
Stronger Consistency Models
*stronger than eventual, weaker than serializable

1

Consistency in Distributed Systems

Every replica / node in the distributed system should have the same
view of the data at a given point of time.

Data Centre 1 Data Centre 2

V
I
E
W

Application Replicas Data Storage
2

Consistency in Distributed Systems

Every client should have the same view of the data at a given point
of time.

Data Centre 1 Data Centre 2

V
I
E
W

Clients Data Storage
3

Need for Consistency Guarantees

• In a distributed system, consistency
conflicts arise due to concurrent read /
writes to different replicas.

• To ensure consistency, system must
synchronize data across the replicas.

• This can have a significant overhead,
impacting the performance of a system.

4

Recap: CAP Theorem

• In distributed systems, Partition
Tolerance is a must.

• We are left with two choices:

CP or AP

By JamieMcCarthy - Own work, CC BY-SA 4.0 (Wikimedia Commons)

5

What is a Consistency Model?

• A consistency model defines the
rules and guarantees about how
data is seen and updated across
multiple nodes in a distributed
system.

• They are tradeoffs between:

Availability vs Consistency

6

Weak Consistency Models
• Sacrifice consistency
• Prioritize availability

• Require analysis of the data model to determine the required
consistency guarantees

• Careful analysis can allow us to achieve the optimal balance
between consistency and availability

We will discuss consistency models in the light of their
consistency guarantees w.r.t. applications

7

Some Terminology

• Unit of Execution

An independent thread (client)
making sequential requests to

an external distributed / non-distributed
system

UoEUoE

8

Some Terminology

• Data-Centric Perspective
• System is aware that multiple execution

units are running
• It synchronizes data access from all of them

to guarantee consistent results

• Applications in Banking, Trading,
Authentication and Authorization, where
data consistency is critical.

9

Some Terminology

• Client-Centric Perspective
• System only cares about concerned

process operating on the given data
• It assumes other execution units don’t

exist or don’t have significant impact

• Applications in social media like
YouTube where the priority is user
experience.

10

Performance Metrics

Consistency Availability Latency

Throughput Perspective

11

Consistency Guarantees Scale

1. Eventual

2. Consistent Prefix Read

3. Session

4. Causal

5. Bounded Staleness

6. Strong

Availability
Latency
Throughput

Av
ai

la
bi

lit
y,

 L
at

en
cy

, T
hr

ou
gh

pu
t

12

Agenda

1. Eventual

2. Consistent Prefix Read

3. Session

4. Causal

5. Bounded Staleness

6. Strong

13

The weakest notion of consistency
among all four models discussed

Eventual CPR Session Causal

14

Eventual Consistency

• It guarantees that if no new writes are made to a data item,
all replicas will converge to the same value eventually.

15

t1 t2

t3 t4 t5 t6 t7 t8 t9

Replica 1

Replica 2

Replica 3

Replica 4

A B C

C

C

A B

A

Write Read

The timeline shows writes and reads to a single data item

Eventual Consistency

after a long time
CA

B

16

Eventual Consistency

• No ordering guarantee on the reads and writes
• Even the unit of execution which made the write may not observe it in the

following writes (Invisibility)
• No time bound on convergence

• Only guarantee is that:
• Data will converge to the same value eventually

• The value to which it converges depends on the conflict resolution policy
• For example: Last Write Wins, Merging as in CRDT, etc.

17

The timeline shows writes and reads to a single data item

t1 t2

t3 t4 t5 t6 t7 t8 t9

Replica 1

Replica 2

Replica 3

Replica 4

A B

C

CA B

B A

Write Read

C

C

Conflict Resolution - Last Write Wins

18

Eventual Consistency

Suitable for applications in which immediate consistency and order
of updates is not of concern but availability is essential.

• DNS Servers
• Propagating DNS record updates across global servers
• Changes to single record are infrequent

• Views, likes, comments aggregation in social media platforms

19

Eventual Consistency

Consistency Least

Availability Highest

Latency Low

Throughput Highest

Perspective Client-Centric

20

Consistent Prefix Read

Provides record-level guarantee on read order

Eventual CPR Session Causal

21

Provides four consistency guarantees to
individual units of execution

Eventual CPR Session Causal

Read Your Own Write (RYOW) Monotonic Read (MR)

Write Follow Read (WFR) Monotonic Write (MW)

22

Consistency based on causal dependencies
between reads and write

Eventual CPR Session Causal

23

Consistent Prefix Read

Consistent Prefix Read guarantees that all replicas receive updates
to a given data item in the same order.

That is, for a data item, the database system as a whole has
received updates u1, u2, …, un in that order, any replica will have
received updates u1, u2, …, uk in that order for some k ≤ n.

24

Consistent Prefix Read
t1 t2 t3 t4 t5 t6 t7 t8 t9

Replica 0

Replica 1

Replica 2

Replica 3

U1

U1

U1

U1

U2

U2

U2

U2 U3

U3

U3

U3

*In pure CPR implementations, it is assumed that there is a reliable mechanism (such as a central sequencer or
consensus algorithm) that imposes a global order on updates. In scenarios where writes can be directed to any
replica, these mechanisms ensure that all replicas eventually agree on the order.

These are all updates to a single data item.

25

Replica t1 t2 t3 t4 t5 t6 t7 t8 t9

R0 U1 U1, U2 U1, U2 U1, U2 U1, U2 U1, U2 U1, U2 U1, U2,
U3

U1, U2,
U3

R1 — — U1 U1 U1 U1, U2 U1, U2 U1, U2,
U3

U1, U2,
U3

R2 — — — — U1 U1, U2 U1, U2 U1, U2,
U3

U1, U2,
U3

R3 — — — — U1 U1, U2 U1, U2,
U3

U1, U2,
U3

U1, U2,
U3

For the same example, these are the updates received by replicas (in order) at time stamps:

Ux indicates the first time any of the replicas receive a write (from client)

26

Eventual Consistency

• No ordering guarantee on the reads and writes
• Even the unit of execution which made the write may not observe it in the

following writes (Invisibility)
• No time bound on convergence

27

Consistent Prefix Read

What we can’t do using Eventual consistency?

Eventual Consistency only guarantees that if no new updates are
made to a data item, all replicas will converge to the same state
over time. There is no guarantee on the order in which updates are
seen in the meantime.

28

Consistent Prefix Read

• What we can't do using Eventual consistency?
• Consider an image sharing application where users can upload

images and only their friends can view those images. Assume that
this application uses replication for availability.

29

Consistent Prefix Read

• What we can't do using Eventual consistency?
• Consider an image sharing application where users can upload

images and only their friends can view those images. Assume that
this application uses replication for availability.

• Suppose that Alice and Bob are initially friends. Alice wants to
post an image but doesn't want Bob to see it. So, Alice will
unfriend Bob first. After getting confirmation, will post the image.

• What can go wrong here, if we use a database that only
guarantees Eventual consistency?

30

Consistent Prefix Read

Alice's Data
Friends: []
Images: []

What’s a “read” in our context?

When a read request to comes to a
replica for Alice’s record (data item)
from Bob, it will check if Bob is in the
friend’s list, if yes, he can view the
images, otherwise, no.

After U1

Alice's Data
Friends: [Bob]
Images: []

Before U1

Alice's Data
Friends: []
Images: [Image1]

After U2

Types of Writes:
U1: Remove from friend list

U2: Post a picture

31

Consistent Prefix Read

Eventual Consistency

Types of Writes:
U1: Remove from friend list
U2: Post a picture

Read by Bob at ti time

32

Consistent Prefix Read

Problem with Eventual consistency?

Due to the lack of ordering guarantees in eventual consistency, a
replica that is slow to apply updates may process U2 (post image)
before U1 (remove Bob), causing Bob’s read of Alice’s data to
incorrectly include the newly posted image—even though he should
no longer be a friend.

33

Consistent Prefix Read

• For this use-case, Eventual consistency isn't enough. We need a
stronger notion of consistency.

• It guarantees the following
• If the system receives the updates U1, U2 in that order for a data item.

Then, all replicas will apply those updates to that data item in the same
order.

• What doesn't it guarantee?
• It doesn't have any bound on how stale the data can be.

34

PNUTS: Yahoo! Hosted Data Service Platform

• Massively Parallel & Distributed: Supports web applications
across multiple geographic regions.

• Low Latency: Efficient for large-scale concurrent queries and
updates.

• Automated Management: Centralized, hosted service with load
balancing and failover.

*Platform for Nimble Universal Table Storage 35

PNUTS: Yahoo! Hosted Data Service Platform

• Massively Parallel & Distributed: Supports web applications
across multiple geographic regions.

• Low Latency: Efficient for large-scale concurrent queries and
updates.

• Automated Management: Centralized, hosted service with load
balancing and failover.

• Per-Record Timeline Consistency: Ensures updates are applied
in the same order across replicas. Relaxed Consistency
guarantees.

36

Serializable
Transactions

Eventual
Consistency

Per-record
Timeline

Consistency

Middle Ground

PNUTS: Yahoo! Hosted Data Service Platform

Too
Strong

Too
Weak

37

Eventual
Consistency

PNUTS: Yahoo! Hosted Data Service Platform

Too
Weak

A client can update any replica of an object and all
updates to an object will eventually be applied, but
potentially in different orders at different replicas.

38

Serializable
Transactions

PNUTS: Yahoo! Hosted Data Service Platform

Too
Strong

Serializable Transactions are the highest level of isolation in database
systems. They ensure that transactions execute as if they were run
sequentially, one after the other, even if they are executed concurrently.

39

Per-record
Timeline

Consistency

Middle Ground

PNUTS: Yahoo! Hosted Data Service Platform

Ensures updates to each
record are applied in the
same order across
replicas. This offers
stronger guarantees than
eventual consistency while
avoiding the complexity of
serializability.

Consistency per record
instead of enforcing global
order. Reduces delays and
handles more data at once.
This allows concurrent
reads and writes on
different records, unlike
serializable systems that
would process them one
by one.

*PNUTS make no guarantees as to consistency for multi-record transactions.
40

PNUTS: Per-record Timeline Consistency

• Different records may have activity with different geographic
locality

• All replicas of a given record apply all updates to the record in
the same order

41

PNUTS: Per-record Timeline Consistency

• A read of any replica will return a consistent version from this
timeline

• Replicas always move forward in the timeline.

42

PNUTS: Master based Implementation

• Each record is assigned a master replica.
• All updates to a record are forwarded to its master.

43

PNUTS: Records across Replicas

Alice's Data
Friends: [Bob]
Images: […]

Bob’s Data
Friends: [Alice]
Images: […]

Alice's Data
Friends: [Bob]
Images: […]

Bob’s Data
Friends: [Alice]
Images: […]

Replica 1 Replica 2

Charlie’s Data
Friends: [Alice]
Images: […]

Charlie’s Data
Friends: [Alice]
Images: […]

Master = 1

Master = 2

Master = 1

44

PNUTS: Master Selection

• The master replica is adaptively changed based on the workload.
• The replica receiving the majority of write requests for a specific

record becomes the master.

45

Jaipur

Bengaluru

Master

Replica Location
MATTERS!

For people in Jaipur, read and
write requests go to Jaipur
replica if it’s not down and vice
versa.

46

PNUTS: Role of Master Replica

• Master ensures a single, global write order.
• Local master = faster writes for nearby users.
• Avoids latency from cross-city/cross-country communication.
• Improves read freshness and user experience.
• Jaipur users benefit if Jaipur is the master.

* A fresh read reflects the latest committed updates.

47

PNUTS: Ordering

• Each record has a sequence number that increments with every
write maintained by master node.

• The sequence number consists of Version: Represents an update
(each update creates a new version).

48

Per-record Timeline
Consistency

V1 V2 V3 V4 V5 V6

Update Update Update Update Update

49

PNUTS: Guarantees

• Replicas always move forward in the timeline.
• No Reordering of Updates: Replicas will apply updates in the

correct order, ensuring consistency in the view of data across
different replicas.

• Monotonic Progress: Once a replica has applied a particular
version, it will not revert to an older version. It only moves to a
newer version.

• Read Consistency: When a read request is made, it will return a
version that is guaranteed to be consistent with the latest applied
version in that replica’s timeline.

50

PNUTS API: Read Any

• Read the record from any replica (usually geographically nearest),
which might be non-master. We are guaranteed to get a consistent
version from the timeline (although it might be stale).

• Even after a successful write, a stale version may still be seen.
• This call offers lower latency compared to stricter read

guarantees.
• Example: In a social networking app, displaying a friend's status

doesn’t require the most up-to-date value, making read-any
suitable.

51

Consistent Prefix Read: Metrics

Consistency Low

Availability Moderate

Latency Low

Throughput High

Perspective Data-Centric

52

Agenda

Session Guarantees
• Introduction
• Data storage model and

terminology
• Read-Your-Own-Write (RYOW)
• Monotonic Read
• Writes Follow Reads
• Monotonic Write (MW)

Implementation

53

Strong vs Weak Consistent Systems

Strongly Consistent System

Ensures that replicas in the system have same
view of data.

Pros:
• Prevents anomalies like stale reads or lost

updates
• Easier to reason about correctness in

applications

Cons:
• High latency: Requires coordination across

nodes, increasing response times.
• High concurrency leads to frequent locking.

Increased chances of deadlocks. So, low
availability.

Weakly Consistent System

Allows different replicas to have different states
temporarily, but guarantees eventual convergence

Pros:
• Scalability: Easier to distribute across global

regions
• Better performance: Lower latency as replicas

don’t need immediate synchronization.
• High availability

Cons:
• User might see stale data.
• Some applications can't work as intended without

any guarantees on the order of operations.

54

Session Guarantees

• By incorporating some extra logic on top of a weakly consistent
system, we can make the system provide some guarantees with
high availability

• These guarantees are only applicable within a session (i.e these
are not global guarantees). We will talk about 4 such guarantees
oRead your own Write
oMonotonic Read
oWrite Follows Read
oMonotonic Write

55

Terminology

● A session is an abstract concept to correlate multiple Read and
Write operations together as a group from the same unit of
execution.

● Example: when you login to Amazon for shopping, a session is
created internally which keeps track of your activities and
browsing history, cart updates for that session.

56

Terminology

• Sessions can be identified with a unique ID called session ID. The
life time of a session could be few seconds to days or more
depending on the business use case.

• When a group of Read / Write operations are to be performed, we
can bind all these operations together within a session, the client
can keep on passing the corresponding session ID with all
requests to help correlate them.

57

Terminology

● Each Write to our distributed database system has a globally unique
identifier, called a "WID".

● DB(S,t) to be the ordered sequence of Writes(WID) that have been received
by replica S at or before time t.

● Let WriteOrder(W1,W2) be a boolean predicate indicating whether Write
W1 should be ordered before Write W2.

58

Read Your Own Write

This guarantee ensures that the effects of any Writes made within a session
are visible to Reads within that session.

RYOW-guarantee: If Read R follows Write W in a session and R is performed
within same session at replica S at time t, then W is included in DB(S,t).

Example1:- If you delete a mail from Gmail and you get the confirmation, upon
refreshing the page, you should not see the mail again in RYOW consistency.

Example2:- After updating the account password the user should be able to
login with the new password.

59

Example

W: X = 2 W: X = 3 R: X

X = 2 X = 3

X = 2 X = 3

t1 t2 t3 t4

1

2

replication replication

60

How to guarantee RYOW consistency

There could be couple of ways, we will discuss one of them
• Make all requests from same session hit the same replica
• We can choose the replica based on the hash of session ID
• Eventually, all replicas will converge to same state

61

Monotonic Reads

Informal Definition:-
If a Read R0 observes Write W for a piece of data, further Read R1 by the same
unit of execution for the same data in the same session should at least observe
W or more recent value.

In case of a distributed system having multiple replicas, the client can reach
out to any replica as long as they have enough updates at least till W for the
concerned data.

Note: In our discussion server and replica is interchangeable.

62

Terminologies

• DB(S,t) represent the ordered sequence of Writes(WID) that have been received

by server S at or before time t. If t is known to be the current time, then it may

be omitted leaving DB(S) to represent the current ordered sequence of

Writes(WID) of the server's database.

• A set of Writes completely determines the result of a Read if the set includes

"enough" of the database's Writes so that the result of executing the Read against

this set is the same as executing it against the whole database.

• Example: Assume in a server S the DB(S, t) = (W1,W2,W3,W4,W5). And we

say the write set (W1,W3) completely determines the result of a Read R1 then it

mean If we perform this read R1 operation in a server which have only this write

set (W1,W3) then the read result will still be the same as this read R1 perform

on the whole write set DB(S, t)
63

Monotonic Reads

• RelevantWrites(S,t,R) denote the function that returns the smallest set of

Writes(WID) that is complete for Read R and DB(S, t)

• Intuitively, RelevantWrites(S,t,R) is a smallest set that is "enough" to completely

determine the result of R

Formal Definition:-

• If Read R1 occurs before R2 in a session and R1 accesses server S1 at time t1 and
R2 accesses server S2 at time t2, then the RelevantWrites(S1,t1,R1) is a subset of
DB(S2,t2).

Note: we guess that a read may have multiple relevant writes. if the read reads an
entire object, and each of the writes populates one of the fields of the object.

64

Session 1 Read R2Read R1

Server S1

Server S2

Time t1 Time t2

RelevantWrites
(S1,t1,R1)

DB(S2,t2)

RelevantWrites (S1,t1,R1) DB(S2,t2)⊆

Monotonic Read

Monotonic Read guarantee:- DB(S2, t2) should be subset of RelevantWrites(S1,t1,R1)65

Session 2 Read R2Read R1

Server S1

Server S2

Time t1 Time t3

RelevantWrites (S1,t2,R1) = {W1} DB(S2,t3) = {}⊈

Monotonic Read Example

Session 1

Time t0

X = 5

X = 5

X = 12 X = 12 X = 12 X = 12

Time t2 Time t4

X = 5 X = 5 X = 5 X = 12

Write W1

Replication

Read R2 is not monotonic read
66

Monotonic Reads

Why it matters?

● Consider a replicated electronic mail database.
● The mail reader issues a query to retrieve all new mail messages and

displays summaries of these to the user.
● When the user issues a request to display one of these messages, the mail

reader issues another Read to retrieve the message's contents.
● The Monotonic Read-guarantee can be used by the mail reader to ensure

that the second Read is issued to a replica that holds a copy of the
message. Otherwise, the user, upon trying to display the message, might
incorrectly be informed that the message does not exist.

67

Monotonic Reads

How it differs from RYOW?

● In RYOW, the writes were made by the User1 themselves in their session.
● Here in the example of the mailbox, the new unread mails are not writes

made by the User1, but by some other person (user2) in a different session.
● These writes made by User2 now fall in the RelevantWrites of User1 first

read.
● Monotonic Read guarantees ensure that these RelevantWrites are also

present in the replicas accessed by User1 for the second read.
● RYOW did not consider these RelevantWrites.

68

Monotonic Reads

Properties:

● If we assume, with every write, the version of an object increases, each
subsequent Read should see the same or monotonically increasing version
of the object.

● As long as the same server handle the requests for the same unit of
execution in the same session, Monotonic Read should be guaranteed.

69

Write Follows Read(WFR)

• The Writes Follow Reads guarantee ensures that traditional
Write/Read dependencies are preserved in the ordering of Writes
at all servers.

• That is, in every copy of the database, Writes made during the
session are ordered after any Writes whose effects were seen by
previous Reads in the session(Will see in detail).

70

Write Follows Read

• Let’s say, In a replica S1 at time t0 Write W1 happened on a data.

• And in a session on the same data Read R1 occurs and that R1
accesses server S1 at time t1, i.e., R1 has seen the effect of W1.

• In the same session Write W2 happened and that W2 accesses
server s2 at time t2.

• And W2 depends on R1.
In such a case, WFR provides 2 guarantees:

• Ordering guarantee
• Write propagation guarantee

71

Session 1 Write W2Read R1

Server S1

Server S2

Time t1 Time t2

RelevantWrites
(S1,t1,R1) = {W1}

W2 depends on W1

SET UP

Time t0

Write W1
happened by
some session

Note:- R1 depends on W1. And W2 depends on R1. So, W2 depends on W1

72

Write Follows Read

• Ordering guarantee: W2 should follow all those Writes which caused
R1 (all relevant Writes to R1). In our case, W1 is the only relevant Write
for R1. Hence, the Write order should place W2 after W1 in S2. This
guarantee applies within the session.

73

Session 1 Write W2Read R1

Server S1

Server S2

Time t1 Time t2

RelevantWrites
(S1,t1,R1) = {W1}

W2 depends on W1

Ordering guarantee:- W2 should place after W1 in S2

Ordering Guarantee

Time t0

Write W1
happened by
some session

Note:- R1 depends on W1. And W2 depends on R1. So, W2 depends on W1

74

Write Follows Read

• Write propagation guarantee: If R1 occurs in replica S1 at time
t1, then for any replica S, if S has seen W2 at time t2 > t1, S must
have seen all relevant Writes to R1 i.e; in our example, W1 prior to
W2. It means all other replicas in the system should apply a Write
after they have seen all the previous Writes on which it depends.
This guarantee applies outside of session.

• Note: propagating the changes may take some time depending on
implementation, WFR does not require any real time or
instantaneous propagation of changes.

75

Session 1 Write W2Read R1

Server S1

Server S2

Time t1 Time t2

RelevantWrites
(S1,t1,R1) = {W1}

W2 depends on W1

Propagation guarantee:- any replica S, the S must see W1 prior to W2

Write propagation guarantee

Time t0

Write W1
happened by
some session

Note:- R1 depends on W1. And W2 depends on R1. So, W2 depends on W1

Server S
Replicate

76

Write Follows Read

Formal definition:
If Read R1 precedes Write W2 in a session and R1 is performed at server S1 at
time t1, then, for any server S, if W2 is in DB(S) then any W1 in
RelevantWrites(S1,t1,R1) is also in DB(S) and WriteOrder(W1,W2) is true.

• This guarantee is different in nature from the previous two guarantees in that
it affects users outside the session.

• Not only does the session observe that the Writes it performs occur after any
Writes it had previously seen, but also all other clients will see the same
ordering of these Writes regardless of whether they are from same session.

77

Session 1 Write W2Read R1

Server S1

Server S2

Time t1 Time t2

RelevantWrites
(S1,t1,R1) = {W1}

W2 depends on W1

WFR guarantee:- ∀ Server S, If W2 in S then any W1 in RelevantWrites (S1,t1,R1)∈ DB(S) and
WriteOrder(W1,W2) is true

Write Follows Read

Time t0

Write W1
happened by
some session

Note:- R1 depends on W1. And W2 depends on R1. So, W2 depends on W1

Server S
Replicate

78

Session 2 Write W2: Y=10Read R1

Server S1

Server S2

Time t1 Time t3

Write Follows Read Example

Session 1

Time t0

X=0, Y=0

Time t2 Time t4

Write W1 : X=5

Replication

Write Follows Read not there in S3 at time t4

Server S3

X=5, Y=0

X=0, Y=0

X=0, Y=0 X=0, Y=0

X=0, Y=0

X=0, Y=0

X=5, Y=0

X=5, Y=0

X=0, Y=0

X=5, Y=10

X=5, Y=0

X=0, Y=10

X=5, Y=10

X=5, Y=0

Replication

At Time t4 in S3 WriteOrder(W1,W2) = False

At Time t3 in S2 WriteOrder(W1,W2) = TrueRelevantWrites(S1,t2,R1) = {W1}

79

Write Follows Read

Properties

• Ordering first applies within the involved session.

• Outside of the client’s session, propagation of writes in order of their
occurrence should be done to guarantee WFR.

• The propagation can be lazy or non-real time thus making the
guarantee weak.

• This consistency is also called session causality.

80

Write Follows Read

Example:-

• Consider replying to a tweet.

• You can only do that when the tweet is already written to the system
and is visible to you.

• Both reading and replying could be done in the same session.

81

Monotonic Write
A write operation by a session on a data item x is completed before any successive write operation on x
during the session. Implies a copy must be up to date before performing a write on it.

W : x=5, y=0 W : x=5, y=10

t1 t2 t3 t5

SESSION

Server 1

Server 2

W : x=5, y=10

W : x=0, y=0 W : x=5, y=0 W : x=12, y=0

t4

W : x=5, y=10

W : x=12, y=16

W : x=5 W : y=10 W : x=12 W : y=16

Monotonic write on x Non Monotonic write on x

82

Stricter form of monotonic write (as per Terry paper)
If Write W1 precedes Write W2 in a session, then, for any server S2, if W2 in DB(S2) then W1 is also inDB(S2)
and WriteOrder(W1,W2).

W : x=5, y=0 W : x=5, y=10

t1 t2 t3 t5

SESSION

Server 1

Server 2

W : x=5, y=10

W : x=0, y=0 W : x=5, y=0 W : x=12, y=0

t4

W : x=5, y=10

W : x=12, y=16

W : x=5 W : y=10 W : x=12 W : y=16

Non-Monotonic writeNon-Monotonic write !!!

83

Breaking into its Principle Components

Ordering Guarantee:

A session should see its own successive updates on a particular variable / object in the
order of their occurrence. This guarantee applies within the session.

Propagation Guarantee:

Eventually, all other replicas should see the writes on the object in the same order. This
applies outside of the session.

84

When and why do you need monotonic write
The database contains software source code and is replicated across multiple servers.

Upgrading a Library (Upward Compatibility)

• A programmer updates a library, adding new functionality in an upward compatible way.

• Since the update does not break existing client software, it can be propagated lazily to other servers.

Updating an Application (Dependency Issue)

• The programmer also updates an application to use the new functionality from the library.

• If the updated application is written to servers before they receive the updated library, it will fail to compile due to
missing dependencies.

Ensuring Consistency with MW-Guarantee

• To prevent this issue, the programmer can create a new session with an MW-guarantee (Monotonic Writes).

• This ensures that both the updated library and the updated application are written within the same session.

• As a result, all servers will have the required dependencies, preventing compilation failures.

85

Implementation of SESSIONAL GUARANTEES

The rules on how the session's read or write requests should be handled to give sessional
guarantees

86

SETUP
The implementations require cooperation from the servers that process Read and Write operations.

Specifically, a server must be willing to return
1. the unique identifier (WID) assigned to a new Write

2. the set of WIDs for Writes that are relevant to a given Read, and the set of WIDs for all Writes in
its database.

For each session, it maintains two sets of WIDs:
read-set : set of WIDs for the Writes that are relevant to session Reads

write-set : set of WIDs for those Writes performed in the session
relevant-writes: is a smallest set that is "enough" to completely determine the result of R

87

88

{ w1 }

{w1} {w1,w2}

t1 t2 t3 t5

Read Your Write Implementation Steps
1. On writes wid added to write set (ws=ws+wid)
2. Before read check ws ⊆ Db(S,t)

Write-set : { }

W W

Db(S1,t) : { }

Db(S2,t) : { }

{ w1, w2} ⊈ {w1}

{w1,w2}

{ w1,w2}
⊆ {w1,w2}

{ }

R

RYW-guarantee:
If Read R follows Write W in a session and R is performed at server S at time t, then W is included in
DB(S,t)

{ } { w1,w2 }

R

{ w1,w2 }

{w1} {w1} {w1}

{ }Different session
W.S : { } { } { w2 } { w2 }

t4

{ w1 }

{w1,w2}

W

{ w2 }

{w1}

89

{ } { w1}

{w1} {w1,w2}

t1 t2 t3

MR implementation
1. Before read check rs ⊆ Db(S,t)
2. Add the relevent writes to the read set (rs=rs+wid) . W2 is from another session

read-set : { }

R R

{ w1} ⊆ {w1,w2}

Db(S1,t) : { w1 }

Db(S2,t) : { }

{ w1, w2} ⊈ {w1}

MR-guarantee:
If Read R1 occurs before R2 in a session and R1 accesses server S1 at time t1 and R2 accesses server S2 at time t2, then RelevantWrites(S1,t1,R1) is a subset of DB(S2,t2).

{ } ⊆ {w1}

{}

{ w1,w2 }

R

{w1} {w1}

90

Additional Constraints For Write Follows Read and Monotonic Write
C1. When a server S accepts a new Write W2 at time t, it ensures that WriteOrder(W1,W2) is true for any W1 already in DB(S,t). That
is, new Writes are ordered after Writes that are already known to a server

C2. Propagation of writes is performed such that if W2 is propagated from server S1 to server S2 at time t then any W1 in DB(S1,t)
such that WriteOrder(W1,W2) is also propagated to S2

Db(S1,t) : { w1 }

Db(S2,t) : { w1 } {w1}} {w1,w2}

{w1,w2}

t1 t2 t3 t4

W2

91

Db(S1,t) : { w1 }

Db(S2,t) : { w1 } {w1}} {w1,w2} {w1,w2}

{w1,w2} {w1,w2,w3,w4}

t1 t2 t3 t4

W2 W4

C2. Propagation of writes is performed such that if W2 is propagated from server S1 to server S2
at time t then any W1 in DB(S1,t)such that WriteOrder(W1,W2) is also propagated to S2

Similarly here writes are performed by same or different sessions

92

{ } { w1 }

{w1} {w1,w2}

t1 t2 t3 t4

WFR IMPLEMENTION STEPS
1. Before write check Read Set ⊆ Db(S,t)
2. if read successful update read set with relevant-writes of read data item

read-set : { }

R W

{ w1} ⊆ {w1,w2}

Db(S1,t) : { w1 }

Db(S2,t) : { }

{ w1} ⊈ { }

WFR-guarantee: If Read R1 precedes Write W2 in a session and R1 is performed at server S1 at time t1, then, for any server S2, if W2 is in DB(S2) then any W1 in
RelevantWrites(S1,t1,R1) is also in DB(S2) and WriteOrder(W1,W2)

{ } { }

W

Intuition ?
here by definition of WFR we
need our writes to happen
after the read
ie reads relevant writes

{ }

{ w1 }

93

{ } { w1 }

{w1} {w1,w2}

t1 t2 t3

MW IMPLEMENTATION STEPS
1. On write check write set ⊆ Db(S,t)
2. After write accepted by server add wid to the write set (ws=ws+wid)

write-set : { }

W W

{ w1} ⊆ {w1}

Db(S1,t) : { ... }

Db(S2,t) : { ... }

{ w1, w2} ⊈{...}

{ } ⊆ {...}

W

{ w1,w2 }

{ } { } { }

94

{?}
{?}

{ ? }
{ ? }

{w1} {w1,w2}

t1 t2 t3

rs: { }
ws : { }

w r

Db(S1,t) : { }

{ } ⊆ { w1}
{ } ⊆ { w1}

{ } ⊆ {w1,w2}
{ ? } ⊆ {w1,w2}

{w1}Db(S1,t) : { }

What should
happen here??

Example with full consistency with operation on same data item

{ ? }
{ ? }

w

{ }

Read set : { }
Write set : { }

95

{ }
{ }

{ }
{ w1 }

{w1} {w1w2}

t1 t2 t3 t4

rs: { }
ws : { }

w r

Db(S1,t) : { }

{ } ⊆ { }
{ } ⊆ { }

{ } ⊆ {w1,w2}
{ w1 } ⊆ {w1,w2}

{w1}Db(S1,t) : { }

What should
happen here??

Example with full consistency with operation on same data item

{ ? }
{ ? }

w

{} {w1}

Read set : { }
Write set : { }

96

{ }
{ }

{ }
{ w1 }

{w1} {w1, w2}

t1 t2 t3 t4

rs: { }
ws : { }

w r

Db(S1,t) : { }

{ } ⊆ { }
{ } ⊆ { }

{ } ⊆ {w1,w2}
{ w1 } ⊆ {w1,w2}

Db(S1,t) : { }

{ w1, w2} ⊆ {w1}
{ w1 } ⊆ {w1}

Example with full consistency with operation on same data item

{ w1, w2 }
{ w1 }

w

{w1}{ } {w1}

Read set : { }
Write set : { }

{ }
{ }

{ }
{ }

rs: { }
ws : { }

{ }
{ w2 }

Different session

w

97

A Chat Between Friends

Consider chat in a group between 5 friends:

A,B,C,D,E.

Let the corresponding messages be
M1,M2,M3,M4,M5

98

A Chat Between Friends
Consider chat in a group between 5 friends:

A,B,C,D,E.

Let the corresponding messages be
M1,M2,M3,M4,M5

Q: Now, Does it make sense to read M5
without first reading M3 and M3 without
reading M1?

99

A Chat Between Friends
Q: Now, Does it make sense to read M5
without first reading M3 and M3 without
reading M1?

Ans: No, because M1 is the cause of M3, M3
is the cause of M5, etc.

Remark: To any client (say friend F), it
wouldn't make sense to read M5 without
reading M3 and M3 wouldn't make sense
without reading M1.

100

Requirement: Capture the sense of cause-and-effect

101

Requirement: Capture the sense of cause-and-effect

Causal Ordering comes to the Rescue

102

Causal Ordering
Let E be the set of events in a distributed system. Define the relation →
(called happens-before) on E as follows:
Local Ordering:
If event a occurs before event b and both the events are initiated by the same UOE,
then

a → b
Ordering across UoEs:
When one UOE performs a write (event a) and then if another UOE later observes that
update and performs a subsequent write (event b), we say that event a "happens-
before" event b:

a → b

Transitivity: For all a,b,c ∈ E , if a → b and b → c , then:
a → c

103

A Chat Between Friends
Consider chat in a group between 5 friends:

A,B,C,D,E.

Let the corresponding messages be
M1,M2,M3,M4,M5

Using the previously 'happens-before'
relationship we can define these causal
Orderings:

M1 → M2 → M4
104

A Chat Between Friends
Consider chat in a group between 5 friends:

A,B,C,D,E.

Let the corresponding messages be
M1,M2,M3,M4,M5

Using the previously 'happens-before'
relationship we can define these causal
Orderings:

M1 → M2 → M4
M1 → M3 → M5 105

Requirement: A Consistency Model that enforces Causal Ordering

Causal Consistency Comes to Rescue!

106

Causal Consistency

Definition:

Causal consistency enforces ordering of only related writes as observed by any UoE

A system is causally consistent if, for any two writes W1 and W2 :

• If W1→W2 (i.e. W1 causally precedes W2), then every UoE observes W1 before W2.

• If W1 and W2 are concurrent (i.e. neither W1→W2 nor W2→W1), different UoE may observe them
in different orders.

 What doesn't it guarantee?

 Ans: Total Order of Operations – Only causally related operations are ordered, meaning two
 causally independent writes can be observed in different orders by different UoEs.

107

M1

M2 M3

M4 M5

Mi → Mj
if Mj is a reply to Mi

108

The chat can be represented as this tree.
And the arrows represent the replies.

Now, as established earlier, we saw that the

M1 → M2 → M4
M1 → M3 → M5

So, any UoE that observes the series of
messages, must observe M1 at the very first.

M1

M2 M3

M4 M5

109

The messages at the same level of the tree, (M2
and M3) or (M4 and M5) can be processed in any
order.

Notably among M2, M3 and M5; M2 can be
processed before, after, or even in between M3
and M5, as there is no causal ordering between
M2 and either of M3 and M5.

M1

M2 M3

M4 M5

110

Counter-Example: Broken Causal Consistency

111

Understanding Causal Consistency
Scenario:

1.P1 writes x = 5 to the system.
2.P2 reads x = 5 and then writes y = 10.

y depends on x, so the write of y by P2 is
causally dependent on the earlier write of x by P1.

Symbolically: (W: x=5) → (W: y=10)

112

Understanding Causal Consistency
Scenario:

Now, lets assume that another UOE P3
reads
x and y in this sequence:

• At T=4 : x=5
• At T=5: y=0
• At T=6 : y=10

Q: Is the Causal Consistency Preserved
in this Scenario?

T=1 T=2 T=3 T=4 T=5 T=6

113

Understanding Causal Consistency
Scenario:

Now, lets assume that another UOE P3 reads
x and y in this sequence:

• At T=4 : x=5
• At T=5: y=0
• At T=6 : y=10

Q: Is the Causal Consistency Preserved in this Scenario?

A: Yes, because the value of (y=10) is read only after the value of (x=5) is read. The fact that
y=0, which is stale, was read earlier , does not concern us because, according to the causal
relation established earlier, only this is ensured: (W:x=5) -> (W:y=10), (Not the Other way
around).

T=1 T=2 T=3 T=4 T=5 T=6

114

Understanding Causal Consistency
Scenario:

Now, lets assume that another UOE P4 reads
x and y in this sequence:

• At T=5 : y=10
• At T=6: x=0

Q: Is the Causal Consistency Preserved in this Scenario?

A:

T=1 T=2 T=3 T=4 T=5 T=6

115

Understanding Causal Consistency
Scenario:

Now, lets assume that another UOE P4 reads
x and y in this sequence:

• At T=5 : y=10
• At T=6: x=0

Q: Is the Causal Consistency Preserved in this Scenario?

A: No. It gives an impression to P4 that y=10 is written to the system
before x=5 which is actually incorrect. Hence it violates causal consistency
guarantee.

T=1 T=2 T=3 T=4 T=5 T=6

116

Example of Causal Consistency

117

Example of Causal Consistency

At first, P1 writes X = 5.

Next, P2 writes Y=10 and Z= 15 , based
on the value of X being 5.

118

Example of Causal Consistency

At first, P1 writes X = 5.

Next, P2 writes Y=10 and Z= 15 , based
on the value of X being 5.

This establishes a causal relationship
between the write of X=5 and Y=10 and
Z = 15 as follows:

(W:X=5) → (W: Y = 10)
(W: X=5) → (W: X = 15)

119

Example of Causal Consistency

At first, P1 writes X = 5.

Next, P2 writes Y=10 and Z= 15 , based
on the value of X being 5.

This establishes a causal relationship
between the write of X=5 and Y=10 and
Z = 15 as follows:

(W:X=5) → (W: Y = 10)
(W: X=5) → (W: X = 15)

Notably, there is no causal relation
between (W: Y = 10) and (W:Z = 15).

120

Example of Causal Consistency

Now, suppose P3 , another UOE,
performs the following read
operations:

At T4: Reads X = 5
At T5: Reads Y=10
At T6: Reads Y = 15

Q: Does this violate Causal
Consistency because after X=5 was
read, Y initially had the value of 0?

A:

121

Example of Causal Consistency

Now, suppose P3 , another UOE, performs the following read operations:

At T4: Reads X = 5
At T5: Reads Y=10
At T6: Reads Y = 15

Q: Does this violate Causal Consistency
because after X=5 was read, Y initially

had the value of 0?

A: No, because the causal relation established is: (W: X=5) → (W: Y=10). This means that (W: X=5) must
appear on UOE P4 before (W: Y=10). It doesn't say that all subsequent reads of Y must immediately reflect
W: Y=10, as long as the causal order is preserved. Since P3 reads Y=10 only after reading X=5, the causal
dependency is maintained, making this causally consistent.

122

Example of Causal Consistency

Now, suppose P4 , another UOE, performs the following read operations:

At T3: Reads X = 5
At T4: Reads Z = 0
At T5: Reads Y=15
At T6: Reads Z = 15

Q: Does this violate causal consistency because P4 reads Z = 0 at T4 and Y = 10 at T5, even though W: Z =
15 happened before W: Y = 10 in P1?

123

Example of Causal Consistency

Now, suppose P4 , another UOE, performs the following read operations:

At T3: Reads X = 5
At T4: Reads Z = 0
At T5: Reads Y=15
At T6: Reads Z = 15

Q: Does this violate causal consistency because P4 reads Z = 0 at T4 and Y = 10 at T5, even though W: Z =
15 happened before W: Y = 10 in P1?

A: No, because there is no causal relationship between (W:Y=10) and (W:Z=15). So, they can appear in any
order in P4. And, as we saw earlier, after reading (W:X=5), it is not necessary that we read the latest values
of Y immediately, because Causal Consistency doesn't enforce that.

124

Properties of Causal Consistency in Brief

 Only Related Writes Are Ordered

• Writes that are causally related are observed in the same order across UoEs.

• Unrelated writes can be observed in different orders.

• No global ordering is enforced.

 No Real-Time Constraints

• The system does not impose constraints based on real-time clocks.

125

Properties of Causal Consistency in Brief

 Observation Order Matters More Than Values

• What matters is the sequence in which updates are observed, not their absolute
values.

 Different Observers, Different Views
• UoEs may observe different causally consistent sequences at the same time.

 Causal Order Is Transitive

• If A → B and B → C, then A → C holds.

126

	Intro
	Slide 1: Stronger Consistency Models
	Slide 2: Consistency in Distributed Systems
	Slide 3: Consistency in Distributed Systems
	Slide 4: Need for Consistency Guarantees
	Slide 5: Recap: CAP Theorem
	Slide 6: What is a Consistency Model?
	Slide 7: Weak Consistency Models
	Slide 8: Some Terminology
	Slide 9: Some Terminology
	Slide 10: Some Terminology
	Slide 11: Performance Metrics
	Slide 12: Consistency Guarantees Scale
	Slide 13: Agenda
	Slide 14
	Slide 15: Eventual Consistency
	Slide 16: Eventual Consistency
	Slide 17: Eventual Consistency
	Slide 18: Conflict Resolution - Last Write Wins
	Slide 19: Eventual Consistency
	Slide 20: Eventual Consistency
	Slide 21
	Slide 22
	Slide 23

	Consistent Prefix Read
	Slide 24: Consistent Prefix Read
	Slide 25: Consistent Prefix Read
	Slide 26
	Slide 27: Eventual Consistency
	Slide 28: Consistent Prefix Read
	Slide 29: Consistent Prefix Read
	Slide 30: Consistent Prefix Read
	Slide 31: Consistent Prefix Read
	Slide 32
	Slide 33: Consistent Prefix Read
	Slide 34: Consistent Prefix Read
	Slide 35: PNUTS: Yahoo! Hosted Data Service Platform 
	Slide 36: PNUTS: Yahoo! Hosted Data Service Platform 
	Slide 37: PNUTS: Yahoo! Hosted Data Service Platform 
	Slide 38: PNUTS: Yahoo! Hosted Data Service Platform 
	Slide 39: PNUTS: Yahoo! Hosted Data Service Platform 
	Slide 40: PNUTS: Yahoo! Hosted Data Service Platform 
	Slide 41: PNUTS: Per-record Timeline Consistency
	Slide 42: PNUTS: Per-record Timeline Consistency
	Slide 43: PNUTS: Master based Implementation
	Slide 44: PNUTS: Records across Replicas
	Slide 45: PNUTS: Master Selection
	Slide 46
	Slide 47: PNUTS: Role of Master Replica
	Slide 48: PNUTS: Ordering
	Slide 49: Per-record Timeline Consistency
	Slide 50: PNUTS: Guarantees
	Slide 51: PNUTS API: Read Any
	Slide 52: Consistent Prefix Read: Metrics

	Session Guarantees
	Slide 53: Agenda
	Slide 54: Strong vs Weak Consistent Systems
	Slide 55: Session Guarantees
	Slide 56: Terminology
	Slide 57: Terminology
	Slide 58: Terminology
	Slide 59: Read Your Own Write
	Slide 60: Example
	Slide 61: How to guarantee RYOW consistency
	Slide 62: Monotonic Reads
	Slide 63: Terminologies
	Slide 64: Monotonic Reads
	Slide 65
	Slide 66
	Slide 67: Monotonic Reads
	Slide 68: Monotonic Reads
	Slide 69: Monotonic Reads
	Slide 70: Write Follows Read(WFR)
	Slide 71: Write Follows Read
	Slide 72
	Slide 73: Write Follows Read​
	Slide 74
	Slide 75: Write Follows Read
	Slide 76
	Slide 77: Write Follows Read
	Slide 78
	Slide 79
	Slide 80: Write Follows Read
	Slide 81: Write Follows Read
	Slide 82: Monotonic Write
	Slide 83
	Slide 84: Breaking into its Principle Components
	Slide 85: When and why do you need monotonic write
	Slide 86: Implementation of SESSIONAL GUARANTEES
	Slide 87: SETUP
	Slide 88
	Slide 89
	Slide 90
	Slide 91: Additional Constraints For Write Follows Read and Monotonic Write
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97

	Causal Consistency
	Slide 98: A Chat Between Friends
	Slide 99: A Chat Between Friends
	Slide 100: A Chat Between Friends
	Slide 101: Requirement: Capture the sense of cause-and-effect
	Slide 102: Requirement: Capture the sense of cause-and-effect
	Slide 103: Causal Ordering 
	Slide 104: A Chat Between Friends
	Slide 105: A Chat Between Friends
	Slide 106: Requirement: A Consistency Model that enforces Causal Ordering
	Slide 107: Causal Consistency
	Slide 108
	Slide 109
	Slide 110
	Slide 111: Counter-Example: Broken Causal Consistency
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117: Example of Causal Consistency
	Slide 118: Example of Causal Consistency
	Slide 119: Example of Causal Consistency
	Slide 120: Example of Causal Consistency
	Slide 121: Example of Causal Consistency
	Slide 122: Example of Causal Consistency
	Slide 123: Example of Causal Consistency
	Slide 124: Example of Causal Consistency
	Slide 125: Properties of Causal Consistency in Brief
	Slide 126: Properties of Causal Consistency in Brief

