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Abstract

Shallow cuttings are a fundamental tool in computational geometry and spatial databases for
solving offline and online range searching problems. For a set P of N points in 3-D, at SODA’14,
Afshani and Tsakalidis designed an optimal O(N log2 N) time algorithm that constructs shallow
cuttings for 3-D dominance ranges in internal memory. Even though shallow cuttings are used
in the I/O-model to design space and query efficient range searching data structures, an efficient
construction of them is not known till now. In this paper, we design an optimal-cost algorithm
to construct shallow cuttings for 3-D dominance ranges. The number of I/Os performed by the

algorithm is O
(

N
B logM/B

(
N
B

))
, where B is the block size and M is the memory size.

As two applications of the optimal-cost construction algorithm, we design fast algorithms for
offline 3-D dominance reporting and offline 3-D approximate dominance counting. We believe
that our algorithm will find further applications in offline 3-D range searching problems and in
improving construction cost of data structures for 3-D range searching problems.

1 Introduction

Shallow cuttings are one of the most fundamental tools used for designing range searching data
structures in computational geometry [1, 2, 3, 4, 12] and spatial databases [15, 16, 6]. The main
contribution of this paper is the first known optimal-cost construction of shallow cuttings for 3-D
dominance ranges in the I/O-model. As a consequence, we obtain efficient algorithms for the offline
3-D dominance reporting problem and the offline 3-D approximate counting problem.

Shallow cuttings for 3-D dominance ranges. Consider two 3-D points p and q. A point p
dominates another point q if and only if p has a higher coordinate value than q in each dimension.

(c)
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z
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Figure 1: (a) A schematic representation of a k-level 3-D shallow cutting, (b) 3-D dominance
reporting and approximate counting query, (c) 3-D orthogonal range reporting query, (d) 3-D
rectangle stabbing query.
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Let P be a set of N points in 3-D. A k-level shallow cutting of P [1] (See Figure 1(a)) is a collection
C of cells of the form (−∞, x]× (−∞, y]× (−∞, z] satisfying the following three properties:

1. The number of cells is O(n/k), i.e., |C| = O(n/k).

2. Each box in C contains at most 10k points from P .

3. Any 3-D point that dominates at most k points of P will lie inside at least one cell in C.

I/O-model of computation. We will construct shallow cuttings for 3-D dominance ranges in
the I/O-model of computation [19]. In the era of big-data, it is natural that the input will not fit
completely in the internal memory, and hence, resides in the hard-disk (or the external memory).
In this model, the internal memory has M words, and the hard-disk has been formatted into blocks
of B words. An I/O exchanges a block of data between the disk and the memory. The space of
a data structure is the number of blocks occupied, and the running time of an algorithm is the
number of I/Os performed. The CPU calculation is free. A natural assumption is that M = Ω(B).

3-D orthogonal range searching. Orthogonal range searching and related problems have been
one of the foundational problems on which field of computational geometry and spatial databases
grew. Naturally, they have been well studied in the I/O-model of computation. Consider the
following problems for which the state-of-the-art data structures in the I/O-model extensively rely
on the clever use of shallow cuttings for 3-D dominance ranges:

1. In the 3-D orthogonal range reporting problem (Figure 1(c)), the input is a set P of N points
in 3-D. Preprocess P into a space-efficient data structure, so that given an axis-aligned query
box q = [x1, x2]× [y1, y2]× [z1, z2], the goal is to quickly report P ∩ q (the points of P lying
inside q). AT FOCS’09, Afshani, Arge, and Larsen [2] presented a data structure for this

problem with space O

(
N
B

(
logN

log logB N

)3)
and query I/Os O(logB N + k/B), where k is the

number of points reported.

2. The building block for the above problem is the 3-D dominance reporting problem (Fig-
ure 1(b)), where the query is a 3-D dominance range q = (−∞, x] × (−∞, y] × (−∞, z]. At
ESA’08, Afshani [13] presented a data structure for this problem with space O(N/B) and
query I/Os O(logB N + k/B). This is optimal in terms of space and query I/Os.

3. At SoCG’09, Afshani, Hamilton, and Zeh presented a general approach to design data struc-
tures to answer the relative (1+ε)-approximate counting query for a general class of problems
including the 3-D dominance setting. Here the goal is to output the estimate of |P ∩ q|. An
optimal solution in terms of space and query I/Os was obtained.

4. Rectangle stabbing reporting (Figure 1(d)) is the “reverse” of orthogonal range reporting where
the input is a set of axis-aligned 3-D boxes and the query is a 3-D point. Arguably, rectangle
stabbing reporting is as important as orthogonal range reporting and is well studied in the
literature. The current state-of-the-art results in internal memory models of computation
for rectangle stabbing reporting by Rahul [14] at SODA’15 and Chan, Nekrich, Rahul, and
Tsakalidis [9] at ICALP’18 rely on shallow cuttings for 3-D dominance ranges. It is unlikely
that a linear-space data structure in the I/O-model can be constructed without using shallow
cuttings.
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Lack of fast construction of data structures. An important criteria in the design of the data
structures is to optimize the I/Os required to construct the data structure. A severe limitation of
all the above solutions is the lack of such fast construction algorithms. In fact, quoting from one
of the above papers (Afshani, Hamilton, and Zeh [4]),

“All data structures presented in this paper are static, and no efficient construction methods for
these structures are known in the I/O or cache-oblivious model. The main obstacle is the lack of

an I/O-efficient or cache-oblivious construction procedure for shallow cuttings.”

We believe that our work on optimal-cost construction of shallow cuttings for 3-D dominance
ranges will trigger further work to design fast construction of data structures for the above men-
tioned problems.

Lack of optimal solutions for offline 3-D orthogonal range searching. In the offline
orthogonal range searching problem, we are given a set Q of queries upfront along with the point set
P . Many 2-D offline problems in computational geometry (including range searching type problems)
have been optimally solved in the I/O-model. See the survey paper by Vitter (Theorem 8.1 in [19]
provides a laundry list of more than ten problems in 2-D which are solved optimally).

However, to the best of our knowledge, offline 3-D orthogonal range searching problems have not
received the same attention in spite of their fundamental nature. Again, the lack of optimal-cost
shallow cuttings in 3-D is the major bottleneck.

1.1 Our results

The main result in this paper is an optimal-cost construction of the k-level shallow cutting for 3-D
dominance ranges in the I/O-model.

Theorem 1. The k-level shallow cutting for 3-D dominance ranges on N points can be constructed

in O
(
N
B logM/B

(
N
B

))
I/Os. The construction cost is optimal in the I/O-model.

To demonstrate the impact of our new construction, we use shallow cuttings for 3-D domi-
nance ranges to obtain efficient algorithms for two fundamental problems: offline 3-D dominance
approximate counting and offline 3-D dominance reporting.

Theorem 2. (Application-1) Let P be a set of N points in 3-D and Q be a set of 3-D dominance
ranges. In the offline 3-D dominance approximate counting problem, for any q ∈ Q, the goal is to
return a value in the range [(1 − ε)|P ∩ q|, |P ∩ q|], where ε ∈ (0, 1) is a fixed value. There is a

deterministic algorithm to solve the problem in Oε

(
|P |
B

(
logM/B

|P |
B

)O(1)
+ |Q|

B logM/B
|P |
B

)
I/Os.

The notation Oε(·) hides the dependency on ε.

The key feature in the above theorem is that the construction cost bound has the term M/B
in the base of the logarithm which is desirable in the I/O-model (instead of base-2 obtained from
straightforward adaptation of internal memory algorithms or base-B obtained from straightfor-
ward adaption of external memory data structures for online problems). In terms of techniques,
even though final output is a relative approximation, but a crucial ingredient in the algorithm
is an additive error counting structure. This is combined with a non-trivial van-Emde-Boas-style
recursion.

Theorem 3. (Application-2) Let P be a set of N points in 3-D and Q be a set of 3-D dominance
ranges. In the offline 3-D dominance reporting problem, for any q ∈ Q, the goal is to report P ∩ q.
The problem can be solved in O

(
|P |+|Q|

B logM/B
|P |
B + K

B

)
I/Os, where K is the output size.
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The final algorithm is a combination of several ideas: filtering search (to charge the I/Os
performed for a query to its output-size), optimal k-level shallow cuttings (which were not known
before), roughly O(log logN) levels of shallow cuttings, and a cleverly chosen base-case.

To prove the above theorems, we require data structures with specific requirements. For ex-
ample, in Theorem 4 data structures with fast construction I/Os are considered and in Theorem 5
data structure with large additive error is considered. We are not aware of any prior work which
obtains these results using a common framework (Section A), and hence, might be useful for other
problems.

Theorem 4. (Reporting, counting, and selection) Let P be a set of N points in 3-D and γ be
a fixed constant in (0, 1). Then there exists a data structure which can be constructed in O(sort(N))
I/Os and then used to answer a

• 3-D dominance reporting query in O((N/B)γ + t/B) I/Os, where t is the number of points
reported. Given a 3-D dominance query range q, the goal is to report the points in P ∩ q.

• 3-D dominance counting query in O((N/B)γ) I/Os. Given a 3-D dominance query range q,
the goal is to report |P ∩ q|.

• 3-D dominance x, y, z-selection query in O((N/B)γ) I/Os. In an x-selection query, given a
query point q = (qx, qy, qz) and an integer k′ ∈ [1, N ], the goal is to return a point q1 =
(q′x, qy, qz) which dominates k′ points in P . Analogously, in a y-selection query (resp., z-
selection query), the goal is to return a point q2 = (qx, q

′
y, qz) (resp., q3 = (qx, qy, q

′
z)) which

dominates k′ points in P .

Theorem 5. (Offline additive error counting) Let P be a set of N points in 3-D and Q be a
set of 3-D dominance ranges. In the offline additive error counting problem, for each query q ∈ Q,
the goal is to return a value nq such that |P ∩ q| − nq ≤ εN2/3B1/3. The data structure can be
constructed using Oε(sort(N)) I/Os and the queries are answered by using Oε (sort(N) + sort(|Q|))
I/Os.

Our solution for additive error query can be extended to handle smaller values of error (such
as ε
√
NB). However, for our purpose an additive error of εN2/3B1/3 suffices.

The remaining paper is structured as follows. In Section 2, we discuss some preliminaries. In
Section 3, we give an overview of two previous constructions of shallow cuttings for 3-D dominance
ranges in internal memory. Then, in Section 4 we present our optimal-cost construction in the
I/O-model. This is followed by two applications of our construction, offline 3-D dominance approx-
imate counting (in Section 5) and offline 3-D dominance reporting (in Section 6). In the appendix
(Section A), we present the details of our supporting structures. Potential directions for future
work are discussed in Section 7.

2 Preliminaries

Definitions. The conflict list of a cell C ∈ C is defined as the points of P that are inside C. The
apex point of a cell or a 3-D dominance range (−∞, x] × (−∞, y] × (−∞, z] is defined as (x, y, z).
The depth of a point p = (xp, yp, zp) w.r.t. a pointset P is the number of points of P lying in the
cell (−∞, xp]× (−∞, yp]× (−∞, zp].
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Figure 2: An example of k-level 2-D shallow cutting. Here k = 3, so each inner corner di dominates
three points and each outer corner ci dominates six points.

Shallow cuttings for 2-D dominance ranges. As a warm-up, we first introduce shallow
cuttings for 2-D dominance ranges. Let P be a set of N points in 2-D. The collection C of cells in
the k-level shallow cutting of P will be of form (−∞, x]× (−∞, y]. Consider the union of the cells
in C. We will focus on constructing the outer boundary of the union which is shown in Figure 2.
The outer boundary B is a 1-dimensional, monotone, and orthogonal curve. Specifically, B starts
from y = +∞ and consists of alternating vertical and horizontal segments. Let the sequence of
endpoints of B be c1, d1, c2, d2, . . . , dt−1 and ct. The ci’s are the outer corners and the di’s are the
inner corners. The number of points of P dominated by any outer corner (resp., inner corner) will
be at most 2k (resp., equal to k). The k-level shallow cutting for 2-D dominance ranges can be
constructed in O(sort(N)) I/Os. (Note that the 2k bound is stronger than the 10k bound we use
for 3-D shallow cuttings.)

Offline-find-any procedure. The input to the problem is a collection of cells C in the k-level
shallow cutting of P , for any 1 ≤ k ≤ n, and a set Q of 3-D query points. In the offline-find-any
procedure, for each q ∈ Q, the goal is to find any cell in C which contains q or report that none of
them contain q. The distribution-sweeping approach in the survey paper of Vitter [19] can be used
to solve this problem.

Lemma 1. Given a set C of cells in 3-D and a set Q of query points in 3-D, the offline-find-any

procedure requires O
((

|C|+|Q|
B

)
logM/B

|C|
B

)
I/Os.

3 Overview of previous construction algorithms

In this section we give an overview of a couple of previous constructions whose ideas will be required
in our final solution.

3.1 Afshani and Tsakalidis’s construction (AT-construction)

The problem becomes challenging in 3-D. At SODA’14, Afshani and Tsakalidis [5] obtained an
optimal internal memory algorithm that constructs a k-level shallow cutting in O(N log2N) time.
Their algorithm constructs the outer boundary B of the union of the cells in C. In 3-D the outer
boundary is a 2-dimensional, monotone, and orthogonal surface (see Figure 1(a)). The algorithm
combines the sweep-plane approach with a method of maintaining a 2-D k-level shallow cutting
under deletions. Let z1, . . . , zN be the sorted sequence of P in decreasing order of their z-coordinate
values. Starting from z = z1, a plane parallel to xy-plane is moved in the −z direction. The
invariant in the algorithm is to maintain a 2-D shallow cutting for the xy-projections of points of
P below the sweep-plane, by ensuring that the depth of each corner in the 2-D shallow cutting lies
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Figure 3: (a) Outer boundary (in bold) before the patching procedure. The dotted boundary is the
new curve created during the patching procedure. (b) Outer boundary (in bold) after the patching
procedure. The dotted curve was part of the outer boundary before patching. Each outer corner
created during the patching procedure corresponds to the apex point of a 3-D cell in the k-level
cutting of P .

in the range [k, 10k]. When the sweep-plane reaches zi, then zi is deleted and if the invariant is
violated, then the 2-D shallow cutting of xy-projections of zi+1, . . . , zn is updated via a procedure
called patching. See Figure 3. The precise details of the patching procedure are not necessary for
our final algorithm.

The running time of their algorithm can be summarized by the following equation:

T1(N) = Tsort(N)︸ ︷︷ ︸
sorting

+Θ(N) · Tpred(N/k)︸ ︷︷ ︸
bottleneck 1

+O(N/k) · Taux(N)︸ ︷︷ ︸
bottleneck 2

(1)

There are two bottlenecks in adapting their algorithm in the I/O-model. At any point in the
sweep-plane, let L be the ordering of the corners in the 2-D shallow cutting based on their x-
coordinate values. Each time a point zi ∈ P is deleted, a predecessor search is performed on L.
Also, the patching procedure leads to insertion and deletion of corners into L. The predecessor
search is performed to identify all the corners in L dominating zi and then update the conflict lists
of those corners. This is the first bottleneck, since it is not possible to perform Θ(N) updates and
Θ(N) predecessor queries to the list L in sort(N) I/Os. (In fact, in [8] it was established that the
easier problem of batched predecessor queries requires Tpred = Ω(logB N) I/Os per query when the
preprocessing cost is bounded by a polynomial in N .) It is not clear how to reduce the number of
predecessor queries to o(N), and the lower-bound discards the standard strategy in the I/O-model
of performing predecessor search queries in batches.

The second bottleneck is the lack of I/O-efficient data structures for performing the patching
procedure. The patching procedure involves constructing data structures for 3-D dominance x-
selection and dominance y-selection queries on P , and querying them O(N/k) times. For our
purpose, the data structures have to be constructed in O(sort(N)) I/Os. In Section A, we present
such data structures with query I/Os Taux(N) = O((N/B)γ) for some γ ∈ (0, 1) (Theorem 4).

Therefore, the patching will require O
(
N
k

(
N
B

)γ)
I/Os, which is expensive.

3.2 Nekrich and Rahul’s construction (NR-construction)

At SODA’23, Nekrich and Rahul [12] designed a data structure for 4-D dominance reporting query
by constructing several shallow cuttings for 3-D dominance ranges. However, for their application,
the conflict list of the cells were not needed, and only the cells needed to be constructed. They
modified AT-construction to design an algorithm whose running time is proportional to the number
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of cells constructed (specifically O(N log2N) cells were constructed on different subsets fo P in
O(N log52N) time).

For a cell C in the shallow cutting with apex point (x, y, z), let exp(C) be the largest z-coordinate
such that (x, y, exp(C)) dominates less than k points of P . Then exp(C) is defined as the expiry of
C. For a cell C, its expiry exp(C) can be computed via a 3-D dominance z-selection query on P .
Similar to AT’s-approach, starting from z = +∞, the algorithm sweeps a plane parallel to xy-plane
in the −z direction and the same invariant is maintained. The key difference is the event points
visited by the sweep-plane algorithm. In NR-construction, the event points will be exp(C) values
of all cells C in the shallow cutting, which are stored in a simple priority-queue Q.

At each time step, we find the event with the largest z-coordinate zmax in Q and set the
z-coordinate of the sweep-plane to zmax. When the cell C corresponding to zmax expires, the corre-
sponding corner has to be removed from the 2-D shallow cutting at zmax. Therefore, the patching
procedure is performed. After finishing the patching procedure, (a) the events corresponding to
the new inner corners in the 2-D shallow cutting are inserted into Q and the events corresponding
to the deleted corners in the 2-D shallow cutting are removed from Q, (b) for each newly created
outer corner (x, y) in the patching procedure, a new cell with apex point (x, y, zmax) gets created.
We define cre(C) = zmax for each cell C created. The algorithm finishes when the z-coordinate of
the sweep-plane reaches z = −∞. We omit the details of the NR algorithm that are not needed to
obtain our result. The following lemma summarizes the properties of the NR construction that are
relevant for our algorithm.

Lemma 2. Nekrich and Rahul’s construction [12] of k-level shallow cuttings for 3-D dominance
ranges can be summarized as follows:

1. It involves construction of a priority queue and 3-D dominance x, y, z-selection data struc-
tures.1

2. The number of updates and queries on the priority-queue is O(N/k) and the number of 3-D
dominance x, y, z-selection queries is O(N/k).

3. In each selection query, if the query point is q = (qx, qy, qz), then the sweep-plane is at qz and
(qx, qy) is one of the corners in the 2-D shallow cutting of P at qz after patching. The query
integer k′ ≤ 10k will be such that for an x-selection query , the reported point (q′x, qy, qz) will
have q′x > qx. However, for the y-selection and the z-selection queries, the reported points
(qx, q

′
y, qz) and (qx, qy, q

′
z), respectively, will have q′y < qy and q′z < qz.

The running time of NR-construction can be summarized as follows:

T2(N) = Tq

(
N

k

)
︸ ︷︷ ︸

queue

+O

(
N

k

)
· Tsel(N)︸ ︷︷ ︸

bottleneck

(2)

Similar to the second bottleneck in AT-construction, the bottleneck in NR-construction is the I/Os
required to perform the dominance selection queries (with O(sort(N)) construction I/Os for the

data structures, we have O
(
N
k

)
· Tsel(N) = O

(
N
k

(
N
B

)γ)
I/Os which is expensive).

1Nekrich and Rahul [12] originally used 3-D dominance range counting data structure as well, where the goal is
to report |P ∩ q| for a 3-D dominance range q. However, both queries are almost equivalent: we can answer a 3-D
dominance range selection query using O(logN) range counting queries (binary search). Conversely, we can also
answer 3-D dominance range counting query is via O(logN) dominance z-selection queries.
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3.3 Other constructions

At ICALP’14, Afshani, Chan, and Tsakalidis [3] proposed a variant of AT-construction (by sweeping
upwards) for constructing shallow cuttings for 3-D dominance ranges in O(N log2 log2N) time in
the word-RAM model. At STOC’96, Vengroff and Vitter [18] employed a structure that is similar to
3-D shallow cuttings to answer 3-D orthogonal range reporting queries. Unfortunately, the number
of I/Os required to construct their data structure was not considered in their work.

Construction of shallow cuttings for halfspaces in 3-D has been another active area of research.
However, typically the techniques and tools used for these problems (such as vertical decomposition,
ε-cuttings, planar graph separators) have been different from the ones used for 3-D dominance
ranges. For example, at SoCG’15, Chan and Tsakalidis [10] presented an optimal deterministic
internal memory algorithm for the construction of shallow cuttings for halfspaces in 3-D. Their
hierarchical construction relies on the fact that the cells of the shallow cutting do not intersect (to
be precise, interior-disjoint). While this is true in case of shallow cuttings for 3-D halfspaces, this
property is not satisfied for our problem: cells of a k-level shallow cutting for dominance ranges
are intersecting boxes. Also, in their hierarchy the levels go down by a constant factor which is not
ideal for an I/O-efficient algorithm, whereas in our construction levels will go down at a faster rate.

4 Our algorithm for constructing k-level shallow cuttings

We are now ready to prove Theorem 1. Our algorithm follows the general approach used in [5, 12]
and combines it with several other ideas. First, we construct a hierarchy of shallow cuttings such
that the conflict list size of cells decreases exponentially. Second, somewhat counterintuitively,
we use data structures with high query cost and fast pre-processing for 3-D dominance selection
queries. The final algorithm is a combination of six pieces.

4.1 1st piece: Hierarchy of shallow cuttings.

The main idea is to construct a hierarchy of shallow cuttings. We want to construct a k-level
shallow cutting of P where k ≥ M/c and c is a sufficiently large constant. Let ti = (N/B)δ

i
and

ki = max(Bti, k). We select the constant δ in such way that ki−1 ≥ 10ki (for any i satisfying
ki ≥M/c). The algorithm works in stages (starting from stage 0). In the i-th stage, we construct
the ki-level shallow cutting. For the starting case of 0-th stage, since k0 = N , the k0-level shallow
cutting consists of one cell containing all points of P . The algorithm terminates when ki = k.

Lemma 3. The number of shallow cuttings constructed is r = O(logM/B(N/B)).

Proof. Since ki = Bti ≥ M/c, we have ti ≥ M/Bc. Therefore, ti+1 = tδi = ti · 1
t1−δ
i

≤ ti
(M/cB)1−δ .

This implies that r = O(logM/B(N/B)).

4.2 2nd piece: Existence of parent cells.

We will start with some definitions. For all 1 ≤ i ≤ r, we will say that the ki−1-level shallow cutting
is the parent shallow cutting of the ki-level shallow cutting. When the sweep-plane reaches z, then
a cell C is active at z if cre(C) ≤ z ≤ end(C).

In the construction of the ki-level shallow cutting, consider any outer corner (xp, yp) on the 2-D
shallow cutting when the sweep-plane is at position z. Then the parent cell of point p = (xp, yp, z)
is the cell C in the parent shallow cutting, such that (a) the apex point of C has the smallest
y-coordinate among all parent cells that are active at z, and (b) the apex point of C dominates p.
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Lemma 4. In the construction of the ki-level shallow cutting (for i ≥ 1), consider the sweep-plane
at any z. For each outer corner (xp, yp) on the 2-D shallow cutting at z, a parent cell always exists
for the point (xp, yp, z).

Proof. For any outer corner (xp, yp) on the 2-D shallow cutting, the depth of (xp, yp, z) will be less
than or equal to 10ki ≤ ki−1 (invariant maintained by AT-construction). Therefore, there will be
at least one outer corner in the 2-D shallow cutting of the parent at z which dominates (xp, yp)
(in terms of x and y coordinates). Let C be the cell corresponding to one such outer corner in the
parent. Then C is active at time z and the apex point of C dominates (xp, yp, z). Therefore, a
parent cell exists for (xp, yp, z).

4.3 3rd piece: Query expensive structures on small-sized inputs.

Our next idea is that we will construct query expensive data structures, but only on small-sized
inputs and ensure that query I/Os w.r.t. a cell in the ki-level shallow cutting is bounded by O(ki/B)
(anyways each cell in the ki-level shallow cutting has a budget of ki/B to store its conflict list).
The existence of parent cells and the following lemma will let us achieve the goal.

Lemma 5. In the construction of the ki-level shallow cutting (for i ≥ 1), consider the sweep-plane
at any time z. If patching is performed at time z, then let p = (xp, yp) be a new outer corner created
with parent cell C. Then the 3-D dominance x, y, z-selection queries with query point p = (xp, yp, z)
will output a point which lies inside C.

Proof. This is trivial to see for a y-selection query since p already lies inside C and hence, the point
reported by the query will also lie inside C (see Lemma 2). Similarly, it holds for a z-selection
query as well. The non-trivial case is the x-selection query.

Let p′′ denote the point where the horizontal ray from p hits the 2-D shallow cutting of the
parent at time z. See Figure 4. Let d be the inner corner immediately below p′′ and c be the outer
corner immediately above p′′. Since the depth of d is at least ki−1, the depth of p′′ will also be
at least ki−1. Consider the 3-D dominance x-selection query with query point p and parameter
k′ ≤ 10ki ≤ ki−1. This implies that the output, p′, will have an x-coordinate less than or equal
to p′′. Now the cell corresponding to the outer corner c is the parent cell of p and contains p′ as
well.

Lemma 6. Assume that the ki−1-level shallow cutting of P has been constructed in the (i−1)-th
stage. Ignoring the I/Os required to find the parent cells, in the i-th stage, the ki-level shallow

cutting can be constructed in O
(
N
ki
logB

N
ki

+ N
B logM/B

ki−1

B

)
I/Os.

Proof. For each cell in the ki−1-level shallow cutting, based on its conflict list we construct data
structures supporting 3-D dominance reporting and 3-D dominance x, y, z-selection queries (Theo-

rem 4) which requires O((N/ki−1) · ki−1

B logM/B(
ki−1

B )) = O
(
N
B logM/B

ki−1

B

)
I/Os. By bullet 2 in

Lemma 2, O(N/ki) x, y, z-selection queries will be performed. For each selection query, if the cost
of finding the parent cell of the query point is ignored, then by Lemma 5 the answer to the query
can be obtained by querying the x, y, z-selection data structure built at the parent cell. The query
I/Os of each selection query will then be O((ki−1/B)γ). Therefore, the number of I/Os performed

to answer the selection queries is O
(
N
ki

(
ki−1

B

)γ)
= O

(
N
Bti
· tγi−1

)
= O

(
N
Bti
· tδi−1

)
= O

(
N
B

)
, by

choosing γ < δ.
By bullet 1 in Lemma 2, the number of operations on the priority-queue are O(N/ki) and using

a vanilla B-tree as a priority-queue O
(
N
ki
logB

N
ki

)
I/Os are performed.
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c

d

p p′ p′′

Figure 4: An example of x-selection query in Lemma 5. The point p is a corner of 2-D shallow
cutting of the ki-level. The corner c is the outer corner of the parent staircase corresponding to the
parent cell C of p.

Finally, for each cell C in the ki-level cutting, its conflict list is generated by querying its parent

cell’s 3-D dominance reporting data structure. The number of I/Os performed isO
((

ki−1

B

)γ
+ ki

B

)
=

O(ki/B). Since the number of cells in the ki-level cutting is O(N/ki), the total number of I/Os
required to generate the conflict lists is O(N/B).

4.4 4th piece: Finding parent cells efficiently.

By bullet 2 in Lemma 2, O(N/ki) x, y, z-selection queries are performed in the construction of
ki-level shallow cutting. To perform each selection query, we first need an efficient routine to find
the parent cell. Once the parent cell is found, then the selection query is performed on the data
structure corresponding to the parent cell.

We will use partially persistent B-trees [7] to store the cells in the ki−1-level shallow cutting.
Versions of the partially persistent data structure are parameterized by z-coordinates: a cell is
inserted (resp. deleted) at time t if the corresponding outer corner is added to the 2-D shallow
cutting (resp. removed from the 2-D shallow cutting) when the z-coordinate of the sweep-plane is
equal to t. This data structure supports successor queries with respect to y- coordinates of its apex
points: for any pair (zq, yq) we can find the cell with the smallest y-coordinate among all cells of
the parent shallow cutting that are active at time zq and whose y-coordinate is not smaller than
yq.

Lemma 7. In the construction of ki-level shallow cutting, the number of I/Os performed to compute

the parent cells is
(
N
ki
logB

N
ki−1

)
.

Proof. The number of cells in the ki−1-level shallow cutting is O(N/ki−1) and using persistent
B-trees, successor queries and updates can be supported in O(logB(N/ki−1)) I/Os. By bullet 2 in
Lemma 2, the number of x, y, z-selection queries will be O(N/ki), and hence, the number of I/Os

performed to compute the parent cells is
(
N
ki
logB

N
ki−1

)
.

4.5 5th piece: Obtaining log bounds with base M/B.

To obtain O(sort(N)) I/Os bound, we need base in the logarithm to be M/B. Inspite of the fact
that finding parent cells and operations on the priority queue requires O(logB(N/k)) query I/Os,
we are saved by the fact that k is large.

Lemma 8. For k = Ω(M), we have O
(
N
k logB

N
k

)
= O

(
N
B logM/B

N
B

)
.

Proof. First, we will establish that B log(M/B) ≤ cM logB, where c is a sufficiently large constant.
When M ≤ Bc, we have cM logB = M logBc ≥M logM ≥ B log(M/B). When M > Bc, we have

10



cM logB ≥ cB ·M1−1/c logB ≥ cB ·M1−1/c ≥ cB logM ≥ cB log(M/B). Using this fact, we have

N

k
· log(N/k)

logB
≤ N

M
· log(N/B)

logB
≤ O

(
N

B

log(N/B)

log(M/B)

)
.

In summary, in comparison to NR-construction, the running time of our algorithm will be the
following:

T3(N) = O

(
Tq

(
N

k

)
+

r∑
i=1

N

ki
· Tsel(ki−1) +

N

k
· logB

N

k

)
(3)

Lemma 9. For k = Ω(M), the k-level shallow cutting for 3-D dominance ranges on N points can

be constructed in O
(
N
B logM/B

(
N
B

))
I/Os.

Proof. By combining Lemma 6 and Lemma 7, the number of I/Os required to construct ki-level

shallow cutting is O
(
N
ki
logB

N
ki

+ N
B logM/B

ki−1

B

)
. Therefore,

r∑
i=1

O

(
N

ki
logB

N

ki
+

N

B
logM/B

ki−1

B

)
= O

(
N

k
logB

N

k
+

N

B
logM/B

N

B

)

By Lemma 8, this can be bounded by O
(
N
B logM/B

N
B

)
.

4.6 Final piece: Handling Small Values of k.

We will need a different procedure to handle k = O(M). We will perform a two-level cutting. First,
we will construct an (M/c)-level shallow cutting of P using Lemma 9. For each cell, say C, in the
(M/c)-level, load its entire conflict list into the internal memory. This can be done since the size of
the conflict list is O(M). Next run an internal memory algorithm to compute the k-level shallow
cutting of the conflict list of C. The final output is the union of the shallow cutting obtained from
each cell in the (M/c)-level.

Lemma 10. Suppose that we are given an (M/c)-level shallow cutting of P for some constant
c > 1. Then for k < M/c, the k-level shallow cutting can be constructed in O(N/B) I/Os.

Proof. We will establish that the three properties of a k-level shallow cutting of P are satisfied by
the algorithm. The number of cells constructed in the final cutting is O(N/M) ·O(M/k) = O(N/k)
(first property). It is easy to verify that the number of points of P lying inside each cell in the
final cutting is O(k) (second property). Consider a point q that dominates less than or equal to
k points in P . By third property of M/c-level shallow cutting of P , there exists a cell C which
contains q. The number of points in the conflict list of C dominated by q will still be less than or
equal to k. Therefore, in the k-level shallow cutting of conflict list of C, there will exist some cell
which contains q (third property).

Loading the conflict list of all the cells in the (M/c)-level shallow cutting requires O(N/M) ·
O(M/B) = O(N/B) I/Os. For each cell in the (M/c)-level shallow cutting, writing the k-level
shallow cutting of its conflict-list into external memory requires O(M/B) I/Os. Over all the cells
in the (M/c)-level shallow cutting, it would require O(N/M) ·O(M/B) = O(N/B) I/Os.

Combining Lemma 9 and Lemma 10 finishes the proof of Theorem 1.
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5 Application-1: Offline 3-D dominance approximate counting

Recall that P is a set of N points in 3-D and Q is a set of query 3-D dominance ranges. Consider
a parameter ε with a fixed value in (0, 1). In the offline 3-D dominance approximate counting
problem, the goal is to report a value in the range [(1 − ε)|P ∩ q|, |P ∩ q|], for all q ∈ Q. We will
prove Theorem 2 in this section.

5.1 Data structure and query algorithm

The overall data structure is recursive and we start at the root with pointset P . Construct a
(N2/3B1/3)-level cutting C based on P (Theorem 1). Also, construct an additive error counting
structure based on P (Theorem 5). Finally, for each cell C ∈ C, recurse on PC , where PC is the
conflict list of C. The recursion stops when the size of pointset becomes less than or equal to M/c,
where c is a sufficiently large constant.

The query algorithm will start from the root of the data structure. A point in Q is deep if no
cell in C contains it; otherwise, it is shallow. Using the offline-find-any procedure on C and Q, we
will classify each point in Q as shallow or deep. The result for the deep query points are obtained
by querying the additive error counting structure. If a point q ∈ Q is shallow, then it is assigned
to one of the cells containing it. The shallow points are handled recursively. Specifically, for each
cell C ∈ C, recurse on Qc, where Qc ⊆ Q is the set of shallow query points assigned to C.

To handle the base case, where|P | ≤ M/c, first the points in P are loaded into the memory.
Then the query objects are streamed into the main memory one block at a time, the results for
these queries are obtained without any additional I/Os and written to the external memory.

5.2 Analysis.

We will first bound the number of I/Os performed by the algorithm.

Lemma 11. The number of I/Os required to construct the data structure is O

(
|P |
B

(
logM/B

|P |
B

)O(1)
)
.

Proof. The (N2/3B1/3)-level cutting (Theorem 1) and the additive error counting structure (The-
orem 5) can be constructed in O(sort(|P |) I/Os. Therefore, the total number of I/Os required to
construct the data structure is:

T (N) =

{
c1
(
N
B

)1/3 · T (N2/3B1/3) + c2N
B logM/B

N
B , if N ≥M/c

O(N/B), otherwise

where c1(N/B)1/3 is the number of cells in the cutting and c2 is the constant inside O(sort(N)).

We will establish that T (N) ≤ c3N
B

(
logM/B

N
B

)c4
, where c3 = 2c2 and c1

(
2
3

)c4 = 1
2 . As such,

T (N) ≤ c1

(
N

B

)1/3

· c3
N2/3B1/3

B

(
logM/B

N2/3B1/3

B

)c4

+
c2N

B
logM/B

N

B

≤ c1c3
N

B
·
(
2

3

)c4 (
logM/B

N

B

)c4

+
c2N

B
logM/B

N

B

≤ c2N

B

(
logM/B

N

B

)c4

+
c2N

B

(
logM/B

N

B

)c4

=
c3N

B

(
logM/B

N

B

)c4
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Lemma 12. The number of I/Os performed by the query algorithm is

Oε

(
|P |
B

(
logM/B

|P |
B

)O(1)
+ |Q|

B logM/B
N
B

)
.

Proof. By Theorem 5 and Theorem 1, the number of I/Os performed by the query algorithm at the

root isOε

(
sort(N) + sort(|Q|) +

(
|C|+|Q|

B

)
logM/B

|C|
B

)
, which can be bounded byOε

(
sort(N) + |Q|

B logM/B
N
B

)
.

The Oε(sort(N)) I/Os can be charged to the construction of the data structure, and hence, by the

proof of Lemma 11, it will be bounded by Oε

(
|P |
B

(
logM/B

|P |
B

)O(1)
)
in the overall query algorithm.

Therefore, we will focus on the Oε

(
|Q|
B logM/B

N
B

)
term. As such, the amortized number of

I/Os performed for a single query point is Oε

(
1
B logM/B

N
B

)
. Including recursion, the number of

I/Os performed to answer a single query is:

q(N) ≤ q(N2/3B1/3) +Oε

(
1

B
logM/B

N

B

)
= Oε

(
1

B
logM/B

N

B

)

Lemma 13. For each q ∈ Q, the algorithm returns a (1− ε)-approximation of |P ∩ q|.

Proof. For any deep query point q at the root, the value nq reported by the additive error counting
structure will be such that nq ≥ |P ∩ q| − εN2/3B1/3 ≥ (1− ε)|P ∩ q|, since |P ∩ q| ≥ N2/3B1/3 for
a deep point (third property of shallow cuttings). The same argument applies at each node in the
data structure (w.r.t. deep queries at that node).

6 Application-2: Offline 3-D dominance reporting

Let P be a set of N points in 3-D and let Q be a set of 3-D dominance ranges. In the offline 3-D
dominance reporting problem, the goal is to report P ∩ q, for all q ∈ Q. We will prove Theorem 3
in this section.

6.1 Data structure

We will use two data structures as black-box to design our final data structure.

1. For all 0 ≤ i ≤ ℓ, we will construct ki-level shallow cutting based on P (Theorem 1) and
carefully choose ℓ such that:

ki = Bti, ti = (N/B)δ
i
for some δ ∈ (0, 1) and kℓ = max{M, logM/B(N/B)}.

2. For all 0 ≤ i ≤ ℓ, based on the conflict list of each cell in the ki-level, construct a 3-D
dominance reporting structure (Theorem 4).

6.2 Query algorithm

For each dominance range q ∈ Q, the goal is to find the integer j such that the apex point of q
does not lie inside any cell in the kj+1-level cutting but lies inside at least one cell in the kj-level
cutting. Initially, let Qℓ ← Q. The algorithm will work in iterations and in each iteration we will
process the queries in Q in a batched manner as follows:
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(1) In the i-th iteration (0 ≤ i ≤ ℓ), partition the dominance ranges in Qℓ−i into a shallow set and
a deep set. A dominance range in Qℓ−i is classified as shallow if the apex point of the dominance
range lies inside some cell in the (kℓ−i)-level cutting; otherwise, it is classified as deep.
(2) Run the offline-find-any procedure on Qℓ−i and the cells in the (kℓ−i)-level cutting (Theorem 1).
This procedure partitions the set Qℓ−i into shallow and deep, and for each shallow dominance query
q ∈ Qℓ−i, reports a cell Cq in the cutting which contains q.
(3) Let Qs

ℓ−i ⊆ Qℓ−i be the set of shallow ranges. Invoke Report(P,Qs
ℓ−i), which reports P ∩ q,

for all q ∈ Qs
ℓ−i. Assign Qℓ−i−1 to be the deep set in Qℓ−i and continue to the next iteration.

(4) At the end of the ℓ-th iteration, Q−1 is the set of unanswered queries. For each q ∈ Q−1, do a
brute-force scan of P to report P ∩ q (since |P ∩ q| = Ω(N)).

Report(P,Qs
ℓ−i):

1. For all q ∈ Qs
ℓ−i, report P ∩ q by the querying the 3-D dominance reporting structure built for

Cq.
2. As an exception, we will handle the case of kℓ = M and i = 0 differently. We will process each
cell in (kℓ)-level one-by-one. Let C be the current cell being processed. Load the entire conflict list
of C is into the main-memory. The queries in Qs

ℓ−i assigned to cell C are read one block at a time
into the main-memory. Using any internal memory algorithm, the 3-D dominance reporting query
is answered for the queries in the block, and the output is written back to external memory.

6.3 Analysis

The easy part of the analysis is bounding the number of I/Os required to construct the data
structure.

Lemma 14. The number of I/Os required to construct the data-structure is O(sort(|P |).

Proof. Using Theorem 1, in O(sort(|P |)) I/Os all the ki-level shallow cuttings can be constructed.
The number of I/Os required to construct the 3-D dominance reporting structure at a cell in the
ki-level shallow cutting is (sort(ki)) I/Os. Therefore, the number of I/Os required to construct the
3-D dominance reporting structures across all the ℓ+ 1 levels will be

ℓ∑
i=0

O

(
N

ki
· sort(ki)

)
=

ℓ∑
i=0

O

(
N

ki
· ki
B

logM/B(ki/B)

)
= O(sort(N)).

The non-trivial part of the analysis is bounding the number of I/Os to perform ℓ+1 iterations
of offline-find-any procedure. The j-th iteration of offline-find-any procedure has two terms: (a)

the first term is O
(
|Cℓ−j |
B · logM/B

|Cℓ−j |
B

)
, and (b) the second term is O

(
|Qℓ−j |

B · logM/B
|Cℓ−j |
B

)
. We

will analyze both the terms separately.

Lemma 15. Adding up the first term over ℓ+ 1 iterations is equal to O(sort(|P |)).

Proof. There are two cases to consider. First, assume kℓ = logM/B(N/B) ≥M . Then, we have

ℓ∑
i=0

O

(
|P |
Bki

logM/B

|P |
Bki

)
= O

(
|P |
B

logM/B

|P |
B

)
·

ℓ∑
i=0

1

ki
= O

(
|P |
B

logM/B

|P |
B

)
,

since
∑ℓ

i=0
1
ki
≤ ℓ

kℓ
=

O
(
log

(
log(N/B)
log(kℓ/B)

))
logM/B(N/B) = O

(
logkℓ/B

(N/B)

logM/B(N/B)

)
= O

(
log(M/B)
log(kℓ/B)

)
= O(1).
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Next, assume that kℓ = M ≥ logM/B(N/B). Then, we have ℓ = log
(

log(N/B)
log(M/B)

)
= logM/B(N/B),

and hence,

ℓ∑
i=0

O

(
|P |
Bki

logM/B

|P |
Bki

)
=

(
ℓ

M

)
·O
(
|P |
B

logM/B

|P |
B

)
= O

(
|P |
B

logM/B

|P |
B

)
.

Now we will analyze the second term. Consider a query point q which was deep in the i-th

iteration, but became shallow in the (i + 1)-th iteration. Then, |P∩q|
B = Ω

(
kℓ−i

B

)
. The number

of I/Os performed by the offline-find-any procedure in the j-th iteration, for any j ≤ i, will be

O
(
|Qℓ−j |

B logM/B
|P |
B

)
. As such, amortized cost associated with q for the offline-find-any procedure

is 1
|Qℓ−j | · O

(
|Qℓ−j |

B logM/B
|P |
B

)
= O

(
1
B logM/B

|P |
B

)
. For i iterations, the total amortized cost

associated with q will be O
(

i
B logM/B

|P |
B

)
. The following lemma establishes that the total amor-

tized cost associated with q for participating in i iterations of the offline-find-any procedure can be
charged to the size of the output reported for query q.

Lemma 16. Consider a query point q which is deep in the i-th iteration, but shallow in the (i+1)-th

iteration. Then, i
B logM/B(N/B) = O

(
kℓ−i

B

)
= O

(
|P∩q|
B

)
.

Proof. For all 0 ≤ j ≤ ℓ− 2, we first establish that

kj − kj+1 ≥ kj+1 − kj+2. (4)

Since M
B = Ω(1), we claim that tℓ =

kℓ
B = 1

B max{M, logM/B(N/B)} ≥ 21/1−δ. This in turn implies

tj ≥ tℓ ≥ 21/1−δ, then t1−δ
j ≥ 2 and finally tj ≥ 2tδj . Therefore,

tj + tδ
2

j ≥ 2tδj =⇒ tj − tj+1 ≥ tj+1 − tj+2 =⇒ kj − kj+1 ≥ kj+1 − kj+2.

Via similar calculations it can be established that

kℓ−1 − kℓ ≥ kℓ. (5)

Finally, by combining Equations 4 and 5, we observe that kℓ−i−kℓ =
∑ℓ−1

j=ℓ−i(kj−kj+1) = Ω(ikℓ),

which implies kℓ−i = Ω(ikℓ) = Ω
(
i logM/B(N/B)

)
.

Lemma 17. Adding up the second term over ℓ+ 1 iterations is equal to O(K/B).

Proof. For each query q ∈ Q, let q(i) be the number of iterations of offline-find-any proce-

dures q participates. Then, by the amortization argument, we have
∑ℓ

j=0O
(
|Qℓ−j |

B logM/B
N
B

)
=∑

q∈QO
(
q(i)
B logM/B

N
B

)
. Via Lemma 16, we have

∑
q∈QO

(
q(i)
B logM/B

N
B

)
=
∑

q∈QO
(
|P∩q|
B

)
=

O(K/B).

Lemma 18. The number of I/Os performed by the query algorithm is O
(
sort(N) + |Q|

B logM/B
N
B + K

B

)
.
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Proof. The first case we consider is i = 0 and kℓ = M . Then the number of I/Os performed is
dominated by the I/Os needed to (a) read the conflict list of all the cells in kℓ-level, (b) read the
queries in Qℓ, and (c) write the output back to the external memory. In total, this requires only

O
(
|P |+|Q|

B + K
B

)
I/Os.

For all 0 ≤ i ≤ ℓ, recall that Qs
ℓ−i ⊆ Qℓ−i is the shallow set in the i-th iteration. The second

case we consider is i = 0 and kℓ = logM/B(N/B). For each q ∈ Qs
ℓ , querying the 3-D dominance

reporting structure built on P ∩ Cq requires

O

|Qs
ℓ |
(
logM/B(N/B)

B

)γ

+
∑
q∈Qs

ℓ

|P ∩ q|
B

 ≤ O

(
|Q|
B

logM/B

N

B
+

K

B

)
I/Os.

The final case we consider is i ∈ [1, ℓ]. Consider any i ∈ [1, ℓ]. Then for any q ∈ Qs
ℓ−i,(

kℓ−i

B

)γ

+
|P ∩ q|

B
≤ tγℓ−i +

|P ∩ q|
B

≤ (tℓ−i+1)
γ/δ +

|P ∩ q|
B

≤ tℓ−i+1 +
|P ∩ q|

B
≤ 2 · |P ∩ q|

B
,

where we use the fact that δ ≥ γ and |P ∩ q| ≥ kℓ−i+1. Therefore, for all 1 ≤ i ≤ ℓ and for all
q ∈ Qs

ℓ−i, querying the 3-D dominance reporting structure built on P ∩ Cq requires

ℓ∑
i=1

∑
q∈Qs

ℓ−i

O

((
kℓ−i

B

)γ

+
|P ∩ q|

B

)
=

ℓ∑
i=1

∑
q∈Qs

ℓ−i

O

(
|P ∩ q|

B

)
= O(K/B) I/Os.

Finally, from Lemma 15 and Lemma 17, the number of I/Os performed by all the iterations of
the offline-find-any query procedure is bounded by O

(
sort(N) + K

B

)
.

7 Conclusion and future work

We hope that our work will lead to further work on 3-D orthogonal range searching and the related
problems in the I/O-model. We finish by mentioning some future directions:

• An immediate direction is to design an optimal algorithm for offline 3-D dominance approxi-
mate counting problem.

• Studying 3-D dominance reporting and 3-D dominance approximate counting in the online
setting where the queries arrive one after the other. Currently, efficient construction of these
data structures are not known.

• Computing skyline or maximal points of P in 3-D in the I/O model has received attention [17,
11]. Skyline points and the k-level shallow cuttings for dominance ranges seem related in their
structures. Is there a common framework to design algorithms for both the problems?
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A A common framework for supporting structures

In this section we will construct data structures which are needed in the algorithms for constructing
the k-level shallow cutting in Section 4 and the two applications (in Section 5 and 6). We will present
a common framework for constructing these data structures. We are not aware of results in the
literature which obtain the precise results we need. We will prove Theorem 4 and Theorem 5.

(a) (b)

q
C

Figure 5: For simplicity, the root node is shown in 2-D. (a) An example with 24 points and α = 5.
If the apex point of a query dominance range lies in cell C, then the cells shaded pink lie completely
inside the query region. Therefore, for cell C we have n(C) = 10. (b) The blue portion of the query
region is handled at the root itself. We will recurse on the pink portion.

A.1 Proof of Theorem 4

3-D dominance x, y, z-selection queries can be trivially reduced to O(log2N) 3-D dominance count-
ing queries (via binary search). Therefore, we will focus our discussion on the reporting and the
counting queries. Our final data structure will be a tree structure. We will first describe the root
node of the structure.

The root node. Let P be a set of N points in 3-D. Let X = {X1, X2, . . . , Xα} be a set of α
planes such that (a) they are perpendicular to the x-axis, (b) for all i < j, plane Xi has a smaller
x-coordinate than Xj , and (c) the number of points of P lying between two consecutive planes is
N/(α − 1). The value of α will be determined later. Analogously define a set Y = {Y1, . . . , Yα}
consisting of α planes w.r.t. the y-axis and a set Z = {Z1, . . . , Zα} consisting of α planes w.r.t.
the z-axis. For all 1 ≤ i ≤ α, let X+

i and X−
i be the locus of points in 3-D which have a higher

and lower x-coordinate, respectively, than the x-coordinate of the plane Xi. Analogously, for all
1 ≤ i ≤ α, define Y +

i , Y −
i , Z+

i , and Z−
i . Then, for all 1 ≤ i, j, k ≤ α−1, a cell (i, j, k) is the cuboid

(X+
i , X−

i+1) × (Y +
j , Y −

j+1) × (Z+
k , Z−

k+1). Sets X ,Y, and Z can be constructed trivially in sort(N)
I/Os by sorting P in the respective dimension. See Figure 5(a).

Define conflict list of a cell to be the points of P lying inside the cell. The next task is to
compute the conflict list of each cell.

• For all 1 ≤ i ≤ α−1, compute the conflict list, say Pi, of (X
+
i , X−

i+1)×(−∞,+∞)×(−∞,+∞).
This can done in O(N/B) I/Os by scanning the sorted list of P along the x-axis.

• Fix an i in the range [1, α−1]. Sort the points in Pi along the y-axis. For all 1 ≤ j ≤
α−1, compute the conflict list, say Pij , of (X

+
i , X−

i+1) × (Y +
j , Y −

j+1) × (−∞,+∞). Perform

19



this step for all values of i in the range [1, α−1]. The number of I/Os performed will be∑α
i=1O

(
|Pi|
B logM/B

|Pi|
B + α

)
= O

(
N
B logM/B

N
B + α2

)
.

• Finally, fix two integers i and j in the range [1, α−1]. Sort the points in Pij along the z-
axis. For all 1 ≤ k ≤ α−1, compute the conflict list, say Pij , of (X

+
i , X−

i+1) × (Y +
j , Y −

j+1) ×
(Z+

k , Z−
k+1). Perform this step for all values of i and j in the range [1, α−1]. The number of

I/Os performed will be
∑α

i=1

∑α
j=1O

(
|Pij |
B logM/B

|Pij |
B + α

)
= O

(
N
B logM/B

N
B + α3

)
.

Recursive step. At the root node, the sets X ,Y, and Z, and the conflict list (along with its
size) of each cell is stored. Next, recursively construct the data structure based on the following
3(α − 1) subsets of P : for all 1 ≤ i ≤ α−1, (a) the conflict list of (X+

i , X−
i+1) × (−∞,+∞) ×

(−∞,+∞), (b) the conflict list of (−∞,+∞)× (Y +
j , Y −

j+1)× (−∞,+∞), and (c) the conflict list of

(−∞,+∞)× (−∞,+∞)× (Z+
k , Z−

k+1). The recursion stops when the number of points fall below
Bα3.

Lemma 19. By setting α = (N/B)γ/c (for a sufficiently large constant c), the number of I/Os
needed to build the data structure is Oγ(sort(N)).

Proof. Let h be the height of the data structure. The number of points associated with a node at
depth ℓ will be N/αℓ. Therefore,

N/αh = Bα3 =⇒ N

B
= αh+3 =⇒ h =

c

γ
− 3.

The number of I/Os needed to build the root node is O(sort(N)+α3) = O(sort(N)). Therefore, the
amortized I/Os needed per point in P will be O(sort(N)/N). Since a point belongs to 3h = Oγ(1)
nodes in the tree, the amortized I/Os needed per point in the entire tree will be Oγ(sort(N)/N).
Hence, the overall number of I/Os is Oγ(sort(N)).

Query algorithm. Assume that the query region of the form q = [qx,∞) × [qy,∞) × [qz,∞).
At the root node of the data structure, let Cq be the cells which lie completely inside q. For the
reporting query, we report the conflict list of all the cells in Cq. Let n(Cq) be the total size of the
conflict list of the cells in Cq (this value can be precomputed and stored at each cell).

Let (i, j, k) be the cell containing the apex point (qx, qy, qz). Define Ri = (X+
i , X−

i+1) ×
(−∞,+∞) × (−∞,+∞), Rj = (−∞,+∞) × (Y +

j , Y −
j+1) × (−∞,+∞), and Rk = (−∞,+∞) ×

(−∞,+∞)× (Z+
k , Z−

k+1). Then we recursively query the children corresponding to Ri, Rj , and Rk

with query regions q∩R1, (q \R1)∩R2, and (q \R1 \R2)∩R3, respectively. (This is done to avoid
reporting duplicates or counting a point multiple times.) See Figure 5(b). When a leaf node is
visited, then a linear scan of the pointset is performed. The output of the counting query will be
the sum of (a) n(Cq)’s over all the nodes visited, and (b) the number of points in the leaf nodes
which lie inside q.

Lemma 20. The number of I/Os to perform a 3-D dominance reporting query and a 3-D dominance
counting query on N points is O((N/B)γ+t/B) and O((N/B)γ), respectively, where t is the number
of points reported.

Proof. Ignoring the I/Os needed to report the points, the I/Os performed at any non-leaf or a
leaf node is O(α3). Since the number of nodes visited is 3h = Oγ(1), the total query cost is
Oγ(α

3) = O((N/B)γ).
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A.2 Proof of Theorem 5

For the offline additive error counting query, data structure will simply be the root node as con-

structed above. Importantly, we do not recurse. By setting α = 3
ε

(
N
B

)1/3
, the number of I/Os

needed to build the data structure is O(sort(N) + α3) = Oε(sort(N)).
LetQ be the set of 3-D dominance queries. The approach used to compute the conflict list of each

cell (w.r.t. P ) can be adapted to compute in Oε(sort(N)+sort(|Q|) I/Os the conflict list of each cell
(w.r.t. Q, i.e., locating the cell containing the apex point of each query in Q). Then for each query
q ∈ Q, we will report n(Cq) as the estimate. It is easy to verify that |P ∩q|−nq ≤ 3N

α = εN2/3B1/3.

Remark. This data structure can be extended to handle smaller values of error, such as
√
NB,

if we recurse for a constant number of levels.

21


