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Abstract. In this paper we consider range-aggregate query problems
wherein we wish to preprocess a set S of geometric objects such that
given a query orthogonal range q, a certain aggregation function on the
objects S′ = S ∩ q can be answered efficiently. Range-aggregate version
of point enclosure queries, 1-d segment intersection, 2-d orthogonal seg-
ment intersection (with/without distance constraint) are revisited and we
improve the existing results for these problems. We also provide semi-
dynamic (insertions) solutions to some of these problems. This paper
is the first attempt to provide dynamic solutions to problems involving
geometric aggregation operations.

1 Introduction

Range Searching is an extensively studied problem in the field of Computational
Geometry and database communities due to its wide range of applications. In
this paper we shall consider range-aggregate query problems [8] in which we deal
with composite queries involving more than just a simple range searching or
counting. Formally, we wish to preprocess a set of geometric objects S, such
that given a query range q, a certain aggregation function that operates on the
objects of S′ = S ∩ q can be performed efficiently.

As an example consider the following problem: “Preprocess a set S of weighted
points in IR2 such that given a query rectangle q, the point in S ∩ q with the
“maximum” weight can be reported efficiently” [2]. Other example aggregate
functions include “minimum”, “sum”, “count”. All these aggregate functions
come under the class of Distributive aggregates which can be computed by par-
titioning the input into disjoint sets, aggregating each set individually and then
obtaining the final result by further aggregation of the partial results. Algebraic
and holistic aggregates are the other two classes. Algebraic aggregates (e.g. aver-
age) can be expressed as a function of distributive aggregates. Holistic aggregates
(e.g. median) cannot be computed by dividing the input into parts. Aggregation
functions can be geometric in nature like horizontal-vertical segment intersec-
tion, convex hull etc. [6, 8, 11].

In on-line analytical processing (OLAP), geographic information systems
(GIS) and other applications range aggregate queries play an important role in
summarizing information [12]. In a VLSI layout editing environment and in map
overlaying processing range-aggregate query problems with geometric functions
are very useful. Refer [8] for detailed explanation of these applications.



1.1 Our Contribution

In this paper we revisit the range-aggregate query problems with geometric func-
tions which were previously attempted in [6] and [8]. We come up with improved
solutions to these problems. The results are shown and compared with previous
results in Table 2. The problems discussed in these papers were static. In this
paper we come up with semi-dynamic (insertions) solutions to some of these
problems. To the best of our knowledge, this is the first attempt being made at
finding dynamic solutions to problems involving geometric aggregation opera-
tions. See Table 1 for the results obtained for semi-dynamic case. In Section
2, we consider static d-dimensional range-aggregate point enclosure problem
(d ≥ 1). In Section 3 we show to how to handle insertions efficiently for this
problem. In Section 4, the static and the semi-dynamic (insertions) 1-d range-
aggregate segment intersection problem is discussed. In Section 5, the static 2-d
range-aggregate orthogonal segment intersection problem is discussed. Finally,
in Section 6 the static 2-d range-aggregate orthogonal segment intersection with
distance constraint is discussed.

Underlying
space

Objects in
S

Objects in
T

Query Space Query time Insert time
(amortized)

IR1 points segments point O(n log n) O(log n +k) O(log n)
enclosure

IRd points hyper point O(n logd n) O(logd−1 n log log n +k) O(logd n)
rectangles enclosure

IR1 segments segments intersections O(n log n) O(log n +k) O(log n)
Table 1. Summary of results for semi-dynamic range-aggregate query problems; the
query q is an orthogonal range; k is the output size. Insertion time mentioned in
amortized time.

2 Static Range-Aggregate Point Enclosure

In this section we shall consider the static d-dimensional range-aggregate version
of the point enclosure problem. A set S of points and a set T of orthogonal
hyperboxes in IRd (d ≥ 1) are given and we need to report all point-hyperbox
incidences inside a query orthogonal hyperbox.
Problem 1. Preprocess a set S of points and a set T of orthogonal (axes-
parallel) hyperboxes in IRd (d ≥ 1) with |S| + |T | = n, such that given a query
orthogonal hyperbox q = [a1, b1] × [a2, b2] × . . . [ad, bd], all pairs (s, t), s ∈ S,
t ∈ T satisfying s ∈ (t ∩ q) can be reported efficiently.

We shall start by considering the problem in a 1-dimensional scenario. Next,
we show how to extend the solution to higher dimensions (d ≥ 2).



Underlying Objects Objects Query Space Query Source
space in S in T time

IR1 points segments point O(n log n) O(log n +k) [8]
enclosure O(n) O(log n + k) New

IRd points hyper point O(n logd n) O(logd n +k) [8]
rectangles enclosure

O(n logd−1 n) O(logd−1 n + k) New

IR1 segments segments intersections O(n log n) O(log n +k) [8]
O(n) O(log n + k) New

IRd horizontal vertical intersections O(n log2 n) O(log2 n +k) [8]
segments segments O(n log n) O(log n + k) New

IR1 points segments point enclosure O(n log n) O(log n +k) [6]
with distance O(n) O(log n + k) New
constraint

IRd horizontal vertical intersections O(n log3 n) O(log2 n +k) [6]
segments segments with distance

constraint O(n log2 n) O(log2 n + k) New

Table 2. Comparison of results of static range-aggregate query problems; the query is
an orthogonal range; k is the output size.

2.1 One-dimensional scenario.

Preprocess a set S of points and a set T of segments on the x-axis, with |S|+|T | =
n such that given a query interval q = [a1, b1], all pairs (s, t), s ∈ S, t ∈ T
satisfying s ∈ t ∩ q can be reported efficiently.

We sort the points in S in non-decreasing order and remove any point in S
which does not stab (or intersect) any segment in T . The reduced set S′ ⊆ S
is stored at the leaves of a balanced binary search tree BST . BST is searched
with segments t ∈ T to find if any point in S stabs t. If no such point exists for a
segment t ∈ T , then it is removed. Let T ′ ⊆ T be the reduced set. The segments
in T ′ partition the x-axis into 2|T ′| + 1 elementary intervals. It might happen
that some of these intervals are empty. Let I be the set of these elementary
intervals. With each interval i ∈ I, we maintain a list (Li) of segments, t′ ∈ T ′,
such that t′ ∩ i 6= ∅. Also, with each leaf point in BST , we maintain a pointer
to that interval in I which it stabs (each point can stab only one interval in I).

The total size of all the lists Li, ∀ i ∈ I will be O(n2). Notice that if we add
up the total number of changes occurring in every pair of consecutive lists Li
and Li+1, it will turn out to be O(n). The reason being that changes between
consecutive lists occur either due to an entry of a new segment t′ ∈ T ′ or removal
of a segment t′ ∈ T ′ and the number of endpoints in T ′ are 2|T ′| ≡ O(n). Hence,
we make use of this fact and build a partially persistent data structure D [7],
instead of separately storing the lists Li, ∀ i ∈ I . We start with an initially
empty structure D and by treating the x-axis as time, we store the lists Li, ∀ i
∈ I into D. Since, the number of modifications will be O(n), the total size of D
will be O(n).



Given a query interval q = [a1, b1], BST is searched and the all the points
in S′ lying within q are found out. For each reported point p, the pointer stored
with it is followed to reach the elementary interval i ∈ I it is stabbing. Then,
the tuples (p, li), ∀ li ∈ Li, are reported. The list Li is obtained by accessing D.

Theorem 1. A set S of points and a set T of segments on the x-axis where |S|
+ |T | = n, can be preprocessed into a data structure of size O(n) such that given
a query interval q = [a1, b1], all pairs (s, t), s ∈ S, t ∈ T such that s ∈ t ∩ q
can be reported in time O(log n+ k) where k is the output size.

2.2 Extension to higher dimensions (d ≥ 2).

We begin with d = 2 and then generalize that solution to higher dimensions.
First, we discard all the points in S which do not stab any rectangle in T . The
remaining points in S (say S′) are put in a two-dimensional Range Tree [3] RT .
One way of solving this problem is to maintain with each point in S′ the list
of rectangles in T that it stabs. Then given a query rectangle q, we shall query
RT with q and for each point inside q, report the rectangles it stabs. However,
the space required in this case can blow up to O(n2). We overcome this issue by
maintaining a sparse list with each point in S′.

Next we will have to build a new data structure that solves the standard
“point enclosure” problem of reporting all the rectangles stabbed by a query
point. Based on the x-projections of the rectangles in T , we build a segment tree
ST . Let I(v) be the set of segments allocated to a node v in ST . At each node
v ∈ ST , based on the y-projection’s of the rectangles whose x-projections are
in I(v), we build an instance of data structure D of Theorem 1 for storing the
y-projection’s. Hence, ST can be used for answering a standard point enclosure
problem, for a given query point in IR2. The space occupied by the Range Tree
RT and the augmented Segment Tree is O(n log n).

Consider a point p ∈ S. Do a stabbing query on only the primary structure
of ST . Let Π(p) be the path from root till the leaf obtained by querying with p.
At each node v ∈ Π(p), if I(v) 6= ∅ query the secondary structure and find out
the elementary interval within which point p lies. Make a list L(p) storing the
pointer to the elementary interval in which p lies ∀ v ∈ Π(p). The list L(p) is
prepared for each point p ∈ S. The total size of the lists L(p), ∀ p ∈ S′ will be
O(n log n). In this way we have successfully reduced the space complexity from
O(n2) to O(n log n).

Given a query rectangle q = [a1, b1]× [a2, b2], we query RT with q. For each
point p ∈ q, we follow all the pointers in L(p). By following each pointer we
reach an elementary interval, say i. Then we start reporting pairs (p, r) where
r is the rectangle corresponding to each segment stored in Li (Li is the set of
segments stored corresponding to the elementary interval i). The time taken to
query RT is O(log n + k′), where k′ is the number of points reported by RT
and the time taken to report all the k pairs is O(k). Therefore, the total query
time is O(log n + k).



This solution can be directly extended to higher dimensions (d > 2). In a
d-dimensional space, RT will be a d-dimensional Range Tree built on points in
S. ST will be a d-dimensional Segment tree. However, at the deepest level we
shall replace a segment tree by an instance of the structure D of Theorem 1. By
doing a stabbing query on ST each point p ∈ S will create a list L(p) of size
O(logd−1 n) size. The size of RT and ST will be O(n logd−1 n). The time taken
to answer for a query hyperbox will be O(logd−1 n + k).

Theorem 2. A set S of points and a set T of axes-parallel hyperboxes in IRd

for d ≥ 2 with |S| + |T | = n, can be preprocessed into a data structure of size
O(n logd−1 n) such that given a query hyperbox q = [a1, b1] × [a2 , b2] × . . . ×
[ad , bd], all pairs (s, t), s ∈ S, t ∈ T such that s ∈ (t ∩ q) can be reported in
time O(logd−1 n + k) where k is the output size.

3 Semi-dynamic Range-Aggregate Point Enclosure

In this section we shall build data structures which can handle insertions effi-
ciently for solving the Range-Aggregate Point Enclosure problem. As done pre-
viously, the one-dimensional scenario is presented first and then extended to
higher dimensions.

3.1 One-dimensional scenario.

The preprocessing steps are as follows. Using the segments in T , a standard
segment tree ST is built. Structure ST is equipped to handle both the report-
ing and the counting queries (query here will be a point). Construction of the
segment tree takes O(n log n) time and space. Point set S is divided into three
disjoint subsets S1, S2 and S3. If a point p ∈ S intersects with none of the seg-
ments in T , then p falls into set S1. If the number of segments of T with which
p intersects lies in the range (0, log n), then it falls into set S2. S3 ⊆ S contains
the points which intersect with more than “log n - 1” segments of T , i.e., in the
range [log n, n]. Segment tree ST is used for finding the number of segments of
T being intersected by each point in S. This partition of point set S into three
subsets takes O(n log n) time.

Based on the x-coordinates of the points in Si (∀ i=1,2,3), we build a balanced
binary search tree BTi. We pick BT2 for further augmentation while BT1 and
BT3 are not augmented further. The points in S2 are placed at the leaf nodes of
BT2. With each point p ∈ S2 present at a leaf node of T2, we store a list, Lp, of
all the segments of T it intersects. Also, the size of each list Lp is maintained.
The list Lp can be found by querying ST , which will take time O(log n+ |Lp|) ≡
O(log n) since |Lp| ∈ (0, log n). Therefore, the time taken to augment BT2 will
be O(n log n). The time taken to build the trees BT1, BT2 and BT3 is O(n log n).
The total preprocessing time is O(n log n). The space occupied is O(n log n) since
both BT2 and ST take up O(n log n) space.

Given a query interval q=[a1, b1], BT3 is queried with q. For each point p in
BT3 lying within q, we query ST with p and report all the pairs (p, t) satisfying



p ∈ (t ∩ q) and t ∈ T . Next, we query BT2 with q. For each point p in BT2 lying
within q, we shall report the pairs (p, t), ∀ t ∈ Lp.

The query time of the algorithm is analyzed. The time taken to query BT2

is O(log n + Σ|Lp|) ≡ O(log n + k′), where k′ is the number of pairs formed
by points of S2 lying within q. Let kp be the number of segments intersected by
point p ∈ (S3 ∩ q). Then the time taken to query BT3 will be: O(Σ (log n +
kp)) ≡ O(Σkp) ≡ O(k”), since kp ≥ log n and k” be the number pairs formed
by points of S3 lying within q. Therefore, the total query time will be O(log n +
k′ + k”) ≡ O(log n + k), where k is the total number of pairs to be reported.

Handling insertions. Suppose a new point p is added to the set S. It is
first queried on ST to find out the number of segments of T it intersects with
(say kp). Based on the value of kp it is kept in one of the subsets S1, S2 or S3

and then inserted appropriately into one of the binary trees BT1, BT2 or BT3.
If p is inserted into BT2, then the list Lp of the segments of T it intersects is
also prepared. Thus insertion of a point p can be handled in O(log n) time.

Now, suppose a new segment t is to be added to the set T . t is first inserted
into the segment tree ST . This takes O(log n) amortized time. Next, BT2 is
queried with t. For each point p ∈ BT2 which intersects t, t is added to the list
Lp. If |Lp| = log n, then p is shifted from set S2 to S3. p and its list Lp is deleted
from BT2, and p is inserted into BT3. Let λ1 be the number of points in BT2

which are intersected by p and λ2 be the no. of points shifting from BT2 to BT3.
Then the time taken to update the lists in BT2 and the shifting process from
BT2 to BT3 takes O(log n + λ1 + λ2 log n). Then BT1 is queried with t. For
each point p ∈ BT1 which intersects t, p is deleted from BT1 and inserted into
BT2. In BT2, the list Lp is initialized for point p with t being the only entry
in it. Let λ3 be the number of points shifting from BT1 to BT2. This will take
O(log n + λ3log n) time. Therefore, the total time for inserting a new segment t
is O(log n + λ1 + λ2 log n + λ3log n).

An amortized analysis is carried out to get an efficient bound. Assume that
we insert n segments and points in an arbitrary order. Notice that a point in
set S1 can jump only once into set S2 and a point in set S2 can jump only once
into set S3. Therefore, the value of Σλ2 and Σλ3 where the summation is over
n insertions are bounded by O(n). A point in S can remain in the set S2 till
it intersects with less than log n segments. Also, the number of points in set S
after n insertions is still bounded by O(n). Therefore, the value of Σλ1 where
the summation is over n insertions is O(n log n). Therefore, the total time taken
for insertion of n segments and points is: O(Σ(log n + λ1 + λ2 log n + λ3log n))
≡ O(n log n). The amortized time turns out to be O(log n).

Ater n insertions of points and segments, the whole data structure is deleted
and reconstructed. After n insertions, the total number of points and segments
become 2n. Therefore, we shall update the criteria for a point p to enter set S2

and S3 from (0, log n) to (0, log 2n) and [log n, n] to [log 2n, 2n], respectively.
Since, the preprocessing time is O(n log n) when built on n points and segments,
the amortized time of insertion does not change.



Theorem 3. A set S of points and a set T of segments on the x-axis where |S|
+ |T | = n, can be preprocessed into a data structure of size O(n log n) such that
given a query interval q = [a1, b1], all pairs (s, t), s ∈ S, t ∈ T such that s ∈ t ∩
q can be reported in time O(log n+ k) where k is the output size. Also, insertion
of a point or a segment can be handled in O(log n) amortized time.

3.2 Extending it to higher dimensions.

Extending our solutions to higher dimensions turns out to be a straightforward
process. In IRd, we have a set S of d-dimensional points and a set T of d-
dimensional orthogonal hyperboxes. A dynamic d-dimensional segment tree ST
[4] is built based on the hyperboxes in set T . Set S is again divided into three
disjoint sets S1, S2 and S3. If a point intersects no hyperbox of T then it goes
into set S1, if the number of intersections is in the range (0, logd n) then the
point goes into set S2 and finally if the point intersects with more than “logd n
- 1” hyperboxes then it goes into set S3. Balanced binary trees BT1, BT2 and
BT3 are replaced by dynamic range trees [4] which can answer range queries
in d-dimensional space. A dynamic range tree when built on m points occupies
O(m logd−1m) space and answers queries in O(logdm + k) time. It handles
insertions and deletions in O(logdm) amortized time. With each point p ∈ BT2

(or S2) list Lp is prepared. Appropriate pointers are maintained by points in BT2

to their lists. As done previously, after n insertions of points and hyperboxes,
the whole data structure is deleted and reconstructed.

The total space occupied will beO(n logd n) asBT2 and ST occupyO(n logd n)
space. The query time will be O(logd + k) (the analysis done for 1-d case holds
here as well). The time taken to insert a point or a hyperbox is O(logd n) amor-
tized time. Using fractional cascading [10], the query time can be reduced to
O(logd−1 n log log n + k).

Theorem 4. A set S of points and a set T of axes-parallel hyperboxes in IRd

for d ≥ 2 with |S| + |T | = n, can be preprocessed into a data structure of size
O(n logd n) such that given a query hyperbox q = [a1, b1] × [a2 , b2] × . . . × [ad
, bd], all pairs (s, t), s ∈ S, t ∈ T such that s ∈ (t ∩ q) can be reported in time
O(logd−1 n log log n + k) where k is the output size. Insertion of a new point
or a hyperbox takes O(logd n) amortized time.

4 1-d Range-Aggregate Segment Intersection

Problem 2. Preprocess a set S of n segments on the x-axis, such that given a
query interval q = [a1, b1], all pairs (s, t), s ∈ S, t ∈ S satisfying s ∩ t ∩ q = ∅
can be reported efficiently.

4.1 Static Solution

We need to find out pairwise intersections of the segments in S which overlap
with the query interval q. The above problem is characterized in the following
lemma [8].



Lemma 1. A pair of segments (s, t) of S satisfies s ∩ t ∩ q 6= ∅ iff
(i) An endpoint of s is in t ∩ q or
(ii) An endpoint of t is in s ∩ q or
(iii) q ⊆ (s ∩ t)

In [8], to report pairs satisfying conditions (i) and (ii) of Lemma 1, they use
a data structure that takes up O(n log n) space and O(log n+ k) time. We shall
reduce it to O(n) by the following steps: Discard all the segments of S which do
not intersect with any other segment of S. Call the reduced set S′. However, we
can simply preprocess the segments of S′ and the endpoints of the segments of
S′ into an instance of the data structure of Theorem 1. For a query interval q,
we query the data structure and for each reported tuple (p, i), we report (p′, i)
where p′ is the segment to which p is an endpoint. This will reduce the space
requirement to O(n).

To report segment pairs satisfying condition (iii) of Lemma 1, in [8], they
map each segment s[c, d] of S′ into the point (c, d) ∈ IR2. These points are
preprocessed into a data structure D for 2-d quadrant searching. This can be
implemented using a priority search tree [9]. The query interval q = [a1, b1] is
mapped into the northwest quadrant NW (q) of the point (a1, b1) ∈ IR2. D is
queried with NW (q) and the result is stored in a temporary list L(q). For each
pair of points (p1, p2), p1 ∈ L(q), p2 ∈ L(q), the interval pair (p′1, p′2) is reported
where p′1 (respectively p′2) is the segment corresponding to p1 (respectively p2).

Theorem 5. A set S of n segments on the x-axis can be preprocessed into a
data structure of size O(n) such that given a query interval q = [a, b], all pairs
(s, t), s ∈ S, t ∈ S such that s ∩ t ∩ q 6= ∅ can be reported in time O(log n +
k) where k is the output size.

4.2 Semi-dynamic solution

The solution to the semi-dynamic version of the problem is similar to that of
the static solution. We shall preprocess the segments of S and the endpoints of
the segments of S into an instance of the data structure of Theorem 3. However,
one important consideration is taken into account while preparing lists Lp for
p ∈ BT2. An endpoint of a segment t is not considered to be intersecting with
the segment it comes from (which in this case is t). This observation has to
be incorporated into the data structure of Theorem 3. This makes sense since
in conditions (i) and (ii) of Lemma 1 we want an endpoint of a segment t to
intersect with a segment other than t. For handling condition (iii), instead of
using a static priority search tree (used in the static solution), we shall use a
Dynamic priority search tree D [5]. A Dynamic priority search tree when built
on m points takes up O(m) space, answers queries in O(logm + k) time and
updates take O(logm) time. In our case m ≡ O(n). Given a query interval q,
the same procedure as followed for the static solution is repeated.

Theorem 6. A set S of n segments on the x-axis can be preprocessed into a
data structure of size O(n log n) such that given a query interval q = [a1, b1],



all pairs (s, t), s ∈ S, t ∈ S such that s ∩ t ∩ q 6= ∅ can be reported in time
O(log n + k) where k is the output size. Also, insertion of a new segment can be
done in O(log n) amortized time.

5 Range-Aggregate Orthogonal Segment Intersection

Problem 3. Given a set H of horizontal segments and a set V of vertical
segments (|H| + |V | = n), preprocess them into a data structure such that
given query rectangle q=[a1, b1] × [a2, b2], we can efficiently report all the pairs
of horizontal-vertical segments (h, v) such that h ∈ H, v ∈ V , and h∩ v∩ q 6= ∅.

(a)

(a)

(b)

(b)

(c)

(c)

Fig. 1. Different types of vertical and hor-
izontal segments that can intersect q.

The vertical (resp. horizontal)
segments V (resp. H) intersecting q
can be categorized into three cate-
gories:(a) segments whose both the
endpoints are inside q, (b) segments
whose one endpoint is inside q, (c)
segments which cross q completely.
In Figure 1 we show an example of
segments in H and V classified into
these three categories.

First, we shall build a data struc-
ture to report all the intersections
involving vertical segments of type
(a) and (b), for a given query q.
Then another data structure is built
to help in reporting all the intersec-
tions involving horizontal segments
of type (a) and (b). The data struc-
tures for these are described next.
We assume that the endpoints of no two horizontal (resp. vertical) segments
have the same x and y coordinate. In the preprocessing phase, create a bound-
ing box B for the segments in the set H ∪ V . Decompose the bounding box
B into vertical slabs by shooting vertical rays upward and downward from the
endpoints of the all the horizontal segments in set H till they hit the walls of
B. This divides the plane into many vertical slabs. For each vertical slab Si, we
create a list Li which stores the y-projection of all the horizontal segments of H
passing through the slab Si (similar to the technique used earlier in the paper).
The list Li stores the y-projections of the horizontal segments in a sorted order.
Note that the list Li is almost similar to the list Li+1 except there is an inclusion
or deletion of a value from the list Li. Hence these lists Li can be implemented
using persistence as done previously.

A vertical segment v(vx; vl, vu) ∈ V represents a segment with vx as its
vertical projection and [vl, vu] as its y-projection. For each vertical segment
v ∈ V , we first find the slab Si where the x-projection of v (i.e., vx) lies .
Then in the slab Si, we consider the y-projection of v, i.e., [vl, vu] and find



out the smallest element hl and the largest element hu in the list Li such that
vl ≤ hl ≤ hu ≤ vu. Create two 2-d points (vx, hl) and (vx, hu). Store these points
in a 2-d range searching data structure RTv. With each point p in RTv we shall
maintain appropriate pointer to the element in Li from which p got generated.
The space occupied by RTv will be O(n log n). These structures will help us in
reporting intersections involving vertical segments of type (a) and (b).

Analogously, in order to report horizontal segments of type (a) and (b), we
shall build similar data structures as done to handle vertical segments. This will
lead to creating lists Li based on the vertical segments and an analogous tree
RTh.

Now we shall build data structures to handle intersections where both the
vertical and horizontal segments are of type (c). A data structure Tv (resp. Th)
shall be built, which for a given query rectangle q shall report all the vertical
(resp. horizontal) segments completely crossing q. Convert each vertical segment
v ∈ V into a 3-d point v′(vx, vl, vu). Create a binary search tree Tv whose leaf
nodes are sorted in terms of the vx-values of these 3-d points. At each internal
node µ ∈ Tv, collect all the points of the subtree rooted at µ. Let X(µ) denote
the average of the vx-value in the rightmost leaf in µ’s left subtree and the
vx-value in the leftmost leaf in µ’s right subtree. Let µ be a left child of its
parent. At the node µ, create a data structure Dµ which is an instance of [1]
for handling 3D-dominance reporting queries and handles queries of the form
q′ = [a1,∞)×(−∞, a2]× [b2,∞). If µ is a right child, Dµ will be a 3D-dominance
reporting data structure to report points in q′′ = (−∞, b1]× (−∞, a2]× [b2,∞).
The data structure Dµ takes linear storage space and answers queries in O(log n
+ k) query time [1]. Hence, the space occupied by Tv will be O(n log n). Similarly,
based on horizontal segments (H) we build tree Th but now the primary structure
is based on the y-projection of H.

Given a query rectangle q = [a1, b1]× [a2, b2], search RTv and for each point
(vx, hl) reported, jump to the slab Si where the coordinate vx lies. Here vx is the
x projection of a vertical segment v. Next, starting from the index of the value
hl in the list Li we descend (ascend) the list Li until we find a value h′y ∈ Li such
that (1) h′y < a2 (resp h′y > b2) or (2) h′y < vl (resp h′y > vu). Here [vl, vu] is
the y -projection of the vertical segment v. This will report all the intersections
involving vertical segments of type (a) and (b). Similarly, query RTh to report
intersections involving horizontal segments of type (a) and (b). This will take
O(log n + k1) time, where k1 is the number of reported pairs involving segments
of type (a) and (b).

Now, all that is left is to report all intersections (h, v) in which both h ∈ H
and v ∈ V completely cross q. We search Tv with [a1, b1] to find the highest node
π ∈ Tv such that X(π) lies in the interval [a1, b1]. Let l and r be the left and the
right child of π, respectively. Search πl with ql=[a1,∞)× (−∞, a2]× [b2,∞] and
πr with qr=(−∞, b1]× (−∞, a2]× [b2,∞). If πl or πr, report at least one point,
then quit the query procedure on Tv. Similarly, query Th and quit the query
procedure if it reports at least one point. If both Tv and Th report at least one
point on being queried with q, then once again query both the structures with q



and this time all the points satisfying the query q are reported. Let Hq
c and V qc

be the set of segments be reported by querying Th and Tv, respectively. Then
we shall report all the pairs (h, v), ∀ h ∈ Hq

c and v ∈ V qc . This procedure will
take O(log n + k2), where k2 is the number of pairs involving type (c) segments.
The overall query time is O(log n + k).

Theorem 7. A set H of horizontal segments and a set V of vertical segments
(|H| + |V | = n) in IR2 can be preprocessed into a data structure of size O(n log n)
such that given a query rectangle q = [a1, b] × [a2, b2], all pairs of horizontal-
vertical segments (h, v), h ∈ H, v ∈ V and h ∩ v ∩ q 6= ∅ can be reported in
time O(log n + k), where k is the output size.

6 Range-Aggregate Orthogonal Segment Intersection
with Distant Constraint

In this section, we target the following problem that has been studied in [6].
The problem is important for finding minimum extension violations in a VLSI
circuit. Definitions and more elaborate explanation on the same can be found in
[6]. Here dist(p1, p2) refers to the euclidean distance between points p1 and p2.

Problem 4. Let H be a set of horizontal line segments and V be a set
of vertical line segments (|H| + |V | = n). We need to preprocess them into a
data structure such that given a query rectangle q and a parameter δ, all the
triplets (h, v, p) where h ∈ H, v ∈ V, p is an endpoint of either h or v such that
h ∩ v ∩ q 6= ∅ and dist(h ∩ v, p) ≤ δ, can be reported efficiently.

In this section we study the preliminary version of the problem 4 which we
define next.

Problem 5. Given a set S of points and a set T of line segments (|S| + |T |
= n), on the real line IR1, preprocess them into a data structure such that given
a query interval [a1, b1] and a parameter δ, we can efficiently report all the pairs
of (s, t) where s ∈ S, t ∈ T such that p ∩ t ∩ q 6= ∅ and dist(s, e) ≤ δ, where e is
one of the endpoint of the segment t.

Problem 5 was solved in [6] in O(log n + k) time using a storage space of
O(n log n). This solution was used to solve problem 4 in O(log2 n+k) time using
a storage space of O(n log3 n) in [6]. We will now show that problem 5 can be
solved in O(log n+ k) time using a storage space O(n) which results in problem
4 being solved in O(log2 n+ k) time using a storage space of O(n log2 n).

Problem 5 can be solved in the following way. Partition the real line into
2|T | + 1 elementary intervals by drawing vertical line from the end points of
the line segments of T . Discard points of S which do not stab any segment of T
resulting in set S′. For every elementary interval Ij we maintain two arrays Aj
and Bj . The array Aj (resp Bj) stores the left endpoints (resp. right endpoints)
of the segments passing through elementary interval Ij in decreasing (resp. in-
creasing) order of their x-coordinates. Since consecutive arrays Aj ’s are almost
same they can be implemented using O(n) storage space by using persistence [7].
For a point p ∈ S′ find out the elementary interval in which it lies. Let the point



p lie in the elementary interval Ij . Find the distance d′ between the point p and
the first point of the array Aj . Similarly find the distance d′′ between the point
p and the first point of the array Bj . Create two 2-d points (p, d′) and (p, d′′).
Repeat the process for all the points in the set S′. Create a priority search tree
[9], TPST on the 2-d points thus created.

Given a query interval [a1, b1] and the parameter δ, we search TPST with
[a1, b1] × (−∞, δ] and for each point reported we jump to the corresponding
elementary interval Ij and traverse the array Aj (or Bj) and report the pairs
(s, t) as long as dist(s, e) ≤ δ where e is an end point of t or till the end of the
array is reached.

Theorem 8. There exists a data structure which solves problem 5 using linear
space and O(log n+ k) query time.

Using the result of the Theorem 8 and the techniques of [6], problem 4 solution
can be improved to O(log2 n+ k) query time and a storage space of O(n log2 n).

Theorem 9. There exists a data structure which solves problem 4 using O(n log2 n)
space and O(log2 n+ k) query time.
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