

Analytical Performance Model for NoCs with Multiple Priority Traffic Classes

Sumit K. Mandal, Arizona State University Umit Y. Ogras

Raid Ayoub, **Michael Kishinevsky**

Motivation

- Emerging applications require long (~min) simulations for meaningful power-performance analysis
- Significant amount of sim. time is spent on NoC
- Fast and accurate system level modeling is required

Priority Aware NoC

Physical Network

Notation

Model Generation Flow

Input: Injection rates for all traffic classes (λ), Network topology, Routing algorithm

A Representative Example

^max

$-\rho_{1}$ -

Split at Low Priority Queue

- Service time of class 2 is modified (ΔT)
- Residual time of class 2 $\widehat{R_2} = (W_2 - \Delta T)(1 - \widehat{\rho_2})$
- Waiting time of class 2 $W_2 = \frac{\widehat{R_2} + R_3}{1 - \rho_2 - \widehat{\rho_2}} + \Delta T$

Evaluation with Real Applications

- Collected real app traces from gem5-Full System
- Achieve less than 10% error for all applications

Conclusion

- Analytical models for priority-aware NoC are obtained
 - Transforming a given network iteratively
- Achieve >90% accuracy for synthetic and real apps