?

• A consistency model defines the 
rules and guarantees about how 
data is seen and updated across 
multiple nodes in a distributed 
system.

• They are tradeoffs between:

Availability vs Consistency
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Weak Consistency Models
• Sacrifice consistency
• Prioritize availability

• Require analysis of the data model to determine the required 
consistency guarantees

• Careful analysis can allow us to achieve the optimal balance 
between consistency and availability

We will discuss consistency models in the light of their
consistency guarantees w.r.t. applications
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Some Terminology

• Unit of Execution

An independent thread (client)
making sequential requests to 

an external distributed / non-distributed 
system

UoEUoE
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Some Terminology

• Data-Centric Perspective
• System is aware that multiple execution 

units are running
• It synchronizes data access from all of them 

to guarantee consistent results

• Applications in Banking, Trading, 
Authentication and Authorization, where 
data consistency is critical.
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Some Terminology

• Client-Centric Perspective
• System only cares about concerned 

process operating on the given data
• It assumes other execution units don’t 

exist or don’t have significant impact

• Applications in social media like 
YouTube where the priority is user 
experience.
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Performance Metrics

Consistency Availability Latency 

Throughput Perspective
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Consistency Guarantees Scale

1. Eventual

2. Consistent Prefix Read

3. Session

4. Causal

5. Bounded Staleness

6. Strong

Availability
Latency
Throughput
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Agenda

1. Eventual

2. Consistent Prefix Read

3. Session

4. Causal

5. Bounded Staleness

6. Strong
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The weakest notion of consistency
among all four models discussed

Eventual CPR Session Causal
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Eventual Consistency

• It guarantees that if no new writes are made to a data item,
all replicas will converge to the same value eventually.
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t1 t2
 

t3 t4 t5 t6 t7 t8 t9

Replica 1

Replica 2

Replica 3

Replica 4

A B C

C

C

A B

A

Write Read

The timeline shows writes and reads to a single data item 

Eventual Consistency

after a long time
CA

B
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Eventual Consistency

• No ordering guarantee on the reads and writes
• Even the unit of execution which made the write may not observe it in the 

following writes (Invisibility)
• No time bound on convergence

• Only guarantee is that:
• Data will converge to the same value eventually

• The value to which it converges depends on the conflict resolution policy
• For example: Last Write Wins, Merging as in CRDT, etc.
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The timeline shows writes and reads to a single data item 

t1 t2
 

t3 t4 t5 t6 t7 t8 t9

Replica 1

Replica 2

Replica 3

Replica 4

A B

C

CA B

B A

Write Read

C

C

Conflict Resolution - Last Write Wins
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Eventual Consistency

Suitable for applications in which immediate consistency and order 
of updates is not of concern but availability is essential.

• DNS Servers
• Propagating DNS record updates across global servers
• Changes to single record are infrequent

• Views, likes, comments aggregation in social media platforms
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Eventual Consistency

Consistency Least

Availability Highest

Latency Low

Throughput Highest

Perspective Client-Centric
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Consistent Prefix Read

Provides record-level guarantee on read order

Eventual CPR Session Causal
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Provides four consistency guarantees to 
individual units of execution

Eventual CPR Session Causal

Read Your Own Write (RYOW) Monotonic Read (MR)

Write Follow Read (WFR) Monotonic Write (MW)
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Consistency based on causal dependencies 
between reads and write

Eventual CPR Session Causal
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Consistent Prefix Read

Consistent Prefix Read guarantees that all replicas receive updates 
to a given data item in the same order.

That is, for a data item, the database system as a whole has 
received updates u1, u2, …, un in that order, any replica will have 
received updates u1, u2, …, uk in that order for some k ≤ n.
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Consistent Prefix Read
t1 t2 t3 t4 t5 t6 t7 t8 t9

Replica 0

Replica 1

Replica 2

Replica 3

U1

U1

U1

U1

U2

U2

U2

U2 U3

U3

U3

U3

*In pure CPR implementations, it is assumed that there is a reliable mechanism (such as a central sequencer or 
consensus algorithm) that imposes a global order on updates. In scenarios where writes can be directed to any 
replica, these mechanisms ensure that all replicas eventually agree on the order.

These are all updates to a single data item.
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Replica t1 t2 t3 t4 t5 t6 t7 t8 t9

R0 U1 U1, U2 U1, U2 U1, U2 U1, U2 U1, U2 U1, U2 U1, U2, 
U3

U1, U2, 
U3

R1 — — U1 U1 U1 U1, U2 U1, U2 U1, U2, 
U3

U1, U2, 
U3

R2 — — — — U1 U1, U2 U1, U2 U1, U2, 
U3

U1, U2, 
U3

R3 — — — — U1 U1, U2 U1, U2, 
U3

U1, U2, 
U3

U1, U2, 
U3

For the same example, these are the updates received by replicas (in order) at time stamps:

Ux indicates the first time any of the replicas receive a write (from client)
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Eventual Consistency

• No ordering guarantee on the reads and writes
• Even the unit of execution which made the write may not observe it in the 

following writes (Invisibility)
• No time bound on convergence
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Consistent Prefix Read

What we can’t do using Eventual consistency?

Eventual Consistency only guarantees that if no new updates are 
made to a data item, all replicas will converge to the same state 
over time. There is no guarantee on the order in which updates are 
seen in the meantime.
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Consistent Prefix Read

• What we can't do using Eventual consistency?
• Consider an image sharing application where users can upload 

images and only their friends can view those images. Assume that 
this application uses replication for availability. 
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Consistent Prefix Read

• What we can't do using Eventual consistency?
• Consider an image sharing application where users can upload 

images and only their friends can view those images. Assume that 
this application uses replication for availability. 

• Suppose that Alice and Bob are initially friends. Alice wants to 
post an image but doesn't want Bob to see it. So, Alice will 
unfriend Bob first. After getting confirmation, will post the image.

• What can go wrong here, if we use a database that only 
guarantees Eventual consistency?
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Consistent Prefix Read

Alice's Data
Friends: []
Images: []

What’s a “read” in our context?

When a read request to comes to a 
replica for Alice’s record (data item) 
from Bob, it will check if Bob is in the 
friend’s list, if yes, he can view the 
images, otherwise, no.

After U1

Alice's Data
Friends: [Bob]
Images: []

Before U1

Alice's Data
Friends: []
Images: [Image1]

After U2

Types of Writes:
U1: Remove from friend list

U2: Post a picture
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Consistent Prefix Read

Eventual Consistency

Types of Writes:
U1: Remove from friend list
U2: Post a picture

Read by Bob at ti time
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Consistent Prefix Read

Problem with Eventual consistency?

Due to the lack of ordering guarantees in eventual consistency, a 
replica that is slow to apply updates may process U2 (post image) 
before U1 (remove Bob), causing Bob’s read of Alice’s data to 
incorrectly include the newly posted image—even though he should 
no longer be a friend.
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Consistent Prefix Read

• For this use-case, Eventual consistency isn't enough.  We need a 
stronger notion of consistency.

• It guarantees the following
• If the system receives the updates U1, U2 in that order for a data item. 

Then, all replicas will apply those updates to that data item in the same 
order.

• What doesn't it guarantee?
• It doesn't have any bound on how stale the data can be.
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PNUTS: Yahoo! Hosted Data Service Platform

• Massively Parallel & Distributed: Supports web applications 
across multiple geographic regions.

• Low Latency: Efficient for large-scale concurrent queries and 
updates.

• Automated Management: Centralized, hosted service with load 
balancing and failover.

*Platform for Nimble Universal Table Storage 35



PNUTS: Yahoo! Hosted Data Service Platform

• Massively Parallel & Distributed: Supports web applications 
across multiple geographic regions.

• Low Latency: Efficient for large-scale concurrent queries and 
updates. 

• Automated Management: Centralized, hosted service with load 
balancing and failover.

• Per-Record Timeline Consistency: Ensures updates are applied 
in the same order across replicas. Relaxed Consistency 
guarantees.
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Serializable
Transactions

Eventual 
Consistency

Per-record 
Timeline 

Consistency

Middle Ground

PNUTS: Yahoo! Hosted Data Service Platform

Too
Strong

Too
Weak
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Eventual 
Consistency

PNUTS: Yahoo! Hosted Data Service Platform

Too
Weak

A client can update any replica of an object and all 
updates to an object will eventually be applied, but 
potentially in different orders at different replicas.
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Serializable
Transactions

PNUTS: Yahoo! Hosted Data Service Platform

Too
Strong

Serializable Transactions are the highest level of isolation in database 
systems. They ensure that transactions execute as if they were run 
sequentially, one after the other, even if they are executed concurrently.
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Per-record 
Timeline 

Consistency

Middle Ground

PNUTS: Yahoo! Hosted Data Service Platform

Ensures updates to each 
record are applied in the 
same order across 
replicas. This offers 
stronger guarantees than 
eventual consistency while 
avoiding the complexity of 
serializability.

Consistency per record 
instead of enforcing global 
order. Reduces delays and 
handles more data at once. 
This allows concurrent 
reads and writes on 
different records, unlike 
serializable systems that 
would process them one 
by one.

*PNUTS make no guarantees as to consistency for multi-record transactions.
40



PNUTS: Per-record Timeline Consistency

• Different records may have activity with different geographic 
locality

• All replicas of a given record apply all updates to the record in 
the same order
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PNUTS: Per-record Timeline Consistency

• A read of any replica will return a consistent version from this 
timeline

• Replicas always move forward in the timeline.
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PNUTS: Master based Implementation

• Each record is assigned a master replica.
• All updates to a record are forwarded to its master.
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PNUTS: Records across Replicas

Alice's Data
Friends: [Bob]
Images: […]

Bob’s Data
Friends: [Alice]
Images: […]

Alice's Data
Friends: [Bob]
Images: […]

Bob’s Data
Friends: [Alice]
Images: […]

Replica 1 Replica 2

Charlie’s Data
Friends: [Alice]
Images: […]

Charlie’s Data
Friends: [Alice]
Images: […]

Master = 1

Master = 2

Master = 1
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PNUTS: Master Selection

• The master replica is adaptively changed based on the workload.
• The replica receiving the majority of write requests for a specific 

record becomes the master.
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Jaipur

Bengaluru

Master

Replica Location
MATTERS!

For people in Jaipur, read and 
write requests go to Jaipur 
replica if it’s not down and vice 
versa.
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PNUTS: Role of Master Replica

• Master ensures a single, global write order.
• Local master = faster writes for nearby users.
• Avoids latency from cross-city/cross-country communication.
• Improves read freshness and user experience.
• Jaipur users benefit if Jaipur is the master.

* A fresh read reflects the latest committed updates.
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PNUTS: Ordering

• Each record has a sequence number that increments with every 
write maintained by master node.

• The sequence number consists of Version: Represents an update 
(each update creates a new version).
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Per-record Timeline 
Consistency

V1 V2 V3 V4 V5 V6

Update Update Update Update Update
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PNUTS: Guarantees

• Replicas always move forward in the timeline.
• No Reordering of Updates: Replicas will apply updates in the 

correct order, ensuring consistency in the view of data across 
different replicas.

• Monotonic Progress: Once a replica has applied a particular 
version, it will not revert to an older version. It only moves to a 
newer version.

• Read Consistency: When a read request is made, it will return a 
version that is guaranteed to be consistent with the latest applied 
version in that replica’s timeline.
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PNUTS API:  Read Any

• Read the record from any replica (usually geographically nearest), 
which might be non-master. We are guaranteed to get a consistent 
version from the timeline (although it might be stale).

• Even after a successful write, a stale version may still be seen.
• This call offers lower latency compared to stricter read 

guarantees.
• Example: In a social networking app, displaying a friend's status 

doesn’t require the most up-to-date value, making read-any 
suitable.
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Consistent Prefix Read: Metrics

Consistency Low

Availability Moderate

Latency Low

Throughput High

Perspective Data-Centric
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Agenda

Session Guarantees
• Introduction
• Data storage model and 

terminology
• Read-Your-Own-Write (RYOW)
• Monotonic Read
• Writes Follow Reads
• Monotonic Write (MW)

Implementation
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Strong vs Weak Consistent Systems

Strongly Consistent System

Ensures that replicas in the system have same 
view of data.

Pros:
• Prevents anomalies like stale reads or lost 

updates
• Easier to reason about correctness in 

applications

Cons:
• High latency: Requires coordination across 

nodes, increasing response times.
• High concurrency leads to frequent locking. 

Increased chances of deadlocks. So, low 
availability.

Weakly Consistent System

Allows different replicas to have different states 
temporarily, but guarantees eventual convergence

Pros:
• Scalability: Easier to distribute across global 

regions
• Better performance: Lower latency as replicas 

don’t need immediate synchronization.
• High availability

Cons:
• User might see stale data. 
• Some applications can't work as intended without 

any guarantees on the order of operations.
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Session Guarantees

• By incorporating some extra logic on top of a weakly consistent 
system, we can make the system provide some guarantees with 
high availability

• These guarantees are only applicable within a session (i.e these 
are not global guarantees). We will talk about 4 such guarantees
oRead your own Write
oMonotonic Read
oWrite Follows Read
oMonotonic Write
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Terminology

● A session is an abstract concept to correlate multiple Read and 
Write operations together as a group from the same unit of 
execution.

● Example: when you login to Amazon for shopping, a session is 
created internally which keeps track of your activities and 
browsing history, cart updates for that session.
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Terminology

• Sessions can be identified with a unique ID called session ID. The 
life time of a session could be few seconds to days or more 
depending on the business use case. 

• When a group of Read / Write operations are to be performed, we 
can bind all these operations together within a session, the client 
can keep on passing the corresponding session ID with all 
requests to help correlate them. 
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Terminology

● Each Write to our distributed database system has a globally unique 
identifier, called a "WID". 

● DB(S,t) to be the ordered sequence of Writes(WID) that have been received 
by replica S at or before time t. 

● Let WriteOrder(W1,W2) be a boolean predicate indicating whether Write 
W1 should be ordered before Write W2.
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Read Your Own Write

This guarantee ensures that the effects of any Writes made within a session 
are visible to Reads within that session.

RYOW-guarantee: If Read R follows Write W in a session and R is performed 
within same session at replica S at time t, then W is included in DB(S,t).

Example1:- If you delete a mail from Gmail and you get the confirmation, upon 
refreshing the page, you should not see the mail again in RYOW consistency.

Example2:- After updating the account password the user should be able to 
login with the new password. 
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Example

W: X = 2 W: X = 3 R: X

X = 2 X = 3

X = 2 X = 3

t1 t2 t3 t4

1

2

replication replication
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How to guarantee RYOW consistency

There could be couple of ways, we will discuss one of them
• Make all requests from same session hit the same replica
• We can choose the replica based on the hash of session ID
• Eventually, all replicas will converge to same state
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Monotonic Reads

Informal Definition:-
If a Read R0 observes Write W for a piece of data, further Read R1 by the same 
unit of execution for the same data in the same session should at least observe 
W or more recent value.

In case of a distributed system having multiple replicas, the client can reach 
out to any replica as long as they have enough updates at least till W for the 
concerned data.

Note: In our discussion server and replica is interchangeable.
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Terminologies

• DB(S,t) represent the ordered sequence of Writes(WID) that have been received 

by server S at or before time t. If t is known to be the current time, then it may 

be omitted leaving DB(S) to represent the current ordered sequence of 

Writes(WID) of the server's database.

• A set of Writes completely determines the result of a Read if the set includes 

"enough" of the database's Writes so that the result of executing the Read against 

this set is the same as executing it against the whole database.

• Example: Assume in a server S the DB(S, t) = (W1,W2,W3,W4,W5). And we 

say the write set (W1,W3) completely determines the result of a Read R1 then it 

mean If we perform this read R1 operation in a server which have only this write 

set (W1,W3) then the read result will still be the same as this read R1 perform 

on the whole write set DB(S, t) 
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Monotonic Reads

• RelevantWrites(S,t,R) denote the function that returns the smallest set of 

Writes(WID) that is complete for Read R and DB(S, t)

• Intuitively, RelevantWrites(S,t,R) is a smallest set that is "enough" to completely 

determine the result of R

Formal Definition:-

• If Read R1 occurs before R2 in a session and R1 accesses server S1 at time t1 and 
R2 accesses server S2 at time t2, then the RelevantWrites(S1,t1,R1) is a subset of 
DB(S2,t2).

Note: we guess that a read may have multiple relevant writes. if the read reads an 
entire object, and each of the writes populates one of the fields of the object.
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Session 1 Read R2Read R1

Server S1

Server S2

Time t1 Time t2

RelevantWrites 
(S1,t1,R1)

DB(S2,t2)

RelevantWrites (S1,t1,R1) DB(S2,t2)⊆

Monotonic Read

Monotonic Read guarantee:- DB(S2, t2) should be subset of RelevantWrites(S1,t1,R1)65



Session 2 Read R2Read R1

Server S1

Server S2

Time t1 Time t3

RelevantWrites (S1,t2,R1) = {W1} DB(S2,t3) = {}⊈

Monotonic Read Example

Session 1

Time t0

X = 5

X = 5

X = 12 X = 12 X = 12 X = 12

Time t2 Time t4

X = 5 X = 5 X = 5 X = 12 

Write W1

Replication

Read R2 is not monotonic read
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Monotonic Reads

Why it matters?

● Consider a replicated electronic mail database. 
● The mail reader issues a query to retrieve all new mail messages and 

displays summaries of these to the user. 
● When the user issues a request to display one of these messages, the mail 

reader issues another Read to retrieve the message's contents.
● The Monotonic Read-guarantee can be used by the mail reader to ensure 

that the second Read is issued to a replica that holds a copy of the 
message. Otherwise, the user, upon trying to display the message, might 
incorrectly be informed that the message does not exist.
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Monotonic Reads

How it differs from RYOW?

● In RYOW, the writes were made by the User1 themselves in their session.
● Here in the example of the mailbox, the new unread mails are not writes 

made by the User1, but by some other person (user2) in a different session.
● These writes made by User2 now fall in the RelevantWrites of User1 first 

read. 
● Monotonic Read guarantees ensure that these RelevantWrites are also 

present in the replicas accessed by User1 for the second read.
● RYOW did not consider these RelevantWrites.

68



Monotonic Reads

Properties:

● If we assume, with every write, the version of an object increases, each 
subsequent Read should see the same or monotonically increasing version 
of the object.

● As long as the same server handle the requests for the same unit of 
execution in the same session, Monotonic Read should be guaranteed.
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Write Follows Read(WFR)

• The Writes Follow Reads guarantee ensures that traditional 
Write/Read dependencies are preserved in the ordering of Writes 
at all servers. 

• That is, in every copy of the database, Writes made during the 
session are ordered after any Writes whose effects were seen by 
previous Reads in the session(Will see in detail).
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Write Follows Read

• Let’s say, In a replica S1 at time t0 Write W1 happened on a data. 

• And in a session on the same data Read R1 occurs and that R1 
accesses server S1 at time t1, i.e., R1 has seen the effect of W1. 

• In the same session Write W2 happened and that W2 accesses 
server s2 at time t2. 

• And W2 depends on R1. 
In such a case, WFR provides 2 guarantees:

• Ordering guarantee
• Write propagation guarantee
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Session 1 Write W2Read R1

Server S1

Server S2

Time t1 Time t2

RelevantWrites 
(S1,t1,R1) = {W1}

W2 depends on W1

SET UP

Time t0

Write W1 
happened by 
some session

Note:- R1 depends on W1. And W2 depends on R1. So, W2 depends on W1
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Write Follows Read

• Ordering guarantee: W2 should follow all those Writes which caused 
R1 (all relevant Writes to R1). In our case, W1 is the only relevant Write 
for R1. Hence, the Write order should place W2 after W1 in S2. This 
guarantee applies within the session.

73



Session 1 Write W2Read R1

Server S1

Server S2

Time t1 Time t2

RelevantWrites 
(S1,t1,R1) = {W1}

W2 depends on W1

Ordering guarantee:- W2 should place after W1 in S2

Ordering Guarantee

Time t0

Write W1 
happened by 
some session

Note:- R1 depends on W1. And W2 depends on R1. So, W2 depends on W1
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Write Follows Read

• Write propagation guarantee: If R1 occurs in replica S1 at time 
t1, then for any replica S, if S has seen W2 at time t2 > t1, S must 
have seen all relevant Writes to R1 i.e; in our example, W1 prior to 
W2. It means all other replicas in the system should apply a Write 
after they have seen all the previous Writes on which it depends. 
This guarantee applies outside of session. 

• Note: propagating the changes may take some time depending on 
implementation, WFR does not require any real time or 
instantaneous propagation of changes.
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Session 1 Write W2Read R1

Server S1

Server S2

Time t1 Time t2

RelevantWrites 
(S1,t1,R1) = {W1}

W2 depends on W1

Propagation guarantee:- any replica S, the S must see W1 prior to W2

Write propagation guarantee

Time t0

Write W1 
happened by 
some session

Note:- R1 depends on W1. And W2 depends on R1. So, W2 depends on W1

Server S
Replicate
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Write Follows Read

Formal definition:
If Read R1 precedes Write W2 in a session and R1 is performed at server S1 at 
time t1, then, for any server S, if W2 is in DB(S) then any W1 in 
RelevantWrites(S1,t1,R1) is also in DB(S) and WriteOrder(W1,W2) is true.

• This guarantee is different in nature from the previous two guarantees in that 
it affects users outside the session. 

• Not only does the session observe that the Writes it performs occur after any 
Writes it had previously seen, but also all other clients will see the same 
ordering of these Writes regardless of whether they are from same session.
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Session 1 Write W2Read R1

Server S1

Server S2

Time t1 Time t2

RelevantWrites 
(S1,t1,R1) = {W1}

W2 depends on W1

WFR guarantee:- ∀ Server S, If W2 in S then any W1 in RelevantWrites (S1,t1,R1)∈ DB(S) and 
WriteOrder(W1,W2) is true

Write Follows Read

Time t0

Write W1 
happened by 
some session

Note:- R1 depends on W1. And W2 depends on R1. So, W2 depends on W1

Server S
Replicate
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Session 2 Write W2: Y=10Read R1

Server S1

Server S2

Time t1 Time t3

Write Follows Read Example

Session 1

Time t0

X=0, Y=0

Time t2 Time t4

Write W1 : X=5

Replication

Write Follows Read not there in S3 at time t4

Server S3

X=5, Y=0

X=0, Y=0

X=0, Y=0 X=0, Y=0

X=0, Y=0

X=0, Y=0

X=5, Y=0

X=5, Y=0

X=0, Y=0

X=5, Y=10

X=5, Y=0

X=0, Y=10

X=5, Y=10

X=5, Y=0

Replication

At Time t4 in S3 WriteOrder(W1,W2) = False

At Time t3 in S2 WriteOrder(W1,W2) = TrueRelevantWrites(S1,t2,R1) = {W1}
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Write Follows Read

Properties

• Ordering first applies within the involved session.

• Outside of the client’s session, propagation of writes in order of their 
occurrence should be done to guarantee WFR. 

• The propagation can be lazy or non-real time thus making the 
guarantee weak.

• This consistency is also called session causality.
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Write Follows Read

Example:-

• Consider replying to a tweet. 

• You can only do that when the tweet is already written to the system 
and is visible to you. 

• Both reading and replying could be done in the same session.
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Monotonic Write
A write operation by a session on a data item x is completed before any successive write operation on x 
during the session. Implies a copy must be up to date before performing a write on it. 

W : x=5, y=0 W : x=5, y=10

t1 t2 t3 t5

SESSION

Server  1

Server 2

W : x=5, y=10

W : x=0, y=0 W : x=5, y=0 W : x=12, y=0

t4

W : x=5, y=10

W : x=12, y=16

W : x=5 W : y=10 W : x=12 W : y=16

Monotonic write on x Non Monotonic write on x
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Stricter form of monotonic write (as per Terry paper)
If Write W1 precedes Write W2 in a session, then, for any server S2, if W2 in DB(S2) then W1 is also inDB(S2) 
and WriteOrder(W1,W2).

W : x=5, y=0 W : x=5, y=10

t1 t2 t3 t5

SESSION

Server  1

Server 2

W : x=5, y=10

W : x=0, y=0 W : x=5, y=0 W : x=12, y=0

t4

W : x=5, y=10

W : x=12, y=16

W : x=5 W : y=10 W : x=12 W : y=16

Non-Monotonic writeNon-Monotonic write !!!
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Breaking into its Principle Components

Ordering Guarantee:

A session should see its own successive updates on a particular variable / object in the 
order of their occurrence. This guarantee applies within the session.

Propagation Guarantee:

Eventually, all other replicas should see the writes on the object in the same order. This 
applies outside of the session.
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When and why do you need monotonic write
The database contains software source code and is replicated across multiple servers.

Upgrading a Library (Upward Compatibility)

• A programmer updates a library, adding new functionality in an upward compatible way.

• Since the update does not break existing client software, it can be propagated lazily to other servers.

Updating an Application (Dependency Issue)

• The programmer also updates an application to use the new functionality from the library.

• If the updated application is written to servers before they receive the updated library, it will fail to compile due to 
missing dependencies.

Ensuring Consistency with MW-Guarantee

• To prevent this issue, the programmer can create a new session with an MW-guarantee (Monotonic Writes).

• This ensures that both the updated library and the updated application are written within the same session.

• As a result, all servers will have the required dependencies, preventing compilation failures.
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Implementation of SESSIONAL GUARANTEES

The rules on how the session's read or write requests should be handled to give sessional 
guarantees
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SETUP
The implementations require cooperation from the servers that process Read and Write operations. 

Specifically, a server must be willing to return 
1. the unique identifier (WID) assigned to a new Write 

2. the set of WIDs for Writes that are relevant to a given Read, and the set of WIDs for all Writes in 
its database.

For each session, it maintains two sets of WIDs:
read-set : set of WIDs for the Writes that are relevant to session Reads

write-set : set of WIDs for those Writes performed in the session
relevant-writes: is a smallest set that is "enough" to completely determine the result of R
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{ w1 }

{w1} {w1,w2}

t1 t2 t3 t5

Read Your Write Implementation Steps
1. On writes wid added to write set (ws=ws+wid)
2. Before read check ws ⊆ Db(S,t)

Write-set : {  }

W W

Db(S1,t) : { }

Db(S2,t) : { }

{ w1, w2} ⊈ {w1}

{w1,w2}

{ w1,w2} 
⊆ {w1,w2}

{ }

R

RYW-guarantee: 
If Read R follows Write W in a session and R is performed at server S at time t, then W is included in 
DB(S,t)

{  } { w1,w2 }

R

{ w1,w2 }

{w1} {w1} {w1}

{ }Different session
W.S : { } { } { w2 } { w2 }

t4

{ w1 }

{w1,w2}

W

{ w2 }

{w1}
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{ } { w1}

{w1} {w1,w2}

t1 t2 t3

MR implementation  
1. Before read check rs ⊆ Db(S,t)
2. Add the relevent writes to the read set (rs=rs+wid) . W2 is from another session

read-set : {  }

R R

{ w1} ⊆ {w1,w2}

Db(S1,t) : { w1 }

Db(S2,t) : { }

{ w1, w2} ⊈ {w1}

MR-guarantee: 
If Read R1 occurs before R2 in a session and R1 accesses server S1 at time t1 and R2 accesses server S2 at time t2, then RelevantWrites(S1,t1,R1) is a subset of DB(S2,t2).

{  } ⊆ {w1}

{}

{ w1,w2 }

R

{w1} {w1}
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Additional Constraints For Write Follows Read and Monotonic Write
C1. When a server S accepts a new Write W2 at time t, it ensures that WriteOrder(W1,W2) is true for any W1 already in DB(S,t). That 
is, new Writes are ordered after Writes that are already known to a server

C2. Propagation of writes is performed such that if W2 is propagated from server S1 to server S2 at time t then any W1 in DB(S1,t) 
such that WriteOrder(W1,W2) is also propagated to S2

Db(S1,t) : { w1 }

Db(S2,t) : { w1 } {w1}} {w1,w2}

{w1,w2}

t1 t2 t3 t4

W2

91



Db(S1,t) : { w1 }

Db(S2,t) : { w1 } {w1}} {w1,w2} {w1,w2}

{w1,w2} {w1,w2,w3,w4}

t1 t2 t3 t4

W2 W4

C2. Propagation of writes is performed such that if W2 is propagated from server S1 to server S2 
at time t then any W1 in DB(S1,t)such that WriteOrder(W1,W2) is also propagated to S2

Similarly here writes are performed by same or different sessions
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{  } { w1 } 

{w1} {w1,w2}

t1 t2 t3 t4

WFR IMPLEMENTION STEPS
1. Before write check Read Set ⊆ Db(S,t)
2. if read successful update read set with relevant-writes of read data item

read-set : {  }

R W

{ w1} ⊆ {w1,w2}

Db(S1,t) : { w1 }

Db(S2,t) : { }

{ w1} ⊈ { }

WFR-guarantee: If Read R1 precedes Write W2 in a session and R1 is performed at server S1 at time t1, then, for any server S2, if W2 is in DB(S2) then any W1 in 
RelevantWrites(S1,t1,R1) is also in DB(S2) and WriteOrder(W1,W2)

{ } { }

W

Intuition ?
here by definition of WFR we 
need our writes to happen 
after the read 
ie reads relevant writes

{ }

{ w1 } 
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{  } { w1 } 

{w1} {w1,w2}

t1 t2 t3

MW IMPLEMENTATION STEPS
1. On write check write set ⊆ Db(S,t)
2. After write accepted by server add wid to the write set (ws=ws+wid)

write-set : {  }

W W

{ w1} ⊆ {w1}

Db(S1,t) : { ... }

Db(S2,t) : { ... }

{ w1, w2} ⊈{...}

{  } ⊆ {...}

W

{ w1,w2 } 

{ } { } { }
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{?}
{?}

{ ? } 
{ ? }

{w1} {w1,w2}

t1 t2 t3

rs: {  }
ws : { }

w r

Db(S1,t) : { }

{  } ⊆ { w1}
{  } ⊆ { w1}

{  } ⊆ {w1,w2}
{ ? } ⊆ {w1,w2}

{w1}Db(S1,t) : { }

What should 
happen here??

Example with full consistency with operation on same data item

{ ? } 
{ ? }

w

{ }

Read set  : {  }
Write set  : {  }
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{ }
{  }

{ } 
{ w1 }

{w1} {w1w2}

t1 t2 t3 t4

rs: {  }
ws : { }

w r

Db(S1,t) : { }

{  } ⊆ { }
{  } ⊆ { }

{  } ⊆ {w1,w2}
{ w1 } ⊆ {w1,w2}

{w1}Db(S1,t) : { }

What should 
happen here??

Example with full consistency with operation on same data item

{ ? } 
{ ? }

w

{} {w1}

Read set  : {  }
Write set  : {  }
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{ }
{  }

{ } 
{ w1 }

{w1} {w1, w2}

t1 t2 t3 t4

rs: {  }
ws : { }

w r

Db(S1,t) : { }

{  } ⊆ {  }
{  } ⊆ {  }

{  } ⊆ {w1,w2}
{ w1 } ⊆ {w1,w2}

Db(S1,t) : { }

{  w1, w2} ⊆ {w1}
{ w1 } ⊆ {w1}

Example with full consistency with operation on same data item

{ w1, w2 } 
{ w1 }

w

{w1}{ } {w1}

Read set  : {  }
Write set  : {  }

{ }
{  }

{ } 
{ }

rs: {  }
ws : { }

{ } 
{ w2 }

Different session

w
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A Chat Between Friends

Consider chat in a group between 5 friends:

A,B,C,D,E.

Let the corresponding messages be 
M1,M2,M3,M4,M5
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A Chat Between Friends
Consider chat in a group between 5 friends:

A,B,C,D,E.

Let the corresponding messages be 
M1,M2,M3,M4,M5

Q: Now, Does it make sense to read M5 
without first reading M3 and M3 without 
reading M1?
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A Chat Between Friends
Q: Now, Does it make sense to read M5 
without first reading M3 and M3 without 
reading M1?

Ans: No, because M1 is the cause of M3, M3 
is the cause of M5, etc. 

Remark: To any client (say friend F), it 
wouldn't make sense to read M5 without 
reading M3 and M3 wouldn't make sense 
without reading M1.
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Requirement: Capture the sense of cause-and-effect
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Requirement: Capture the sense of cause-and-effect

Causal Ordering comes to the Rescue
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Causal Ordering
Let  E  be the set of events in a distributed system. Define the relation → 
(called happens-before) on E as follows:
Local Ordering:
If event a  occurs before event b and both the events are initiated by the same UOE, 
then 

a → b
Ordering across UoEs:
When one UOE performs a write (event a) and then if another UOE later observes that 
update and performs a subsequent write (event b), we say that event a "happens-
before" event b:

a → b

Transitivity:  For all a,b,c ∈ E , if a → b and b → c , then:
a → c
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A Chat Between Friends
Consider chat in a group between 5 friends:

A,B,C,D,E.

Let the corresponding messages be 
M1,M2,M3,M4,M5

Using the previously 'happens-before' 
relationship we can define these causal 
Orderings:

M1 → M2 → M4
104



A Chat Between Friends
Consider chat in a group between 5 friends:

A,B,C,D,E.

Let the corresponding messages be 
M1,M2,M3,M4,M5

Using the previously 'happens-before' 
relationship we can define these causal 
Orderings:

M1 → M2 → M4
M1 → M3 → M5 105



Requirement: A Consistency Model that enforces Causal Ordering 

Causal Consistency Comes to Rescue!
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Causal Consistency

Definition:

Causal consistency enforces ordering of only related writes as observed by any UoE

A system is causally consistent if, for any two writes W1  and W2 :

• If W1→W2 (i.e. W1  causally precedes W2 ), then every UoE observes W1 before W2.

• If W1 and W2  are concurrent (i.e. neither W1→W2 nor W2→W1), different UoE may observe them 
in different orders.

 What doesn't it guarantee?

 Ans: Total Order of Operations – Only causally related operations are ordered, meaning two
 causally independent writes can be observed in different orders by different UoEs.

107



M1

M2 M3

M4 M5

Mi → Mj
if Mj is a reply to Mi
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The chat can be represented as this tree. 
And the arrows represent the replies. 

Now, as established earlier, we saw that the 

M1 → M2 → M4
M1 → M3 → M5

So, any UoE that observes the series of 
messages, must observe M1 at the very first.

M1

M2 M3

M4 M5
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The messages at the same level of the tree, (M2 
and M3) or (M4 and M5) can be processed in any 
order. 

Notably among M2, M3 and M5;  M2 can be 
processed before, after, or even in between M3 
and M5, as there is no causal ordering between 
M2 and either of M3 and M5.

M1

M2 M3

M4 M5
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Counter-Example: Broken Causal Consistency 
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Understanding Causal Consistency
Scenario:

1.P1 writes x = 5 to the system.
2.P2 reads x = 5 and then writes y = 10.

y depends on x, so the write of y by P2 is 
causally dependent on the earlier write of x by P1.

Symbolically: (W: x=5) → (W: y=10)
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Understanding Causal Consistency
Scenario:

Now, lets assume that another UOE P3 
reads 
x  and y in this sequence:

• At T=4 : x=5
• At T=5: y=0
• At T=6 : y=10

Q: Is the Causal Consistency Preserved 
in this Scenario?

T=1 T=2 T=3 T=4 T=5 T=6
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Understanding Causal Consistency
Scenario:

Now, lets assume that another UOE P3 reads 
x  and y in this sequence:

• At T=4 : x=5
• At T=5: y=0
• At T=6 : y=10

Q: Is the Causal Consistency Preserved in this Scenario?

A: Yes, because the value of (y=10) is read only after the value of (x=5) is read. The fact that 
y=0, which is stale,  was read earlier , does not concern us because, according to the causal 
relation established earlier, only this is ensured: (W:x=5) -> (W:y=10), (Not the Other way 
around).

T=1 T=2 T=3 T=4 T=5 T=6
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Understanding Causal Consistency
Scenario:

Now, lets assume that another UOE P4 reads 
x  and y in this sequence:

• At T=5 : y=10
• At T=6: x=0

Q: Is the Causal Consistency Preserved in this Scenario?

A: 

T=1 T=2 T=3 T=4 T=5 T=6
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Understanding Causal Consistency
Scenario:

Now, lets assume that another UOE P4 reads 
x  and y in this sequence:

• At T=5 : y=10
• At T=6: x=0

Q: Is the Causal Consistency Preserved in this Scenario?

A: No. It gives an impression to P4 that y=10 is written to the system 
before x=5 which is actually incorrect. Hence it violates causal consistency 
guarantee.

T=1 T=2 T=3 T=4 T=5 T=6
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Example of Causal Consistency
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Example of Causal Consistency

At first, P1 writes X = 5.

Next, P2 writes Y=10 and Z= 15 , based 
on the value of X being 5.
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Example of Causal Consistency

At first, P1 writes X = 5.

Next, P2 writes Y=10 and Z= 15 , based 
on the value of X being 5.

This establishes a causal relationship 
between the write of X=5 and Y=10 and 
Z = 15 as follows:

(W:X=5) → (W: Y = 10)
(W: X=5) → (W: X = 15)
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Example of Causal Consistency

At first, P1 writes X = 5.

Next, P2 writes Y=10 and Z= 15 , based 
on the value of X being 5.

This establishes a causal relationship 
between the write of X=5 and Y=10 and 
Z = 15 as follows:

(W:X=5) → (W: Y = 10)
(W: X=5) → (W: X = 15)

Notably, there is no causal relation 
between (W: Y = 10) and (W:Z = 15). 
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Example of Causal Consistency

Now, suppose P3 , another UOE, 
performs the following read 
operations:

At T4: Reads X = 5
At T5: Reads Y=10 
At T6: Reads Y = 15

Q: Does this violate Causal 
Consistency because after X=5 was 
read, Y initially had the value of 0?

A:
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Example of Causal Consistency

Now, suppose P3 , another UOE, performs the following read operations:

At T4: Reads X = 5
At T5: Reads Y=10 
At T6: Reads Y = 15

Q: Does this violate Causal Consistency
because after X=5 was read, Y initially 

had the value of 0?

A: No, because the causal relation established is: (W: X=5) → (W: Y=10). This means that (W: X=5) must 
appear on UOE P4 before (W: Y=10). It doesn't say that all subsequent reads of Y must immediately reflect 
W: Y=10, as long as the causal order is preserved. Since P3 reads Y=10 only after reading X=5, the causal 
dependency is maintained, making this causally consistent.
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Example of Causal Consistency

Now, suppose P4 , another UOE, performs the following read operations:

At T3: Reads X = 5
At T4: Reads Z = 0
At T5: Reads Y=15
At T6: Reads Z = 15

Q: Does this violate causal consistency because P4 reads Z = 0 at T4 and Y = 10 at T5, even though W: Z = 
15 happened before W: Y = 10 in P1?
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Example of Causal Consistency

Now, suppose P4 , another UOE, performs the following read operations:

At T3: Reads X = 5
At T4: Reads Z = 0
At T5: Reads Y=15
At T6: Reads Z = 15

Q: Does this violate causal consistency because P4 reads Z = 0 at T4 and Y = 10 at T5, even though W: Z = 
15 happened before W: Y = 10 in P1?

A: No, because there is no causal relationship between (W:Y=10) and (W:Z=15). So, they can appear in any 
order in P4. And, as we saw earlier, after reading (W:X=5), it is not necessary that we read the latest values 
of Y immediately, because Causal Consistency doesn't enforce that.
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Properties of Causal Consistency in Brief

 Only Related Writes Are Ordered

• Writes that are causally related are observed in the same order across UoEs.

• Unrelated writes can be observed in different orders.

• No global ordering is enforced.

 No Real-Time Constraints

• The system does not impose constraints based on real-time clocks.
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Properties of Causal Consistency in Brief

 Observation Order Matters More Than Values

• What matters is the sequence in which updates are observed, not their absolute 
values.

 Different Observers, Different Views
• UoEs may observe different causally consistent sequences at the same time.

 Causal Order Is Transitive

• If A → B and B → C, then A → C holds.
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