
1

A General Technique for Top-k Geometric
Intersection Query Problems

Saladi Rahul and Ravi Janardan

Abstract—In a top-k Geometric Intersection Query (top-k GIQ) problem, a set of n weighted, geometric objects in R
d is to be

pre-processed into a compact data structure so that for any query geometric object, q, and integer k > 0, the k largest-weight
objects intersected by q can be reported efficiently. While the top-k problem has been studied extensively for non-geometric
problems (e.g., recommender systems), the geometric version has received little attention.
This paper gives a general technique to solve any top-k GIQ problem efficiently. The technique relies only on the availability
of an efficient solution for the underlying (non-top-k) GIQ problem, which is often the case. Using this, asymptotically efficient
solutions are derived for several top-k GIQ problems, including top-k orthogonal and circular range search, point enclosure
search, halfspace range search, etc. Implementations of some of these solutions, using practical data structures, show that they
are quite efficient in practice.
This paper also does a formal investigation of the hardness of the top-k GIQ problem, which reveals interesting connections
between the top-k GIQ problem and the underlying (non-top-k) GIQ problem.

Index Terms—Range Search, Aggregation, Top-k, Query Processing and Optimization, Geometric Algorithms and Data
Structures.

✦

1 INTRODUCTION

1.1 Background and motivation

In a Geometric Intersection Query (GIQ) problem, we
are given a set, A, of n geometric objects (e.g., points,
lines, hyper-rectangles line segments, balls, etc.) in
some ambient space Rd. The goal is to organize A into
a space-efficient data structure so that the following
query can be answered efficiently: Given a query
geometric object, q (e.g., a rectangle or ball), report
or count the objects of A that are intersected by q.
(In the reporting version, the output is a list of all
objects of A that are intersected by q; in the counting
version, the output is simply the number of objects
of A intersected by q.) Typically, the data structure
needs to support a very large number of queries (in
the hundreds of thousands), so it is worthwhile to
pre-process A beforehand to speed up the queries.
The performance measures of primary interest are
the space occupied by the data structure and the
query time. It is also desirable that the data structure
support updates (insertion/deletion) of objects in A.
GIQ problems model many real-world query-retrieval
problems arising in diverse domains, including GIS,
spatial databases, VLSI design, robotics, CAD/CAM,
and computer graphics. GIQ problems have been

• Saladi Rahul is with the Dept. of Computer Science & Engg., Univ.
of Minnesota–Twin Cities, 4-192 Keller Hall, 200 Union St. S.E.,
Minneapolis, MN 55455, USA
E-mail: sala0198@umn.edu

• Ravi Janardan is with the Dept. of Computer Science & Engg., Univ.
of Minnesota–Twin Cities, 4-192 Keller Hall, 200 Union St. S.E.,
Minneapolis, MN 55455, USA
E-mail: janardan@umn.edu

investigated extensively in the computational geom-
etry and database literature and efficient solutions
have been designed for many instances of these prob-
lems [1]–[3].
In recent years, there has been an explosion in

the volume of digital data that is being generated
and stored, and this growth promises to continue
unabated as computing and storage costs drop. Major
sources of voluminous digital data include social net-
works (e.g., Facebook, Twitter), the world-wide web,
mobile devices (e.g., smart phones), GIS and spatial
applications, business analytics, remote sensing, video
surveillance, genomics, high-energy physics, etc. This
proliferation of digital data has made it imperative
that new ways be developed to query large datasets
and make sense of the results. Traditional query meth-
ods that simply report all the data items satisfying
a query are no longer sufficient as they place an
undue burden on the user to sift through a potentially
huge answer space for relevant information. Instead,
what is really needed is an appropriate summary
of the query results that can provide the user with
useful information. Creating such a summary involves
applying a suitable aggregation function to the query
results. A simple, yet effective, aggregation function
is the so-called top-k function which returns a set of
k objects that best satisfy a query, where the notion of
“best” is based on a real-valued weight assigned by
the application of interest to each data object. The top-
k problem has been well studied in various domains,
including web search, information retrieval, data min-
ing, business analytics, recommender systems, etc..
Ilyas et al. [4] provide a comprehensive survey of the
top-k problem.

2

In this paper, we investigate the top-k problem in a
geometric setting. Informally, we are given a set, A, of
n geometric objects in R

d, where each object has an as-
sociated real-valued weight. Our goal is to pre-process
A into a space-efficient data structure so that for any
query geometric object, q, and positive integer, k, the
k largest-weight objects of A intersected by q can be
reported efficiently. (We give a formal definition of
the problem in Section 2.) We call this problem a top-k
Geometric Intersection Query (top-k GIQ) problem. It is a
useful and non-trivial generalization of the traditional
GIQ problem described above and has applications in
GIS, spatial databases, VLSI design, scheduling, etc.

We now motivate the study of the top-k GIQ prob-
lem with specific examples.

• Consider a real-estate database that contains the
location of each house for sale in the U.S., along
with the asking price for the house. Potential
buyers might be interested in knowing, say, the
ten most expensive houses in a geographic area
of interest, specified as a rectangle of some size
centered around a landmark (e.g., a school or
workplace). This is an instance of the top-k or-
thogonal range search problem in R

2, where k = 10,
the weight of each house (point) is its cost, and
the query, q, is an axes-aligned rectangle. (To
identify the k least expensive houses in a query
region—which would likely be of greater interest
to most buyers—one could use the reciprocal of
the asking price as the weight.) If the area of
interest is specified as a disc of some radius,
then we have an instance of the top-k disc range
search problem in R

2. (See Figure 1(a) and (b); to
avoid clutter, all examples in Figure 1 assume that
k = 3.)

• Consider a database that records buyers’ prefer-
ences for some commodity, say, cars. Each buyer
specifies the range of age and mileage that s/he
is willing to consider for a car and the price
that s/he is willing to offer for a car meeting
these requirements. This information is recorded
as a rectangle in the age-mileage space R

2, with
a weight equal to the offered price. A potential
seller might be interested in identifying, say, the
five most promising buyers (based on offered
price) to negotiate with. This is an instance of the
top-k point-enclosure search problem in R

2, where
k = 5 and the query, q, is a point representing
the age and mileage of the seller’s car. (Each
rectangle “stabbed” by q is a buyer whose age
and mileage requirements are satisfied by the
seller.) (See Figure 1(c).)

• Finally, consider a financial database storing earn-
ings (e) and volatility (v) information for a large
number of stocks, as well as information on total
return (r). Thus, each stock, s, is represented
as a point (se, sv) in R

2, with weight sr. Each

10

10

1010

20
20

2020

30

30

3030

40

40

4040

50

50

5050

60
60

6060

70

70

70
70

80

8080

90

9090

100

100100

q

q

q

q

(a) top-k orthogonal range
search

(b) top-k circular range search

(c) top-k orthogonal point
enclosure search

(d) top-k halfspace range search

Fig. 1: Various instances of top-k GIQ problems in R
2.

(The number next to an object—point or rectangle—is
its weight.) In these examples, k = 3. Objects shown
filled or drawn in heavy lines are the output for each
query q.

investor, I , has a different preference for income
and risk, specified as percentages Ie and Iv . A
potential investor might wish to identify, say,
the ten highest-return stocks, s, for which the
weighted score Ie ·se+Iv ·sv is at least an investor-
specified threshold tI . The equation Ie·se+Iv·sv ≥
tI defines a halfplane in R

2 and we are, thus,
interested in the ten highest-return stocks in this
halfplane. This is an instance of the top-k halfplane
range search problem in R

2, where k = 10 and the
query, q, is the above halfplane. (See Figure 1(d).)

For simplicity, these examples have all been in R
2;

however, they extend naturally to higher dimensions.
Moreover, similar motivation can be provided for
other instances of top-k GIQ problems. For exam-
ple, the top-k segment intersection search problem
discussed later is useful in VLSI design, where the
segments model wires. The top-k interval intersection
search, also discussed later, is useful in scheduling,
where intervals model execution times of jobs.

We note that there is an easy solution to the top-k
GIQ problem: Solve the underlying GIQ problem onA
and q (disregarding weights) using a known method
and identify the set, A(q), of objects in S intersected
by q. Next, run a standard selection algorithm [5]
on A(q) to identify the object with the kth-largest
weight. Finally, scan A(q) to output the k largest-
weight objects.

Clearly, this approach is not efficient if |A(q)| ≫ k,
which is often the case. Our goal is to design data
structures with the following properties: (a) they have
query times that are sensitive to k, typically of the
form O(f(n) + k)) or O(f(n) + k · g(n)), where f(n)

3

and g(n) are “small” (e.g., polylogarithmic); (b) they
have low storage requirements, typically (but not
always) of the form O(n · polylog(n)); and (c) they
can support updates in A efficiently.1 As we will see,
these objectives can be met for a range of top-k GIQ
problems.

1.2 Contributions

A general technique: We present a general technique
to solve any top-k GIQ problem efficiently. Our ap-
proach only requires that efficient solutions to the
reporting and counting versions of the underlying
GIQ problem be available, which is often the case.
Roughly speaking, our technique incurs only a loga-
rithmic increase in space, query time, and update time
over the corresponding bounds for the underlying
GIQ problem. Specifically, we establish the following:

Theorem 1.1: Let A be a set of n geometric objects
in R

d, each with a real-valued weight. Consider some
GIQ problem on A. Suppose that there is a data
structure for the reporting (resp. counting) version
of this GIQ problem that occupies Sr(n, d) (resp.
Sc(n, d)) space, answers queries for any query ge-
ometric object q in Qr(n, d) + O(k) (resp. Qc(n, d))
time, and supports updates in Ur(n, d) (resp. Uc(n, d))
worst-case or amortized time. Assume that Sc(n, d)/n,
Sr(n, d)/n, Qc(n, d), Qr(n, d), Uc(n, d) and Ur(n, d) are
non-decreasing functions for non-negative values of n.
Then there is a data structure for the correspond-

ing top-k GIQ problem that uses O(S(n, d) log n)
space, answers queries for any query pair (q, k) in
O(Q(n, d) log n + k) time, and supports updates in
O(U(n, d) log n) amortized time, where
S(n, d) = max{Sr(n, d), Sc(n, d)},
Q(n, d) = max{Qr(n, d), Qc(n, d)} and
U(n, d) = max{Ur(n, d), Uc(n, d)}.

By using Theorem 1.1, we obtain efficient solutions
to a variety of top-k GIQ problems, with the asymp-
totic performance bounds given in Table 1. To the best
of our knowledge, these are the first known results for
such a broad range of top-k GIQ problems.

Hardness of top-k GIQ: Theorem 1.1 implies that the
complexity of a top-k GIQ problem is upper-bounded
by the complexity of the underlying GIQ problem
times a logarithmic factor. This motivates the question
of how hard a top-k GIQ problem really is? That
is, is its complexity lower than that of the under-
lying GIQ problem? Towards this end, we formally
investigate the hardness of the top-k GIQ problem
and demonstrate interesting connections between it
and the underlying GIQ problem. Informally, the key
result is that a top-k GIQ problem is at least as hard
as its underlying GIQ problem. For specific instances

1. All logarithms in the paper are base 2.

of the top-k GIQ problem, such as top-k orthogonal
range search and top-k orthogonal point enclosure
search, we are able to show an even stronger hardness
result.

Experimental results: We complement the theoretical
results in Table 1 by presenting experimental results
for two of the problems in the table. Our imple-
mentations incorporate the key ideas in the general
method but make use of more practical data structures
than the ones used to obtain the theoretical results.
Specifically, the results in Table 1 show the bounds
that are achievable asymptotically (i.e., as n → ∞).
However, the underlying data structures for counting
and reporting (e.g., range trees) can be inefficient for
modest values of n—even for small d—as noted in [1].
For example, a d-dimensional range tree on n points
occupies O(n logd−1 n) space. This can be viewed as
modestly superlinear as n→∞. However, for typical
real-world datasets the term logd−1 n can actually be
much larger than the dataset size n. (For example, if
n = 106 and d = 7, then logd−1 n ≈ 63 × 106 ≫ n.)
For this reason, in our implementation we have used
R-trees [6] for the counting and reporting structures,
as the storage requirement of an R-tree is linear in n
and the dependence on d is multiplicative rather than
exponential. Specifically, we build practical solutions
for top-k orthogonal range search and top-k orthog-
onal point enclosure search. Our experiments show
that our solutions for the implemented top-k GIQ
problems are quite efficient in practice, in terms of
storage and query time. (The implemented solutions
do not currently support updates, however.)

1.3 A sampling of related prior work

As mentioned earlier, the top-k problem has been
well-studied in many domains, including, for exam-
ple, web search, information retrieval, recommender
systems, etc. We refer the reader to Ilyas et al. for
an excellent discussion of top-k query processing in
relational databases [4].
Surprisingly, the geometric version of the top-k

problem has received much less attention and known
work on this has focused only on top-k orthogonal
range search. For this problem in R

1, an algorithm
with O(n) space and O(k) query time has been given
by Brodal et al. [7] when the input consists of integers.
For real inputs, Sheng et al. [8] and Afshani et al. [9]
mention a solution with O(n) space, O(log n+k) query
time, and O(log n) update time. In R

d, d > 1, an
efficient solution is provided by Rahul et al. [10]. The
present paper generalizes the result in [10], so as to
make it applicable to a wide range of top-k GIQ prob-
lems, and also demonstrates the practicality of the
general technique through experimental evaluation.
Closely related to the top-k problem is the problem

of reporting only the point with the kth-heaviest
weight in the query range. Gagie et al. [11] and

4

Top-k GIQ Objects Query Dim. Space Query Update
problem in A object q d occupied time time

(amort.)

Orthogonal range
points hyper-rect.

≥ 1 O(n logd n) O(logd+1 n+ k) O(logd+1 n)
search

Orthogonal point hyper-rects. point ≥ 2 O(n logd+1 n) O(logd+1 n+ k) O(logd+1 n)
enclosure search

Halfspace range points halfspace ≥ 2 O(m1+ε) O((n
m⌊d/2⌋ logn+ k) logn) O(m

1+ε

n
)

search n ≤ m ≤ n⌊d/2⌋

Circular range
points ball

≥ 2 O(m1+ε)
O((n

m⌊(d+1)/2⌋ logn+ k) logn)

O(m
1+ε

n
)

search
Circular point

balls point n ≤ m ≤ n⌊(d+1)/2⌋
enclosure search

Orthogonal segment horizontal vertical 2 O(n log2 n) O(log3 n+ k) O(log3 n)
intersection search segments segment

Interval intervals interval 1 O(n logn) O(log3 n+ k) O(log3 n)
intersection search

TABLE 1: Summary of performance bounds obtained for various top-k GIQ problems using the general
technique. (ε > 0 is an arbitrarily small constant.) Update time bounds are amortized.

Navarro et al. [12] answer this query in R
1 and

R
2, respectively. Work has also been done on top-k

orthogonal range search in the context of document
retrieval [13], [14] and for managing subscriptions in
wide-area publish/subscribe networks [15].
Top-k GIQ problems fall under the broad category

of range aggregation which is a classical topic in
the field of databases. As mentioned in [16] range
aggregation “...has been studied in a large variety
of contexts: relational [17], temporal [18], [19], spatial
databases [20]–[22], OLAP [23]–[25], etc”. In a typical
range aggregate problem, we are given a set of objects
such that, given a query object q, the query applies
a suitable aggregate function on those objects that
are intersected by q. Classic examples of aggregate
functions include count, sum, max (or top-1), average
etc.

1.4 Organization of the paper

In Section 2, we describe our general technique and
establish Theorem 1.1. In Section 3, we apply The-
orem 1.1 to specific top-k GIQ problems and obtain
the results stated in Table 1. In Section 4, we do a
formal investigation of the hardness of the top-k GIQ
problem. In Section 5, we report on our experimental
results. Finally, we conclude the paper in Section 6.

2 THE GENERAL TECHNIQUE

Problem statement: We are given a set A = {a1, . . . ,
an} of n geometric objects in R

d (d ≥ 1), where ai
has a real-valued weight wi, 1 ≤ i ≤ n. We wish to
organize A into a space-efficient data structure so that
for any query pair (q, k), where q is a geometric object
and k > 0 is an integer, we can report efficiently the k
largest-weight objects of A that are intersected by q.
(Two geometric objects in R

d intersect iff they have a
point in common.)
More precisely, let A(q) be the set of objects in A

that are intersected by q. Then we wish to find and

report the objects in a set Ak(q) ⊆ A(q) such that
|Ak(q)| = k and for any ai ∈ Ak(q) and any aj ∈
A(q)\Ak(q), we have wi ≥ wj . (Note that if q intersects
k or fewer objects of A then we simply report all of
them.)

We first outline the key steps in our query algorithm
and then discuss each step in detail.

Key steps: Given a query pair (q, k), we do the
following:

1) Perform initial check: Let A(q) be the set of
objects of A intersected by q. If |A(q)| ≤ k, then
we simply report all the objects in A(q) and stop.
Otherwise, if A(q) > k, we proceed to step 2.

2) Find a threshold object: We determine an object
at in A(q) that has the kth-largest weight and
proceed to step 3. We call at a threshold object.

3) Report top-k objects: Given at, we report all
objects in A(q) whose weights are greater than
or equal to wt.

As we will see, steps 1 and 3 are essentially in-
stances of the underlying GIQ counting and reporting
problems, respectively. Step 2 will employ a binary
search-based approach to quickly identify at.

2.1 Implementation of step 1

Let DC (resp. DR) denote a data structure for the
counting (resp. reporting) version of the underlying
GIQ problem on A. That is, given a query object q,
DC (resp. DR) returns the count |A(q)| (resp. the set
A(q)). (For example, for the top-k orthogonal range
search problem, DC (resp. DR) is a data structure for
the counting (resp. reporting) version of orthogonal
range search.) For future use, we assume that DC and
DR support updates.

We do step 1 by querying DC with q. If |A(q)| ≤ k,
then we also query DR with q and output A(q).

5

2.2 Implementation of step 2

W.l.o.g. let a1, . . . , an be an ordering of the objects of A
by non-increasing weight (ties broken arbitrarily). Our
goal is to find the kth-leftmost object in this ordering
that is intersected by q; this is the threshold object
at. Consider object am, where m = ⌊n/2⌋, and let A′

(resp. A′′) be the ordered subset of A consisting of
objects at or to the left of am (resp. to the right of
am). We count the number of objects in A′ that are
intersected by q, i.e., we compute |A′(q)|. If |A′(q)| ≥
k, then at is in A′ and is the kth-leftmost object in
A′(q). Therefore, we search recursively in A′ for the
kth-leftmost object. However, if |A′(q)| < k, then at
is in A′′ and is the (k − |A′(q)|)th-leftmost object in
A′′(q). Therefore, we search recursively in A′′ for the
(k − |A′(q)|)th-leftmost object.
We implement the above idea as follows: We sort

the objects of A by non-increasing weight (breaking
ties arbitrarily) and store them in left-to-right order at
the leaves of a balanced binary search tree T . At each
node v of T , we store an instance, Dv

C , of the structure
DC which is built on the objects stored in v’s subtree.
Let r be the root of T . At the beginning of this step,

our objective is to find the kth-leftmost leaf among the
leaves of T that store objects intersected by q; this leaf
contains at. However, as the algorithm progresses and
reaches some subtree of T , our objective will change
in the sense that we will now be seeking the k′th-
leftmost leaf among the leaves of this subtree that
store objects intersected by q, for some k′ ≤ k.
Specifically, let vcur denote the root of the subtree

of T that the search is at currently. Initially, we know
(from step 1) that q intersects more than k objects
among the ones stored in T ’s leaves, so we must
search in the left subtree of r for the k-th leftmost
object intersected by q. Thus, initially vcur is set to
the left child of r and k′ is set to k. Let C(vcur) be
the count returned when Dvcur

C is queried with q. If
C(vcur) ≥ k′, then the leaf containing at is in the
left subtree of vcur, so the search proceeds to this
subtree with k′ unchanged. However, if C(vcur) < k′,
then the leaf containing at is in the subtree of the
sibling of vcur, so the search proceeds to the sibling’s
subtree with k′ set to k′−C(vcur). This process repeats
iteratively until the leaf, u, containing at is reached.

2.3 Implementation of step 3

We store the objects of A at the leaves of a balanced
binary search tree T ′, in the same order in which they
appear at the leaves of T . At each node v of T ′, we
store an instance, Dv

R, of the structure DR which is
built on the objects stored in v’s subtree. Also, if object
ai appears at leaf u of T and at a leaf u′ of T ′, then we
store a pointer, ptr, at u that points to u′; i.e., ptr(u) =
u′. (In fact, we could use T to store instances of both
DC and DR. We use a separate structure T ′ only for
ease of exposition.)

To report all objects in A(q) whose weights are
greater than or equal to wt, we query T ′ with q, as
follows:
Let u be the leaf of T that is found to contain the

threshold object at in step 2. We follow ptr(u) to find
the leaf u′ of T ′ that contains at. We then walk from u′

up to the root of T ′ following parent pointers, thereby
tracing a path, Π, in T ′. Let Z be the set of nodes,
v, in T ′ such that v is the left child of a node on
Π but is itself not on Π. We also include in Z the
leaf u′. Z consists of both leaves and internal nodes
and we call each such node a canonical node. Note that
|Z| = O(log n) and, moreover, for each v ∈ Z , the
range [wt,∞) contains the weights of all the objects
stored in v’s subtree. For each v ∈ Z , we query Dv

R

with q, which causes all objects in v’s subtree that are
intersected by q to be reported.
This concludes the description of the 3-step query

algorithm. The algorithm is presented in pseudocode
as Algorithm 1.

2.4 An example

We illustrate the query algorithm in Figure 2. Part (a)
shows the input objects (points in R

2) and the query
object q (a rectangle), part (b) shows the structure T ,
and part (c) shows the structure T ′. To avoid clutter,
the structures DC and DR are not shown at the nodes.
For simplicity, we refer to the points by their weights.
For k = 4, the threshold point is 40 and the top-4
points are 80, 60, 50, and 40. Let v1 be the root of T .
Step 1 finds C(v1) to be 5, corresponding to the points
80, 60, 50, 40, and 20 in v1’s subtree that lie inside q.
Since C(v1) > k we proceed to Step 2.
In Step 2 our objective is to find a leaf node v

such that among the points stored at v and the leaf
nodes to the left of v, exactly 4 points lie inside q.
Initially, vcur = v2 and k′ = k = 4. Querying Dv2

C

gives C(v2) = 3, corresponding to the points 80,
60, and 50 in v2’s subtree that lie inside q. Thus,
the threshold point is not in the subtree of v2 but
instead is in the subtree of its sibling node v3. Since
k = 4 and C(v2) = 3, k′ is reset to k − A(v2) = 1,
and the search proceeds to v3. Querying Dv3

C gives
C(v3) = 2, corresponding to the points 40 and 20 in
v3’s subtree that lie inside q. Since C(v3) > k′, we
proceed to v3’s left child v4. Querying Dv4

C we find
that C(v4) = 1, corresponding to point 40 lying inside
q. Since C(v4) = k′, we proceed to v4’s left child
v5. Querying Dv5

C yields C(v5) = 1, corresponding to
point 40 lying inside q. Since C(v5) = k′, we proceed
to v5’s left child which happens to be nil. At this point
we exit the while-loop with u = v5 containing the
threshold point 40.
Finally, in step 3, we follow ptr(v5) (not shown)

to locate the leaf in T ′ storing threshold point 40,
identify the path Π and the set Z of canonical nodes,
and query Dv

R at each node v ∈ Z with q to report the
top-4 points in q.

6

Algorithm 1: Query algorithm for top-k GIQ

Input: Data structures T and T ′ storing objects
of A as described in Sections 2.1–2.3,
query object q, and integer k > 0.

Output: The k largest-weight objects of A that
are intersected by q.

begin
// Step 1

Query Dr
C with q to compute the number,

C(r), of objects in r’s subtree that are
intersected by q, where r is the root of T .
if C(r) ≤ k then

Query Dr′

R with q to find all the objects in
r′’s subtree that are intersected by q,
where r′ is the root of T ′. Report these
objects and exit.

// Step 2
vcur ←− left child of r
k′ ←− k
while vcur 6= nil do

Query Dvcur

C with q to compute the
number of objects, C(vcur), in vcur’s
subtree that are intersected by q.
u←− vcur
if C(vcur) < k′ then

k′ ←− k′ − C(vcur)
vcur ←− sibling of vcur

else
vcur ←− left child of vcur

// Step 3
u′ ←− leaf of T ′ corresponding to u
Walk up T ′ from u′ and identify the set, Z , of
canonical nodes. For each v ∈ Z , query Dv

R

with q and report all objects returned.

2.5 Proof of Theorem 1.1

The correctness of the query algorithm follows from
the discussion in Sections 2.1–2.3.
We now analyze the space bound. Let v1, v2, . . . , vt

be the nodes of T at a given level (i.e., distance
from the root) and let n1, n2, . . . , nt be, respec-
tively, the number of objects stored at the leaves of
their subtrees. The space used by all the secondary
structures, Dvi

C , at these nodes is
∑t

i=1
Sc(ni, d) =∑t

i=1
(Sc(ni, d)/ni) × ni ≤ (Sc(n, d)/n)

∑t
i=1

ni =
O(Sc(n, d)), since Sc(ni, d)/ni is non-decreasing, ni ≤
n, and

∑t
i=1

ni ≤ n. Since T has height O(log n),
the space used by T is O(Sc(n, d) logn). Similarly,
the space used by T ′ is O(Sr(n, d) logn). Thus, the
overall space is O(max{Sc(n, d), Sr(n, d)} logn) =
O(S(n, d) log n).
Next, we analyze the query time. The time for step 1

is O(Qc(n, d) +Qr(n, d) + k). For step 2, consider the
path in T from the root to the leaf node containing at.

���
���
���
���

q

10

10

20

20

30

30

40

4050

50

60

60

70

70

80

80

v1

v2 v3

v4

v5

A(v1) = 5, k′ = 4

A(v2) = 3, k′ = 4 A(v3) = 2, k′ = 1

A(v4) = 1, k′ = 1

A(v5) = 1, k′ = 1

(a) (b)

(c)

wt

T

T ′

Π

Fig. 2: The general technique illustrated for top-k
orthogonal range search in R

2, with k = 4. (a) Set A
consisting of 8 weighted points and query rectangle
q. Points shown filled are the k largest-weight objects
intersected by q. (b) Finding the threshold point by
querying T . (c) Search path, Π, in T ′ (shown in heavy
lines) and canonical nodes (shown filled).

At each node v on the path, the secondary structure
Dv

C is queried with q. Also, if v is a right child of its
parent, then the secondary structure at the left child of
v’s parent is also queried. So, at each level of T , the
secondary structures of at most two nodes, v1 and
v2, at that level are queried. Let ni, i = 1, 2, be the
number of objects stored at the leaves of vi’s subtree.
Thus step 2 takes

∑2

i=1
Qc(ni, d) time. Since Qc(ni, d)

is non-decreasing and ni ≤ n, i = 1, 2, the query time
per level is

∑2

i=1
Qc(ni, d) = O(Qc(n, d)). Summing

over the O(log n) levels of T gives an overall query
time of O(Qc(n, d) logn) time for step 2.

In Step 3, it takes O(log n) time to identify the set,
Z , of canonical nodes. For each vi ∈ Z , let ni be the
number of objects stored at the leaves of vi’s subtree
and let ki be the number of these objects intersected
by q. Querying Dvi

R with q at each vi ∈ Z takes
O(Qr(ni, d) + ki) time. Thus the total query time in

step 3 is O(
∑|Z|

i=1
(Qr(ni, d) + ki)). Since Qr(ni, d) is

non-decreasing, and since
∑|Z|

i=1
ki = k, the query time

for step 3 is O(Qr(n, d) log n+ k).

Therefore, the time for steps 1–3 is
O(max{Qc(n, d) + Qr(n, d)} logn + k) =
O(Q(n, d) log n+ k).

Finally, we consider the update time. If T and
T ′ are implemented as BB(α) trees, then the tech-
nique of Willard et al. [26] can be used to keep
the trees balanced as updates are performed. As
shown in [26], the amortized update time for T
and T ′ will be O(Uc(n, d) logn) and O(Ur(n, d) log n),
respectively. Thus, the overall update time will be

7

O(max{Uc(n, d) + Ur(n, d)} logn) = O(U(n, d) log n)
(amortized).

3 APPLICATIONS OF THE GENERAL TECH-
NIQUE

We apply the general technique to specific top-k GIQ
problems and obtain the bounds given in Table 1.

3.1 Top-k orthogonal range search

Here A is a set of n weighted points in R
d (d ≥ 2)

and q is an axes-aligned hyper-rectangle. The goal is
to report the k largest-weight points intersected by
(i.e., lying in) q.
For DC and DR we use a d-dimensional range

tree [2], [27]. Sc(n, d) = Sr(n, d) = O(n logd−1 n),
Qc(n, d) = Qr(n, d) = O(logd n) and Uc(n, d) =
Ur(n, d) = O(logd n). See the Appendix for the de-
scription of a range tree.
Substituting these bounds into Theorem 1.1 yields

a data structure for top-k orthogonal range search
that occupies O(n logd n) space, answers queries
in O(logd+1 n + k) time, and supports updates in
O(logd+1 n) amortized time. (These bounds correct the
bounds stated in [10].)

3.2 Top-k orthogonal point enclosure search

Here A is a set of n weighted hyper-rectangles in R
d

(d ≥ 1) and q is a point. The goal is to report the
k largest-weight hyper-rectangles intersected by (i.e.,
containing) q.
For both DC and DR, we use a d-dimensional seg-

ment tree for which Sc(n, d) = Sr(n, d) = O(n logd n),
Qc(n, d) = O(logd n), Qr(n, d) = O(logd n), and
Uc(n, d) = Ur(n, d) = O(logd n) (amortized). See the
Appendix for a brief description of a segment tree.
(See [2] for full details.)
Substituting these bounds into Theorem 1.1 yields

a data structure for top-k orthogonal point enclosure
search with the bounds stated in Table 1.

3.3 Top-k halfspace range searching

Here A is a set of n weighted points in R
d (d ≥ 2) and

q is a halfspace. The goal is to report the k largest-
weight points intersected by (i.e., lying in) q.
For DR we use the structure given in [28] for which

Sr(n, d) = O(m1+ε), Qr(n, d) = O(n
m⌊d/2⌋ logn), and

Ur(n, d) = O(m
1+ε

n) (amortized), for any ε > 0 and
n ≤ m ≤ n⌊d/2⌋.
To the best of our knowledge, there is no efficient

dynamic data structure known for halfspace range
counting. Instead, we use for DC the structure DR

itself. We observe that DC is used in step 2 of the
query algorithm to test at each visited node of T
whether q intersects fewer than k′ points in the node’s
subtree, where k′ ≤ k. When using DR instead of

DC , we simply keep a count of the objects as they
are being output. If the query terminates and the
count is less than k′, then the outcome of the test
is “true”; otherwise, if the count reaches k′, then we
stop listing objects and register the outcome of the
test as “false”. Thus, Qc(n, d) = O(Qr(n, d)+ k). Also,
Sc(n, d) = Sr(n, d) and Uc(n, d) = Ur(n, d).
Substituting these into Theorem 1.1 yields a struc-

ture for top-k halfspace range search that uses
O(m1+ε) space, answers queries in O((n

m⌊d/2⌋ logn +

k) logn) time, and allows updates in O(m
1+ε

n) amor-
tized time. (In the space and update time bounds, the
logn factor implied by Theorem 1.1 is subsumed by
mε.)

3.4 Top-k circular range search

Here A is a set of n weighted points in R
d (d ≥ 2)

and q is a (closed) ball. The goal is to report the k
largest-weight points intersected by (i.e., lying in) q.
We transform this problem to top-k halfspace range

search in R
d+1 via the well-known lifting transforma-

tion [29] and apply the result from Section 3.3. The
lifting transformation maps each point of A to a point
in R

d+1 and maps q to a halfspace in R
d+1, as follows:

Let (x1, x2, . . . , xd+1) be the system of coordinates
in R

d+1. Let U be a paraboloid of revolution in R
d+1

given by xd+1 = x2
1 + x2

2 + . . . + x2
d. We map each

point ai = (x1(ai), . . . , xd(ai)) in A to the point âi =
(x1(ai), . . . , xd(ai), x1(ai)

2+ · · ·+xd(ai)
2) in R

d+1, i.e.,
we “lift” ai in in the positive xd+1-direction so that it
lies on U . We assign âi a weight equal to that of ai,
i.e., wi. Let Â be this set of weighted points in R

d+1.
We map q as follows: Let q̂ be the unique hyper-

plane in R
d+1 whose intersection with U is precisely

the lifted image of the boundary of q onto U . Let q̂−

be the closed halfspace lying on or below q̂ (w.r.t. the
negative xd+1-direction). Then q is mapped to q̂−.
The crucial property of this transformation is that it

preserves the relative positions of ai and q, i.e., ai is in
q (interior or boundary) iff âi is in q̂−. (Thus, ai is not
in q iff âi is in the open halfspace above q̂.) Figure 3
illustrates the preceding discussion for d = 2.
Thus, our problem in R

d is transformed to top-k
halfspace range search in R

d+1, on the set Â with
query halfspace q̂−. The result in Section 3.3 then
yields the bounds stated in Table 1.

3.5 Top-k circular point enclosure search

Here A is a set of n weighted (closed) balls in R
d

(d ≥ 2) and q is a point. The goal is to report the k
largest-weight balls intersected by (i.e., containing) q.
This problem, too, can be transformed to top-k

halfspace range search in R
d+1 through the successive

application of two transformations: lifting followed by
point-hyperplane duality—another well-known trans-
formation [29], [30] that we will discuss shortly.

8

����

����

�
�
�
�

��

����

��
��
��
��

U

q

q̂

ai

ai
ai

âi
âi

âi

x1x2-plane

x3

Fig. 3: The lifting transformation for d = 2. Point ai
is in the closed disc q if point âi is on or below the
plane q̂ and ai is not in q if âi is above q̂.

Using the lifting transformation discussed in Sec-
tion 3.4, we map each ball ai ∈ A to a closed halfspace
â−i and map q to a point q̂, all in R

d+1. By the
properties of the lifting transformation, q is in ai iff q̂
is in â−i .
Next we apply the point-hyperplane duality trans-

formation to the lifted objects in R
d+1 and map non-

vertical hyperplanes in R
d+1 to points in R

d+1, and
vice versa.
Specifically, a point u = (u1, . . . , ud+1) in R

d+1 is
mapped to the non-vertical hyperplane u′ : xd+1 =
2u1x1 + · · ·+ 2udxd − ud+1 and a non-vertical hyper-
plane H : xd+1 = h1x1 + · · ·+ hdxd + hd+1 is mapped
to the point H ′ = (h1/2, . . . , hd/2,−hd+1). It is easily
verified that point u is above/on/below hyperplane
H (w.r.t the negative xd+1-direction) iff the dual point
H ′ is above/on/below the dual hyperplane u′.
Using this duality transformation, for each ai ∈ A,

we map the corresponding non-vertical hyperplane
âi, bounding halfspace â−i , to a point â′i and map point
q̂ to the non-vertical hyperplane q̂′. By the properties
of the duality transformation, point q̂ is in the closed
halfspace â−i iff the point â′i is in the closed halfspace
q̂′− that lies on or below q̂′ .
Thus, our original problem in R

d has been trans-
formed to top-k halfspace range search in R

d+1. The
result in Section 3.3 then leads to the bounds given in
Table 1.

3.6 Top-k orthogonal segment intersection
search

Here A consists of n weighted horizontal line seg-
ments in R

2 and q is a vertical line segment. The goal
is to report the k largest-weight horizontal segments
intersected by q.
We are unaware of any previous dynamic data

structure DC for the counting version of the under-
lying GIQ problem. Therefore, we provide one below.

We build a segment tree S [27] on the intervals
obtained by vertically projecting the segments of A
onto the horizontal axis. Let Sv be the set of segments
assigned to node v ∈ S. We project the segments of
Sv horizontally on the vertical axis to obtain a set of
points and build a balanced binary search tree, Bv on
these points. This constitutes the structure DC .
Given q, we search in S with the vertical projection

of q (a point). Let Π be the search path. At each
node v ∈ Π, we query Bv with the interval that
is the horizontal projection of q on the vertical axis
and determine the number of points contained in the
projection. We sum this count over all v ∈ Π to obtain
|A(q)|, i.e., the number of segments of A intersected
by q. DC occupies Sc(n, d) = O(n log n) space and
answers queries in Qc(n, d) = O(log2 n). It can also be
dynamized to handle updates in Uc(n, d) = O(log2 n)
amortized time [27]
For DR, we use a structure given in [31], which uses

Sr(n, d) = O(n) space, answers queries in Qr(n, d) =
O(log2 n), and supports updates in Ur(n, d) = O(log n)
time. Substituting these into Theorem 1.1 yields the
bounds stated in Table 1.

3.7 Top-k interval intersection search

Here A consists of n weighted intervals in R
1 and q

is also an interval. The goal is to report the k largest-
weight intervals intersected by q.
Let the intervals in A be ai = [ℓ(ai), r(ai)] and let

q = [ℓ(q), r(q)]. Now, q intersects ai iff r(q) ≥ ℓ(ai)
and ℓ(q) ≤ r(ai), i.e., iff −∞ < ℓ(ai) ≤ r(q) and
ℓ(q) ≤ r(ai) <∞, i.e., iff the point a′i = (ℓ(ai), r(ai)) is
contained in the quadrant q′ = (−∞, r(q)]× [ℓ(q),∞).
We map each ai ∈ A to a′i and assign it a weight

equal to that of ai, i.e., wi. We map q to q′.
Thus, our problem has been transformed to a spe-

cial case of top-k orthogonal range search in R
2,

where the query q′ is a semi-infinite rectangle. This
allows us to use for DR a priority search tree [2]
(instead of a range tree) for which Sr(n, d) = O(n),
Qr(n, d) = O(log n), and Ur(n, d) = O(log n), where
d = 2. For DC we use the data structure given in [32],
for which Sc(n, d) = O(n), Qc(n, d) = O(log2 n),
and Uc(n, d) = O(log2 n) (amortized), where d = 2.
Applying Theorem 1.1 gives the bounds in Table 1. (If
we had used range tree, the space would have been
higher by a logn factor.) See the Appendix for the
description of a priority search tree.

4 HARDNESS OF TOP-k GIQ
As mentioned in Section 1.2, an interesting question is
to characterize the complexity of the top-k GIQ prob-
lem relative to that of the underlying GIQ problem.
In this section, we perform a formal investigation of
this question and show that former is at least as hard
as the latter.

9

4.1 Reduction from GIQ in R
d

Informally, the main result of this subsection is that
the top-k GIQ problem is at least as hard as the un-
derlying GIQ problem (reporting version). The formal
statement is given below.

Theorem 4.1: There exists a reduction from a GIQ
problem in R

d to the corresponding top-k GIQ prob-
lem in R

d.

Proof: Assume there is a data structure D which
can solve the top-k GIQ problem in R

d. Given n
objects, let S(n) be the space occupied by the data
structure and Q(n)+O(k) be the time taken to answer
the top-k query.

Now we show how to solve a GIQ problem in R
d

on n objects using a data structure that uses O(S(n))
space and has a query time of Q(n)+O(t), where t is
the number of objects reported.

Let A be the set of n objects in R
d on which we

shall solve the GIQ problem. Each object ai ∈ A is
assigned an arbitrary real weight, wi. Next we build
an instance of the data structure, D, based on these
weighted objects. Clearly the space occupied by the
data structure will be O(S(n)).

Given a query object, q, the query is executed in
multiple rounds: In round j (starting from j = 1),
we query D with (q, k = 2j−1 · Q(n)). If fewer than
2j−1 ·Q(n) objects are reported, then it means all the
objects in A(q) have been reported and, hence, we
stop. Otherwise, we go to round j + 1. It is clear that
this query algorithm will report all the objects in A(q)
and will not report any other object in A.

Now we analyze the time taken to solve the GIQ
problem. There are two cases:

1) Only one round is executed: Then the query time
will be O(Q(n)) since the value of k = Q(n).

2) There are i > 1 rounds of execution: In
round j the number of objects reported is
bounded from above by 2j−1 · Q(n). Then the
query time can be written as O(

∑i
j=1

(Q(n) +

2j−1Q(n))) = O(iQ(n) +
∑i

j=1
2j−1Q(n))) =

O(iQ(n) + 2iQ(n)) = O(2i · Q(n)). The crucial
observation is that since the (i − 1)-th round
was executed and we then entered i-th round,
we have t ≥ 2i−2Q(n) which implies that
2iQ(n) ≤ 4t. Therefore, the query time will be
O(2i ·Q(n)) = O(t).

Therefore, the overall query time will be O(Q(n) + t).

4.2 Reduction from GIQ in R
d+1

If we restrict our attention to top-k orthogonal range
search and top-k orthogonal point enclosure search,
then a stronger reduction can be shown. First we
consider top-k orthogonal range search and then top-
k orthogonal point enclosure search.

In this section, we consider hyper-rectangles in
R

d+1 for which the (d+1)st dimension is semi-infinite
(of the form [xd+1,∞)).
Theorem 4.2: There exists a reduction from orthogo-

nal range reporting in R
d+1 to top-k orthogonal range

search in R
d.

Proof: Assume there is a data structure, D, which
can answer the top-k orthogonal range search query
in R

d. Given n points, let S(n) be the space occupied
by the data structure and Q(n) + O(k) be the time
taken to answer the top-k query.
Suppose we have a set, A, of n points in R

d+1

and we want to answer an orthogonal range search
query on A for any given query hyper-rectangle q =
[x1, y1] × [x2, y2]× . . . [xd, yd] × [xd+1,∞). This can be
done using a data structure that uses O(S(n)) space
and has a query time of O(Q(n) + t), where t is the
number of points reported.
Each point ai = (x1(ai), . . . , xd(ai), xd+1(ai)) ∈ A in

R
d+1 is mapped to a point ai = (x1(ai), . . . , xd(ai)) ∈

R
d and assigned a weight xd+1(ai). Based on these

newly mapped points we build an instance of the data
structure D. Clearly the space occupied by D will be
O(S(n)).
Given a query region q = [x1, y1] × [x2, y2] ×

. . . [xd, yd] × [xd+1,∞), we map it to a query q′ =
[x1, y1] × [x2, y2] × . . . [xd, yd] in R

d. Then the query
is executed in multiple rounds. In round j (starting
with j = 1), we query D with (q′, k = 2j−1 · Q(n)).
Two cases arise:

1) If exactly 2j−1 ·Q(n) points are reported, then we
scan the reported points to find the point with
the smallest weight (say wi). If wi < xd+1, then
we do not go to the next round. Otherwise, we
go to round j + 1.

2) If less than 2j−1 ·Q(n) points are reported, then
we do not go to the next round.

If the query does not go beyond round j, then
among the points reported in round j, we remove
each point whose weight is less than xd+1. The re-
maining points are the output of the orthogonal range
search query on A with q.
Now we analyze the time taken to answer the

orthogonal range search query. There are two cases:

1) Only one round is executed: Then the query time
will be O(Q(n)) since the value of k = Q(n).

2) There are i > 1 rounds of execution: Then the
query time will be O(

∑i
j=1

(Q(n)+2j−1Q(n))) =

O(2i · Q(n)). As in the proof of Theorem 4.1,
we have t ≥ 2i−2Q(n) which implies that
2iQ(n) ≤ 4t. Therefore, the query time will be
O(2i ·Q(n)) = O(t).

Therefore, the overall query time will be O(Q(n) + t).

Theorem 4.3: There exists a reduction from orthogo-
nal point enclosure reporting in R

d+1 to top-k orthog-
onal point enclosure in R

d.

10

Proof: Assume there is a data structure, D, which
can answer the top-k orthogonal point enclosure in
R

d. Given n hyper-rectangles, let S(n) be the space
occupied by the data structure and Q(n) + O(k) be
the time taken to answer the top-k query.
We wish to answer an orthogonal point enclosure

query on a set, A, of n hyper-rectangles in R
d+1. Each

hyper-rectangle in A is of the form [x1, y1]× [x2, y2]×
. . . [xd, yd]× [xd+1,∞). This can be done using a data
structure that uses O(S(n)) space and has a query
time of Q(n) +O(t), where t is the number of hyper-
rectangles reported.
Each hyper-rectangle in A which is of the form

[x1, y1] × . . . [xd, yd] × [xd+1,∞) is mapped to a new
hyper-rectangle [x1, y1] × . . . × [xd, yd] in R

d and as-
signed a weight −xd+1. Based on these newly mapped
hyper-rectangles we build an instance of the data
structure D. Clearly the space occupied by D will be
O(S(n)).
Given a query point q = (q1, . . . , qd, qd+1), we map

it to q′ = (q1, . . . , qd) in R
d. Then the query is executed

in multiple rounds. In round j, query D with (q′, k =
2j−1 ·Q(n)). Two cases arise:

1) If exactly 2j−1 · Q(n) hyper-rectangles are re-
ported, then we scan the reported hyper-
rectangles to find the hyper-rectangle with the
smallest weight (say wi). If wi < −q

d+1, then we
do not go to the next round. Otherwise, we go
to round j + 1.

2) If less than 2j−1 · Q(n) hyper-rectangles are re-
ported, then we do not go to the next round.

If the query does not go beyond round j, then
among the hyper-rectangles reported in round j, we
remove each hyper-rectangle whose weight is less
than −qd+1. The remaining hyper-rectangles are the
output of the orthogonal range search query on A
with q. By repeating the analysis done for Theorem 4.2
the query time can be seen to be O(Q(n) + t).

5 EXPERIMENTAL RESULTS

We report on some experiments conducted with prac-
tical versions of the top-k orthogonal range search and
top-k orthogonal point enclosure search algorithms
discussed in Section 3. For the reasons given at the
end of Section 1.2, our implementations use R-trees
[6] instead of the asymptotically efficient counting
and reporting structures described in Section 3. R-
trees are well known in the database literature for
answering orthogonal range search and orthogonal
point enclosure search efficiently. We shall name our
implementation of top-k orthogonal range search and
top-k orthogonal point enclosure search Top-k ORS
and Top-k OPES, respectively. In our implementation,
the entire data structure resides in main memory,
rather than on disk.
For the sake of comparison, for both the problems

we also implemented the following two naive solu-
tions:

1) First, we built a solution based on the idea
discussed in Section 1. Build an R-tree on the
objects in A (disregarding their weights). Given
the query pair (q, k), query the R-tree with q to
report all the objects of Awhich intersect q. Next,
run a standard selection algorithm on A(q) to
identify the object with the kth-largest weight.
Finally, scan A(q) to output the k largest-weight
objects. For top-k orthogonal range search and
top-k orthogonal point enclosure search, this
naive solution is henceforth referred to as Naive
ORS and Naive OPES, respectively. (The qualifier
“Top-k” is omitted for brevity.)

2) Second, we built a solution which will be re-
ferred to as Naive Scan: In the pre-processing
phase, the Naive Scan technique sorts all the
objects in A in non-increasing order of their
weights and keeps them in an array. Given a
query pair (q, k), the array is scanned from the
beginning till either (i) k objects of A intersecting
q are found, or (ii) the end of the array is
reached.

We make an additional remark here. An aggregate
R-tree [33] is an augmented R-tree in which at every
intermediate node we store the maximum weight
among the objects stored in its subtree. An aggre-
gate R-tree is used to solve the top-1 GIQ problem.
However, it is not obvious how one can trivially
modify this structure to handle top-k GIQ, for any
value of k > 1. The same issue also arises for aP -
tree [18] which also answers the top-1 GIQ (for low
dimensional data). Therefore, we do not compare our
techniques with these spatial structures.
Our implementation was in C++ on a Celeron(R)

dual-core (2.10GHz ×2) Linux machine with 3GB
RAM.

5.1 Top-k orthogonal range search

The following datasets were used to evaluate solu-
tions for the top-k orthogonal range search problem:

1) Uniform data: For each point, we generated
each of its coordinates and its weight uni-
formly at random in the interval [0, 106]. For this
dataset, we varied n from 105 to 106 and varied
d from 2 to 5.

2) Forest fire data: We obtained a dataset for the
state of California, which is represented by a
1200 × 1200 pixel map, where each pixel corre-
sponds to a 1km × 1km region on the ground.
The Computer Science department at the Uni-
versity of Minnesota has devised a technique for
identifying forest fires, which gives a confidence
value (a real number) for a forest fire at a
pixel. Higher confidence values indicate higher
likelihood of a forest fire having occurred at the
pixel. Our goal was to use this information to
identify, within an area of interest in the pixel

11

 0

 50

 100

 150

 200

 250

 300

100K 250K 500K 750K 1000K

S
p

a
c
e
 O

c
c
u

p
ie

d
 (

in
 M

B
s
)

Dataset cardinality

Naive Scan
Naive ORS
Top-k ORS

(a) Uniform Data (d = 2)

 0

 100

 200

 300

 400

 500

100K 250K 500K 750K 1000K

S
p

a
c
e
 O

c
c
u

p
ie

d
 (

in
 M

B
s
)

Dataset cardinality

Naive Scan
Naive ORS
Top-k ORS

(b) Uniform Data (d = 3)

Fig. 4: Size of structure versus dataset cardinality.

 0

 20

 40

 60

 80

 100

 120

 0 2000 4000 6000 8000 10000

Q
u

e
ry

 T
im

e
 (

in
 s

e
c
s
)

Value of k

Naive Scan
Naive ORS
Top-k ORS

(a) Forest Fire Dataset

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000

Q
u

e
ry

 T
im

e
 (

in
 s

e
c
s
)

Value of k

Naive Scan
Naive ORS
Top-k ORS

(b) Foursquare Dataset

Fig. 5: Query time versus k. ‘Query time’ is the total
time to execute 100 queries.

map, those pixels where the confidence levels
of the technique were highest, hence where the
likelihood of a fire having occurred was greatest.
Towards this end, we treated the pixels as the
data points, the lat-long information of each
pixel as its coordinates, and the confidence value
of the technique as the weight of each pixel.
Thus, a top-k orthogonal range search would
yield the desired answer. For this dataset, we
had n = 1200× 1200 = 1.44× 106 and d = 2.

3) Foursquare data: This is a real-world dataset
obtained from Foursquare user histories [34]. It
contains a database of users and the locations
visited by these users. A user provides a rating
to the locations s/he visits based on her/his
experience at that location. We used this data
to obtain an average rating for each location. The
lat-long of each location was used as the coor-
dinates and the average rating was the weight
associated with each location. For this dataset,
we had n = 500, 000 and d = 2. This dataset has
been previously used in [35], [36].

Unless mentioned otherwise, we used a query
hyper-rectangle, q, that occupied 10% of the volume of
the universe (The shape of q was fixed and its location
was varied.)

5.1.1 Comparison of space used

Here we discuss the space used by Top-k ORS, Naive
ORS and Naive Scan. Figure 4 depicts the perfor-
mance of the three solutions for different uniform
datasets. With R-trees, the space used by Top-k ORS
is O(n log n) rather than O(n logd n), with the depen-
dence on d being multiplicative not exponential. This

 0

 20

 40

 60

 80

 100

0.001 2 5 10

Q
u

e
ry

 T
im

e
 (

in
 s

e
c
s
)

Query box size (in % of volume)

Naive ORS
Top-k ORS

(a) Forest Fire Dataset

 0

 100

 200

 300

 400

 500

 600

 700

0.001 2 5 10

Q
u

e
ry

 T
im

e
 (

in
 s

e
c
s
)

Query box size (in % of volume)

Naive Scan
Top-k ORS

(b) Forest Fire Dataset

Fig. 6: Query time versus query box size. ‘Query time’
is the total time to execute 100 queries.

 0

 10

 20

 30

 40

 50

 60

0.001 2 5 10

Q
u

e
ry

 T
im

e
 (

in
 s

e
c
s
)

Query box size (in % of volume)

Naive ORS
Top-k ORS

(a) Foursquare Dataset

 0

 50

 100

 150

 200

 250

0.001 2 5 10

Q
u

e
ry

 T
im

e
 (

in
 s

e
c
s
)

Query box size (in % of volume)

Naive Scan
Top-k ORS

(b) Foursquare Dataset

Fig. 7: Query time versus query box size. ‘Query time’
is the total time to execute 100 queries.

manifests itself in the slow rate of growth of the space
used as a function of n. Naive ORS and Naive Scan
used O(n) space and as expected, used less space than
Top-k ORS. However, given the significant benefits
realized by Top-k ORS in query efficiency (discussed in
the following subsections), we believe that this space
overhead is reasonable.

5.1.2 Effect of k
Figure 5 shows the query time of the three solutions
as a function of k on the forest fire and foursquare
datasets. All the algorithms used the same set of 100
query boxes to query the dataset. We note that the
query times for Naive ORS and Top-k ORS do not
vary much with the value of k. In the former case
this might be attributable to the fact that the number
of points in the query range dominates the value of
k, while in the latter case the time to taken to identify
the threshold point and the canonical nodes in T ′ and
to query the GIQ data structure at the canonical nodes

 0

 20

 40

 60

 80

 100

100K 250K 500K 750K 1000K

Q
u

e
ry

 T
im

e
 (

in
 s

e
c
s
)

Cardinality

Naive Scan
Naive ORS
Top-k ORS

(a) Uniform Dataset

 0

 20

 40

 60

 80

 100

 2 3 4 5

Q
u

e
ry

 T
im

e
 (

in
 s

e
c
s
)

Dimension size

Naive Scan
Naive ORS
Top-k ORS

(b) Uniform Dataset

Fig. 8: (a) Query time versus cardinality. (b) Query
time versus dimension size. ‘Query time’ is the total
time to execute 100 queries.

12

 0

 100

 200

 300

 400

 500

 600

100K 250K 500K 750K 1000K

S
p

a
c
e
 O

c
c
u

p
ie

d
 (

in
 M

B
s
)

Cardinality

Naive Scan
Naive OPES
Top-k OPES

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

100K 250K 500K 750K 1000K

Q
u

e
ry

 T
im

e
 (

in
 s

e
c
s
)

Cardinality

Naive Scan
Naive OPES
Top-k OPES

(b)

 0

 20

 40

 60

 80

 100

 2 3 4 5

Q
u

e
ry

 T
im

e
 (

in
 s

e
c
s
)

Dimension size

Naive Scan
Naive OPES
Top-k OPES

(c)

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000

Q
u

e
ry

 T
im

e
 (

in
 s

e
c
s
)

Value of k

Naive Scan
Naive OPES
Top-k OPES

(d)

Fig. 9: Results for top-k orthogonal point enclosure. ‘Query time’ is the total time to execute 100 queries.

dominates the time to actually report the top-k points.
However, the query time for Naive Scan increased
rapidly with the increase in the value of k. This is to
be expected since the larger the value of k, the greater
the number of points that Naive Scan has to scan.

5.1.3 Effect of query box size

Figure 6 and 7 shows the query time of the three
solutions as a function of the query box size on the
forest fire and foursquare datasets, respectively, with
k = 5. Each query box was a square whose center
was generated uniformly at random in the interval
[0, 106] along each dimension. The performance of
Naive ORS was directly proportional to the number
of points inside the query box. As shown in Fig-
ures 6(a) and 7(a), when the query box size was very
small, Naive ORS performed well but its query time
increased drastically as the query box size increased.
The query time of Top-k ORS also increased with
query box size but at a much slower rate. On the other
hand, the performance of Naive ORS was inversely
proportional to the number of points inside the query
box. As shown in Figures 6(b) and 7(b), when the
query box size was very small, Naive Scan performed
poorly (as it had to scan a large portion of the dataset)
but its query time decreased dramatically as the query
box size increased.

5.1.4 Effect of cardinality and dimensionality

Finally we performed a set of experiments to test the
effect of dataset cardinality and dimensionality on the
query time of the two solutions. Figure 8(a) shows the
query time versus cardinality, on the uniform dataset
with d = 2 and k = 5. Figure 8(b) shows the query
time versus dimension size, on the uniform dataset
with n = 500, 000 and k = 5.
As can be seen in Figure 8, the query time of

Top-k ORS and Naive Scan increased with dataset
cardinality or dimension, but at a rather slow rate. By
comparison, the query time of Naive ORS grew at a
much faster rate. We also observe that the query time
of Naive ORS degraded more rapidly with increasing
dataset cardinality than with increasing dimension.
One possible reason is that the performance of Naive
ORS is directly proportional to the number of points
inside the query box, which increases with increase in

cardinality; on the other hand since an R-tree is being
used to retrieve all the points inside the query box
efficiently, dataset dimension has less of an impact on
query time.
The conclusion to be drawn from these experiments

is that our implementation of Top-k ORS is quite
practical and is robust to changes in dataset cardi-
nality and dimension, as well as changes in the query
parameters (location and size of q, value of k).

5.2 Top-k orthogonal point enclosure search

We used synthetic datasets to compare the perfor-
mance of Top-k OPES, Naive OPES and Naive Scan.
Each input hyper-rectangle was created by generat-
ing the coordinates of its bottom-left and top-right
corners uniformly and at random in [0, 106] (taking
care that the top-right coordinates were larger than
their bottom-left counterparts). Unless mentioned oth-
erwise, the default values of d = 3, n = 500, 000 and
k = 5 were used.
With R-trees, the space used by Top-k OPES is

O(n log n). Figure 9 compares the performance of the
two solutions against various parameters as in Sec-
tion 5.1.3. Again, the implementation of Top-k OPES
is seen to be quite efficient in practice.

6 CONCLUSION

We have given a general technique that solves any
top-k GIQ problem efficiently, provided efficient so-
lutions are available for the counting and reporting
versions of the underlying GIQ problem. We have
shown how to use this to obtain asymptotically ef-
ficient solutions for several specific instances of top-
k GIQ problems (Table 1). We have also investigated
the computational hardness of the top-k GIQ problem.
We have implemented our solution for some of the
top-k GIQ problems discussed, using practical data
structures (R-trees), and have found them to be quite
efficient.
Our results assume a computational model where

all the data resides in internal memory. It is also
possible to extend our results to the external memory
model where the data resides primarily on disk, in
blocks of some size B. A result analogous to Theo-
rem 1.1 can be obtained except that space is measured

13

strip(v)

v

Fig. 10: Querying a two-dimensional range tree built
on 12 points. The canonical nodes are shaded in grey.

in blocks, query and update performance are mea-
sured in terms of the number of input-output (I/O)
operations, and the output-size term in the query time
is of the form k/B.

APPENDIX A
SOME COMMON GEOMETRIC DATA STRUC-
TURES

In this appendix we give a brief introduction to some
of the common geometric data structures which are
used in computational geometry.

A.1 Range Tree

A Range Tree is a popular data structure in computa-
tional geometry to answer orthogonal range reporting
and counting queries. For the sake of simplicity, we
shall discuss static range trees in R

2 for a reporting
query. We are given a set S of n points lying in
R

2. The primary structure is a height-balanced binary
search tree T in which the points of S are stored
in the leaves of T in increasing order of their x-
coordinate. For each node v ∈ T , define S(v) to be
the set of points of S lying in the subtree of v. With
each node v ∈ T , we associate an array A(v) which
stores the points of S(v) in increasing order of their
y-coordinate values. Also, define strip(v) to be the
range on the x-axis which contains all the points
in S(v), i.e., strip(v) = [xl, xr], where xl (resp. xr)
is the x-coordinate of the leftmost (resp. rightmost)
point in the subtree of v (see Figure 10). Each point
p of S is stored in the array associated with all the
O(log n) nodes on the path from the root till the leaf
containing p. Therefore, the space occupied by T will
be O(n logn).
Let q = [x1, x2] × [y1, y2] be the query rectangle.

Given q, a node v ∈ T is a canonical node if [x1, x2] ⊆
strip(v) but [x1, x2] 6⊆ strip(p(v)), where p(v) is the
parent of v. It can be shown that the size of the set,

vsplit

vl vr

v1

v2 v3
v4

Fig. 11: Querying the priority search tree. Cl = {v1, v2}
and Cr = {v3, v4}.

Cq , of canonical nodes is bounded byO(log n) (at most
two per each level of T). Given any two nodes u, v ∈
Cq , strip(u) and strip(v) are disjoint; and the union of
the strips of the nodes in Cq exactly cover [x1, x2] (see
Figure 10). The crucial observation is the following:
The points of S inside q can be reported by performing
one-dimensional range reporting with [y1, y2] on each
of the arrays associated with the canonical nodes.
Performing a one-dimensional range search on an
array A(v) takes O(log n+ kv) time, where O(log n) is
the time taken to perform a binary search on the array
and kv is the number of points reported. Therefore,
the total query time will be O(

∑
v∈Cq

(log n + kv)) =

O(log2 n+
∑

v∈Cq
kv) = O(log2 n+k), where k = |S∩q|.

By making suitable changes to the query algorithm,
one can also answer the counting query in O(log2 n)
time. For further details, see the book by de Berg et
al. [2].

A.2 Priority Search Tree

A Priority Search Tree is used for range reporting
when the query rectangle is restricted to be of the
form q = [x1, x2] × [y1,∞). It is a combination of
a heap (on y-coordinates) and a binary search tree
(on x-coordinates). For a set S of n points lying in
R

2, the space occupied is O(n) and the query time is
O(log n+ k), where k = |S ∩ q|.
Pick the point in S with the highest y-coordinate,

say pmax and place it at the root of the structure
T . Let pmed be the median point of S based on the
x-coordinate, which is also stored at the root node.
Recursively build the left (resp. right) subtree of T
based on the points of S whose x-coordinate is smaller
(resp. larger) than that of xmed. Since each point of S
gets stored at exactly one node, the space occupied by
T is O(n).
Given the restricted query rectangle q, find the leaf

node vl (resp. vr) of T which is a successor (resp.
predecessor) of x1 (resp. x2). Let vsplit be the least
common ancestor node of vl and vr (see Figure 11).

14

Then the points of S ∩ q can be reported by the
following steps:

1) Scan the points stored on the path from root till
vl (resp. vr) and report those which lie inside q.
There will be only O(log n) points on these two
paths.

2) Let Cl (resp. Cr) be the set of nodes such that
each is not on the path from vsplit till vl (resp. vr)
but whose parent is on the path. All the points
in the subtree of any node in Cl and Cr have
the property that their x-coordinate is in the
range [x1, x2], which implies that we only need
to report points whose y-coordinate is greater
than y1 (see Figure 11). To do this, at every node
v ∈ Cl ∪ Cr, we check if the point stored at v
has y-coordinate greater than y1. If the answer
is no, then we stop; else we then recursively
proceed to the subtrees of its two children. It
can be shown that the time spent at each node
v ∈ Cl ∪Cr is O(1+ kv), where kv is the number
of points reported in the subtree of v. The total
time taken for all the nodes in Cl ∪ Cr will be
O(

∑
v∈Cl∪Cr

(1 + kv)) = O(log n+ k).

The overall query time will be O(log n + k). For
details on how to handle updates, see the survey
paper by Chiang and Tamassia [27].

A.3 Segment Tree

The segment tree [27] data structure is used for han-
dling queries on geometric objects such as hyper-
rectangles, orthogonal/arbitrary segments etc. A fun-
damental problem which can be solved using a seg-
ment tree is the following: Preprocess a set S of n
intervals (possibly overlapping) on the real line into
a data structure, so that given a query point q on
the real line, we can efficiently report or count the
intervals of S intersected by q. The space occupied by
the segment tree will be O(n log n) and the query time
is O(log n+ k), where k = |S ∩ q|.

Let p1, p2, . . . , pm be the set of distinct end-
points of the intervals of S, sorted from left to
right. The real line is partitioned into the fol-
lowing disjoint regions called elementary intervals:
(−∞, p1), [p1, p1], (p1, p2), [p2, p2], . . . , (pm−1, pm),
[pm, pm], (pm,∞). A height balanced binary search
structure T is built. The leaves of T store the elemen-
tary intervals in the order shown above. With each
node v ∈ T , we store a variable strip(v). If v is a leaf
node, then strip(v) is the elementary interval corre-
sponding to v; else it is the union of the elementary
intervals stored in the leaf nodes of the subtree of v.
A node stores an interval (say I = (x1, x2)) of S if
strip(v) ⊆ I but strip(p(v)) 6⊆ I , where p(v) is the
parent of v. All the intervals stored at node v are
maintained in a linked list Sv . It can be shown that
each interval of S can get stored at O(log n) nodes of

T (at most two nodes per level of T). Therefore, the
size of the segment tree is O(n log n).
To answer a reporting query, we follow the path,

Π, from the root of T till a leaf node u such that
q ∈ strip(u). At each node v ∈ Π, we report all the
intervals stored in Sv. This will ensure that all the
points in S ∩ q are reported. The query time can be
shown to be O(log n+ k). For more details see [2].

ACKNOWLEDGMENT

The authors thank the three reviewers for their con-
structive comments which helped improve the paper.

REFERENCES

[1] P. Agarwal and J. Erickson, “Geometric range searching and
its relatives,” in B. Chazelle, J. E. Goodman, and R. Pollack (Eds.),
Advances in Discrete and Computational Geometry, AMS
Press, vol. 23, 1999, pp. 1–56.

[2] M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf, Computational Geometry. Springer–Verlag,
2000.

[3] H. Samet, Foundations of multidimensional and metric data struc-
tures. Morgan Kaufmann, 2006.

[4] I. Ilyas, G. Beskales, and M. Soliman, “A survey of top-k query
processing techniques in relational database systems,” ACM
Computing Surveys, vol. 40, no. 4, 2008.

[5] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction
to Algorithms. MIT Press, 2001.

[6] A. Guttman, “R-trees: A dynamic index structure for spatial
searching,” in Proc. of ACM Management of Data (SIGMOD),
1984, pp. 47–57.

[7] G.Brodal, R. Fagerberg, M. Greve, and A. López-Ortiz, “Online
sorted range reporting,” in Proc. of International Symposium on
Algorithms and Computation (ISAAC), 2009, pp. 173–182.

[8] C. Sheng and Y. Tao, “Dynamic top-k range reporting in
external memory,” in Proc. of ACM Symposium on Principles
of Database Systems (PODS), 2012, pp. 121–130.

[9] P. Afshani, G. Brodal, and N. Zeh, “Ordered and unordered
top-k range reporting in large data sets,” in Proc. of the Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), 2011,
pp. 390–400.

[10] S. Rahul, P. Gupta, R. Janardan, and K. Rajan, “Efficient top-
k queries for orthogonal ranges,” in International Workshop on
Algorithms and Computation (WALCOM), 2011, pp. 110–121.

[11] T. Gagie, S. Puglisi, and A. Turpin, “Range quantile queries:
another virtue of wavelet trees,” in Proc. of the International
Conference on String Processing and Information Retrieval (SPIRE),
2009, pp. 1–6.

[12] G. Navarro and L. Russo, “Space-efficient data-analysis
queries on grids,” in Proc. of International Symposium on Al-
gorithms and Computation (ISAAC), 2011, pp. 323–332.

[13] M. Karpinski and Y. Nekrich, “Top-k color queries for doc-
ument retrieval,” in Proceedings of the Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2011, pp. 401–411.

[14] T. Gagie, G. Navarro, and S. Puglisi, “Colored range reporting
and document retrieval,” in Proc. of the International Conference
on String Processing and Information Retrieval (SPIRE), 2010, pp.
67–81.

[15] A. Yu, P. Agarwal, and J. Yang, “Processing and notifying
range top-k subscriptions,” in Proc. of International Conference
on Data Engineering (ICDE), 2012, pp. 810–821.

[16] Y. Tao, C. Sheng, C.-W. Chung, and J.-R. Lee, “Range aggre-
gation with set selection,” To appear in IEEE Transactions on
Knowledge and Data Engineering (TKDE), 2014.

[17] J. Yang and J. Widom, “Incremental computation and main-
tenance of temporal aggregates,” The VLDB Journal, vol. 12,
no. 3, pp. 262–283, 2003.

[18] Y. Tao and D. Papadias, “Range aggregate processing in
spatial databases,” IEEE Transactions on Knowledge and Data
Engineering (TKDE), vol. 16, no. 12, pp. 1555–1570, 2004.

15

[19] D. Zhang, Y. M. Chee, A. Mondal, A. K. H. Tung, and M. Kit-
suregawa, “Keyword search in spatial databases: Towards
searching by document,” in Proc. of International Conference on
Data Engineering (ICDE), 2009, pp. 688–699.

[20] S. Govindarajan, P. K. Agarwal, and L. Arge, “Crb-tree: An
efficient indexing scheme for range-aggregate queries.” in
Proc. of International Conference on Database Theory (ICDT), 2003,
pp. 143–157.

[21] D. Papadias, P. Kalnis, J. Zhang, and Y. Tao, “Efficient olap
operations in spatial data warehouses,” in Proc. of Symposium
on Advances in Spatial and Temporal Databases (SSTD), 2001, pp.
443–459.

[22] C. Sheng and Y. Tao, “New results on two-dimensional orthog-
onal range aggregation in external memory,” in Proc. of ACM
Symposium on Principles of Database Systems (PODS), 2011, pp.
129–139.

[23] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart,
M. Venkatrao, F. Pellow, and H. Pirahesh, “Data cube: A
relational aggregation operator generalizing group-by, cross-
tab, and sub totals,” Data Mining and Knowledge Discovery,
vol. 1, no. 1, pp. 29–53, 1997.

[24] C.-T. Ho, R. Agrawal, N. Megiddo, and R. Srikant, “Range
queries in olap data cubes,” in Proc. of ACM Management of
Data (SIGMOD), 1997, pp. 73–88.

[25] C. K. Poon, “Optimal range max datacube for fixed dimen-
sions,” in Proc. of International Conference on Database Theory
(ICDT), 2003, pp. 158–172.

[26] D. Willard and G. Lueker, “Adding range restriction capability
to dynamic data structures,” Journal of the ACM (JACM),
vol. 32, pp. 597–617, 1982.

[27] Y.-J. Chiang and R. Tamassia, “Dynamic algorithms in compu-
tational geometry,” Proc. of the IEEE, Special Issue on Computa-
tional Geometry, vol. 80, no. 9, pp. 1412–1434, 1992.

[28] P. Agarwal and J. Matousek, “Dynamic half-space range re-
porting and its applications,” Algorithmica, vol. 13, no. 4, pp.
325–345, 1995.

[29] J. Matousek, “Geometric range searching,” ACM Comput.
Surv., vol. 26, no. 4, pp. 421–461, 1994.

[30] H. Edelsbrunner, Algorithms in Combinatorial Geometry.
Springer–Verlag, 1987.

[31] S.-W. Cheng and R. Janardan, “Efficient dynamic algorithms
for some geometric intersection problems,” Information Process-
ing Letters (IPL), vol. 36, no. 5, pp. 251–258, 1990.

[32] B. Chazelle, “A functional approach to data structures and its
use in multidimensional searching,” SIAM Journal of Comput-
ing, vol. 17, no. 3, pp. 427–462, 1988.

[33] M. Jürgens and H.-J. Lenz, “The R∗
a-tree: An improved R*-

tree with materialized data for supporting range queries on
OLAP-data,” in DEXA Workshop, 1998, pp. 186–191.

[34] Foursquare:, https://foursquare.com.
[35] J. J. Levandoski, M. Sarwat, A. Eldawy, and M. F. Mokbel,

“Lars: A location-aware recommender system,” in Proc. of
International Conference on Data Engineering (ICDE), 2012, pp.
450–461.

[36] M. Sarwat, J. Bao, A. Eldawy, J. J. Levandoski, A. Magdy, and
M. F. Mokbel, “Sindbad: a location-based social networking
system,” in Proc. of ACM Management of Data (SIGMOD), 2012,
pp. 649–652.

PLACE
PHOTO
HERE

Saladi Rahul is a third year Ph.D. candidate
in the Department of Computer Science &
Engineering at the University of Minnesota–
Twin Cities. He received his Bachelor’s de-
gree and Master’s degree in Computer Sci-
ence from IIIT-Hyderabad, India. His re-
search interests are computational geometry
and algorithms for database systems.

PLACE
PHOTO
HERE

Ravi Janardan is a full professor in the
Department of Computer Science & Engi-
neering at the University of Minnesota–Twin
Cities. He earned a Ph.D. degree in computer
science in 1987 from Purdue University, West
Lafayette, IN. His research interests are in
the design and analysis of geometric algo-
rithms and data structures, and their applica-
tions to spatial query retrieval, biomedicine,
and computer-aided design and manufac-
ture. He is a Senior Member of IEEE.

