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= Need for analytical fabric model generation

= Background
— Networks-on-chip (NoC) used in industry
— Prior work on NoC performance analysis
— Prior work on gueuing networks

" Proposed network transformations
= Experimental results
= Conclusion and future work




Performance Modeling for Emerging Applications

= Examples of emerging applications
— Virtual reality, autonomous driving
— Machine learning, Al
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= System modeling challenges
— Both SW/HW complexities grow

— Long simulations needed for power, &
performance, and thermal analysis
(minutes instead of milliseconds)

Percentage of Total Time
Spent on Network(%)

MiBench PARSEC

ENoC Router

"= Research need

— Communication fabric: Central shared
resource

— Fast and accurate system level modeling

— Automated generation of high-level
performance models of industrial SoCs
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= Background
— Networks-on-chip (NoC) used in industry
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Priority Aware Networks-on-Chip Basics

= Industrial NoCs use routers with priority arbitration to

achieve predictable latency

— Packets in NoC have higher priority than new packets

Physical Network
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= Mux’ in routers modeled as
priority arbiters and servers

= |nputs with filled color denote
higher priority

Notation
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Example Fabric: Xeon Phi (KNL) Processor

Knights Landing Overview

2x16 X4
1x4 DMI
MCORAM | MCORAM MCORAM. | MCORAM Chip: 36 Tiles interconnected by 2D Mesh

PCle D
Gen 3

-=Z

|
|

I
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I
|

MCDRAM MCDRAM MCDRAM MCDRAM
Package

Omni-path not shown

Source Inte\ All products cr:umpu‘ter systems, dates and fgures specified are pre\lmlnary based of

Tile: 2 Cores + 2 VPU/core+ 1 MB L2

Memory: MCDRAM: 16 GB on-package; High BW

DDR4: 6 channels @ 2400 up to 384GB

10: 36 lanes PCle Gen3. 4 lanes of DMI for chipset
Node: 1-Socket only

Fabric: Omni-Path on-package (not shown)
| P g

Vector Peak Perf: 3+TF DP and 6+TF SP Flops
Scalar Perf: ~3x over Knights Corner
Streams Triad (GB/s): MCDRAM : 400+; DDR: 90+ §

without nofice. 1Binary Compatible mih Intel Xeon processors usmg Haswe
numbers are based on STREAM-like memory access pattern_ud
estimated based on internal Intel analis




Performance Analysis of Communication Fabric

PE
= A 4x4 mesh with YX routing PE: Processing Element
_ _ R: Router
= Source to destination latency
(Lsp) has four components
— Waiting time in source queue (W) 1 5 3 4
— Deterministic vertical latency (L,)
— Waiting time at the junction (W) I & 3) “
— Deterministic horizontal latency (L;,)
= [, and L, depend on the > 6 ! 8
source-destination pair and 5 )« {(6)- e 3
fabric topology 3 T o -
— wS J
Lsp =Wy + L, + Wy, + Ly 9 10 11 12
S ] .. . ~ R ) j
" Wy and WQ depend on injection 9 ) (10)- (L)- (L2
rates at different queues and
need detailed analysis 13 ” 1 16
V\A )
13)+ 14)e (15) 16



— Prior work on NoC performance analysis
— Prior work on queuing networks




Prior Work on Performance Analysis of Networks

:_N_oc_l.: Priority- | Multiple | Scalable |; Off-chip || Priority- | Multiple | Scalable
~ 777 | based classes I Network 1| based |classes
[1,2,5] x v N4 [6,7] v x v
[3,4] v X V4 8] v v x
e, Priority- | Multiple | Scalable
(NOC I | hased classes
This work v N4 v
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Background: Queuing Systems

A — ®_> = Kendall’s notation for queuing
discipline: A/B/m

Waiting Service = Arrival and departure may have different
area node o . )
_ _ distribution (e.g. Poisson (M),
A = arrival rate, u = service rate Deterministic (D) , General (G)).

Server utilization (p) = %

Priority Rule: (1>2) Simulation vs Analytical for Basic Priority
40 | x |

| V-A'Sim'ulationj

=¥~ Analytical |

44
I 30

N
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A Pany

)
N
Queuing Time (cycles)
of Class 2 Packets
o

0 d 0.0 0.1 0.15 0.2 0.25
W. = Rq _ Ra+p1W4 A Injection Rate (packets/cycle)
L7 1py” 72 T 1-pi-p’ VT

W average waiting time, T: service time, R: average residual time
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Residual Time for Single Queue Node

= Residual time (R): delay of
serving the next token due to
the remaining service time for
currently processed token !

. o .| Departures =+ >

= Arrival distribution is Geometrlc: Execution EC : i i
- PX =k} =p(1-p)! | starts —0— >

. Arrivals : >

: COl Cl i :

: 4 : E i I

1 oM(Tyer) (oTi-1 S — L R |
Ravg = T, Zi=1t ‘ (Zr:O T) , G.)TO k | |
= 4 :

_ Yz _7F DB | !

— 2)'(T T) (for Geo/G/]_) S (P EETS NS SN N S — |

1 LB Idle time fo _ |

= EP(T — 1) (for Geo/D/1) 9 r—i ‘ . Residual |
| .1 | time :

: > |

| Clock Ticks:
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Residual Time for Basic Priority Queue (Geo/G/1)

Reminder: basic priority ; C1 I
Ay iServing Finishes— O > |
! 1 ! :
i — i Serving Starts -‘C QCZ > |
: ' Packet arrives-@ : > |
Priority Rule: (1>2) . lCl’ C2 ! :
: ) : | |
I . : I
= Expression for residual time of E Tw $ N :
class 1 packets | £ t i |
1 1 : [E $ . \Residual!
R1 =_P1(T_ 1) +—p2(T— 1) I < |ldle time ! time :
2 2 : 3 r—» | |
1 |
= Expression for residual time of i o ) !
class 2 packets | ————  Clock ti:ksi
1 1 ! T |
R2=EP1(T+1)+EP2(T—1) T T TTTTTTTTmmTmmmmmmmmsssmmmees ’
T = service time
= Class 2 packets have higher M(T,,,) = total no. of packets arrived

residual time due to lower priority  during time interval T,
T = Iintermediate variable for sum
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" Proposed network transformations
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Overview of the Automated Flow

g 4
Fabric Topology _
(e.g., ring, mesh, torus) Analytical Model
b e Latency
-
Input Parameters e * Throughput
(e.g., buffers sizes, injection rates) _
- Analytical
i L Performance
Communication Pattern
(e.g., all-to-all) Model Exe_cutable
- Analytical Models
p
Routing Algorithm }o
e.g., XY, adaptive
(g ptive) 9 y

Simulation Model
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Limitation of Basic Priority Based Models (1)

Reminder: basic priority

: : . Z5\
Split on high priority
—
Ay
A2 Q A2 1
21,72 1111211 B ﬂl Priority Rule: (1>2)
/11 40 : .
2 Q> —»@-» 4 Simulation
3 31 3 4>@ -k Analytical (basic priority equation)
A3 < Analytical (proposed)

N
o

e . — A

0 005 01 015 02 025
Injection Rate (\ packets/cycle)

o

Waiting Time (cycles)
for Class 3 Packets

Applying basic priority equation for class 3 tokens results in
pessimistic solution

Reason: Not all tokens of class 1 will block tokens of class 3. Tokens
of class 3 can occupy the server if a class 2 token is being served
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Limitation of Basic Priority Based Models (2)

Reminder: basic priority

: _ 44
Split on low priority
—
A,
Al Q1 Al
EE— 11111 i;_@- Priority Rule: (1>2)
A )
Ay, As Q 3 < %15 A Simulation
—— 3|2 ] 2|23 4@—> %f_, -k Analytical (basic priority equation)
Az > N 10 |.5-Analytical (proposed)
g D
= @ 57
o O
s 0
o 0
s e 0.2

Applying basic priority equation for class 3 tokens results in
optimistic solution

Reason: Tokens of class 2 will have effect of class 1 indirectly as
class 2 tokens have to wait due to class 3 tokens
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Proposed Network Transformations

= Extend decomposition method [1] to handle priority
arbitration based multi-class networks in industry

= \We identified two transformations

— ST: structural transformation
— RT: service rate transformation

= Complex priority-based networks are decomposed
iteratively to systems of equivalent queues using ST/RT

= Obtain a closed form analytical expression for the
equivalent system

[1] G. Bolch et al. Queuing Networks and Markov Chains. Wiley. 2006
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Structural Transformation (ST)

b i - - TmmET

" Class 3 do not have to wait for all
packets in Q,

— Class 3 and 2 can be served Comparison of
simultaneously Original and Modified Network

60
“Simulation (Original Network)
-%Simulation (Modified Network)

= Class 3 packets will wait only when
the server is busy serving class 1

— Need to decompose class 1 and class 2

" Proposed transformation separates
class 1 tokens and put in a virtual e oa
queue (Q,) 0 005 01 015 02  0.25

I i Injection Rat kets/cycl
u Equ|va|ence is demonstrated by the njection Rate(packets/cycle)
result shown on the right e m

Geo/D/1 with T =2
2% average error

Queuing Time (cycles)
of Class 3 Tokens
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Analytical Model after Structural Transformation

= ST enables us to derive closed form 1,47 :DQl —>@—'
analytical equations M Q —@—»
= Expression of residual time of class 1in Q; L 1 @
1 J) Q. o(p)—
1 SpsT(CE +1 —n) pu = —Q
R = Zp (T —1) +2 —
12 2 2
" Waiting time of class 11n Q; Comparison of Simulation
, Q5 and Analytical Models
Q2 _ Ry T ——
1 - 1-py 4 Simulation

= Residual time of class 3
Rs =R +py

= Finally, waiting time of class 3

QI

R3+p1W12
W3 —

1-p1-p3

19

-k Analytical (basic priority equation)
<> Analytical (proposed)

£ 13

0o 005 01 015 02  0.25
Injection Rate () packets/cycle)

Siab

o

Waiting Time (cycles)
for Class 3 Packets

Geo/D/1 with T = 2, 3% average error



Service Rate Transformation (RT)

y -
©— e

A
Ay dg | A A WYY R 2 —()—
A3 Uz = WUy = [
Observations Proposed Approach
= Packets in Q, effectively increase = Decompose priority
the service time of class 2 packet arbitration by modifying the
— Need to modify the service time of service time of class 2
class 2 packet = Approximate first and second
= Challenging to model since not all order moments of modified
packets in Q, will wait for packets in Q,  service time (u)
= |nsight: Modified service time of = = % _ T_lAT, calculation of AT
.. . . +
cl_as:_:, 2 IS iIndependent of incoming is shown next
distribution of class 3
20 Fiab



Service Rate Transformation (RT): 1St moment

A4 Q iCaIcuIation of average busy period (AT)

4 : 'Let p be the probability that the server is i

Az, A3 Q = yoccupied by high priority token !

A3 |1f low priority token is blocked once, it will

o o 5 odof LyT ;= T*L; :

o H, | LH,! E»;seea usy period of ~%,;_;i =—=in i
Y N v . 1average :
Q——e—— gl |

I Lo (T+1 T+1 :

3 “ W, EH% Hz‘ ! T=<T>P(1—p)+<T+T>p2(1—p).... |
erver (4) —@———& &> | !
Idlel : : Hzl Lll : . pT T -1 :

Clock ticks ——————— - | :ATzl—p_< 2 >p’ P=pit AR :
Ty T, T3 Ty+T ' !

— Busy period E T. service time !
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Service Rate Transformation (RT): 2" moment

4 Simple Priority Service Rate Transformation
— Ry + p1 Wy R,
= # W, = + AT = A, (T + AT
i>|:|:|—> W2 = l—pr=afo- - 2___1__—_l22._____p3___3(____| )
Priority Rule: (1>2) ' Comparison of Simulatian_gnd Analytical Models !
| —
(a) ! g "315 & Simulation :
I % S [ Analytical (basic priority equation) :
: Y 210 <-Analytical (proposed) In!
1
£ .|Geo/D/L with T =2 o
Aq | o ® 4% average error 2
T 250 e i :
22 0.05 0.1 0.15 0.2 |
—————————— —— —— — —— — ———————————I
Ay, A3 R, = =ATY(1=7;)

(b)
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Model Generation Flow*

Input: Injection rates for all traffic classes (4), Network topology,
Routing algorithm

Output: Waiting time for all traffic classes

23

For each Queue and traffic class:

1. Do structural transformation 2. Do service rate transformation

on Em o mm e o e o e o o = - . S O S S e e e e e e e e e ey

Calculate modified service
time (T) using W,..¢

| v

i | Calculate effective residual
' | time (R) using T

Get all classes having higher
priority and calculate C,

.’ ) ‘
I |
I I
I I
: v

|

|

I

\

B

Get reference waiting time
expression (W,..r) using C,

| J

*A graphical illustration of a representative | Calculate waiting time (W)
example given in the next slide using 4, T and R

I
I
|
I
I
|
I
I
]

_________ —
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A Representative Example

walsAs Buinanb
pasodwodap Ajin4
A

24

MEQ&,_.Q —Z»ED»Q{ul,uz}

A3, 44!

u;: modified service rate

Q; !

Q, iHIHO{ul,uz}
—-EEI—»

Q, {1, 12} Az, Ay

Q,

T
P
> {m3, 1s}

Qs

(c)
of class-j

ST — Structural Transformation

RT — Service Rate Trans

formation em




= Experimental results
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Experimental Setup

26

= \We evaluated the proposed
analytical models on

— Ring
— Mesh
= Simulation parameters
— Simulation length: 10M cycles
— Warm-up period: 5000 cycles
= Traffic load
— Sweep from a very light load to A4,,,,,

— Amax 1S the injection rate at which the
maximum server utilization is 1

7

MATLAB
SIMULINK"

xPLORE
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Evaluation on xXPLORE: Mesh Topology

= Traffic pattern is all to all with YX routing
* [njection rate for each source destination pair is equal

6x6 Mesh Topology 8x8 Mesh Topology

> _ 112 simulation | §*"~ q! “-Simulation | |

© ¢ | = State-of-the-art 873 - State-of-the-art

s N <©-ST only SN <©-ST only

Py 20.5 ORT only Q EOS ©RT only

2 o) - Proposed ® 5 ' - Proposed

= R= %= K=K Q£

< o-—— < 0—
Ay Injection Rate (flits/cycle) A max A4 Injection Rate (flits/cycle) Amax

= Achieve less than 4% error compared to simulation

= Proposed analytical models are 2-3 orders of magnitude
faster than simulation models

27 Ylab



Verification with Intel® Xeon® Scalable Server

"= One variation of scalable Intel® Xeon®
— 26 tiles with Core + LLC, 2 memory controllers on a 6x6 mesh

= Synthetic injection
— All cores send packets to all caches

= Validated latencies for cache-coherency flow

28

M Injection Rate (flits/cycle)

> 2 Simalation ; Model Accuracy (%)
g3 1 Sstomy o 2.0 average error| | | LLC Hit | Address Data
S R |ORTonly | Rate (%) | Network | Network
8-, TEUO 5 -% - Analytical (proposed)|i 100 93.8 93.9
g g 50 97.7 98.1
< 0 \ " 0 97.7 98.0
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Evaluation with Real Applications

= Collected real app traces from gem5 in Full System mode
— Applications (16-threaded) from PARSEC suite
— Average statistics over 1M cycles

Percentage of
src-dest Pairs (%)

Percentage of
src-dest Pairs (%)

100
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o

o
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" Conclusion and future work
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Conclusion and Future Work

" Industrial NoCs use priority-based routers

= Most NoC performance analysis techniques assume fair
arbitration

= Priority-based models in literature do not consider
multiple traffic classes

*= Presented the first technique that handles both priority
and multiple traffic classes

/I\/Iachine learning (ML) . — /First principles — A
: > N Increasing flexibilit :

- Queumg network is hlgh J Y qllieum.g.theolryt.
dlmt()elnsmnal and non-linear Increasing accuracy> - Sgljzi(gsr:;ngxﬁgtl;our)n
problem - ns

- Unknown model structure _ non-priority aware

- Generated ML models may Complex queuing network Y

\incur high runtime overhead network J\
i

31
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Residual Time for Basic Priority Queue (Geo/G/1)

Priority Rule: (1>2) : ‘ Ct !
\Departures = @ > !
A ——»d ' Execution EC1 i 2 :
,() ' starts - 9 >\
' Arrivals =@ : >
LT .0 : jcrc |
L4 . | !
1 ! |
VT b e S !
My (Tyor) [T—1 | M) (T=1 N1 ) :
Rl = T T |+ T T : g “x\ : :
: !
tot =1 \1=0 =\ ) ® 4 . |Residual!
'S Idle time [ time :
1 1 ; é : :
=5P1(T—=1) +5p2(T = 1) : \ !
! — > |
! \ ) Clock ticks!
| r! '
My (Teor) [ T 1 M3 (Tior) [T—1 T = service time

R, = z T |+ Z T M(T,,) = total no. of tokens arrived

Ttor = \= Ttot =1 \7=0 during time interval T,

T = intermediate variable for sum

34 =%P1(T+1)+%P2(T—1) em



Residual Time for Single Queue Node

= Residual time (R): delay of
serving the next token due to
the remaining service time for
currently processed token

. o .| Departures —+— >

= Arrival distribution is Geometric Exzcuti on | | : !
: Cy ! ' |

- PX =k} =p(1-p)! | starts —0— -

. Arrivals E.—T : > |

M(Ttor) ((oTi—1 ! | :

Ravg _ Tt : Z ( tot) (Zr:O T) : . 0! :Cl | :
1 M(Ttot) 1 R F ) S S !

=—— Y ST -1 7 To |

e 2 o | E t :
M(Ttot)z tot’>1,(T; —1) ! lc__sTl ......................................................................... ;

Tior M(Ttot) : 5 Idle time | _ E

1,/my  m L9 1 ~Residual |

= ;A(T? —T) (for Geo/G/1) | ¢ S time |

1 ! > |

= EP(T — 1) (for Geo/D/1) ] Clock Ticks !
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Decomposition Method

» Can handle complex network with multi-class traffic but
limited to non-priority networks

» Decompose the queuing network into individual queues of
type G/G/1

= Approximate input/output traffic distribution of these G/G/1
gueues using analytical expressions

I
I (,o»

4, oo |
43, C2 < }VL Ch,
24&’ A, C>
A
[ ]
S | & & tandard deviatio
P . . stanaar evi on
Y : < Coefficient of variation = ———

Phase 2: Flow [1] : Phase 3: Splitting
Ch = p(CB+1)+. Ch,=1+p.(C5 — 1)
1-—

I
1
1
1
1
L (1-p).CE+ 1 p=21/2

(

[1] Pujolle, Guy, and Wu Ai. "A solution for multiserver and multiclass open queueing networks." INFOR: Information Systems and Operational Research 24.3 (1986):
221-230.
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Evaluation on Simulink

= Simulation models have been built in Simulink based on priority aware network architecture
= We observe less than 2% error between simulation and analysis for rings and mesh

16 Ring Topology

-A-Simulation
I | =¥ Analytical (proposed)

o
©

(normalized)
o
(=]

e
»

Average Latency

- 1.3% average error

S
o

Injection Rate (packets/cycle)

Average Latency
(normalized)

-

=2
)

e
o

o
IS

=
()

6x6 Mesh Topology

4x4 Mesh Topology

1 R

-A-Simulation a = ‘-é—srimulaton
r | =¥=Analytical (proposed) £ 2 —¥-Analytical (proposed)
w N :
LE-
B E "
@ O A
>
1.3% average error < .. .. 1l1%averageerror |
/\1 A )\1 )\max
max

Injection Rate (packets/cycle) Injection Rate (packets/cycle) :le)

» Traffic pattern is all to all (i.e. each node is sending tokens to all nodes) with YX

routing

» Injection rate for each source destination pair is equal
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Evaluation on XPLORE: Ring Topology

= \We observe less than 2% error between simulation and analysis
for rings

1%x8 Ring Topology

1x7 Ring Topology

=

-A-Simulation
.8 [ |=¥~Analytical (proposed)

-2 Simulation
- |-~ Analytical (proposed)

o
(o+]
o
(o +]

o

o
(normalized)

o

n

S
B
_O
B

Average Latency

Average Latency
(normalized)

o

N

o
N

A A A A
max

1 max 1
Injection Rate (packets/cycle) Injection Rate (packets/cycle)

= XPLORE is a System-C based simulator for priority aware NoCs

= Traffic patternis all to all (i.e. each node is sending tokens to all
nodes) with YX routing
= |njection rate for each source destination pair is equal
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Per Class Latency Comparison for Intel® Xeon®

= Average accuracy for lowest priority class is 91%
— Medium and highest priority class show 99% accuracy

// g Simulation -Analytical (proposed)

3|auamn;

Lowest Priority Med|um Prlorlty Highest Prlorlty

Normalized Latency
O =N W B~ O
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Real Application (Streamcluster) Finer Grained

100K cycles, 98% average accuracy
Simulation - Analytical (proposed)

>

%1.0

SMIM“II |

©

2 osl vl,,

: A1

‘500

Z ’L ’b ‘b ’\ % 0
o‘&\ RN ‘“c‘*‘c‘”\c‘*\ \ﬂé‘&\c‘“

&°
\\ \\ \\ \\ \\ \\ O
QO @ @ g 8O @8 g8 @& R\

10K cycles, 97% average accuracy

—

e
©
T

—Simulation
‘—Analytical (proposed)|

20 40 60 80 100
windows

o
N

Normalized Latency
o
o

o
o
o
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Simulation Time Comparison

Full-System Simulation Time with 4x4 Mesh NoC

With Garnet 2.0 With Proposed Sheedun
Simulation Analytical Models ~peedtl
12466 s 4986 s 2.5X
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