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We solve instances of a general class of problems defined as follows: Preprocess a set S of
possibly weighted colored geometric objects (e.g. points/orthogonal segments/rectangles)
in IRd, d ≥ 1 such that given a query orthogonal range q (e.g. hyperbox/point), we can
report efficiently for each distinct color c of the points in S ∩ q, the tuple 〈 c, F(c) 〉
where F(c) is a function (e.g. weighted sum, bounding box etc.) of the objects of color

c in q.

Keywords: Geometric searching; output-sensitive querying; colored or generalized inter-
section aggregate problems.

1. Introduction

Range searching is a fairly well-studied problem in Computational Geometry [2]. In

such a problem, the goal is to preprocess a set S of n geometric objects to report or

∗A preliminary 4-page version of this paper appears in the Proceedings of the Canadian Conference
on Computational Geometry, 2009.
†Corresponding author.
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count the intersections of the objects in S with a given query range q. The paper

by Agarwal and Erickson [2] provides a comprehensive survey of geometric range

searching.

There arise situations in which it is not sufficient to merely report or count the

objects of S intersecting with the query range q. In applications like on-line ana-

lytical processing (OLAP), geographic information systems (GIS) and information

retrieval (IR), aggregation plays an important role in summarizing information [25]

and hence large number of algorithms and storage schemes have been proposed to

support such queries.

In a class of problems called range-aggregate query problems [25] many composite

queries involving range searching are considered, wherein one needs to compute the

aggregate function of the objects in S ∩ q rather than report (or count) all of them

as in a range reporting (or counting) query [19, 15].

In colored intersection searching (also known in the literature as generalized

intersection searching and categorical intersection searching) [18], a set of objects

S comes aggregated in groups and we indicate the group an object belongs to by

assigning each group a unique color. Our goal is to preprocess these objects such

that given a query q, the distinct colors of the objects in S that intersect q can be

reported or counted efficiently [11, 12, 13, 14].

1.1. Problem statement

In this work, we consider a general class of problems and the problem statement is

as follows:

• We are given a set S of possibly weighted objects in IRd, d ≥ 1 which comes

aggregated in groups and we indicate the group an object belongs to by assigning

each group a unique color. The goal is to preprocess S such that given a query

orthogonal range q, we can report efficiently for each distinct color c of the objects

in S ∩ q, the tuple 〈 c, F(c) 〉 where F(c) is a function of the objects of color c

in q. The function F is assumed to be a commutative semigroup which allows us

to combine results of subproblems without losing correctness.

Lai et al. [20] studied this class of problems for approximate queries for functions

like min, max, sum, count, report and heavy. If F(c) = NULL, the unweighted

variant of the problem is the generalized orthogonal range reporting problem [18].

We assume that the dimension d is a constant relative to n and denote the coordinate

axes by x1, x2, . . . , xd.

1.2. Motivation

The above class of queries has been well studied in the database community

as “GROUP-BY ” queries. The “GROUP-BY ” is a common basic operation in

databases and is applied to the categorical attributes [24, 3, 10]. As remarked in
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[3], they are among the most important class of queries in OLAP (“Online Ana-

lytical Processing”) applications in decision support systems. As an example of a

GROUP-BY query, consider a database of mutual funds which has three attributes

for each fund: its annual total return, its beta (a real number measuring the fund’s

volatility) and the fund family the fund belongs to. Whereas the first two attributes

are range attributes (on which we can perform range searching), the third one is

not. A typical query is to determine the families that offer funds whose total return

is between say 15% and 20% and whose beta is between, say, 0.9 and 1.1 and report

the number of funds in the given range for each such family. In database terminol-

ogy, this is a GROUP-BY on the fund family attribute with aggregation operation

COUNT . This is also an instance of the weighted version of the problem above for

d = 2, wherein each object is a point having unit weight.

1.3. Related work

In a 1-dimensional static type-2 range counting problem, we wish to preprocess a

set S of n colored points, so that for each color intersected by a query interval q =

[a1, b1], the number of points of that color in q can be reported efficiently. A solution

that takes O(n log n) space and supports queries in time O(log n+C), C being the

number of colors reported, was given in [11]. The space bound was improved to

O(n) in [4]. For the 2-dimensional static type-2 range counting problem, a solution

that takes O(n log n) space and O(log2 n+C logn) query time was given in [4]. For

the 1-dimensional static type-2 point enclosure counting problem (here set S is n

intervals and query q is a point), a solution that takes O(n) space and O(log n+C)

query time was given in [11]. To the best of our knowledge, no other results are

known for these problems.

2. Our Contributions

In this paper, we have come up with output sensitive solutions while using near-

linear space. The results obtained in this paper are summarized in Table 1. The

flow of the paper is as follows: In Section 2, we consider the ‘colored weighted sum

problem’ (F(c) is weighted sum) in IRd, d ≥ 1. The technique of ‘adding range

restrictions’ is suitably adapted in this section for solving some of the problems

considered in this paper. In Section 3, the ‘colored bounding box problem’ (F(c) is

bounding box) in IRd, d ≥ 1. A variation of this problem is considered in Section

4, wherein each color needs to have at least two points inside the query region. In

Section 5 and 6, the ‘colored point enclosure weighted sum’ problem is considered

in IR1 and IR2, respectively. Section 7 deals with ‘Colored segment intersection

weighted sum’ problem in IR2. Finally in Section 8 we conclude our work and

mention some open problems.
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Table 1. Summary of results. All results are “big-Oh” and worst case. Rectangles are axis-parallel.
“three sided rectangle” means an orthogonal box of the form [a1, b1] × [a2,∞). The “nontrivial
bounding box” function returns a bounding box of all those colors that have at least two points
that intersect q. A “bounding box” for a point set in IRd is the hyper box with the smallest measure
within which all the points lie. ǫ is an arbitrarily small positive constant. C denotes the number
of colors reported.

Aggregate Colored Query q Ambient Space Query time Theorem
function objects in S Space

weighted
sum

points interval IR1 O(n log n) O(log n+ C) 3

rectangle IR2 O(n1+ǫ) O(log n+ C) 8

hyper IRd O(n1+ǫ) O(log n+ C) 9
box (d≥3)

bounding
box

points interval IR1 O(n) O(log n+ C) 11

rectangle IR2 O(n log2 n) O(log n+ C) 14

hyper IRd O(n1+ǫ) O(log n+ C) 17, 18
box (d≥3)

nontrivial
bounding
box

points quadrant IR2 O(n log n) O(log n+ C log n) 25

three
sided
rectangle

IR2 O(n log2 n) O(log2 n+C log n) 27

weighted
sum

intervals point IR1 O(n) O(log n+ C) 28

weighted
sum

rectangles point IR2 O(n log n) O(log2 n + C log n) 29

O(n1+ǫ) O(log n+ C) 30

weighted orthogonal rectangle IR2 O(n1+ǫ) O(log n+ C) 31
sum segments

3. The Colored Weighted Sum Problem

Problem: Preprocess a set S of n colored points in IRd, where the points addi-

tionally come with a real-valued weight w(p) ≥ 0, into a data structure such that

given a d-dimensional orthogonal query box q = Πd
i=1[ai, bi], the tuples 〈 c, sc 〉 are

reported where sc is sum of the weights of points of color c in q.

We present a solution to the static d-dimensional orthogonal generalized

weighted sum problem for d ≥ 2 that takes O(n1+ǫ) space (for an arbitrarily small

positive constant ǫ) and O(log n+C) time. For d = 1, our solution takes O(n log n)

space and O(log n+ C) time.
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3.1. Query composition technique

The number of colors for a given problem defined on a set of n points, can range

from 1 to n. We encode each color as an integer in the range [1, n]. This allows us

to use colors as array indices. While answering a query for some of the problems

in this paper, we may sometimes encounter the same color more than once while

querying data structures built on disjoint sets. The count corresponding to these

partial results need to be added up efficiently. We can do this by using an array,

A[1 : n], of counts indexed by colors (encoded as integers) to keep track of the count

of each distinct color that is found during a query. While executing a query, we also

store the distinct colors found in a linked list. This way we can avoid reading the

zero counts in A later. After the query, the counts can be output and A can be reset

in time proportional to the output size by scanning the list.

3.2. The solution for IR1

First, we consider the semi-infinite problem for d = 1. We need to preprocess a set

S of n weighted, colored points in IR1 (or the x-axis) into a data structure such that

given a query interval q = [a1,∞), the tuples 〈 c, sc 〉 are reported where sc is sum

of the weights of color c in q.

For each color c, we sort the points in S by non-decreasing order of their x

coordinates. For each point p ∈ S of color c, let pred(p) be its predecessor in

the sorted order, with pred(p) = −∞ for the leftmost point. We then map the

point p to the point p′ = (p, pred(p)) in IR2 and associate with it the color c and

weight w(p′) set to the cumulative weight of all the points of color c in S whose

x-coordinate is greater than or equal to p. Let S′ be the set of such points in IR2.

We preprocess the points in S′ into a priority search tree [23] PST to support the

query of reporting points in a quadrant. Given a query q = [a1,∞), we map it to

the quadrant q′ = [a1,∞)× (−∞, a1) in IR2 and query PST with q′. For each point

p′ retrieved, we report (c′, w(p′)) where c′ is the color of p′.

Lemma 1. The query algorithm reports a pair (c, w) iff the total weight of the

points of color c in S ∩ q is w. Moreover at most one such pair is reported for each

color c.

Proof.

⇒ Let the query algorithm report a pair (c, w). Then there exists a point p′ ∈ q′

of color c and weight w. Hence there exists a point p ∈ q of color c such that

pred(p) ∈ (−∞, a1) and the cumulative weight of all the points of color c in S

whose x-coordinate is greater than or equal to p is equal to w.

⇐ Let the total weight of the points of color c in S ∩ q be w. Let p be the leftmost

point of color c in q. Then there is a point p′ = (p, pred(p)) of color c and weight w

in S′. Since p ∈ [a1,∞) and pred(p) ∈ (−∞, a1), point p
′ is retrieved by the query

algorithm and the pair (c, w) is reported.

To prove uniqueness, let the query algorithm report a pair (c, w1) corresponding

to a point p′1 = (p1, pred(p1)) and another pair (c, w2) corresponding to a point
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p′2 = (p2, pred(p2)). Hence p1 ∈ q, p2 ∈ q, pred(p1) ∈ (−∞, a1) and pred(p2) ∈

(−∞, a1). Without loss of generality, let p1 be to the left of p2. Then, since p1 ∈ q

and p1 is of color c, pred(p2) ∈ q. This contradicts the fact that pred(p2) ∈ (−∞, a1).

Hence for any color c, at most one pair is reported.

Theorem 2. The colored weighted sum problem in IR1 can be solved for semi-

infinite queries using a structure of size O(n) and query time O(log n+ C).

3.2.1. Extending to finite ranges

We store the points of S at the leaves of a balanced binary search tree T in non-

decreasing order of their x coordinates. At each internal node v, we store an instance

DL(v) of the data structure of Theorem 2 built on S(Left(v)), the set of points

stored in the leaves of the left subtree of v. Similarly we store another data structure

DR(v) built on S(Right(v)), the set of points stored in the leaves of the right

subtree of v supporting queries of the form (−∞, b1]. To answer a query q = [a1, b1]

we search with a1 and b1 in T . This generates paths ℓ and r in T that possibly

diverge at some non-leaf node v of T . We query DL(v) (respectively DR(v)) with

[a1,∞) (resp., (−∞, b1]) to retrieve the partial results. The partial results are then

composed using the technique of Section 3.1. We conclude:

Theorem 3. The colored weighted sum problem in IR1 can be solved for bounded

queries (i.e. [a1, b1]) using a structure of size O(n log n) and query time O(log n+C).

3.3. Adding range restrictions

In [13] a general technique was proposed to add range restrictions to colored (or

generalized) reporting problems. In this section we show how to adapt the technique

to add range restrictions to our current problem. Adding range restrictions shall be

defined in detail in some time. The idea used here is similar to [13], except that

when we combine solutions to two sub problems, instead of taking an union of

colors reported, we need to add up the weights. Note that this is only possible if

we decompose the problem in a way that the sub problems are defined on disjoint

partitions of points.

Similar to [13], let PR(q, S) denote the answer to a colored weighted sum problem

PR with query object q and object set S. To add a range restriction to PR, we give

each object p in S an additional parameter kp ∈ IR. In the transformed searching

problem, we only query objects in S that have their parameter in a given range.

3.3.1. Adding a semi-infinite range restriction

Let S be a set of n colored objects, and let PR(q, S) be a colored weighted sum

problem for S with query object q. To add a semi-infinite range restriction, we

associate with each object p of S an additional parameter kp ∈ IR. Now, let TPR
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be the colored weighted sum problem that is obtained by adding a semi-infinite

range restriction to PR, i.e., TPR(q, [a,∞), S) := PR(q, {p ∈ S|a ≤ kp}).

Assume we have a data structure DS that stores the set S, such that colored

weighted sum queries PR(q, S) can be solved in O(log n+ C) time. Let the size of

DS be bounded by O(n1+ǫ), where ǫ is an arbitrarily small positive constant. Also,

assume we have a data structure TDS for the set S, such that colored weighted sum

queries TPR(q, [a,∞), S) can be solved in O(log n+ C) time. Let the size of TDS

be bounded by O(nw) for some constant w > 1. Extending the idea of [13], we can

show how to construct a data structure that solves colored weighted sum queries

TPR(q, [a,∞), S) in O(log n+C) time, using O(n1+ǫ) space, for an arbitrarily small

positive constant ǫ.

Let S = {p1, p2, . . ., pn}, where kp1 ≥ kp2 ≥ . . . ≥ kpn
. Let m be an arbitrary

parameter with 1 ≤ m ≤ n. We assume for simplicity that n/m is an integer. Let

Sj = {p1, p2, . . ., pjm} and S′
j = {pjm+1, pjm+2, . . ., p(j+1)m} for 0 ≤ j < n/m.

The transformed data structure consists of the following. For each j with 0

≤ j < n/m, there is a data structure DSj (of type DS) storing Sj for solving

generalized weighted sum queries of the form PR(q, Sj) and a data structure TDS j

(of type TDS ) storing S′
j for solving generalized weighted sum queries of the form

TPR(q, [a,∞), S′
j).

To answer a query TPR(q, [a,∞), S), we do the following. Compute the index

j such that kp(j+1)m
< a ≤ kpjm

. Solve the query PR(q, Sj) using DSj, solve the

query TPR(q, [a,∞), S′
j) using TDSj, and output the union of the colors reported

by these two queries. The correctness of the query algorithm is trivial to observe.

Next we state a lemma which leads us to the main theorem.

Lemma 4. The basic transformation results in a data structure of size O(n2+ǫ/m+

nmw−1) and answers the colored weighted sum queries in O(log n+ C) time.

Theorem 5. Let S, DS and TDS be as defined above. Then, there exists a data

structure that solves colored weighted sum queries TPR(q, [a,∞), S)

(1) with a query time of O(log n+ C),

(2) using O(n1+ǫ) space, for an arbitrarily small positive constant ǫ.

Proof. First assume that w > 2, i.e., the data structure TDS uses more than

quadratic space. Choosing m = n1/w in Lemma 4 gives a data structure for solving

queries TPR(q, [a,∞), S), with a query time of O(log n+ C) and space O(n2). By

applying Lemma 4 repeatedly, we obtain, for each integer constant a ≥ 1, a data

structure of size O(n1+ǫ+1/a) that answers queries TPR(q, [a,∞), S) in O(log n+C)

time. This claim follows by induction on a; in the inductive step from a to a + 1,

we apply Lemma 4 with m = na/(a+1).
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3.3.2. Extending to a full range restriction

Analogous to the result for colored reporting problems in [13], we can build a data

structure TPR(q, [a, b], S) that solves colored weighted sum queries. We store the

points of S at the leaves of a balanced binary search tree, sorted in non-decreasing

order of their parameter kp. For each non-root node u of this tree, let Su denote the

subset of S that is stored at the leaves of u’s subtree. If u is a left (resp., right) child,

then we store at u, an instance of the data structure that solves colored weighted sum

queries TPR(q, [a,∞), Su) (resp., TPR(q, (−∞, b], Su)). While querying, we search

the tree for values a and b. Let u be the node at which the search paths diverge.

Let uℓ (resp., ur) be the left (resp., right) child of u. Then we query the secondary

structure stored in the left (resp., right) child of u with TPR(q, [a,∞), Suℓ
) (resp.,

TPR(q, (−∞, b], Sur
)). For each color c, weights are retrieved at most once by the

query on the secondary structure stored at uℓ and at most once by the query on

the secondary structure stored at ur. For any color that is in the answer for both

the queries, the total weight of the points to be reported is the sum of the weights

reported by the two queries for the same color; for any color which is the answer to

exactly one of the queries, the weight for the color is reported as is. Other colors

(having no points in q) are not reported at all. The fact that Suℓ
and Sur

are disjoint

sets, ensures that the counts are correct.

Corollary 6. Let DS and TDS be as defined above. Then, there exists a data

structure that solves colored weighted sum queries TPR(q, [a, b], S)

(1) with a query time of O(log n+ C),

(2) using O(n1+ǫ) space, for an arbitrarily small positive constant ǫ.

Theorem 5 and Corollary 6 imply that in order to solve the colored weighted

sum problem TPR, it suffices to have (i) a data structure for PR with O(log n+C)

query time and O(n1+ǫ) space, and (ii) a data structure for TPR with O(log n+C)

query time and polynomial space.

3.4. Colored weighted sum problem for d = 2

In this section, we show how to solve the colored weighted sum problem for a query

rectangle, q = [a1, b1] × [a2, b2].

We make use of Theorem 5 to solve the problem. Let DS in Theorem 5 be the

data structure of Theorem 3 for solving the colored weighted sum problem for d = 1

and queries of the form q′ = [a2, b2]. We need a data structure TDS to solve colored

weighted sum queries TPR(q′, [a1,∞), S). Given n colored points in IR2, we sort

the points by their x-coordinates and rank the points in left to right order (ties

broken arbitrarily) and store their x-coordinates in an auxiliary array AUX . We

create data structures DAi for 1 ≤ i ≤ n. Each such data structure is an instance of

the data structure of Theorem 3 for the 1-dimensional static colored weighted sum

problem which takes O(n log n) space and supports queries in time O(log n+C). We
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build data structure DAi on the y-coordinates of the points p whose x-coordinates

are at least AUX [i]. Given a query TPR(q′, [a1,∞), S), we first binary search in

AUX with a1 to determine the index i of the leftmost point whose x-coordinate is

greater than or equal to a1. Then we simply query DAi with q′.

Lemma 7. The colored weighted sum problem in IR2 can be solved for query

TPR(q′, [a1,∞), S) using O(n2 logn) space and O(log n+ C) query time.

Proof. The correctness follows from the correctness of Theorem 3 and the fact that

DAi is really built on all points in S with x-coordinates in [a1,∞). Since each data

structure DAi takes space O(n log n) and there are O(n) of them, the total space

taken is O(n2 logn). The query time is O(log n + C), since it takes O(log n) time

to determine the index i and O(log n+ C) time to query DAi.

Now since we have both the structures DS and TDS, we can apply Theorem 5

with w = 3, and Corollary 6 to conclude:

Theorem 8. The colored weighted sum problem in IR2 for orthogonal rectangular

queries can be solved using O(n1+ǫ) space and O(log n+ C) query time.

3.5. Colored weighted sum problem for d > 2

To solve the problem in dimension d > 2 we again make use of Theorem 5. Assume

that as DS , we have the data structure to solve the problem PR in dimension d−1,

which takes O(n1+ǫ) space and O(log n+ C) time. As TDS , we create a structure

similar to Lemma 7, by taking O(n) instances ofDS, which gives us a data structure

with O(n2+ǫ) space and O(log n+ C) query time. Now we apply Theorem 5, with

w = 3 and Corollary 6 to conclude:

Theorem 9. The colored weighted sum problem in IRd can be solved for orthogonal

query box using O(n1+ǫ) space and O(log n+ C) query time.

4. The Colored Bounding Box Problem

Problem: Preprocess a set S of n colored points in IRd into a data structure such

that given an orthogonal query box q, the tuples 〈 c, bbc 〉 are reported where bbc
is the bounding box of all the points of color c which lie within q. If a color has

a single point p inside q, then the bounding box of that color will be the point p

which is reported as a degenerate box.

In subsection 4.1 a fully dynamic solution to this problem is presented on the

real line. Then in subsection 4.2 a static solution to the problem is found on a plane.

Next we give a solution to the static version of the problem in IRd for d ≥ 3 that

takes O(n1+ǫ) space (for an arbitrarily small positive constant ǫ) and O(log n+C)

time.
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4.1. A solution in IR1

On the real line the problem reduces to finding, for each color c that has at least

one point inside the query interval q, the interval spanned by all the points of color

c lying inside q.

For each color c, sort all the points in S by non-decreasing order of their x-

coordinates and build a balanced binary search tree Tc. For each point p ∈ S of

color c, let pred(p) and succ(p) be its predecessor and successor in the sorted order,

with pred(p) = −∞ for the leftmost point and succ(p) = ∞ for the rightmost point.

Then each point p is mapped to a new point p′ = (p, pred(p)) (and p′′ = (p, succ(p)))

in IR2 and p′ (and p′′) is assigned the color of point p. Call this set of points in IR2,

S′ (and S′′). We build a dynamic priority search tree D′ (and D′′) [23] based on the

points in S′ (and S′′). Given a query q = [a1, b1], we map it to q′ = [a1, b1]×(−∞, a1)

(and q′′ = [a1, b1] × (b1,∞)) in IR2 and query D′ (and D′′) with q′ (and q′′). If a

point p′ = (p, pred(p)) (or p′′ = (p, succ(p))) gets reported and p′ (or p′′) has color

c, then it can be inferred that among all the points of color c lying inside q, the

leftmost point (or the rightmost point) is p. We state this formally in the following

lemma.

Lemma 10. The following statements are observed from the discussion above:

(1) A point p′ = (p, pred(p)) having color c is reported by D′ iff p happens to be the

leftmost point among all the points of color c that lie inside the query interval

q. Also for each color, exactly one point is reported by D′.

(2) A point p′′ = (p, succ(p)) having color c is reported by D′′ iff p happens to be the

rightmost point among all the points of color c that lie inside the query interval

q. Also for each color, exactly one point is reported by D′′.

Proof. Consider the first part of the lemma. Let a point p′ = (p, pred(p)) of color

c be reported. If p is not the leftmost point then pred(p) ∈ [a1, b1]. Since D′ has

reported point p′, pred(p) should lie in the interval (−∞, a1]. A contradiction arises.

Let p be the leftmost point among all the points of color c that lie inside q =

[a1, b1]. So, pred(p) should lie to the left of the query interval q, i.e., in the interval

(−∞, a1]. Therefore, point p′ is reported by D′. From the above discussion it is

clear that exactly one point is reported for each color by D′. The second part of

the lemma follows a symmetric argument.

A dynamic priority search tree build on m points takes O(m) space and answers

three-sided rectangular queries in O(logm+ k) time. The size of set S′ and S′′ is n

and from the above lemma, it is clear that k = C.

Next we show how the solution can be made dynamic. Let r be the new point

having color c which is to be inserted. First we insert r into Tc. Let rp and rs be

the points in the leaf nodes to the immediate left and to the immediate right of

r, respectively. Before the insertion of r, rp = pred(rs) and rs = succ(rp) were

valid relations. After insertion of r, the following new relations arise : rp = pred(r),
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r = pred(rs), r = succ(rp) and rs = succ(r). To represent these changes in our

data structures we delete (rs, rp) from D′ and delete (rp, rs) from D′′. Then we

insert (r, rp) and (rs, r) into D′, and insert (rp, r) and (r, rs) into D′′. The total

time taken for handling these operations is O(log n). Deletions are symmetric to

insertions. Therefore, insertions and deletions can be handled in O(log n) time.

Theorem 11. The colored bounding box problem in IR1 can be solved using a struc-

ture of size O(n) and query time O(log n+C). Also, insertion or deletion of a point

can be handled in O(log n) time.

4.2. Extending to IR2

In this subsection, the solution developed for one-dimensional case is combined with

the technique of persistence to build a solution in IR2.

For a general rectangle r=[x, x′]×[y, y′], [x, x′] is defined to be the x-projection

and [y, y′] is defined to be the y-projection of r. Now given a query q, each color c

having at least one point in q is defined as a valid color. Reporting of the bounding

box, BBc, for each valid color c is done by first finding out the x-projection of BBc

and then the y-projection of BBc.

First the x-projection’s of all the valid colors are found out. We do this by

initially considering a query region of the form q = [a1, b1]×[a2,∞). Using the

technique of persistence described in [8], a partially persistent version of the data

structure of Lemma 11 is built, by treating the y-coordinate as time and inserting

the points by non-increasing y-coordinate into an initially empty data structure. In

fact only D′ and D′′ needs to be made persistent. The trees Tc are only needed to

do updates efficiently in the current version. While querying they are not needed

and can be discarded once the persistent version of D′ and D′′ have been built. To

answer the query q = [a1, b1]×[a2,∞), we access the version corresponding to the

smallest y-coordinate greater than or equal to a2 and query it with [a1, b1].

Lemma 12. A set S of n colored points in IR2 can be preprocessed into a data

structure of size O(n logn), such that given a query q = [a1, b1]×[a2,∞), the x-

projection of each valid color is reported in O(log n+ C) time.

Proof. The structures of D′ and D′′ of Lemma 11 have a constant in-degree and

so the results of [8] apply. The correctness of the query algorithm follows from the

fact that since the version accessed does not contain any point having y-coordinate

less than a2, querying D′ and D′′ with q = [a1, b1]×[a2,∞) is same as querying with

[a1, b1]. The query time follows from Lemma 11. To build the persistent structure

we do n insertions, each of which does O(log n) memory modifications. Thus the

persistent structure uses O(n logn) space.

To extend the solution in the above lemma for query boxes, q = [a1, b1]×[a2, b2],

we follow an approach similar to that described previously : The points are stored
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in a balanced binary tree sorted by y-coordinates. Each internal node v in the tree

is associated with the auxiliary structure of Lemma 12 for answering queries of

the form [a1, b1]×[a2,∞) (resp. [a1, b1]×(−∞, b2]) on the points in the leaves of

v’s left (resp. right) subtree. To perform a query this tree is searched using the

interval [a2, b2]. The query time remains O(log n + C) but the space increases by

a logarithmic factor. The y-projections can be found in a similar way by switching

the role of x and y. Next we summarize the above discussion in the following lemma

which leads us to the final result.

Lemma 13. A set S of n colored points in IR2 can be preprocessed into a data

structure of size O(n log2 n), such that given a query q = [a1, b1]×[a2, b2], the x-

projection (or y-projection) of each valid color is reported in O(log n+ C) time.

Theorem 14. The colored bounding box problem in IR2 can be solved using a struc-

ture of size O(n log2 n) and query time O(log n+ C).

4.3. A solution for IR3

In this section we consider points in a 3-dimensional space (XY Z) and solve the col-

ored bounding box problem for a query cuboid q =[a1, b1]×[a2, b2]×[a3, b3]. The so-

lution is obtained by applying Theorem 5. Let DS in Theorem 5 be a data structure

of Theorem 14 for colored bounding box query in the XY -plane. A data structure

TDS needs to be built for finding the x-projection’s and the y-projection’s of all the

valid colors for queries of the form TPR(q′, [a3,∞), S), where q′ =[a1, b1]×[a2, b2].

Note that z-projection’s won’t be found out by TDS. Given n colored points in IR3,

we sort the points by their z-coordinates and rank the points in left to right order

(ties broken arbitrarily) and store the z-coordinates in an auxiliary array AUX .

Data structures DAi for 1 ≤ i ≤ n are created. Each DAi is an instance of the

data structure of Theorem 14 for the 2-dimensional static colored bounding box

problem which takes O(n log2 n) space and answers queries in time O(log n + C).

We build data structure DAi on the x and y coordinates of the points in S whose

z-coordinates are at least AUX [i]. Given a query TPR(q′, [a3,∞), S), we first bi-

nary search in AUX with a3 to determine the index i of the leftmost point whose

z-coordinate is greater than or equal to a3. Then DAi is simply queried with q′.

Lemma 15. A set of n colored points in IR3 can be preprocessed into a data struc-

ture of size O(n2 log4 n) such that given a query TPR(q′, [a3,∞), S) the x-projection

and the y-projection of each valid color is reported in O(log n + C) time. Here

q′ =[a1, b1]×[a2, b2].

Proof. The correctness follows from the correctness of the solution to the 2-

dimensional problem in Theorem 14 and the fact that DAi is really built on all

points in S with z-coordinates in [a3,∞). Since each data structure DAi takes

space O(n log2 n) and there are O(n) of them, the total space taken is O(n2 log4 n).
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The query time is O(log n+C), since it takes O(log n) time to determine the index

i and O(log n+ C) time to query DAi.

Now since we have both the structures DS and TDS, we can apply Theorem 5

with w = 3, and Corollary 6 to reach the following lemma :

Lemma 16. A set of n colored points in IR3 can be preprocessed into a data struc-

ture of size O(n1+ǫ), for an arbitrarily small positive constant ǫ, such that given a

query cuboid q′ =[a1, b1] × [a2, b2] × [a3, b3], the x-projection and the y-projection

of each valid color is reported in O(log n+ C) time where C is the output size.

The z-projection can be found by switching its role with x or y. This leads us

to the following result.

Theorem 17. The colored bounding box problem in IR3 can be solved using a struc-

ture of size O(n1+ǫ) and query time O(log n+ C).

4.4. A solution for d ≥ 3

In order to solve the problem in dimension d ≥ 3, first consider a (d−1)-dimensional

subspace of IRd. Call it ∆ and let di be the dimension excluded from ∆. Let DS

be a data structure to solve the problem PR in the dimensional subspace ∆ which

takes O(n1+ǫ) space and O(log n+C) time. As TDS, we create a structure similar

to Lemma 15, by sorting points based on their values in dimension di and then

taking O(n) instances of DS, which gives us a data structure with O(n2+ǫ) space

and O(log n + C) query time. Next another (d − 1)-dimensional subspace, ∆′ of

IRd is considered, such that ∆′ 6= ∆. Again DS is built to solve PR in subspace

∆′. TDS is also built on similar lines. Using the structures for these two distinct

subspaces we can find out for each valid color, the projection of its bounding box in

each dimension. Now we apply Theorem 5, with w = 3 and Corollary 6 to conclude:

Theorem 18. The colored bounding box problem in IRd can be solved using a struc-

ture of size O(n1+ǫ) and query time O(log n+ C).

5. Nontrivial Colored Bounding Box Problem

Problem: Preprocess a set S of n colored points in IR2 into a data structure such

that given an orthogonal query box q, the tuples 〈 c, bbc 〉 are reported where bbc
is the bounding box of all the points of color c which lie within q and there is an

additional constraint that color c should have at least two points lying within q.

In section 5.1 the problem is solved for the case when the query region q is a

quadrant. In section 5.2, a query of the form [a1, b1] × [a2,∞) is considered.

5.1. Querying with quadrants in IR2

Given a set, S, of n colored points in IR2, the nontrivial colored bounding box

query is solved for a north-east quadrant defined by a query point q = (a1, a2). The
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north-east quadrant, NE (q), is defined as the set of all points (x, y) such that x ≥ a1
and y ≥ a2.

The solution to this problem is found in two stages. In the first stage, all the

colors c that have at least two points of color c in NE (q) are found out. Then for

each such color c, the bounding box of all the points of color c which lie inside q is

reported.

The details of the first stage are stated next. Let Sc be the set of points of color

c and Mc be the set of maximal points of Sc, i.e, Mc ⊆ Sc consists of points which

do not contain any other point of Sc in their north-east quadrant. Define S′
c = Sc

\ Mc and MM c to be the set of maximal points of S′
c. Next we state a lemma.

Lemma 19. There are at least two points of color c in NE (q), if and only if, either

a) at least two points of Mc and none of the points of MM c lie in NE (q), or b) at

least one point of Mc and at least one point of MM c lie in NE (q).

Proof. We classify set Sc into three categories : Mc, MM c and Rc = S′
c \ MM c.

Let there be at least two points of color c in NE (q). Two possibilities arise :

(1) If any of these points belong to Rc, then by definition of a maximal point, at

least one point of MM c and one point of Mc should also lie in the NE (q). This

satisfies condition b.

(2) If none of these points which lie in NE (q) are from Rc, then they need to belong

to Mc and MM c only. None of the points belonging to Mc and all the points

belonging toMM c is an impossible condition (fundamental property of maximal

points). The remaining valid conditions are, both Mc and MM c having at least

one point (condition b) or Mc having all the points (condition a).

The converse is quite trivial to prove.

Based on the above lemma, two data structures are built. The first data struc-

ture, D1, reports all those colors of S which partially satisfy condition (a) of the

above lemma (Lemma 19). D1 is built on the points in Mc, for each color c, such

that given a query point q, we shall report all colors c which have at least two points

of color c in NE (q). Therefore, colors reported by D1 might have some points of

MM c lying in NE (q) but that will not concern us, as each color which gets reported

will still be having at least two points in NE (q).

The second one, D2, is a data structure which is built on the points in MM c,

for each color c, so that given a query point q, the distinct colors of all the points

lying in NE (q) are reported. It must be noted that if a color c has at least one

point of MM c in NE (q), then it will also have at least one point of Mc in NE (q).

So, indirectly D2 reports all the colors that satisfy condition b) of Lemma 19. The

answers obtained by querying D1 and D2 are combined to find out all the colors

which have at least two points in NE (q). A color will get reported at most twice

(once by D1 and once by D2).
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5.1.1. Description of data structure D2

Define S′ =
⋃
MM c, for all colors c. Based on the points S′ lying in the plane, a

data structure D2 is built on these points such that all the distinct colors of the

points that lie in the north-east quadrant get reported.

For a point p(p1, p2) ∈ MM c, denote by Qp = (−∞, p1] × (−∞, p2] ⊆ IR2, the

region within which query point q should lie for point p to lie in the NE (q). Let

R(MM c) =
⋃

p∈MM c
Qp. Rc is the set of pairwise disjoint axis-parallel rectangles

obtained by decomposing R(MM c). If a color c has at least one point of MM c in the

north-east quadrant of q, then q should lie inside exactly one of the rectangle in Rc.

For each color c, rectangles Rc are built and a standard data structure for reporting

all the rectangles containing a query point q ∈ IR2 is built. For m axis-parallel

rectangles in a plane, this data structure takes O(m) space and given a query point

q the query is reported in O(logm+ k) time [5]. In [17] it is proved that R(MM c)

built over points in MM c can be decomposed into O(|MM c|) pairwise disjoint axis-

parallel rectangles. So, the total number of rectangles obtained on decomposing

R(MM c), for each color c, will be O(n). Also, each color c is reported only once,

i.e., k = C. Therefore, D2 will take O(n) space and O(log n+ C) time.

Theorem 20. For all colors c, let MMc be the second layer of maximal set of

points of color c in the plane. Then there exists a data structure D2 of size O(n)

such that given a query point q, it reports the C distinct colors of the points that lie

in northeast quadrant of q in (logn+ C) time.

Note: Incidentally, Theorem 20 can be used to solve the following problem: A set

S of n colored points lie in a plane. Given a query quadrant q=[a1,∞) × [a2,∞),

report the distinct colors of the points that lie in q. For each color find out its

maximal points in the plane. Then apply the above theorem can be applied on the

maximal points obained for each color to solve the problem. Unlike the previously

known optimal solution for this problem [14], our solution is easier to implement.

5.1.2. Description of data structure D1

Based on the set of points Mc, for all colors c, we build our data structure D1,

which will report all the colors c having at least two points of Mc in the NE (q).

Fix a color c. Let the points in Mc be sorted in decreasing order based on

their y-coordinates. With pi(xi, yi) ∈ Mc, ∀ 1 ≤ i ≤ |Mc|, we associate an axis-

parallel rectangle R(pi) ⊂ IR2 which might be unbounded on a few sides. Define

R(p1) = (−∞, x1) × (−∞, y2); R(pi) = (xi−1, xi) × (−∞, yi+1), ∀ 2 ≤ i ≤ |Mc| − 1

and R(p|Mc|) = ∅. The union of R(pi), ∀1 ≤ i ≤ |Mc|, is denoted by R(Mc) and all

the R(pi)
′s are disjoint to each other.

Lemma 21. At least two points of Mc will lie in the NE quadrant of q if and only

if the query point lies within R(Mc).
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Proof. Suppose that there are at least two points of Mc which lie in the NE

quadrant of q(a1, a2). Without loss of generality, let the x-coordinate of q (i.e a1)

lie in the interval (xi−1, xi). If a2 ≥ yi, then none of the points of Mc can lie in

the NE (q). If yi+1 < a2 ≤ yi, then only pi lies in the NE (q). So, b must lie in

the interval (−∞, yi+1] for at least two points of Mc to get reported. Thus in this

case q will have to lie within the region R(pi). As R(Mc) is the union of R(pi), ∀

1 ≤ i ≤ |Mc|, q has to lie within R(Mc).

Conversely, suppose that q(a1, a2) lies within R(Mc) and let a1 lie in the interval

(xi−1, xi). If a2 lies in the interval (yi+2, yi+1), then points pi and pi+1 get reported.

If a2 lies in the interval (yi+3, yi+2), then points pi, pi+1 and pi+2 get reported and

so on. Therefore, at least two points of Mc will lie in the NE (q).

Now, we need to solve the standard point enclosure problem of reporting all

the axis-parallel rectangles R(pi) ∈ Mc, ∀ 1 ≤ i ≤ |Mc|, for all colors c, which

contain the query point q(a1, a2). Note that for each color at most one rectangle

will get reported. The total size of R(pi) ∈ Mc, ∀ 1 ≤ i ≤ |Mc|, for all colors c

is O(n). For m axis-parallel rectangles in a plane, the data structure which solves

point enclosure problem takes O(m) space and given a query point q the query is

reported in O(logm + k) time [5]. Therefore, data structure D1 takes O(n) space

and O(log n+ C) time since k = C.

Theorem 22. For all colors c, let Mc be a maximal set of points of color c in the

plane. Then there exists a data structure D1 of size O(n) such that given a query

point q, it reports C distinct colors, such that each reported color c has at least two

points of color c in northeast quadrant of q, in (logn+ C) time.

Based on the two conditions stated in Lemma 19, data structures D1 (Theorem

22) and D2 (Theorem 20) have been built. By combining the results obtained by

querying these two data structures, the following result is obtained.

Theorem 23. Let S be a set of colored points in the plane. Then there exists a

data structure of size O(n) such that given a query point q, it reports C distinct

colors, such that each reported color c has at least two points of color c in northeast

quadrant of q, in (log n+ C) time.

5.1.3. Finding the bounding box

Let Sc be the set of points of color c and the query region q be a rectangle. Given

that |Sc ∩ q| ≥ 2, the problem of the finding the bounding box (BBc) of the points

in Sc ∩ q is discussed in this section. Note that a quadrant query is a special case

of a query rectangle.

Let Sc be the set of points of color c. Two data structures T c
xy and T c

yx are

constructed based on the points in Sc. Given that |Sc ∩ q| ≥ 2, T c
xy reports two

points from Sc∩q, one with the minimum y-coordinate and one with the maximum

y-coordinate; T c
yx reports two points from Sc∩q, one with the minimum x-coordinate
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and one with the maximum x-coordinate. The four values reported by these two

data structures are used to find the bounding box of the points in Sc ∩ q.

T c
xy is actually a 2-dimensional range tree where the primary structure is built

on the x-coordinates of the points in Sc and the associated structure is built on

the y-coordinates of the points in Sc. The technique of fractional cascading [6] is

used to build the associated structures of T c
xy. T

c
yx is the same as T c

xy except that

the primary structure here is built on the y-coordinates of the points in Sc and the

associated structure is built on the x-coordinates of the points in Sc. Given a query

rectangle q = [a1, b1] × [a2, b2] , the primary structure of T c
xy is searched with a1 and

b1 to determine set V of nodes whose canonical subsets together contain the points

with x-coordinate in the range [a1, b1]. For each node v ∈ V , A(v) is the set of points

associated with the node v and is sorted based on the y-coordinates of the points.

Let L(v) ⊆ A(v) be the set of points which lie in the interval [a2, b2]. vmin and

vmax, the points with the minimum and the maximum y-coordinate values in L(v)

are picked. Define yc = min{vmin, ∀v ∈ V } and y′c = max{vmax, ∀v ∈ V }. In the

same manner T c
yx is queried and the variables xc and x′

c are found out analogously.

The bounding box of color c, BBc, then turns out to be [xc, x
′
c] × [yc, y

′
c].

Theorem 24. Let Sc be a set of nc points of color c and the query region q be a

rectangle. Given that |Sc ∩ q| ≥ 2, the data structure for finding the bounding box

(BBc) of the points in Sc ∩ q takes O(nc lognc) space and answers the query in

O(log nc) time.

Putting together Theorem 23 and Theorem 24 we obtain the following result.

Theorem 25. The nontrivial colored bounding box problem in IR2 can be solved for

a query quadrant (i.e. [a1,∞) × [a2,∞)) using a structure of size O(n log n) and

query time O(log n+ C logn).

5.2. Querying with three sided rectangle in IR2

Given a set, S, of n colored points in IR2, the colored bounding box query is solved

for the query range q =[a1, b1]×[a2,∞). As done before, the solution is found in two

stages. In the first stage all the colors c which have at least two points inside q are

reported. Then for each color c, the corresponding bounding box (BBc) is found

out.

The details of the first stage is discussed next. The points of S are stored in

sorted order by x-coordinate at the leaves of a height balanced binary tree T . At

each internal node v, an instance of the structure of Theorem 23 for NE -queries

(resp., NW -queries) built on the points in the leaves of v’s left (resp., right) subtree.

Call them Tne and Tnw. Let X(v) denote the average of the x-coordinate in the

rightmost leaf in v’s left subtree and the x-coordinate in the leftmost leaf in v’s

right subtree; for a leaf v, we take X(v) to be the x-coordinate of the point stored

at v. Let L(v) and R(v) be the regions to the left and the right of the line x = X(v).
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Two more structures Tvl and Tvr are built at node v, which together report all

the colors c which have point(s) in the intersection of q and L(v), and also have

point(s) in the intersection of q and R(v). Fix a color c. For the points having color

c in v’s left subtree, M c
l is the set of maximal points. Here a point p becomes a

maximal point if there is no other point in the set lying in the NE-quadrant of p.

Similarly, for the points having color c in v’s right subtree, M c
r is the set of maximal

points. Here a point p becomes a maximal point if there is no other point that lies

in the NW-quadrant of p. M c
l and M c

r are sorted in decreasing order of their y-

coordinates. For every point p(px, py) ∈ M c
l (or M c

r ), p
′
y is the y-coordinate of the

next point to p in M c
l (or M c

r ); and p′x is the x-coordinate of the point in M c
r (or

M c
l ) which has the least y-coordinate among the points having their y-coordinate

values greater than py. Now each point p ∈ M c
l in IR2 is transformed to a point

p′(px, py, p
′
x, p

′
y) in IR4. Let M ′

lc be the set of transformed points. Tvl is a data

structure which can handle 4-dimensional dominance query and is built over points

in M ′
lc, for all colors c. Similarly, we transform each point p ∈ M c

r to build Tvr.

To perform a query q, we do a binary search down T , using [a1, b1], un-

til either the search runs of T or a (highest) node v is reached such that

[a1, b1] intersects X(v). In the former case, we stop. In the latter case, if v is

a leaf then we stop. If v is a non-leaf, then we query the structures Tne and

Tnw at v using the NE-quadrant and the NW-quadrant derived from q (i.e,

the quadrants with corners at (a1, a2) and (b1, a2), respectively). Structure Tvl

is queried with q1 = [a1,∞)×[a2,∞)×(−∞, b1]×(−∞, a2] and Tvr with q2 =

(−∞, b1]×[a2,∞)×[a1,∞)×(−∞, a2]. The answers obtained are combined to find

out all the colors c which have at least two points inside q.

Structure Tne (and Tnw) reports all the colors which have at least two points in

the NE-quadrant of [a1, a2] (and NW-quadrant of [b1, a2]). All the colors which have

at least one point in the NE-quadrant of [a1, a2] and NW-quadrant of [b1, a2] are

reported by Tvl and Tvr. It must be observed that Tvl (and Tvr) report each color

only once. Also, it is clear that no color is missed, although a single color might get

reported a constant number of times.

A recent result by Afshani [1] solves 4-dimensional dominance queries using

O(n log n) space and O(log2 n+ k) time. So, the total space occupied by our data

structure will be O(n log2 n) and the time to answer a query will be O(log2 n+C).

The result is summarized below.

Theorem 26. Let S be a set of colored points in the plane. Then there exists a data

structure of size O(n log2 n) such that given a query q =[a1, b1]×[a2,∞), it reports

C distinct colors, such that each reported color c has at least two points of color c

inside q, in (log2 n+ C) time.

In the case of a query quadrant once the appropriate colors were known, next

the bounding boxes were found out. The same procedure is followed here. This leads

to the following theorem.
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Theorem 27. The nontrivial colored bounding box problem in IR2 can be solved

for a three sided rectangle query (i.e. [a1, b1] × [a2,∞)) using a structure of size

O(n log2 n) and query time O(log2 n+ C logn).

6. Colored Point Enclosure Weighted Sum for d = 1

Problem: Preprocess a set S of n colored intervals on the real line, where the

intervals additionally come with a real-valued weight, such that given a query point

q on the real line, the tuples 〈 c, sc 〉 are reported where sc is the sum of the weights

of intervals of color c stabbed by q.

Consider a color c and let Sc be the set of intervals of color c, s.t., |Sc| = nc.

Let the list of distinct interval endpoints of Sc be sorted from left to right. These

endpoints induce partitions on the real line and the regions in this partitioning

shall be called “elementary intervals”. Let Ic be the set of these intervals. With

each interval i ∈ Ic, we shall maintain an attribute wi which holds the sum of the

weights of intervals in Sc which intersect i. Based on the elementary intervals in

Ic, for all colors c, an interval tree, IT , is built. Given a query point q, a standard

search on the interval tree, IT , is carried out and all the intervals stabbing q are

found out and the wi attribute associated with each of them is reported. Note that

if a color c has at least one interval of Sc stabbed by q, then exactly one elementary

interval in Ic will be reported and the appropriate weight is reported.

Theorem 28. The colored point enclosure weighted sum problem can be solved in

IR1 using a structure of size O(n) and query time O(log n+ C).

Proof. The correctness of the query algorithm is quite trivial to observe. Now, if a

color c has nc points, then the size of the set Ic will be O(nc). Therefore, the total

size of all the intervals in set Ic, for all colors c, is O(n). An interval tree built on n

intervals on the real line uses O(n) space and given a query point q on the real line,

reports the intervals stabbed by q, in O(log n + k) time, where k is the number of

intervals stabbed. Our structure IT will report each color at most once. Therefore,

the size of IT will be O(n) and the query time will be O(log n+C), where C is the

number of colors which have at least one interval stabbed by q.

7. Colored Point Enclosure Weighted Sum for d = 2

Problem: Preprocess a set S of n colored orthogonal rectangles in the plane, where

the rectangles additionally come with a real-valued weight, such that given a query

point q, the tuples 〈 c, sc 〉 are reported where sc is the sum of the weights of

rectangles of color c stabbed by q.

A rectangle r ∈ S is represented as r=ix×iy, where ix and iy are the projection

of r on the x-axis and y-axis, respectively. A segment tree T is built based on the

projections of rectangles in S on the x-axis. At a particular internal node v of T , if

an interval ix of some rectangle r gets assigned, then we associate iy with node v.
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Based on the intervals associated with node v, we build an auxiliary data structure

of Theorem 28.

Given a query point q = (a, b), we start by querying T with a. If a is not in the

range of the root, then stop; else proceed. Let V be the set of nodes of T visited

by querying with a. At each node v ∈ V , we perform a secondary query on the

auxiliary data structure built at v by querying it with b. For each reported color c,

the weight obtained from each relevant secondary query is added up.

Theorem 29. The colored point enclosure weighted sum problem can be solved in

IR2 using a structure of size O(n log n) and query time O(log2 n+ C logn).

Proof. Consider an orthogonal rectangle r=ix×iy of set S having color c and say

a query point q=(a, b). Let q ∈ r. When the primary structure of T is queried with

a, then by the property of a segment tree the node v containing interval ix will be

selected. Querying the auxiliary structure at v, the weight of color c reported at

this node will contain iy as well (from Theorem 28). Hence, no rectangle stabbed

by q is missed out. Similarly, all rectangles not stabbed by q are also discarded.

A segment tree built on n intervals takes O(n log n) space. Also, the auxiliary

structure built at each internal node v takes up linear space (from Theorem 28).

Hence, the total space complexity of the structure is O(n log n).

Given a query point q, O(log n) nodes of T are selected. The time taken to query

the auxiliary structure at each node of T is O(log n+ k), where k is the number of

colors at that node having at least one interval stabbed by b. Also, a color c can get

reported at O(log n) nodes. Therefore, the query time is O(log2 n+ C logn).

In the above solution there is a penalty of O(log n) associated with each

color that is reported. We can overcome this limitation (at the cost of increas-

ing the space) by reducing the point enclosure problem in IR2 to a range search

problem in IR4. Each rectangle r([x1, x2] × [y1, y2]) ∈ S, is reduced to a 4-

dimensional point (x1, x2, y1, y2) and the query point q(a, b) ∈ IR2 is reduced to

(−∞, a]×[a,∞)×(−∞, b]×[b,∞). The original problem has been transformed into

a “colored weighted sum problem” in IR4.

Theorem 30. The colored point enclosure weighted sum problem can be solved in

IR2 using a structure of size O(n1+ǫ) and query time O(log n+ C).

8. Colored Segment Intersection Weighted Sum

Problem: Preprocess a set S of n colored orthogonal line segments in the plane,

where the segments additionally come with a real-valued weight, such that given a

query orthogonal rectangle q, the tuples 〈 c, sc 〉 are reported where sc is the sum

of the weights of segments of color c stabbed by q.

Consider one of the vertical segments, say s. Let it’s lower end point be (sx, sl)

and the upper end point be (sx, su). Given a query rectangle, q= [a1, b1] × [a2, b2],
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s will intersect with q, if the following conditions are satisfied: 1) a1 ≤ sx ≤ b1, 2)

su ≥ a2 and 3) sl ≤ b2. Each vertical segment having weight w in IR2 is transformed

into a point in IR3, such that the segment s is mapped to (sx, sl, su) and weight w is

associated. Based on these transformed points, we shall build a data structure D of

Theorem 9. Thus, for all colors having at least one vertical segment intersecting q,

D will report the sum of the weight of vertical segments of these colors intersecting

q. We shall build a similar data structure to handle horizontal segments. The two

solutions can be trivially merged without affecting output sensitivity.

Theorem 31. The colored segment intersection weighted sum problem can be solved

in IR2 using a structure of size O(n1+ǫ) and query time O(log n+ C).

9. Conclusions and Open Problems

We considered several range-aggregate queries for colored objects and provided ef-

ficient solutions for them. Our techniques have been based mainly on persistent

data structures, geometric transformation and on the concept of ‘adding range

restrictions’.

Several open problems remain. For some of the problems, the space occupied

by the structures is O(n1+ǫ). It would be interesting to see if it can be reduced to

O(n logc n) (for c > 0) while keeping the query time poly logarithmic. It would be

desirable to improve the query time of some of the solutions from O(log n+C logn)

or O(log2 n+C logn) to O(polylog(n) +C). Considering non-trivial bounding box

problem for cases wherein each color has some c objects (c > 2) intersecting the

query region will be a challenging open problem. [9] is a work closely related to

this open problem. Finally, extensions to problems involving multiple categorical

attribute per object would be an interesting future work.
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