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Abstract. Recent advances in various application fields, like GIS, fi-
nance and others, has lead to a large increase in both the volume and the
characteristics of the data being collected. Hence, general range queries
on these datasets are not sufficient enough to obtain good insights and
useful information from the data. This leads to the need for more so-
phisticated queries and hence novel data structures and algorithms such
as the orthogonal colored range searching (OCRS) problem which is a
generalized version of orthogonal range searching. In this work, an ef-
ficient main-memory algorithm has been proposed to solve OCRS by
augmenting k-d tree with additional information. The performance of
the proposed algorithm has been evaluated through extensive experi-
ments and comparison with two base-line algorithms is presented. The
data structure takes up linear or near-linear space of O(n log «), where
a is the number of colors in the dataset (a < n). The query response
time varies minimally irrespective of the number of colors and the query
box size.

1 Introduction

Multi-attribute queries are becoming possible with both the increase in kind of
attributes the datasets are able to store and also the processing power needed to
do so. In addition to specific queries across the multiple attributes, there is an
increasing need for range queries across these attributes especially in fields like
GIS, business intelligence, social and natural sciences. In most of these one needs
to identify a set of classes that have attribute values lying within the specified
ranges in more than one of these attributes. For instance, consider a database
of mutual funds which stores for each fund its annual total return and its beta
(a real number measuring the fund’s volatility) and thus can be represented as
a point in two dimensions. Moreover, the funds are categorized into groups ac-
cording to the fund family they belong to. A typical two-dimensional orthogonal
colored range query is to determine the families that offer funds whose total
return is between, say 15% and 20%, and whose beta is between, say, 0.9 and
1.1 [8]. An another example can be to identify potentially suitable locations for
afforestation programs and the choice of right vegetation types for these loca-
tions. The spatial database can contain multiple themes like soil class, weather
related parameters (temperature, relative humidity, amount of precipitation),
topography and ground slope, while for each vegetation type there exists a suit-
able range of values in these themes/attributes. In such cases, one is interested
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in finding the best match between the two, leading to a need to answer a set
of colored range queries. Generally speaking, in many applications, the set S
of input points come aggregated in groups and we are more interested in the
groups which lie inside ¢ rather than the actual points. (a group lies inside ¢ if
and only if at least one point of that group lies inside ¢g.) For convenience, we
assign a distinct color to each group and imagine that all the points in the group
have that color. This problem is known as colored range searching. In this paper,
we specifically consider the problem of orthogonal colored range searching (see
Figure [I) where the query is an orthogonal box in d-dimensional space (i.e ¢ =
T4 | [ai, b;]) and propose a algorithm to effectively deal with it.

K2

¥

Fig. 1. A set of ten colored points lying in a plane. For the given orthogonal query
rectangle, a standard orthogonal range query would report all the points lying inside
the query rectangle. However, an orthogonal colored range searching (OCRS) query
would report the unique colors of the points lying inside the rectangle.In this figure,
each color is represented with a different symbol. The output for this query would be
A, and o. Note that ¢ is not reported.

Orthogonal colored range searching (OC'RS) can be described in an SQL-like
language (basically a GROUP-BY operation). However, the current DBMS’s
do not provide with efficient query processing techniques for OCRS. OCRS
query will be executed by first executing the standard orthogonal range searching
query. This will report all the points lying inside ¢g. Then all the reported points
are scanned to filter out the unique colors. In many real-life applications, there
could be a huge difference between the number of points lying within ¢ and the
number of unique colors among them. This can lead to poor query time.

OCRS and the general class of colored intersection problems [8] have been
extensively studied in the field of Computational Geometry. Efficient theoret-
ical solutions for OCRS though have been provided on internal memory (or
main memory) with the objective of providing worst-case optimal performance.
However they suffer from the following shortcomings:

1. Most of these solutions are good in theory but are extremely difficult to
implement.

2. The space of the data structures proposed increase exponentially in terms of
the dimension size. Building linear or near-linear size data structures is a re-
quirement in In-memory database systems (IMDS) that are steadily growing
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[1]. In fact we implemented one of these theoretical solutions [7] but had to
be discarded since it was not fitting into the main-memory for the datasets
we tested on (see Figure [3]).

3. For most of the practical applications we need not come up with solutions
which need to be optimal even in the worst case scenario. In practice the
worst case scenario occurs extremely rarely.

We seek to to build a solution which works well for most of the cases/scenarios.
The problem that will be addressed in this paper is formally stated as-

— Preprocess a set S of n colored points lying in d-dimensional space (or
IRd) into an index structure, so that for any given orthogonal query box
q=I% |[a;, b)) C IR, all the distinct colors of the points of S lying inside ¢
need to be reported efficiently.

Since we are dealing with main-memory, the main focus in this paper is on
building space-efficient data structures for answering orthogonal colored range
searching query. The following are the main contributions of the paper:

— We come up with non-trivial techniques for building the data structure and
for answering the query algorithm of orthogonal colored range searching
(OCRS) on main-memory. The objective is to use minimal space while main-
taining efficient query time.

— Detailed experiments and theoretical analysis have been carried out to show
the performance of our technique against two base-line algorithms which can
be used to solve the orthogonal range searching problem in relation to the
distribution that the data exhibits, the query size and the number of colors
in the data. These two base-line algorithms are described later in the paper.

2 Related Work

Orthogonal range searching is one of the most popular and well studied problem
in the field of computational geometry and databases. The formal definition is the
following: “Preprocess a set S of n points lying in d-dimensional space (or IRd)
into an index structure, so that for any given orthogonal query box ¢= id=1 [ai, b;]
C IR?, all the points of S lying inside ¢ need to be reported/counted efficiently”.
There have been a numerous data structures proposed in the computational ge-
ometry literature to handle orthogonal range searching query. Traditionally, the
researchers in computational geometry have been interested in building solu-
tions for this problem which aim at coming up worst-case efficient query time
solutions, i.e., ensuring that the query time is low for all possible values of the
query. The most popular among them are the range-trees [6] and the k-d tree
[6J5]. The original range-tree when built on n points in d-dimensional space took
O(n log? n) space and answered queries in O(logd_1 n + k) query time, where
k are the number of points lying inside the query region ¢. By using the tech-
nique of fractional cascading we can reduce the query time by a log factor [6].
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In a dynamic setting, the range-tree uses O(n log®~'n) space, answers queries
in O(log? ' nloglogn + k) time and handles updates in O(log* ™' nloglogn)
time. A k-d tree when built on n points in d-dimensional space takes up linear
space and answers a range-query in O(nl’l/ 4 + k) time. Updates can be han-
dled efficiently in it. A detailed description of k-d tree’s construction and query
algorithm shall be provided later.

In the field of databases there have been a significant number of index struc-
tures proposed to answer an orthogonal range-query. These are practical solu-
tions which are optimized to work well for the average case queries (with the
assumption that the worst-case query will occur rarely). Perhaps no other struc-
ture has been more popular than the R-tree proposed in 1984 by Guttman [9].
It’s main advantage arises from the fact that it is versatile and can handle vari-
ous kinds of queries efficiently (range-queries being one of them). K-d tree also
enjoys similar benifits of being able to handle different kinds of queries efficiently.
Varaints of R-tree such as R* tree [4], R+ tree [13], Hilbert tree and Priority
R-tree are also quite popular index structures for storing multi-dimensional data.

Orthogonal colored range searching (OCRS) happens to be a generalization
of the orthogonal range searching problem. Janardan et al. [I0] introduced the
problem of OCRS. Gupta et al. [7] came up with dynamic (both insertions and
deletions) solutions to this problem in 2-dimensional space and a static solution
in 3-dimensional space. The best theoretical solution to this problem in d=2
has been provided by Shi et al. [14] which is a static data structure taking up
O(nlogn) space and O(logn + k) time, where ‘k’ is the number of colors lying
inside the query rectangle. For d=3, the only known theoretical solution takes
up O(nlog*n) space and answers query in O(log®n + k) time [7]. For d > 3,
there exists a data structure which answers queries in O(logn + k) time but
takes up O(n'*€) space which from a theoretical point of view is not considered
optimal (O(n polylog n) is desirable). As stated before, the objective in the
computational geometry field has been to come up with main-memory algorithms
which are optimal in worst-case scenario. A good survey paper on OCRS and
other related colored geometric problems is [§].

Agarwal et al. [3] solved OCRS on a 2-dimensional grid. Recently, there has
been some work done on range-aggregate queries on colored geometric objects.
In this class of problems, the set S of geometric objects are colored and possibly
weighted. Given a query region g, for each distinct color ¢ of the objects in S N g,
the tuple ( ¢, F(c) ) is reported where F(c) is some function of the objects of color
¢ lying inside ¢ [IT/12]. Examples of F(c¢) include sum of weights, bounding box,
point with maximum weight etc. In [I1J12], theoretical main-memory solutions
have been provided.

3 Existing Techniques to Solve OCRS

In the database community OCRS problem is solved by using the filter and prune
technique. Two base-line algorithms are described which follow this paradigm.
Then we shall discuss about the theoretical solutions which emerged from com-
putational geometry for answering OCRS. Based on these discussions we shall
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motivate the need for a practical data structure and algorithm which will work
efficiently in a main-memory or internal memory environment.

3.1 Base-line Algorithms

Here we shall describe two base-line algorithms with which we shall compare our
proposed method. These two algorithms solve the standard orthogonal range
searching problem. We will describe how they can be modified to answer the
orthogonal colored range searching problem.

1. Plain Range Searching (PRS) In this method, we build a k-d tree on all
the points of S. Given an orthogonal query box ¢, we query the k-d tree and
report all the points of S lying inside g. Then we filter out the unique colors
among points that are lying inside ¢q. The space occupied by a k-d tree is
O(n). The query time will be O(n'=/% 4 |S N ¢|), where S N ¢ is the set of
points of S lying inside ¢. If the ratio of |S N ¢| and the number of unique
colors is very high, then this technique will not be efficient.

2. Least Point Dimension (LPD) A set S of n points lie in a d-dimensional
space with some color associated to each point. For each dimension i we
project S onto dimension ¢, then we sort the points of S w.r.t coordinate
values in dimension ¢ and store them in an array A;. Given an orthogonal
query g =IT¢ | [a;, b;], we decompose the query ¢ into intervals corresponding
to each dimension (interval corresponding to dimension i will be [a;, b;]).
Then we do a binary search on all the arrays A; (V1 < i < d) with [a;, b;]
to find the number of points of S lying inside it. The array A;, in which
the total number of points is least is chosen. Each point of A; which occurs
within [ay, b;] is also tested for its presence inside g. Among all the points
which pass the test, the unique colors of these points are filtered out. Query
time for LPD is O(dlogn + ) where § is the number of points in A; which
lie inside [a;, b;]. Note that the performance of LPD algorithm is dependent
on the value of 5. If the ratio of 5 and the number of unique colors is high,
then the performance of LPD will not be good.

3.2 Existing Theoretical Solutions

As mentioned before in Section [ (related work), there have been theoretical
solutions proposed to answer OCRS. Only a few of these solutions can be im-
plemented and tested. Most of them are meant for theoretical interest and are
impossible to implement. We implemented the solution proposed by Gupta et
al. [7] for d = 2 (semi dynamic solution which handles only insertions). Theoret-
ically it takes up O(nlog? n) space, O(log® n + k) query time (k is the number
of unique colors reported) and O(log3 n) amortized insertion time. We observe
that for large datasets O(n log? n) space is not acceptable as that would mean
storing O(log2 n) copies of each data item in the internal memory. Experiments
on real-life and synthetic datasets confirmed our intuition that this data struc-
ture takes up a lot more space than the base-line algorithms and the proposed
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solution in this paper (see figure Bl). Therefore, this solution was discarded. For
higher dimnesions (d > 2), the theoretical solutions get too complicated to be
implemented and tested.

4 Proposed Algorithm

As we are trying to build main-memory structures, the highest priority is to
minimize the space occupied while trying to keep the query time competitive.

4.1 Data Structure

In this section we construct a data structure named BB k-d tree, which is based
on a regular k-d tree but is augmented with additional information at each
internal node. We chose k-d tree as our primary structure since it takes up
linear space for indexing points lying in any dimension and though it has a poor
theoretical query performance, it does well in practice [I5lJ5].

We shall first describe the structure for a 2-dimensional scenario The primary
structure of BB k-d tree is a conventional k-d tree. A splitting line I(v), here
choosen as a median, is stored at every node (v) which partitions the plane into
two half-planes. We denote the region corresponding to a node v by region(v).
The region corresponding to the left child and right child of the node v are
denoted as region(lc(v)) and region(rc(v)), where le(v) and rc(v) denote the
left and right children of v, respectively.

At each internal node v, apart from the regular information two height-
balanced binary search trees 7; and 7, are stored. 7; is built as follows: Let
¢ be one of the colors among the distinct colors of the points lying in the subtree
rooted at lc(v). The bounding box of the points of color ¢ in the subtree of lc(v)
is calculated and kept at a leaf in 7;. A bounding box for a point set in the plane
is the rectangle with the smallest measure within which all the points lie. This
process is repeated for each color ¢ which lies in the subtree of lc(v). The colors
stored in the leaves of 7; are sorted lexicographically from left to right. To make
navigation easier, each leaf in 7; is connected to its adjacent leaves. This forms a
doubly linked list among the leaf nodes of 7;. Also, the root node of 7; maintains
a special pointer pointing to the leftmost leaf of 7;. Similarly, 7, is constructed
based on the points stored in the subtree of rc(v).

BB k-d tree can also be built for point sets in 3 or higher-dimensional space.
The construction algorithm is very similar to the planar case: At the root, we
split the set of points into two subsets of roughly the same size by a hyperplane
perpendicular to the x-axis. In other words, at the root the point set is parti-
tioned based on the first coordinate of the points. At the children of the root
the partition is based on the second coordinate, at nodes of depth two on the
third coordinate, and so on, until depth d — 1 where we partition on the last
coordinate. At depth d we start all over again, partitioning on first coordinate.
The recursion stops when there is only one point left, which is then stored at a
leaf. The binary search trees (7, and 7,) at each internal node are constructed
in the same manner as described above.
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(a) Set of 9 points lying on a plane  (b) BB-tree corresponding to these nine
points. Note that all the arrays are not
represented for the sake of clarity

Fig. 2. An example of a BB-tree. At every node there are two arrays. The left/right
array contains the unique colors present in the left/right subtree along with their
respective bounding boxes.

In the example shown in Fig 2 there are 9 points and a color has been assigned
to each point. The construction of the K-d tree on these points has been showed
in Fig 2(a). At the root we split the point set P with a vertical line z = 3 into
two subsets of roughly equal size. At the left and right children we split the
point set using horizontal median lines. In this way we build a traditional k-d
tree first. At each internal node the bounding box of all the colors lying in the
left (resp. right) subtree are stored in 7; (resp. 7). For example, the left child of
the root node has the bounding box of A points 3 and 4, bounding box of
points 1 and 5, bounding box of the ¢ point 2, are computed and stored at the
left binary search tree (7;) of the of root node of k-d tree. Similarly 7 is also
constructed.

Theorem 1. A BB-tree with n points and a colors takes O(nloga) storage

Proof. To store a set of n points in d-dimensional space, a normal k-d tree uses
O(n) space. The space occupied by the internal binary search trees 7; and 7,
dominates the overall space complexity. Let the number of distinct colors of the
points in S be a. We want to find the space occupied in the worst case. The
height of a k-d tree will be O(logn). The height of a node is the length of the
longest downward path to a leaf from that node. Consider a node v at height h.
If h < |loga] (i.e. 2" < @), then the number of leaves in the subtree rooted at
v will be < 2" < a. Then the size of 7; and 7, will be bounded by 2" (worst
case being each point having a unique color). The total space occupied by all the
nodes at a particular level h (< |log a|) will be O((2!°87~") x2") = O(n), where
O(2'°87=") is the number of nodes at level h. Then the total space occupied by
all the internal binary search trees stored at primary nodes having height <

|log | will be E}EZ%QJO(TL) = O(nloga).
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Now consider a node v at height h > [loga] (i.e. 2" > a). The number of
leaves in the subtree at v is bounded by 2. However in this case the size of T;
and 7, is bounded by O(«). If each node at level h has array size O(«), then
the total size of all the arrays at level [ will be O(2'°¢™"~" x a). = O(}). The
overall size of the internal binary search trees added over all levels h > [log a]
will be

1 no, 1 1
O(Ehozgﬁog al 9h ) = O(naxh():g[llog o Qh)
11

= Ofna(5)%) | )

[log o
h=0 oh Xk

= O(na(; - i)) = O(n)

Therefore, the total size of the BB k-d tree will be O(nlog o) + O(n) = O(nlog ).

4.2 Query Algorithm

We now turn to the query algorithm. We maintain a global boolean array
outputSet of size «, which contains an entry for each distinct color of set S.
Given a query box ¢, an entry of outputSet[c| being true denotes that color ¢
has a point in the query box and we need not search for that color any more
inside our data structure. The query algorithm is described in the form of a
pseudo-code in Algorithm 1. The input parameters are the current node being
visited (v), the orthogonal query box ¢ and a boolean array A. A has a size of
a and Alc], 1 < ¢ < @, being true denotes that we need to search if color ¢ has
a point in the subtree of currently visited node (i.e. v), else we need not.

The processing of the query box ¢ commences from the root of the BB k-d
tree. Initially, all elements of A are set to true and all elements in outputSet are
set to false. If the current node v is not a leaf, then we intialize two arrays A;
and A, of size a to false (lines 4 — 5). A; (and A,) are updated later in the
procedure and will be used when the children of the current node will be visited.

If region(lc(v)) is fully contained in ¢, then all the colors stored in the
leaves of secondary tree T; are set to true in outputSet (lines 6-8). However,
if region(lc(v)) partially intersects ¢, then we do the following: Using the special
pointer at the root of 7;, we will go to the leftmost leaf of 7;. Then we will check
if ¢ contains any bounding box b corresponding to each leaf of 7; (line 11). The
adjacent pointers of each leaf help in navigating through the list of leaves. If a
bounding box b (of color ¢) is fully contained in ¢ then there exists at least one
point of color ¢ in ¢. In this case we will update the outputSet|c] to true and
we need not search for this color anymore (lines 11-12). If a bounding box b
partially intersects ¢, then we need to search for that color ¢ in the subtree of v.
So, we will update A; to true (lines 13-14).

The last case is when the query box ¢ and bounding box b of all the points in
the subtree of v do not intersect at all. In this case, we need not search for any
color in the subtree of v. This is automatically reflected in the arrays A; (or A,)
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Algorithm 1. SearchBBTree(v, ¢, A)

Input : A node in BB k-d tree (v) , Query box (g), an array of colors which

need to be searched (A)

Output: An array ‘OutputSet’ which contains the colors lying inside ¢

1 if v is a leaf and point p stored at v lies in ¢ then

o N0 ks WN

10
11
12
13
14

15
16
17

18
19
20
21
22
23

24
25
26
27

outputSet[p.color|= true

else

forall colors ¢ from 1 — « do
Aili] = false ; A.[i] = false

if region(lc(v)) is fully contained in ¢ then
forall colors c in leaves of 7; do
outputSet[c]= true

else if region(lc(v)) partially intersects ¢ then
foreach bounding box b of color ¢ in leaves of 7; where A[c] = true do
if ¢ contains b then
outputSet[c] = true
else if ¢ partially intersects b and outputSet[c] = false then
Ayle] = true

if region(rc(v)) is fully contained in ¢ then
forall colors c in leaves of 7, do
outputSet[c] = true

else if region(rc(v)) partially intersects ¢ then
foreach bounding box b of color ¢ in leaves of T, where A[c] = true do
if ¢ contains b then
outputSet[c] = true
else if ¢ partially intersects b and outputSet[c] = false then
Arlc] = true

if any A;[c] = true then
SearchBBTree (lc(v), q, Ar)

if any A,[c] = true then
SearchBBTree (rc(v), q, Ar)
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as they are intialized to false in the beginning itself. Similar steps are applied
for right subtree (lines 15 — 23). If an entry in A; (or A,) is true, then there
is a possibility of existence of that color in the left (or right) subtree of v. So,
we shall make a recursive call by passing lc(v) and A; (lines 24-25). Similarly, if
required a recursive call is made by passing rc¢(v) and A, (lines 26-27).

4.3 Handling Updates

Insertion and deletion of points can be efficiently handled in the proposed struc-
ture. When a point p (having color ¢) is inserted into BB k-d tree, then an
appropriate leaf node is created by the insertion routine of k-d tree [5]. Then
we will update all the secondary structures existing on the path (say I7) from
the newly created leaf node to the root, in the following manner: At each node
v € II, we search for color ¢ in the secondary structures (7; and 7). If no en-
try of color ¢ exists, then an appropriate leaf is created (in 7; and 7;) and the
bounding box of color ¢ will be the point p. The adjacency pointers are also
set appropriately. If the new node happens to be the leftmost leaf (of 7; or T),
then the special pointer from the root (of 7; or 7.) is set to the newly created
node. If an entry of color ¢ already exists, then the bounding box of color ¢ is
updated. To delete a point p (having color ¢) from BB k-d tree, we first delete
the appropriate leaf node in the primary structure by using the deletion routine
of a k-d tree [5]. Before that, at each node v on the path from the leaf node of
p to the root we do the following: Search for the color ¢ (in 7; and 7;). Then
update the bounding box of color c. If the bounding box of color ¢ becomes null,
then that leaf node is removed from (7; or 7;). The adjacency pointers are also
appropriately adjusted. If the leaf node being removed was the leftmost entry,
then the special pointer from the root of (7; or 7;) is set to the new leftmost
leaf. Next we shall summarize the update time in our structure in a lemma. In
the lemma, by random we mean that for each point the coordinate value in each
dimension is an independently generated random real number.

Lemma 1. (Using [J]) The average time taken to insert a random point into
the BB k-d tree is O(log2 n). The average time taken to delete a random point
from a BB k-d tree is O(log” n). In the worst case, the time taken to delete a
point from BB k-d tree is O(n'~"/%logn).

5 Experimental Setup

All techniques were implemented in C using the same components. The system
used is a 1.66 GHz Intel core duo Linux machine with 4 GB RAM. Programs
were compiled using cc. We used both synthetic and real life data sets. The
following datasets (both real and synthetic) have been used for our experiments
(n will denote the number of data points and d denotes the dimensionality):

a) Uniform Synthetic Dataset (D1). n=1,000,000 and d=2.

b) Gaussian Synthetic Dataset (D2). n=100,000, d=2 and o as 0.2% of the
number of points.
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¢) Gaussian Skewed Synthetic Dataset (D3). n=100,000 and d=2. The x-
coordinate of these points have been assigned using a gaussian function with o
as 10% of the total points and the y-coordinates are produced using a gaussian
function with o 1% of the total points. This helped us in generating a skewed
dataset.

d) Forest Cover real dataset (R1). The Cover data set contains 581,012 points
and is used for predicting forest cover types from cartographic variables. We used
the spatial information to get the 2-d points corresponding to the locations. We
used the soil type information, which contains 40 distinct category values to
assign colors to the points.

e)U.S Census real dataset (R2). The US Census Bureau data contains 199,523
records, from which we derived two separate sets: (i) the Census3d, having as
dimensions the age, income and weeks worked; and (ii) the Census4d, having as
additional dimension dividends from stocks. As categorical attribute we selected,
in both cases, the occupation type,that has 47 distinct values in total. We went
to [2] to obtain the datasets.

6 Results and Performance Evaluation

In this section we shall look at different kinds of factors which effect the query
output time. This section describes the effect of each factor on the performance of
the three techniques. In all the datasets, queries are generated using each data
point as the center of the query box. The output time per query is obtained
by averaging all the query times. We also look at the space occupied by these
techniques.

Forest Cover US Census (3d) US Census (4d)

(in MB)  (in MB) (in MB)
PRS 96 38 45
LPD 152 100 160
BB 510 211 249
Gupta et al.[7] > 4 GB >4 GB >4 GB

Fig. 3. Comparision of space occipied by various techniques. We implemented the semi-
dynamic solution of Gupta et al.[7] for d=2. For real-life datasets, the size of this data
structure exceeded our main memory capacity.

6.1 Comparision of Space Occupied

Theoretically, both PRS and LPD techniques take up O(n) space. However,
notice that in LPD we project all the points to each of the d dimensions. There-
fore, it is expected to occupy slightly higher space than the PRS technique. This
was also observed while testing them on real-life datasets as shown in Figure [3l
BB k-d tree occupies O(nlog «) space in any dimensional space. The secondary
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information stored at each internal node of a k-d tree leads to a slight blow up in
the space occupied. In contrast, the data structure proposed by Gupta et al. [7]
for d=2 (semi-dynamic solution) could not be loaded to main memory. This was
expected as the space complexity of the data structure is O(n log? n). Hence, we
could not compute the query time of it and hence discarded this solution.
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Fig. 4. Performance of BB k-d tree w.r.t the number of colors

6.2 Number of Colors («)

Query response time of PR.S and LP D techniques are independent of the number
of colors in the dataset. In a BB k-d tree, as the number of colors start increasing
in the dataset (while dataset size remains constant), the size of the secondary
structures increase. Consequently, the query time increases. In real life datasets,
number of colors remain constant. So we used synthetic datasets D1 and D2
for observations. Average query time for BB k-d tree for both the datasets is
increasing with the increase in the number of colors as shown in the Fig 4(a)
and 4(b). However, in real life scenerio, the ratio of the number of colors in a
dataset and the size of the dataset is generally very low.

6.3 Size of Query Box

In general, for a given dataset, as the size of the query box increases, the number
of points lying inside it also increases. So, naturally the query time of PRS and
LPD techniques are expected to increase with increase in size of the query box.
Interestingly, BB k-d technique is minimally affected by the variation in the size
of query box which is highly desirable. As the query box size keeps increasing, the
depth of the nodes being visited in the BB k-d tree decreases; since the existence
or non-existence of the bounding box a color inside the query box becomes clear
at an early stage. At the same time when the size of the query box is very small,
then the number of primary structure nodes visited will also be less. Hence the
query time is minimally varied w.r.t. the query box size. Experimental results
have shown that with increase in size of the query box, initially the query time
off BB k-d tree increaes slightly and then decreases or stays flat (see Fig (). In
and we observe the same pattern even when we vary the number of
colors in the synthetic datasets D1 and D2.
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6.4 Effect of Data Distribution

Both PRS and BB k-d techniques use k-d tree as their primary structure. Hence,
the distribution of data will have similar effect on both the data structures. On
the other hand, LPD will perform well if the dataset is highly skewed w.r.t one
of the dimensions. As described in Section 2, if the dataset is highly skewed, then
the value of 8 will be small, resulting in good query performance. Fig shows
the results on the skewed synthetic dataset (D3) to validate our arguments. US
Census data (Fig and is skewed w.r.t age dimension and hence, LPD
does well. However, the query time for BB k-d technique is always within a
bounded factor of LPD’s query time. However, in Fig the datasets have
uniform distribution which leads to poor perfomance of LPD.

7 Conclusions and Future Work

In this paper we came up with a main-memory data structure, BB k-d tree, to
solve the orthogonal colored range searching problem (OCRS). In BB k-d tree,
we augmented the traditional k-d tree with secondary data structures which re-
sulted in significant improvement of the query response time (with minimal in-
crease of O(log «) factor in space). Comparision of this data structure was done
with two base-line brute-force algorithms which solved the traditional orthogonal
range searching problem. An existing theoretical solution was implemented but
found unsuitable due to its high space consumption. Experiments were performed
to compare our technique with the base-line techniques by varying factors such
as number of colors (), size of the query box and data distribution. The BB k-d
tree performed consistently well under most of the conditions. In some minimal
cases the base-line brute-force do better (in terms of query response) than BB k-d
tree: In a highly skewed data LPD slightly performed better than BB k-d tree,
PRS performs better than BB k-d tree in an extreme scenario where the number
of colors in the dataset are almost close to the cardinality of the dataset. This BB
k-d tree method is equally applicable to higher dimensions. Future work would
involve coming with efficient execution plans for the query optimizer to answer
OCRS query. There is need for practical solutions for aggregate queries on colored
geometric problems [IT12] for main-memory, external memory models etc.
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