Optimal-Cost Construction of Shallow Cuttings for 3-D Dominance Ranges in the I/O-Model

Yakov Nekrich, Saladi Rahul

October 26, 2025

Abstract

Shallow cuttings are a fundamental tool in computational geometry and spatial databases for solving offline and online range searching problems. For a set P of N points in 3-D, at SODA'14, Afshani and Tsakalidis designed an optimal $O(N\log_2 N)$ time algorithm that constructs shallow cuttings for 3-D dominance ranges in internal memory. Even though shallow cuttings are used in the I/O-model to design space and query efficient range searching data structures, an efficient construction of them is not known till now. In this paper, we design an optimal-cost algorithm to construct shallow cuttings for 3-D dominance ranges. The number of I/Os performed by the algorithm is $O\left(\frac{N}{B}\log_{M/B}\left(\frac{N}{B}\right)\right)$, where B is the block size and M is the memory size. As two applications of the optimal-cost construction algorithm, we design fast algorithms for

As two applications of the optimal-cost construction algorithm, we design fast algorithms for offline 3-D dominance reporting and offline 3-D approximate dominance counting. We believe that our algorithm will find further applications in offline 3-D range searching problems and in improving construction cost of data structures for 3-D range searching problems.

1 Introduction

Shallow cuttings are one of the most fundamental tools used for designing range searching data structures in computational geometry [1, 2, 3, 4, 12] and spatial databases [15, 16, 6]. The main contribution of this paper is the first known optimal-cost construction of shallow cuttings for 3-D dominance ranges in the I/O-model. As a consequence, we obtain efficient algorithms for the offline 3-D dominance reporting problem and the offline 3-D approximate counting problem.

Shallow cuttings for 3-D dominance ranges. Consider two 3-D points p and q. A point p dominates another point q if and only if p has a higher coordinate value than q in each dimension.

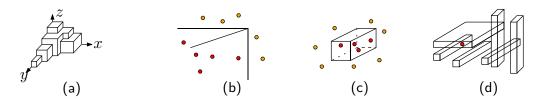


Figure 1: (a) A schematic representation of a k-level 3-D shallow cutting, (b) 3-D dominance reporting and approximate counting query, (c) 3-D orthogonal range reporting query, (d) 3-D rectangle stabbing query.

Let P be a set of N points in 3-D. A k-level shallow cutting of P [1] (See Figure 1(a)) is a collection C of cells of the form $(-\infty, x] \times (-\infty, y] \times (-\infty, z]$ satisfying the following three properties:

- 1. The number of cells is O(n/k), i.e., $|\mathcal{C}| = O(n/k)$.
- 2. Each box in C contains at most 10k points from P.
- 3. Any 3-D point that dominates at most k points of P will lie inside at least one cell in \mathcal{C} .

I/O-model of computation. We will construct shallow cuttings for 3-D dominance ranges in the I/O-model of computation [19]. In the era of big-data, it is natural that the input will not fit completely in the internal memory, and hence, resides in the hard-disk (or the external memory). In this model, the internal memory has M words, and the hard-disk has been formatted into blocks of B words. An I/O exchanges a block of data between the disk and the memory. The space of a data structure is the number of blocks occupied, and the running time of an algorithm is the number of I/Os performed. The CPU calculation is free. A natural assumption is that $M = \Omega(B)$.

- **3-D orthogonal range searching.** Orthogonal range searching and related problems have been one of the foundational problems on which field of computational geometry and spatial databases grew. Naturally, they have been well studied in the I/O-model of computation. Consider the following problems for which the state-of-the-art data structures in the I/O-model extensively rely on the clever use of shallow cuttings for 3-D dominance ranges:
 - 1. In the 3-D orthogonal range reporting problem (Figure 1(c)), the input is a set P of N points in 3-D. Preprocess P into a space-efficient data structure, so that given an axis-aligned query box $q = [x_1, x_2] \times [y_1, y_2] \times [z_1, z_2]$, the goal is to quickly report $P \cap q$ (the points of P lying inside q). AT FOCS'09, Afshani, Arge, and Larsen [2] presented a data structure for this problem with space $O\left(\frac{N}{B}\left(\frac{\log N}{\log\log_B N}\right)^3\right)$ and query I/Os $O(\log_B N + k/B)$, where k is the number of points reported.
 - 2. The building block for the above problem is the 3-D dominance reporting problem (Figure 1(b)), where the query is a 3-D dominance range $q = (-\infty, x] \times (-\infty, y] \times (-\infty, z]$. At ESA'08, Afshani [13] presented a data structure for this problem with space O(N/B) and query I/Os $O(\log_B N + k/B)$. This is optimal in terms of space and query I/Os.
 - 3. At SoCG'09, Afshani, Hamilton, and Zeh presented a general approach to design data structures to answer the relative $(1+\varepsilon)$ -approximate counting query for a general class of problems including the 3-D dominance setting. Here the goal is to output the estimate of $|P \cap q|$. An optimal solution in terms of space and query I/Os was obtained.
 - 4. Rectangle stabbing reporting (Figure 1(d)) is the "reverse" of orthogonal range reporting where the input is a set of axis-aligned 3-D boxes and the query is a 3-D point. Arguably, rectangle stabbing reporting is as important as orthogonal range reporting and is well studied in the literature. The current state-of-the-art results in internal memory models of computation for rectangle stabbing reporting by Rahul [14] at SODA'15 and Chan, Nekrich, Rahul, and Tsakalidis [9] at ICALP'18 rely on shallow cuttings for 3-D dominance ranges. It is unlikely that a linear-space data structure in the I/O-model can be constructed without using shallow cuttings.

Lack of fast construction of data structures. An important criteria in the design of the data structures is to optimize the I/Os required to construct the data structure. A severe limitation of all the above solutions is the lack of such fast construction algorithms. In fact, quoting from one of the above papers (Afshani, Hamilton, and Zeh [4]),

"All data structures presented in this paper are static, and no efficient construction methods for these structures are known in the I/O or cache-oblivious model. The main obstacle is the lack of an I/O-efficient or cache-oblivious construction procedure for shallow cuttings."

We believe that our work on optimal-cost construction of shallow cuttings for 3-D dominance ranges will trigger further work to design fast construction of data structures for the above mentioned problems.

Lack of optimal solutions for offline 3-D orthogonal range searching. In the offline orthogonal range searching problem, we are given a set Q of queries upfront along with the point set P. Many 2-D offline problems in computational geometry (including range searching type problems) have been optimally solved in the I/O-model. See the survey paper by Vitter (Theorem 8.1 in [19] provides a laundry list of more than ten problems in 2-D which are solved optimally).

However, to the best of our knowledge, offline 3-D orthogonal range searching problems have not received the same attention in spite of their fundamental nature. Again, the lack of optimal-cost shallow cuttings in 3-D is the major bottleneck.

1.1 Our results

The main result in this paper is an optimal-cost construction of the k-level shallow cutting for 3-D dominance ranges in the I/O-model.

Theorem 1. The k-level shallow cutting for 3-D dominance ranges on N points can be constructed in $O\left(\frac{N}{B}\log_{M/B}\left(\frac{N}{B}\right)\right)$ I/Os. The construction cost is optimal in the I/O-model.

To demonstrate the impact of our new construction, we use shallow cuttings for 3-D dominance ranges to obtain efficient algorithms for two fundamental problems: offline 3-D dominance approximate counting and offline 3-D dominance reporting.

Theorem 2. (Application-1) Let P be a set of N points in 3-D and Q be a set of 3-D dominance ranges. In the offline 3-D dominance approximate counting problem, for any $q \in Q$, the goal is to return a value in the range $[(1-\varepsilon)|P\cap q|, |P\cap q|]$, where $\varepsilon\in(0,1)$ is a fixed value. There is a deterministic algorithm to solve the problem in $O_{\varepsilon}\left(\frac{|P|}{B}\left(\log_{M/B}\frac{|P|}{B}\right)^{O(1)} + \frac{|Q|}{B}\log_{M/B}\frac{|P|}{B}\right)I/Os$. The notation $O_{\varepsilon}(\cdot)$ hides the dependency on ε .

The key feature in the above theorem is that the construction cost bound has the term M/B in the base of the logarithm which is desirable in the I/O-model (instead of base-2 obtained from straightforward adaptation of internal memory algorithms or base-B obtained from straightforward adaptation of external memory data structures for online problems). In terms of techniques, even though final output is a relative approximation, but a crucial ingredient in the algorithm is an additive error counting structure. This is combined with a non-trivial van-Emde-Boas-style recursion.

Theorem 3. (Application-2) Let P be a set of N points in 3-D and Q be a set of 3-D dominance ranges. In the offline 3-D dominance reporting problem, for any $q \in Q$, the goal is to report $P \cap q$. The problem can be solved in $O\left(\frac{|P|+|Q|}{B}\log_{M/B}\frac{|P|}{B}+\frac{K}{B}\right)$ I/Os, where K is the output size.

The final algorithm is a combination of several ideas: filtering search (to charge the I/Os performed for a query to its output-size), optimal k-level shallow cuttings (which were not known before), roughly $O(\log \log N)$ levels of shallow cuttings, and a cleverly chosen base-case.

To prove the above theorems, we require data structures with specific requirements. For example, in Theorem 4 data structures with fast construction I/Os are considered and in Theorem 5 data structure with large additive error is considered. We are not aware of any prior work which obtains these results using a common framework (Section A), and hence, might be useful for other problems.

Theorem 4. (Reporting, counting, and selection) Let P be a set of N points in 3-D and γ be a fixed constant in (0,1). Then there exists a data structure which can be constructed in $O(\operatorname{sort}(N))$ I/Os and then used to answer a

- 3-D dominance reporting query in $O((N/B)^{\gamma} + t/B)$ I/Os, where t is the number of points reported. Given a 3-D dominance query range q, the goal is to report the points in $P \cap q$.
- 3-D dominance counting query in $O((N/B)^{\gamma})$ I/Os. Given a 3-D dominance query range q, the goal is to report $|P \cap q|$.
- 3-D dominance x, y, z-selection query in $O((N/B)^{\gamma})$ I/Os. In an x-selection query, given a query point $q = (q_x, q_y, q_z)$ and an integer $k' \in [1, N]$, the goal is to return a point $q_1 = (q'_x, q_y, q_z)$ which dominates k' points in P. Analogously, in a y-selection query (resp., z-selection query), the goal is to return a point $q_2 = (q_x, q'_y, q_z)$ (resp., $q_3 = (q_x, q_y, q'_z)$) which dominates k' points in P.

Theorem 5. (Offline additive error counting) Let P be a set of N points in 3-D and Q be a set of 3-D dominance ranges. In the offline additive error counting problem, for each query $q \in Q$, the goal is to return a value n_q such that $|P \cap q| - n_q \le \varepsilon N^{2/3} B^{1/3}$. The data structure can be constructed using $O_{\varepsilon}(\operatorname{sort}(N))$ I/Os and the queries are answered by using $O_{\varepsilon}(\operatorname{sort}(N) + \operatorname{sort}(|Q|))$ I/Os.

Our solution for additive error query can be extended to handle smaller values of error (such as $\varepsilon\sqrt{NB}$). However, for our purpose an additive error of $\varepsilon N^{2/3}B^{1/3}$ suffices.

The remaining paper is structured as follows. In Section 2, we discuss some preliminaries. In Section 3, we give an overview of two previous constructions of shallow cuttings for 3-D dominance ranges in internal memory. Then, in Section 4 we present our optimal-cost construction in the I/O-model. This is followed by two applications of our construction, offline 3-D dominance approximate counting (in Section 5) and offline 3-D dominance reporting (in Section 6). In the appendix (Section A), we present the details of our supporting structures. Potential directions for future work are discussed in Section 7.

2 Preliminaries

Definitions. The conflict list of a cell $C \in \mathcal{C}$ is defined as the points of P that are inside C. The apex point of a cell or a 3-D dominance range $(-\infty, x] \times (-\infty, y] \times (-\infty, z]$ is defined as (x, y, z). The depth of a point $p = (x_p, y_p, z_p)$ w.r.t. a pointset P is the number of points of P lying in the cell $(-\infty, x_p] \times (-\infty, y_p] \times (-\infty, z_p]$.

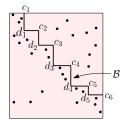


Figure 2: An example of k-level 2-D shallow cutting. Here k = 3, so each inner corner d_i dominates three points and each outer corner c_i dominates six points.

Shallow cuttings for 2-D dominance ranges. As a warm-up, we first introduce shallow cuttings for 2-D dominance ranges. Let P be a set of N points in 2-D. The collection C of cells in the k-level shallow cutting of P will be of form $(-\infty, x] \times (-\infty, y]$. Consider the union of the cells in C. We will focus on constructing the outer boundary of the union which is shown in Figure 2. The outer boundary B is a 1-dimensional, monotone, and orthogonal curve. Specifically, B starts from $y = +\infty$ and consists of alternating vertical and horizontal segments. Let the sequence of endpoints of B be $c_1, d_1, c_2, d_2, \ldots, d_{t-1}$ and c_t . The c_i 's are the outer corners and the d_i 's are the inner corners. The number of points of P dominated by any outer corner (resp., inner corner) will be at most 2k (resp., equal to k). The k-level shallow cutting for 2-D dominance ranges can be constructed in O(sort(N)) I/Os. (Note that the 2k bound is stronger than the 10k bound we use for 3-D shallow cuttings.)

Offline-find-any procedure. The input to the problem is a collection of cells \mathcal{C} in the k-level shallow cutting of P, for any $1 \leq k \leq n$, and a set Q of 3-D query points. In the offline-find-any procedure, for each $q \in Q$, the goal is to find any cell in \mathcal{C} which contains q or report that none of them contain q. The distribution-sweeping approach in the survey paper of Vitter [19] can be used to solve this problem.

Lemma 1. Given a set C of cells in 3-D and a set Q of query points in 3-D, the offline-find-any procedure requires $O\left(\left(\frac{|\mathcal{C}|+|Q|}{B}\right)\log_{M/B}\frac{|\mathcal{C}|}{B}\right)I/Os$.

3 Overview of previous construction algorithms

In this section we give an overview of a couple of previous constructions whose ideas will be required in our final solution.

3.1 Afshani and Tsakalidis's construction (AT-construction)

The problem becomes challenging in 3-D. At SODA'14, Afshani and Tsakalidis [5] obtained an optimal internal memory algorithm that constructs a k-level shallow cutting in $O(N \log_2 N)$ time. Their algorithm constructs the outer boundary \mathcal{B} of the union of the cells in \mathcal{C} . In 3-D the outer boundary is a 2-dimensional, monotone, and orthogonal surface (see Figure 1(a)). The algorithm combines the sweep-plane approach with a method of maintaining a 2-D k-level shallow cutting under deletions. Let z_1, \ldots, z_N be the sorted sequence of P in decreasing order of their z-coordinate values. Starting from $z = z_1$, a plane parallel to xy-plane is moved in the -z direction. The invariant in the algorithm is to maintain a 2-D shallow cutting for the xy-projections of points of P below the sweep-plane, by ensuring that the depth of each corner in the 2-D shallow cutting lies

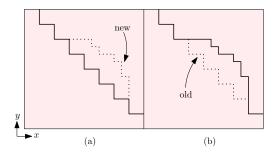


Figure 3: (a) Outer boundary (in bold) before the patching procedure. The dotted boundary is the new curve created during the patching procedure. (b) Outer boundary (in bold) after the patching procedure. The dotted curve was part of the outer boundary before patching. Each outer corner created during the patching procedure corresponds to the apex point of a 3-D cell in the k-level cutting of P.

in the range [k, 10k]. When the sweep-plane reaches z_i , then z_i is deleted and if the invariant is violated, then the 2-D shallow cutting of xy-projections of z_{i+1}, \ldots, z_n is updated via a procedure called *patching*. See Figure 3. The precise details of the patching procedure are not necessary for our final algorithm.

The running time of their algorithm can be summarized by the following equation:

$$T_1(N) = \underbrace{T_{sort}(N)}_{\text{sorting}} + \underbrace{\Theta(N) \cdot T_{pred}(N/k)}_{\text{bottleneck 1}} + \underbrace{O(N/k) \cdot T_{aux}(N)}_{\text{bottleneck 2}}$$
(1)

There are two bottlenecks in adapting their algorithm in the I/O-model. At any point in the sweep-plane, let \mathcal{L} be the ordering of the corners in the 2-D shallow cutting based on their x-coordinate values. Each time a point $z_i \in P$ is deleted, a predecessor search is performed on \mathcal{L} . Also, the patching procedure leads to insertion and deletion of corners into \mathcal{L} . The predecessor search is performed to identify all the corners in \mathcal{L} dominating z_i and then update the conflict lists of those corners. This is the first bottleneck, since it is not possible to perform $\Theta(N)$ updates and $\Theta(N)$ predecessor queries to the list \mathcal{L} in sort(N) I/Os. (In fact, in [8] it was established that the easier problem of batched predecessor queries requires $T_{pred} = \Omega(\log_B N)$ I/Os per query when the preprocessing cost is bounded by a polynomial in N.) It is not clear how to reduce the number of predecessor queries to o(N), and the lower-bound discards the standard strategy in the I/O-model of performing predecessor search queries in batches.

The second bottleneck is the lack of I/O-efficient data structures for performing the patching procedure. The patching procedure involves constructing data structures for 3-D dominance x-selection and dominance y-selection queries on P, and querying them O(N/k) times. For our purpose, the data structures have to be constructed in O(sort(N)) I/Os. In Section A, we present such data structures with query I/Os $T_{aux}(N) = O((N/B)^{\gamma})$ for some $\gamma \in (0,1)$ (Theorem 4). Therefore, the patching will require $O\left(\frac{N}{k}\left(\frac{N}{B}\right)^{\gamma}\right)$ I/Os, which is expensive.

3.2 Nekrich and Rahul's construction (NR-construction)

At SODA'23, Nekrich and Rahul [12] designed a data structure for 4-D dominance reporting query by constructing several shallow cuttings for 3-D dominance ranges. However, for their application, the conflict list of the cells were not needed, and only the cells needed to be constructed. They modified AT-construction to design an algorithm whose running time is proportional to the number

of cells constructed (specifically $O(N \log_2 N)$ cells were constructed on different subsets fo P in $O(N \log_2^5 N)$ time).

For a cell C in the shallow cutting with apex point (x, y, z), let exp(C) be the largest z-coordinate such that (x, y, exp(C)) dominates less than k points of P. Then exp(C) is defined as the expiry of C. For a cell C, its expiry exp(C) can be computed via a 3-D dominance z-selection query on P. Similar to AT's-approach, starting from $z = +\infty$, the algorithm sweeps a plane parallel to xy-plane in the -z direction and the same invariant is maintained. The key difference is the event points visited by the sweep-plane algorithm. In NR-construction, the event points will be exp(C) values of all cells C in the shallow cutting, which are stored in a simple priority-queue Q.

At each time step, we find the event with the largest z-coordinate z_{max} in \mathcal{Q} and set the z-coordinate of the sweep-plane to z_{max} . When the cell C corresponding to z_{max} expires, the corresponding corner has to be removed from the 2-D shallow cutting at z_{max} . Therefore, the patching procedure is performed. After finishing the patching procedure, (a) the events corresponding to the new inner corners in the 2-D shallow cutting are inserted into \mathcal{Q} and the events corresponding to the deleted corners in the 2-D shallow cutting are removed from \mathcal{Q} , (b) for each newly created outer corner (x,y) in the patching procedure, a new cell with apex point (x,y,z_{max}) gets created. We define $cre(C) = z_{\text{max}}$ for each cell C created. The algorithm finishes when the z-coordinate of the sweep-plane reaches $z = -\infty$. We omit the details of the NR algorithm that are not needed to obtain our result. The following lemma summarizes the properties of the NR construction that are relevant for our algorithm.

Lemma 2. Nekrich and Rahul's construction [12] of k-level shallow cuttings for 3-D dominance ranges can be summarized as follows:

- 1. It involves construction of a priority queue and 3-D dominance x, y, z-selection data structures. \(^1\)
- 2. The number of updates and queries on the priority-queue is O(N/k) and the number of 3-D dominance x, y, z-selection queries is O(N/k).
- 3. In each selection query, if the query point is $q = (q_x, q_y, q_z)$, then the sweep-plane is at q_z and (q_x, q_y) is one of the corners in the 2-D shallow cutting of P at q_z after patching. The query integer $k' \leq 10k$ will be such that for an x-selection query, the reported point (q'_x, q_y, q_z) will have $q'_x > q_x$. However, for the y-selection and the z-selection queries, the reported points (q_x, q'_y, q_z) and (q_x, q_y, q'_z) , respectively, will have $q'_y < q_y$ and $q'_z < q_z$.

The running time of NR-construction can be summarized as follows:

$$T_2(N) = \underbrace{T_q\left(\frac{N}{k}\right)}_{\text{queue}} + \underbrace{O\left(\frac{N}{k}\right) \cdot T_{sel}(N)}_{\text{bottleneck}}$$
(2)

Similar to the second bottleneck in AT-construction, the bottleneck in NR-construction is the I/Os required to perform the dominance selection queries (with O(sort(N)) construction I/Os for the data structures, we have $O\left(\frac{N}{k}\right) \cdot T_{sel}(N) = O\left(\frac{N}{k}\left(\frac{N}{B}\right)^{\gamma}\right)$ I/Os which is expensive).

¹Nekrich and Rahul [12] originally used 3-D dominance range counting data structure as well, where the goal is to report $|P \cap q|$ for a 3-D dominance range q. However, both queries are almost equivalent: we can answer a 3-D dominance range selection query using $O(\log N)$ range counting queries (binary search). Conversely, we can also answer 3-D dominance range counting query is via $O(\log N)$ dominance z-selection queries.

3.3 Other constructions

At ICALP'14, Afshani, Chan, and Tsakalidis [3] proposed a variant of AT-construction (by sweeping upwards) for constructing shallow cuttings for 3-D dominance ranges in $O(N \log_2 \log_2 N)$ time in the word-RAM model. At STOC'96, Vengroff and Vitter [18] employed a structure that is similar to 3-D shallow cuttings to answer 3-D orthogonal range reporting queries. Unfortunately, the number of I/Os required to construct their data structure was not considered in their work.

Construction of shallow cuttings for halfspaces in 3-D has been another active area of research. However, typically the techniques and tools used for these problems (such as vertical decomposition, ε -cuttings, planar graph separators) have been different from the ones used for 3-D dominance ranges. For example, at SoCG'15, Chan and Tsakalidis [10] presented an optimal deterministic internal memory algorithm for the construction of shallow cuttings for halfspaces in 3-D. Their hierarchical construction relies on the fact that the cells of the shallow cutting do not intersect (to be precise, interior-disjoint). While this is true in case of shallow cuttings for 3-D halfspaces, this property is not satisfied for our problem: cells of a k-level shallow cutting for dominance ranges are intersecting boxes. Also, in their hierarchy the levels go down by a constant factor which is not ideal for an I/O-efficient algorithm, whereas in our construction levels will go down at a faster rate.

4 Our algorithm for constructing k-level shallow cuttings

We are now ready to prove Theorem 1. Our algorithm follows the general approach used in [5, 12] and combines it with several other ideas. First, we construct a *hierarchy* of shallow cuttings such that the conflict list size of cells decreases exponentially. Second, somewhat counterintuitively, we use data structures with high query cost and fast pre-processing for 3-D dominance selection queries. The final algorithm is a combination of six pieces.

4.1 1st piece: Hierarchy of shallow cuttings.

The main idea is to construct a hierarchy of shallow cuttings. We want to construct a k-level shallow cutting of P where $k \geq M/c$ and c is a sufficiently large constant. Let $t_i = (N/B)^{\delta^i}$ and $k_i = \max(Bt_i, k)$. We select the constant δ in such way that $k_{i-1} \geq 10k_i$ (for any i satisfying $k_i \geq M/c$). The algorithm works in stages (starting from stage 0). In the i-th stage, we construct the k_i -level shallow cutting. For the starting case of 0-th stage, since $k_0 = N$, the k_0 -level shallow cutting consists of one cell containing all points of P. The algorithm terminates when $k_i = k$.

Lemma 3. The number of shallow cuttings constructed is $r = O(\log_{M/B}(N/B))$.

Proof. Since
$$k_i = Bt_i \ge M/c$$
, we have $t_i \ge M/Bc$. Therefore, $t_{i+1} = t_i^{\delta} = t_i \cdot \frac{1}{t_i^{1-\delta}} \le \frac{t_i}{(M/cB)^{1-\delta}}$. This implies that $r = O(\log_{M/B}(N/B))$.

4.2 2nd piece: Existence of parent cells.

We will start with some definitions. For all $1 \le i \le r$, we will say that the k_{i-1} -level shallow cutting is the *parent* shallow cutting of the k_i -level shallow cutting. When the sweep-plane reaches z, then a cell C is *active* at z if $cre(C) \le z \le end(C)$.

In the construction of the k_i -level shallow cutting, consider any outer corner (x_p, y_p) on the 2-D shallow cutting when the sweep-plane is at position z. Then the parent cell of point $p = (x_p, y_p, z)$ is the cell C in the parent shallow cutting, such that (a) the apex point of C has the smallest y-coordinate among all parent cells that are active at z, and (b) the apex point of C dominates p.

Lemma 4. In the construction of the k_i -level shallow cutting (for $i \ge 1$), consider the sweep-plane at any z. For each outer corner (x_p, y_p) on the 2-D shallow cutting at z, a parent cell always exists for the point (x_p, y_p, z) .

Proof. For any outer corner (x_p, y_p) on the 2-D shallow cutting, the depth of (x_p, y_p, z) will be less than or equal to $10k_i \leq k_{i-1}$ (invariant maintained by AT-construction). Therefore, there will be at least one outer corner in the 2-D shallow cutting of the parent at z which dominates (x_p, y_p) (in terms of x and y coordinates). Let C be the cell corresponding to one such outer corner in the parent. Then C is active at time z and the apex point of C dominates (x_p, y_p, z) . Therefore, a parent cell exists for (x_p, y_p, z) .

4.3 3rd piece: Query expensive structures on small-sized inputs.

Our next idea is that we will construct query expensive data structures, but only on small-sized inputs and ensure that query I/Os w.r.t. a cell in the k_i -level shallow cutting is bounded by $O(k_i/B)$ (anyways each cell in the k_i -level shallow cutting has a budget of k_i/B to store its conflict list). The existence of parent cells and the following lemma will let us achieve the goal.

Lemma 5. In the construction of the k_i -level shallow cutting (for $i \ge 1$), consider the sweep-plane at any time z. If patching is performed at time z, then let $p = (x_p, y_p)$ be a new outer corner created with parent cell C. Then the 3-D dominance x, y, z-selection queries with query point $p = (x_p, y_p, z)$ will output a point which lies inside C.

Proof. This is trivial to see for a y-selection query since p already lies inside C and hence, the point reported by the query will also lie inside C (see Lemma 2). Similarly, it holds for a z-selection query as well. The non-trivial case is the x-selection query.

Let p'' denote the point where the horizontal ray from p hits the 2-D shallow cutting of the parent at time z. See Figure 4. Let d be the inner corner immediately below p'' and c be the outer corner immediately above p''. Since the depth of d is at least k_{i-1} , the depth of p'' will also be at least k_{i-1} . Consider the 3-D dominance x-selection query with query point p and parameter $k' \leq 10k_i \leq k_{i-1}$. This implies that the output, p', will have an x-coordinate less than or equal to p''. Now the cell corresponding to the outer corner c is the parent cell of p and contains p' as well.

Lemma 6. Assume that the k_{i-1} -level shallow cutting of P has been constructed in the (i-1)-th stage. Ignoring the I/Os required to find the parent cells, in the i-th stage, the k_i -level shallow cutting can be constructed in $O\left(\frac{N}{k_i}\log_B\frac{N}{k_i}+\frac{N}{B}\log_{M/B}\frac{k_{i-1}}{B}\right)I/Os$.

Proof. For each cell in the k_{i-1} -level shallow cutting, based on its conflict list we construct data structures supporting 3-D dominance reporting and 3-D dominance x, y, z-selection queries (Theorem 4) which requires $O((N/k_{i-1}) \cdot \frac{k_{i-1}}{B} \log_{M/B}(\frac{k_{i-1}}{B})) = O\left(\frac{N}{B} \log_{M/B} \frac{k_{i-1}}{B}\right)$ I/Os. By bullet 2 in Lemma 2, $O(N/k_i)$ x, y, z-selection queries will be performed. For each selection query, if the cost of finding the parent cell of the query point is ignored, then by Lemma 5 the answer to the query can be obtained by querying the x, y, z-selection data structure built at the parent cell. The query I/Os of each selection query will then be $O((k_{i-1}/B)^{\gamma})$. Therefore, the number of I/Os performed to answer the selection queries is $O\left(\frac{N}{k_i}\left(\frac{k_{i-1}}{B}\right)^{\gamma}\right) = O\left(\frac{N}{Bt_i} \cdot t_{i-1}^{\gamma}\right) = O\left(\frac{N}{Bt_i} \cdot t_{i-1}^{\delta}\right) = O\left(\frac{N}{B}\right)$, by choosing $\gamma < \delta$.

By bullet 1 in Lemma 2, the number of operations on the priority-queue are $O(N/k_i)$ and using a vanilla B-tree as a priority-queue $O\left(\frac{N}{k_i}\log_B\frac{N}{k_i}\right)$ I/Os are performed.

Figure 4: An example of x-selection query in Lemma 5. The point p is a corner of 2-D shallow cutting of the k_i -level. The corner c is the outer corner of the parent staircase corresponding to the parent cell C of p.

Finally, for each cell C in the k_i -level cutting, its conflict list is generated by querying its parent cell's 3-D dominance reporting data structure. The number of I/Os performed is $O\left(\left(\frac{k_{i-1}}{B}\right)^{\gamma} + \frac{k_i}{B}\right) = O(k_i/B)$. Since the number of cells in the k_i -level cutting is $O(N/k_i)$, the total number of I/Os required to generate the conflict lists is O(N/B).

4.4 4th piece: Finding parent cells efficiently.

By bullet 2 in Lemma 2, $O(N/k_i)$ x, y, z-selection queries are performed in the construction of k_i -level shallow cutting. To perform each selection query, we first need an efficient routine to find the parent cell. Once the parent cell is found, then the selection query is performed on the data structure corresponding to the parent cell.

We will use partially persistent B-trees [7] to store the cells in the k_{i-1} -level shallow cutting. Versions of the partially persistent data structure are parameterized by z-coordinates: a cell is inserted (resp. deleted) at time t if the corresponding outer corner is added to the 2-D shallow cutting (resp. removed from the 2-D shallow cutting) when the z-coordinate of the sweep-plane is equal to t. This data structure supports successor queries with respect to y- coordinates of its apex points: for any pair (z_q, y_q) we can find the cell with the smallest y-coordinate among all cells of the parent shallow cutting that are active at time z_q and whose y-coordinate is not smaller than y_q .

Lemma 7. In the construction of k_i -level shallow cutting, the number of I/Os performed to compute the parent cells is $\left(\frac{N}{k_i}\log_B\frac{N}{k_{i-1}}\right)$.

Proof. The number of cells in the k_{i-1} -level shallow cutting is $O(N/k_{i-1})$ and using persistent B-trees, successor queries and updates can be supported in $O(\log_B(N/k_{i-1}))$ I/Os. By bullet 2 in Lemma 2, the number of x, y, z-selection queries will be $O(N/k_i)$, and hence, the number of I/Os performed to compute the parent cells is $\left(\frac{N}{k_i}\log_B\frac{N}{k_{i-1}}\right)$.

4.5 5th piece: Obtaining log bounds with base M/B.

To obtain O(sort(N)) I/Os bound, we need base in the logarithm to be M/B. Inspite of the fact that finding parent cells and operations on the priority queue requires $O(\log_B(N/k))$ query I/Os, we are saved by the fact that k is large.

Lemma 8. For
$$k = \Omega(M)$$
, we have $O\left(\frac{N}{k}\log_B \frac{N}{k}\right) = O\left(\frac{N}{B}\log_{M/B} \frac{N}{B}\right)$.

Proof. First, we will establish that $B \log(M/B) \le cM \log B$, where c is a sufficiently large constant. When $M \le B^c$, we have $cM \log B = M \log B^c \ge M \log M \ge B \log(M/B)$. When $M > B^c$, we have

 $cM \log B \ge cB \cdot M^{1-1/c} \log B \ge cB \cdot M^{1-1/c} \ge cB \log M \ge cB \log(M/B)$. Using this fact, we have

$$\frac{N}{k} \cdot \frac{\log(N/k)}{\log B} \le \frac{N}{M} \cdot \frac{\log(N/B)}{\log B} \le O\left(\frac{N}{B} \frac{\log(N/B)}{\log(M/B)}\right).$$

In summary, in comparison to NR-construction, the running time of our algorithm will be the following:

$$T_3(N) = O\left(T_q\left(\frac{N}{k}\right) + \sum_{i=1}^r \frac{N}{k_i} \cdot T_{sel}(k_{i-1}) + \frac{N}{k} \cdot \log_B \frac{N}{k}\right)$$
(3)

Lemma 9. For $k = \Omega(M)$, the k-level shallow cutting for 3-D dominance ranges on N points can be constructed in $O\left(\frac{N}{B}\log_{M/B}\left(\frac{N}{B}\right)\right)$ I/Os.

Proof. By combining Lemma 6 and Lemma 7, the number of I/Os required to construct k_i -level shallow cutting is $O\left(\frac{N}{k_i}\log_B\frac{N}{k_i}+\frac{N}{B}\log_{M/B}\frac{k_{i-1}}{B}\right)$. Therefore,

$$\sum_{i=1}^{r} O\left(\frac{N}{k_i} \log_B \frac{N}{k_i} + \frac{N}{B} \log_{M/B} \frac{k_{i-1}}{B}\right) = O\left(\frac{N}{k} \log_B \frac{N}{k} + \frac{N}{B} \log_{M/B} \frac{N}{B}\right)$$

By Lemma 8, this can be bounded by $O\left(\frac{N}{B}\log_{M/B}\frac{N}{B}\right)$.

4.6 Final piece: Handling Small Values of k.

We will need a different procedure to handle k = O(M). We will perform a two-level cutting. First, we will construct an (M/c)-level shallow cutting of P using Lemma 9. For each cell, say C, in the (M/c)-level, load its *entire* conflict list into the internal memory. This can be done since the size of the conflict list is O(M). Next run an internal memory algorithm to compute the k-level shallow cutting of the conflict list of C. The final output is the union of the shallow cutting obtained from each cell in the (M/c)-level.

Lemma 10. Suppose that we are given an (M/c)-level shallow cutting of P for some constant c > 1. Then for k < M/c, the k-level shallow cutting can be constructed in O(N/B) I/Os.

Proof. We will establish that the three properties of a k-level shallow cutting of P are satisfied by the algorithm. The number of cells constructed in the final cutting is $O(N/M) \cdot O(M/k) = O(N/k)$ (first property). It is easy to verify that the number of points of P lying inside each cell in the final cutting is O(k) (second property). Consider a point q that dominates less than or equal to k points in P. By third property of M/c-level shallow cutting of P, there exists a cell C which contains q. The number of points in the conflict list of C dominated by q will still be less than or equal to k. Therefore, in the k-level shallow cutting of conflict list of C, there will exist some cell which contains q (third property).

Loading the conflict list of all the cells in the (M/c)-level shallow cutting requires $O(N/M) \cdot O(M/B) = O(N/B)$ I/Os. For each cell in the (M/c)-level shallow cutting, writing the k-level shallow cutting of its conflict-list into external memory requires O(M/B) I/Os. Over all the cells in the (M/c)-level shallow cutting, it would require $O(N/M) \cdot O(M/B) = O(N/B)$ I/Os.

Combining Lemma 9 and Lemma 10 finishes the proof of Theorem 1.

5 Application-1: Offline 3-D dominance approximate counting

Recall that P is a set of N points in 3-D and Q is a set of query 3-D dominance ranges. Consider a parameter ε with a fixed value in (0,1). In the offline 3-D dominance approximate counting problem, the goal is to report a value in the range $[(1-\varepsilon)|P\cap q|, |P\cap q|]$, for all $q\in Q$. We will prove Theorem 2 in this section.

5.1 Data structure and query algorithm

The overall data structure is recursive and we start at the root with pointset P. Construct a $(N^{2/3}B^{1/3})$ -level cutting C based on P (Theorem 1). Also, construct an additive error counting structure based on P (Theorem 5). Finally, for each cell $C \in C$, recurse on P_C , where P_C is the conflict list of C. The recursion stops when the size of pointset becomes less than or equal to M/c, where C is a sufficiently large constant.

The query algorithm will start from the root of the data structure. A point in Q is deep if no cell in \mathcal{C} contains it; otherwise, it is shallow. Using the offline-find-any procedure on \mathcal{C} and Q, we will classify each point in Q as shallow or deep. The result for the deep query points are obtained by querying the additive error counting structure. If a point $q \in Q$ is shallow, then it is assigned to one of the cells containing it. The shallow points are handled recursively. Specifically, for each cell $C \in \mathcal{C}$, recurse on Q_c , where $Q_c \subseteq Q$ is the set of shallow query points assigned to C.

To handle the base case, where $|P| \leq M/c$, first the points in P are loaded into the memory. Then the query objects are streamed into the main memory one block at a time, the results for these queries are obtained without any additional I/Os and written to the external memory.

5.2 Analysis.

We will first bound the number of I/Os performed by the algorithm.

Lemma 11. The number of I/Os required to construct the data structure is
$$O\left(\frac{|P|}{B}\left(\log_{M/B}\frac{|P|}{B}\right)^{O(1)}\right)$$
.

Proof. The $(N^{2/3}B^{1/3})$ -level cutting (Theorem 1) and the additive error counting structure (Theorem 5) can be constructed in O(sort(|P|) I/Os). Therefore, the total number of I/Os required to construct the data structure is:

$$T(N) = \begin{cases} c_1 \left(\frac{N}{B}\right)^{1/3} \cdot T(N^{2/3}B^{1/3}) + \frac{c_2N}{B} \log_{M/B} \frac{N}{B}, \text{if } N \geq M/c \\ O(N/B), \text{ otherwise} \end{cases}$$

where $c_1(N/B)^{1/3}$ is the number of cells in the cutting and c_2 is the constant inside O(sort(N)). We will establish that $T(N) \leq \frac{c_3 N}{B} \left(\log_{M/B} \frac{N}{B} \right)^{c_4}$, where $c_3 = 2c_2$ and $c_1 \left(\frac{2}{3} \right)^{c_4} = \frac{1}{2}$. As such,

$$T(N) \leq c_1 \left(\frac{N}{B}\right)^{1/3} \cdot c_3 \frac{N^{2/3} B^{1/3}}{B} \left(\log_{M/B} \frac{N^{2/3} B^{1/3}}{B}\right)^{c_4} + \frac{c_2 N}{B} \log_{M/B} \frac{N}{B}$$

$$\leq c_1 c_3 \frac{N}{B} \cdot \left(\frac{2}{3}\right)^{c_4} \left(\log_{M/B} \frac{N}{B}\right)^{c_4} + \frac{c_2 N}{B} \log_{M/B} \frac{N}{B}$$

$$\leq \frac{c_2 N}{B} \left(\log_{M/B} \frac{N}{B}\right)^{c_4} + \frac{c_2 N}{B} \left(\log_{M/B} \frac{N}{B}\right)^{c_4} = \frac{c_3 N}{B} \left(\log_{M/B} \frac{N}{B}\right)^{c_4}$$

Lemma 12. The number of I/Os performed by the query algorithm is $O_{\varepsilon} \left(\frac{|P|}{B} \left(\log_{M/B} \frac{|P|}{B} \right)^{O(1)} + \frac{|Q|}{B} \log_{M/B} \frac{N}{B} \right)$.

Proof. By Theorem 5 and Theorem 1, the number of I/Os performed by the query algorithm at the root is $O_{\varepsilon}\left(sort(N) + sort(|Q|) + \binom{|\mathcal{C}| + |Q|}{B}\log_{M/B}\frac{|\mathcal{C}|}{B}\right)$, which can be bounded by $O_{\varepsilon}\left(sort(N) + \frac{|Q|}{B}\log_{M/B}\frac{N}{B}\right)$. The $O_{\varepsilon}(sort(N))$ I/Os can be charged to the construction of the data structure, and hence, by the proof of Lemma 11, it will be bounded by $O_{\varepsilon}\left(\frac{|P|}{B}\left(\log_{M/B}\frac{|P|}{B}\right)^{O(1)}\right)$ in the overall query algorithm.

Therefore, we will focus on the $O_{\varepsilon}\left(\frac{|Q|}{B}\log_{M/B}\frac{N}{B}\right)$ term. As such, the amortized number of I/Os performed for a *single* query point is $O_{\varepsilon}\left(\frac{1}{B}\log_{M/B}\frac{N}{B}\right)$. Including recursion, the number of I/Os performed to answer a single query is:

$$q(N) \le q(N^{2/3}B^{1/3}) + O_{\varepsilon}\left(\frac{1}{B}\log_{M/B}\frac{N}{B}\right) = O_{\varepsilon}\left(\frac{1}{B}\log_{M/B}\frac{N}{B}\right)$$

Lemma 13. For each $q \in Q$, the algorithm returns a $(1 - \varepsilon)$ -approximation of $|P \cap q|$.

Proof. For any deep query point q at the root, the value n_q reported by the additive error counting structure will be such that $n_q \geq |P \cap q| - \varepsilon N^{2/3} B^{1/3} \geq (1-\varepsilon)|P \cap q|$, since $|P \cap q| \geq N^{2/3} B^{1/3}$ for a deep point (third property of shallow cuttings). The same argument applies at each node in the data structure (w.r.t. deep queries at that node).

6 Application-2: Offline 3-D dominance reporting

Let P be a set of N points in 3-D and let Q be a set of 3-D dominance ranges. In the offline 3-D dominance reporting problem, the goal is to report $P \cap q$, for all $q \in Q$. We will prove Theorem 3 in this section.

6.1 Data structure

We will use two data structures as black-box to design our final data structure.

1. For all $0 \le i \le \ell$, we will construct k_i -level shallow cutting based on P (Theorem 1) and carefully choose ℓ such that:

$$k_i = Bt_i$$
, $t_i = (N/B)^{\delta^i}$ for some $\delta \in (0,1)$ and $k_\ell = \max\{M, \log_{M/B}(N/B)\}$.

2. For all $0 \le i \le \ell$, based on the conflict list of each cell in the k_i -level, construct a 3-D dominance reporting structure (Theorem 4).

6.2 Query algorithm

For each dominance range $q \in Q$, the goal is to find the integer j such that the apex point of q does not lie inside any cell in the k_{j+1} -level cutting but lies inside at least one cell in the k_j -level cutting. Initially, let $Q_{\ell} \leftarrow Q$. The algorithm will work in iterations and in each iteration we will process the queries in Q in a batched manner as follows:

- (1) In the *i*-th iteration $(0 \le i \le \ell)$, partition the dominance ranges in $Q_{\ell-i}$ into a shallow set and a deep set. A dominance range in $Q_{\ell-i}$ is classified as shallow if the apex point of the dominance range lies inside some cell in the $(k_{\ell-i})$ -level cutting; otherwise, it is classified as deep.
- (2) Run the offline-find-any procedure on $Q_{\ell-i}$ and the cells in the $(k_{\ell-i})$ -level cutting (Theorem 1). This procedure partitions the set $Q_{\ell-i}$ into shallow and deep, and for each shallow dominance query $q \in Q_{\ell-i}$, reports a cell C_q in the cutting which contains q.
- (3) Let $Q_{\ell-i}^s \subseteq Q_{\ell-i}$ be the set of shallow ranges. Invoke REPORT $(P, Q_{\ell-i}^s)$, which reports $P \cap q$, for all $q \in Q_{\ell-i}^s$. Assign $Q_{\ell-i-1}$ to be the deep set in $Q_{\ell-i}$ and continue to the next iteration.
- (4) At the end of the ℓ -th iteration, Q_{-1} is the set of unanswered queries. For each $q \in Q_{-1}$, do a brute-force scan of P to report $P \cap q$ (since $|P \cap q| = \Omega(N)$).

Report $(P, Q_{\ell-i}^s)$:

- 1. For all $q \in Q_{\ell-i}^s$, report $P \cap q$ by the querying the 3-D dominance reporting structure built for C_q .
- 2. As an exception, we will handle the case of $k_{\ell} = M$ and i = 0 differently. We will process each cell in (k_{ℓ}) -level one-by-one. Let C be the current cell being processed. Load the entire conflict list of C is into the main-memory. The queries in $Q_{\ell-i}^s$ assigned to cell C are read one block at a time into the main-memory. Using any internal memory algorithm, the 3-D dominance reporting query is answered for the queries in the block, and the output is written back to external memory.

6.3 Analysis

The easy part of the analysis is bounding the number of I/Os required to construct the data structure.

Lemma 14. The number of I/Os required to construct the data-structure is O(sort(|P|)).

Proof. Using Theorem 1, in O(sort(|P|)) I/Os all the k_i -level shallow cuttings can be constructed. The number of I/Os required to construct the 3-D dominance reporting structure at a cell in the k_i -level shallow cutting is $(sort(k_i))$ I/Os. Therefore, the number of I/Os required to construct the 3-D dominance reporting structures across all the $\ell + 1$ levels will be

$$\sum_{i=0}^{\ell} O\left(\frac{N}{k_i} \cdot sort(k_i)\right) = \sum_{i=0}^{\ell} O\left(\frac{N}{k_i} \cdot \frac{k_i}{B} \log_{M/B}(k_i/B)\right) = O(sort(N)).$$

The non-trivial part of the analysis is bounding the number of I/Os to perform $\ell+1$ iterations of offline-find-any procedure. The j-th iteration of offline-find-any procedure has two terms: (a) the first term is $O\left(\frac{|\mathcal{C}_{\ell-j}|}{B} \cdot \log_{M/B} \frac{|\mathcal{C}_{\ell-j}|}{B}\right)$, and (b) the second term is $O\left(\frac{|\mathcal{Q}_{\ell-j}|}{B} \cdot \log_{M/B} \frac{|\mathcal{C}_{\ell-j}|}{B}\right)$. We will analyze both the terms separately.

Lemma 15. Adding up the first term over $\ell + 1$ iterations is equal to O(sort(|P|)).

Proof. There are two cases to consider. First, assume $k_{\ell} = \log_{M/B}(N/B) \geq M$. Then, we have

$$\sum_{i=0}^{\ell} O\left(\frac{|P|}{Bk_i} \log_{M/B} \frac{|P|}{Bk_i}\right) = O\left(\frac{|P|}{B} \log_{M/B} \frac{|P|}{B}\right) \cdot \sum_{i=0}^{\ell} \frac{1}{k_i} = O\left(\frac{|P|}{B} \log_{M/B} \frac{|P|}{B}\right),$$

since
$$\sum_{i=0}^{\ell} \frac{1}{k_i} \leq \frac{\ell}{k_\ell} = \frac{O\left(\log\left(\frac{\log(N/B)}{\log(k_\ell/B)}\right)\right)}{\log_{M/B}(N/B)} = O\left(\frac{\log_{k_\ell/B}(N/B)}{\log_{M/B}(N/B)}\right) = O\left(\frac{\log(M/B)}{\log(k_\ell/B)}\right) = O(1).$$

Next, assume that $k_{\ell} = M \ge \log_{M/B}(N/B)$. Then, we have $\ell = \log\left(\frac{\log(N/B)}{\log(M/B)}\right) = \log_{M/B}(N/B)$, and hence,

$$\sum_{i=0}^{\ell} O\left(\frac{|P|}{Bk_i} \log_{M/B} \frac{|P|}{Bk_i}\right) = \left(\frac{\ell}{M}\right) \cdot O\left(\frac{|P|}{B} \log_{M/B} \frac{|P|}{B}\right) = O\left(\frac{|P|}{B} \log_{M/B} \frac{|P|}{B}\right).$$

Now we will analyze the second term. Consider a query point q which was deep in the i-th iteration, but became shallow in the (i+1)-th iteration. Then, $\frac{|P\cap q|}{B} = \Omega\left(\frac{k_{\ell-i}}{B}\right)$. The number of I/Os performed by the offline-find-any procedure in the j-th iteration, for any $j \leq i$, will be $O\left(\frac{|Q_{\ell-j}|}{B}\log_{M/B}\frac{|P|}{B}\right)$. As such, amortized cost associated with q for the offline-find-any procedure is $\frac{1}{|Q_{\ell-j}|} \cdot O\left(\frac{|Q_{\ell-j}|}{B}\log_{M/B}\frac{|P|}{B}\right) = O\left(\frac{1}{B}\log_{M/B}\frac{|P|}{B}\right)$. For i iterations, the total amortized cost associated with q will be $O\left(\frac{i}{B}\log_{M/B}\frac{|P|}{B}\right)$. The following lemma establishes that the total amortized cost associated with q for participating in i iterations of the offline-find-any procedure can be charged to the size of the output reported for query q.

Lemma 16. Consider a query point q which is deep in the i-th iteration, but shallow in the (i+1)-th iteration. Then, $\frac{i}{B} \log_{M/B}(N/B) = O\left(\frac{k_{\ell-i}}{B}\right) = O\left(\frac{|P \cap q|}{B}\right)$.

Proof. For all $0 \le j \le \ell - 2$, we first establish that

$$k_j - k_{j+1} \ge k_{j+1} - k_{j+2}.$$
 (4)

Since $\frac{M}{B} = \Omega(1)$, we claim that $t_{\ell} = \frac{k_{\ell}}{B} = \frac{1}{B} \max\{M, \log_{M/B}(N/B)\} \ge 2^{1/1-\delta}$. This in turn implies $t_j \ge t_{\ell} \ge 2^{1/1-\delta}$, then $t_j^{1-\delta} \ge 2$ and finally $t_j \ge 2t_j^{\delta}$. Therefore,

$$t_j + t_j^{\delta^2} \ge 2t_j^{\delta} \implies t_j - t_{j+1} \ge t_{j+1} - t_{j+2} \implies k_j - k_{j+1} \ge k_{j+1} - k_{j+2}.$$

Via similar calculations it can be established that

$$k_{\ell-1} - k_{\ell} \ge k_{\ell}. \tag{5}$$

Finally, by combining Equations 4 and 5, we observe that $k_{\ell-i}-k_{\ell}=\sum_{j=\ell-i}^{\ell-1}(k_j-k_{j+1})=\Omega(ik_{\ell})$, which implies $k_{\ell-i}=\Omega(ik_{\ell})=\Omega\left(i\log_{M/B}(N/B)\right)$.

Lemma 17. Adding up the second term over $\ell + 1$ iterations is equal to O(K/B).

Proof. For each query $q \in Q$, let q(i) be the number of iterations of offline-find-any procedures q participates. Then, by the amortization argument, we have $\sum_{j=0}^{\ell} O\left(\frac{|Q_{\ell-j}|}{B}\log_{M/B}\frac{N}{B}\right) = \sum_{q\in Q} O\left(\frac{q(i)}{B}\log_{M/B}\frac{N}{B}\right)$. Via Lemma 16, we have $\sum_{q\in Q} O\left(\frac{q(i)}{B}\log_{M/B}\frac{N}{B}\right) = \sum_{q\in Q} O\left(\frac{|P\cap q|}{B}\right) = O(K/B)$.

Lemma 18. The number of I/Os performed by the query algorithm is $O\left(sort(N) + \frac{|Q|}{B}\log_{M/B}\frac{N}{B} + \frac{K}{B}\right)$.

Proof. The first case we consider is i=0 and $k_{\ell}=M$. Then the number of I/Os performed is dominated by the I/Os needed to (a) read the conflict list of all the cells in k_{ℓ} -level, (b) read the queries in Q_{ℓ} , and (c) write the output back to the external memory. In total, this requires only $O\left(\frac{|P|+|Q|}{B}+\frac{K}{B}\right)$ I/Os.

For all $0 \le i \le \ell$, recall that $Q_{\ell-i}^s \subseteq Q_{\ell-i}$ is the shallow set in the *i*-th iteration. The second case we consider is i=0 and $k_\ell = \log_{M/B}(N/B)$. For each $q \in Q_\ell^s$, querying the 3-D dominance reporting structure built on $P \cap C_q$ requires

$$O\left(|Q_{\ell}^{s}|\left(\frac{\log_{M/B}(N/B)}{B}\right)^{\gamma} + \sum_{q \in Q_{\ell}^{s}} \frac{|P \cap q|}{B}\right) \le O\left(\frac{|Q|}{B} \log_{M/B} \frac{N}{B} + \frac{K}{B}\right) \text{ I/Os.}$$

The final case we consider is $i \in [1, \ell]$. Consider any $i \in [1, \ell]$. Then for any $q \in Q_{\ell-i}^s$,

$$\left(\frac{k_{\ell-i}}{B}\right)^{\gamma} + \frac{|P\cap q|}{B} \leq t_{\ell-i}^{\gamma} + \frac{|P\cap q|}{B} \leq (t_{\ell-i+1})^{\gamma/\delta} + \frac{|P\cap q|}{B} \leq t_{\ell-i+1} + \frac{|P\cap q|}{B} \leq 2 \cdot \frac{|P\cap q|}{B},$$

where we use the fact that $\delta \geq \gamma$ and $|P \cap q| \geq k_{\ell-i+1}$. Therefore, for all $1 \leq i \leq \ell$ and for all $q \in Q_{\ell-i}^s$, querying the 3-D dominance reporting structure built on $P \cap C_q$ requires

$$\sum_{i=1}^{\ell} \sum_{q \in Q_{\ell-i}^s} O\left(\left(\frac{k_{\ell-i}}{B}\right)^{\gamma} + \frac{|P \cap q|}{B}\right) = \sum_{i=1}^{\ell} \sum_{q \in Q_{\ell-i}^s} O\left(\frac{|P \cap q|}{B}\right) = O(K/B) \text{ I/Os.}$$

Finally, from Lemma 15 and Lemma 17, the number of I/Os performed by all the iterations of the offline-find-any query procedure is bounded by $O\left(sort(N) + \frac{K}{B}\right)$.

7 Conclusion and future work

We hope that our work will lead to further work on 3-D orthogonal range searching and the related problems in the I/O-model. We finish by mentioning some future directions:

- An immediate direction is to design an optimal algorithm for offline 3-D dominance approximate counting problem.
- Studying 3-D dominance reporting and 3-D dominance approximate counting in the online setting where the queries arrive one after the other. Currently, efficient construction of these data structures are not known.
- Computing skyline or maximal points of P in 3-D in the I/O model has received attention [17, 11]. Skyline points and the k-level shallow cuttings for dominance ranges seem related in their structures. Is there a common framework to design algorithms for both the problems?

References

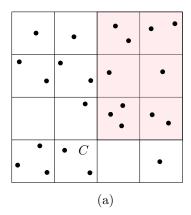
- [1] Peyman Afshani. On dominance reporting in 3D. In *Proceedings of European Symposium on Algorithms (ESA)*, pages 41–51, 2008.
- [2] Peyman Afshani, Lars Arge, and Kasper Dalgaard Larsen. Orthogonal range reporting in three and higher dimensions. In *Proceedings of Annual IEEE Symposium on Foundations of Computer Science (FOCS)*, pages 149–158, 2009.

- [3] Peyman Afshani, Timothy M. Chan, and Konstantinos Tsakalidis. Deterministic rectangle enclosure and offline dominance reporting on the RAM. In *Proceedings of International Colloquium on Automata, Languages and Programming (ICALP)*, pages 77–88, 2014.
- [4] Peyman Afshani, Chris H. Hamilton, and Norbert Zeh. A general approach for cache-oblivious range reporting and approximate range counting. *Computational Geometry*, 43(8):700–712, 2010.
- [5] Peyman Afshani and Konstantinos Tsakalidis. Optimal deterministic shallow cuttings for 3d dominance ranges. In *Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)*, pages 1389–1398, 2014.
- [6] Pankaj K. Agarwal, Lars Arge, Jeff Erickson, Paolo Giulio Franciosa, and Jeffrey Scott Vitter. Efficient searching with linear constraints. In *Proceedings of ACM Symposium on Principles of Database Systems (PODS)*, pages 169–178, 1998.
- [7] Bruno Becker, Stephan Gschwind, Thomas Ohler, Bernhard Seeger, and Peter Widmayer. An asymptotically optimal multiversion B-tree. *The VLDB Journal*, 5(4):264–275, 1996.
- [8] Michael A. Bender, Martin Farach-Colton, Mayank Goswami, Dzejla Medjedovic, Pablo Montes, and Meng-Tsung Tsai. The batched predecessor problem in external memory. In *Proceedings of European Symposium on Algorithms (ESA)*, pages 112–124, 2014.
- [9] Timothy M. Chan, Yakov Nekrich, Saladi Rahul, and Konstantinos Tsakalidis. Orthogonal point location and rectangle stabbing queries in 3-d. In *Proceedings of International Colloquium on Automata, Languages and Programming (ICALP)*, pages 31:1–31:14, 2018.
- [10] Timothy M. Chan and Konstantinos Tsakalidis. Optimal deterministic algorithms for 2-d and 3-d shallow cuttings. In *International Symposium on Computational Geometry (SoCG)*, pages 719–732, 2015.
- [11] Xiaocheng Hu, Cheng Sheng, Yufei Tao, Yi Yang, and Shuigeng Zhou. Output-sensitive skyline algorithms in external memory. In *Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)*, pages 887–900, 2013.
- [12] Yakov Nekrich and Saladi Rahul. 4d range reporting in the pointer machine model in almost-optimal time. In *Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms* (SODA), pages 1862–1876, 2023.
- [13] Mihai Patrascu. Succincter. In *Proceedings of Annual IEEE Symposium on Foundations of Computer Science (FOCS)*, pages 305–313, 2008.
- [14] Saladi Rahul. Improved bounds for orthogonal point enclosure query and point location in orthogonal subdivisions in \mathbb{R}^3 . In *Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)*, pages 200–211, 2015.
- [15] Saladi Rahul and Yufei Tao. On top-k range reporting in 2d space. In *Proceedings of ACM Symposium on Principles of Database Systems (PODS)*, pages 265–275, 2015.
- [16] Saladi Rahul and Yufei Tao. Efficient top-k indexing via general reductions. In *Proceedings of ACM Symposium on Principles of Database Systems (PODS)*, pages 277–288, 2016.

- [17] Cheng Sheng and Yufei Tao. Finding skylines in external memory. In *Proceedings of ACM Symposium on Principles of Database Systems (PODS)*, pages 107–116, 2011.
- [18] Darren Erik Vengroff and Jeffrey Scott Vitter. Efficient 3-d range searching in external memory. In *Proceedings of ACM Symposium on Theory of Computing (STOC)*, pages 192–201, 1996.
- [19] Jeffrey Scott Vitter. Algorithms and data structures for external memory. Foundation and Trends in Theoretical Computer Science, 2(4):305–474, 2006.

A A common framework for supporting structures

In this section we will construct data structures which are needed in the algorithms for constructing the k-level shallow cutting in Section 4 and the two applications (in Section 5 and 6). We will present a common framework for constructing these data structures. We are not aware of results in the literature which obtain the precise results we need. We will prove Theorem 4 and Theorem 5.



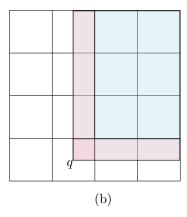


Figure 5: For simplicity, the root node is shown in 2-D. (a) An example with 24 points and $\alpha = 5$. If the apex point of a query dominance range lies in cell C, then the cells shaded pink lie completely inside the query region. Therefore, for cell C we have n(C) = 10. (b) The blue portion of the query region is handled at the root itself. We will recurse on the pink portion.

A.1 Proof of Theorem 4

3-D dominance x, y, z-selection queries can be trivially reduced to $O(\log_2 N)$ 3-D dominance counting queries (via binary search). Therefore, we will focus our discussion on the reporting and the counting queries. Our final data structure will be a tree structure. We will first describe the root node of the structure.

The root node. Let P be a set of N points in 3-D. Let $\mathcal{X} = \{X_1, X_2, \dots, X_{\alpha}\}$ be a set of α planes such that (a) they are perpendicular to the x-axis, (b) for all i < j, plane X_i has a smaller x-coordinate than X_j , and (c) the number of points of P lying between two consecutive planes is $N/(\alpha-1)$. The value of α will be determined later. Analogously define a set $\mathcal{Y} = \{Y_1, \dots, Y_{\alpha}\}$ consisting of α planes w.r.t. the y-axis and a set $\mathcal{Z} = \{Z_1, \dots, Z_{\alpha}\}$ consisting of α planes w.r.t. the z-axis. For all $1 \le i \le \alpha$, let X_i^+ and X_i^- be the locus of points in 3-D which have a higher and lower x-coordinate, respectively, than the x-coordinate of the plane X_i . Analogously, for all $1 \le i \le \alpha$, define Y_i^+, Y_i^-, Z_i^+ , and Z_i^- . Then, for all $1 \le i, j, k \le \alpha - 1$, a $cell\ (i, j, k)$ is the cuboid $(X_i^+, X_{i+1}^-) \times (Y_j^+, Y_{j+1}^-) \times (Z_k^+, Z_{k+1}^-)$. Sets \mathcal{X}, \mathcal{Y} , and \mathcal{Z} can be constructed trivially in sort(N) I/Os by sorting P in the respective dimension. See Figure 5(a).

Define $conflict\ list$ of a cell to be the points of P lying inside the cell. The next task is to compute the conflict list of each cell.

- For all $1 \le i \le \alpha 1$, compute the conflict list, say P_i , of $(X_i^+, X_{i+1}^-) \times (-\infty, +\infty) \times (-\infty, +\infty)$. This can done in O(N/B) I/Os by scanning the sorted list of P along the x-axis.
- Fix an i in the range $[1, \alpha-1]$. Sort the points in P_i along the y-axis. For all $1 \leq j \leq \alpha-1$, compute the conflict list, say P_{ij} , of $(X_i^+, X_{i+1}^-) \times (Y_j^+, Y_{j+1}^-) \times (-\infty, +\infty)$. Perform

this step for all values of i in the range $[1, \alpha - 1]$. The number of I/Os performed will be $\sum_{i=1}^{\alpha} O\left(\frac{|P_i|}{B} \log_{M/B} \frac{|P_i|}{B} + \alpha\right) = O\left(\frac{N}{B} \log_{M/B} \frac{N}{B} + \alpha^2\right).$

• Finally, fix two integers i and j in the range $[1, \alpha - 1]$. Sort the points in P_{ij} along the z-axis. For all $1 \le k \le \alpha - 1$, compute the conflict list, say P_{ij} , of $(X_i^+, X_{i+1}^-) \times (Y_j^+, Y_{j+1}^-) \times (Z_k^+, Z_{k+1}^-)$. Perform this step for all values of i and j in the range $[1, \alpha - 1]$. The number of I/Os performed will be $\sum_{i=1}^{\alpha} \sum_{j=1}^{\alpha} O\left(\frac{|P_{ij}|}{B} \log_{M/B} \frac{|P_{ij}|}{B} + \alpha\right) = O\left(\frac{N}{B} \log_{M/B} \frac{N}{B} + \alpha^3\right)$.

Recursive step. At the root node, the sets \mathcal{X}, \mathcal{Y} , and \mathcal{Z} , and the conflict list (along with its size) of each cell is stored. Next, recursively construct the data structure based on the following $3(\alpha-1)$ subsets of P: for all $1 \leq i \leq \alpha-1$, (a) the conflict list of $(X_i^+, X_{i+1}^-) \times (-\infty, +\infty) \times (-\infty, +\infty)$, (b) the conflict list of $(-\infty, +\infty) \times (Y_j^+, Y_{j+1}^-) \times (-\infty, +\infty)$, and (c) the conflict list of $(-\infty, +\infty) \times (Z_k^+, Z_{k+1}^-)$. The recursion stops when the number of points fall below $B\alpha^3$.

Lemma 19. By setting $\alpha = (N/B)^{\gamma/c}$ (for a sufficiently large constant c), the number of I/Os needed to build the data structure is $O_{\gamma}(sort(N))$.

Proof. Let h be the height of the data structure. The number of points associated with a node at depth ℓ will be N/α^{ℓ} . Therefore,

$$N/\alpha^h = B\alpha^3 \implies \frac{N}{B} = \alpha^{h+3} \implies h = \frac{c}{\gamma} - 3.$$

The number of I/Os needed to build the root node is $O(sort(N) + \alpha^3) = O(sort(N))$. Therefore, the amortized I/Os needed per point in P will be O(sort(N)/N). Since a point belongs to $3^h = O_{\gamma}(1)$ nodes in the tree, the amortized I/Os needed per point in the entire tree will be $O_{\gamma}(sort(N)/N)$. Hence, the overall number of I/Os is $O_{\gamma}(sort(N))$.

Query algorithm. Assume that the query region of the form $q = [q_x, \infty) \times [q_y, \infty) \times [q_z, \infty)$. At the root node of the data structure, let C_q be the cells which lie completely inside q. For the reporting query, we report the conflict list of all the cells in C_q . Let $n(C_q)$ be the total size of the conflict list of the cells in C_q (this value can be precomputed and stored at each cell).

Let (i, j, k) be the cell containing the apex point (q_x, q_y, q_z) . Define $R_i = (X_i^+, X_{i+1}^-) \times (-\infty, +\infty) \times (-\infty, +\infty)$, $R_j = (-\infty, +\infty) \times (Y_j^+, Y_{j+1}^-) \times (-\infty, +\infty)$, and $R_k = (-\infty, +\infty) \times (-\infty, +\infty) \times (Z_k^+, Z_{k+1}^-)$. Then we recursively query the children corresponding to R_i, R_j , and R_k with query regions $q \cap R_1, (q \setminus R_1) \cap R_2$, and $(q \setminus R_1 \setminus R_2) \cap R_3$, respectively. (This is done to avoid reporting duplicates or counting a point multiple times.) See Figure 5(b). When a leaf node is visited, then a linear scan of the pointset is performed. The output of the counting query will be the sum of (a) $n(C_q)$'s over all the nodes visited, and (b) the number of points in the leaf nodes which lie inside q.

Lemma 20. The number of I/Os to perform a 3-D dominance reporting query and a 3-D dominance counting query on N points is $O((N/B)^{\gamma}+t/B)$ and $O((N/B)^{\gamma})$, respectively, where t is the number of points reported.

Proof. Ignoring the I/Os needed to report the points, the I/Os performed at any non-leaf or a leaf node is $O(\alpha^3)$. Since the number of nodes visited is $3^h = O_{\gamma}(1)$, the total query cost is $O_{\gamma}(\alpha^3) = O((N/B)^{\gamma})$.

A.2 Proof of Theorem 5

For the offline additive error counting query, data structure will simply be the root node as constructed above. Importantly, we do not recurse. By setting $\alpha = \frac{3}{\varepsilon} \left(\frac{N}{B}\right)^{1/3}$, the number of I/Os needed to build the data structure is $O(sort(N) + \alpha^3) = O_{\varepsilon}(sort(N))$.

Let Q be the set of 3-D dominance queries. The approach used to compute the conflict list of each cell (w.r.t. P) can be adapted to compute in $O_{\varepsilon}(sort(N) + sort(|Q|)$ I/Os the conflict list of each cell (w.r.t. Q, i.e., locating the cell containing the apex point of each query in Q). Then for each query $q \in Q$, we will report $n(C_q)$ as the estimate. It is easy to verify that $|P \cap q| - n_q \le \frac{3N}{\alpha} = \varepsilon N^{2/3} B^{1/3}$.

Remark. This data structure can be extended to handle smaller values of error, such as \sqrt{NB} , if we recurse for a constant number of levels.