
Network-on-Chip (NoC) Performance Analysis and Optimization for
Deep Learning Applications

by

Sumit K. Mandal

A preliminary report for the degree of

Doctor of Philosophy

(Department of Electrical and Computer Engineering)

at the

UNIVERSITY OF WISCONSIN–MADISON

06/10/2021

Preliminary Examination Date: 06/10/2021

Preliminary Exam Committee:
Umit Y. Ogras, Associate Professor, Electrical and Computer Engineering,
University of Wisconsin-Madison
Mikko H. Lipasti, Professor, Electrical and Computer Engineering, Univer-
sity of Wisconsin-Madison
Karu Sankaralingam, Professor, Computer Sciences Engineering, Univer-
sity of Wisconsin-Madison
Chaitali Chakrabarti, Professor, Electrical Engineering, Arizona State Uni-
versity

© Copyright by Sumit K. Mandal 06/10/2021
All Rights Reserved

i

contents

Contents

Abstract iii

1 Introduction 1

2 Overview of the Preliminary Work 6
2.1 Performance Analysis of Priority-Aware NoCs 6
2.2 Performance Analysis of NoCs with Bursty Traffic 12
2.3 Performance Analysis of NoCs with Deflection Routing 14
2.4 Communication-Aware Hardware Accelerators for Deep Neural

Networks (DNNs) 20

3 Proposed Work-1: Multi-Objective Optimization to Design Latency-
Optimized NoC 28

4 Proposed Work-2: Hardware Accelerator for Graph Convolu-
tional Networks (GCNs) 31

5 Conclusion of the Report 34

6 Appendix A: Performance Analysis of Priority-Aware NoCs 36
6.1 Related Work 36
6.2 Proposed Network Transformations 37
6.3 Generalization for Arbitrary Number of Queues 44
6.4 Experimental Evaluations 48
6.5 Conclusion 58

7 Appendix B: Performance Analysis of NoCs with Bursty Traf-
fic 59

ii

7.1 Related Work 59
7.2 Proposed Approach to Handle Bursty Traffic 60
7.3 Experimental Results with Bursty Traffic 66
7.4 Conclusion 70

8 Appendix C: Performance Analysis of NoCs with Deflection Rout-
ing 71
8.1 Related Work 71
8.2 Proposed Superposition-based Approach 73
8.3 Experimental Results with Deflection Routing 82
8.4 Conclusion 89

9 Appendix D: Communication-Aware Hardware Accelerators for
Deep Neural Networks (DNNs) 90
9.1 Related Work 90
9.2 Area-aware NoC Optimization 92
9.3 Latency-aware NoC optimization 94
9.4 Experimental Evaluation113
9.5 Conclusion126

Bibliography127

iii

abstract

Hardware accelerators for deep neural networks (DNNs) exhibit high
volume of on-chip communication due to deep and dense connections.
State-of-the-art interconnect methodologies for in-memory computing
deploy a bus-based network or mesh-based Network-on-Chip (NoC). Our
experiments show that up to 90% of the total inference latency of a DNN
hardware is spent on on-chip communication when the bus-based network
is used. To reduce the communication latency, we propose a methodol-
ogy to generate an NoC architecture along with a scheduling technique
customized for different DNNs. We prove mathematically that the gener-
ated NoC architecture and corresponding schedules achieve the minimum
possible communication latency for a given DNN. Experimental evalua-
tions on a wide range of DNNs show that the proposed NoC architecture
enables 20%-80% reduction in communication latency with respect to
state-of-the-art interconnect solutions.

Networks-on-chip (NoCs) have become the standard for interconnect
solutions in DNN accelerators as well as industrial designs ranging from
client CPUs to many-core chip-multiprocessors. Since NoCs play a vital
role in system performance and power consumption, pre-silicon evaluation
environments include cycle-accurate NoC simulators. Long simulations
increase the execution time of evaluation frameworks, which are already
notoriously slow, and prohibit design-space exploration. Existing ana-
lytical NoC models, which assume fair arbitration, cannot replace these
simulations since industrial NoCs typically employ priority schedulers
and multiple priority classes. To address this limitation, we propose a
systematic approach to construct priority-aware analytical performance
models using micro-architecture specifications and input traffic. Our ap-
proach decomposes the given NoC into individual queues with modified
service time to enable accurate and scalable latency computations. Specifi-

iv

cally, we introduce novel transformations along with an algorithm that
iteratively applies these transformations to decompose the queuing system.
Experimental evaluations using real architectures and applications show
high accuracy of 97% and up to 2.5× speedup in full-system simulation.

1

1 introduction

In recent years, deep neural networks (DNNs) have shown tremendous
success in recognition and detection tasks such as image processing, health
monitoring, and language processing [59, 77]. Higher accuracy in DNNs
is achieved by using larger and more complex models. However, such
models require a large number of weights, and consequently, traditional
DNN hardware accelerators require a large number of memory accesses
to fetch the weights from off-chip memory, leading to a large number of
off-chip memory accesses lead to higher latency and energy consumption.

In-Memory Computing (IMC) techniques reduce memory access re-
lated latency and energy consumption through the integration of computa-
tion with memory accesses. A prime example is the crossbar-based IMC ar-
chitecture which provides a significant throughput boost for DNN accelera-
tion. At the same time, crossbar-based in-memory computing dramatically
increases the volume of on-chip communication, when all weights and acti-
vations are stored on-chip. Emerging DNNs with higher accuracy, such as
those derived through Neural Architecture Search (NAS) [117, 125, 126],
further exacerbate the problem of on-chip communication due to larger
model size and more complex connections. Therefore, designing an ef-
ficient on-chip communication architecture is crucial for the in-memory
acceleration of DNNs.

State-of-the-art IMC architectures usually deploy a bus-based H-Tree
interconnect [79, 105]. Figure 2.9 shows that up to 90% of the total in-
ference latency of a DNN hardware is spent on on-chip communication
when the H-Tree interconnect is used. In order to reduce on-chip commu-
nication latency, NoC-based interconnects are employed for conventional
SoCs [44] and DNN accelerators [19, 100]. Eyeriss-V2 [19] proposes to
use three different NoCs for weights, activations, and partial sums. Such
an architectural choice allows for higher performance at the cost of both

2

Figure 1.1: Percentage contribution of different components of the IMC
hardware to total latency. 40%-90% of the total latency is spent on on-chip
communication when bus-based H-Tree interconnect is used.

area and energy consumption. ISAAC [100] employs a concentrated-mesh
(cmesh) NoC at the tile-level of the IMC accelerator.

In this work, we minimize the communication energy across a large
number of tiles using an NoC architecture with optimized tile-to-router
mapping and scheduling. We also propose an optimization technique to
determine the optimal number of NoC routers required for each layer of the
DNN. Next, we propose a methodology to generate a latency-optimized
NoC architecture along with a scheduling technique customized for dif-
ferent DNNs. We prove, through induction, that the proposed NoC ar-
chitecture achieves minimum possible communication latency using the
minimum number of links between the routers. These two techniques
together generate a custom NoC for IMC acceleration of a given DNN.
We show that the proposed custom IMC architecture achieves 20%-80%
improvement in overall communication latency and 5%-25% reduction in
end-to-end inference latency with respect to state-of-the-art NoC based
IMC architectures [100].

Since the on-chip interconnect is a critical component of DNN acceler-

3

BasicMath
Dijkstra FFT

Qsort

Blkschls

Canneal

Swaptions

Bodytrack

Fldanimate

Strm
clstr

0

20

40

60

80

PARSEC

Pe
rc

en
ta

ge
 o

f T
ot

al
 T

im
e

Sp
en

t o
n

N
et

w
or

k(
%

)

MiBench

Figure 1.2: Experiments of different applications show that 40%-70% of
the total simulation time is spent on the network.

ators as well as multicore architectures, pre-silicon evaluation platforms
contain cycle-accurate NoC simulators [2, 45]. NoC simulations take up a
significant portion of the total simulation time, which is already limiting
the scope of pre-silicon evaluation (e.g., simulating even a few seconds of
applications can take days). For example, Figure 2.1 shows that 40%-70%
of total simulation time is spent on the network itself when performing
full-system simulation using gem5 [10]. Hence, accelerating NoC sim-
ulations without sacrificing accuracy can significantly improve both the
quality and scope of pre-silicon evaluations.

Several performance analysis approaches have been proposed to enable
faster NoC design space exploration [83, 115, 96]. Prior techniques have
assumed a round-robin arbitration policy in the routers since the majority
of router architectures proposed to date have used round-robin for fairness.
In doing so, they miss two critical aspects of the industrial priority-based
NoCs [44, 98, 47]. First, routers give priority to the flits in the network to
achieve predictable latency within the interconnect. flits to the local node in
Figure 2.2 are already in the NoC, while flits from class-3 to the neighboring
router must wait in the input buffer to be admitted. Consequently, flits
in the NoC (class-1 and class-2) experience deterministic service time

4

at the expense of increased waiting time for new flits. Second, flits from
different priority classes can be stored in the same queue. For instance, new
read/write requests from the core to tag directories use the same physical
and virtual channels as the requests forwarded from the directories to the
memory controllers. Moreover, only a fraction of the flits in either the high
or low priority queue can compete with the flits in the other queue. For
example, suppose the class-2 flits in Figure 2.2 are delivered to the local
node. Then, class-3 flits must compete with only class-1 flits in the high-
priority queue. Analytical models that ignore this traffic split significantly
overestimate the latency, as shown in Section 6.2. In contrast, analytical
models that ignore priority would significantly underestimate the latency.
Thus, prior approaches that do not model priority [83, 115, 96] and simple
performance models for the priority queues [52, 46] are inapplicable to
priority-based industrial NoCs.

We propose NoC performance analysis technique that considers traffic

Figure 1.3: The high priority queue (Qhigh) stores two different traffic
classes which are already in the NoC, while the low priority queue (Qlow)
stores the newly injected flits from the local node. As flits from class–2 are
routed to the local node, low-priority flits compete with only class–1 flits
in Qhigh.

5

classes with different priorities. This problem is theoretically challenging
due to the non-trivial interactions between classes and shared resources.
For example, queues can be shared by flits with different priorities, as
shown in Figure 2.2. Similarly, routers may merge different classes coming
through separate ports, or act as switches that can disjoin flits coming from
different physical channels. To address these challenges, we propose a
two-step approach that consists of an analysis technique followed by an
iterative algorithm. The first step establishes that priority-based NoCs
can be decomposed into separate queues using traffic splits of two types.
Since existing performance analysis techniques cannot model these struc-
tures with traffic splits, we develop analytical models for these canonical
queuing structures. The second step involves a novel iterative algorithm
that composes an end-to-end latency model for the queuing network of a
given NoC topology and input traffic pattern. The proposed approach is
evaluated thoroughly using both 2D mesh and ring architectures used in
industrial NoCs. It achieves 97% accuracy with respect to cycle-accurate
simulations for realistic architectures and applications.

The rest of the report is organized as follows. Chapter 2 describes the
overview of the preliminary work. The preliminary work consists of per-
formance analysis techniques for priority-aware NoCs under bursty traffic
and deflection routing. It also spans a communication-aware hardware
accelerator for DNNs. Chapter 3 describes the proposed work of analytical
modeling of NoCs with weighted round robin arbitration. Chapter 4 de-
scribes the proposed work of communication-aware hardware accelerator
for graph convolutional networks (GCNs). Chapter 6 – Chapter 9 provide
detailed description of the preliminary work. Finally, Chapter 5 concludes
the report.

6

2 overview of the preliminary work

2.1 Performance Analysis of Priority-Aware
NoCs

Modern design methodologies in industries involve thorough power, per-
formance, and area evaluations before the architectural decisions are
frozen. These pre-silicon evaluations are vital for detecting functional
bugs and power-performance violations, since post-silicon fixes are costly,
if feasible at all. Therefore, a significant amount of resources are dedi-
cated to pre-silicon evaluation using virtual platforms [65] or full-system
simulators [10]. NoC simulations play a critical role in these evaluations,
as NoCs have become the standard interconnect solution in many core
chip-multiprocessors (CMPs) [44, 49, 47], client CPUs [99], and mobile
systems-on-chip [103]. Moreover, there is a growing interest to use NoCs
in hardware implementations of deep neural networks [21].

Since the on-chip interconnect is a critical component of multicore
architectures, pre-silicon evaluation platforms contain cycle-accurate NoC
simulators [2, 45]. NoC simulations take up a significant portion of the
total simulation time, which is already limiting the scope of pre-silicon
evaluation (e.g., simulating even a few seconds of applications can take
days). For example, Figure 2.1 shows that 40%-70% of total simulation
time is spent on the network itself when performing full-system simulation
using gem5 [10]. Hence, accelerating NoC simulations without sacrificing
accuracy can significantly improve both the quality and scope of pre-silicon
evaluations.

Several performance analysis approaches have been proposed to enable
faster NoC design space exploration [83, 115, 96]. Prior techniques have
assumed a round-robin arbitration policy in the routers since the majority
of router architectures proposed to date have used round-robin for fairness.

7

BasicMath
Dijkstra FFT

Qsort

Blkschls

Canneal

Swaptions

Bodytrack

Fldanimate

Strm
clstr

0

20

40

60

80

PARSEC

Pe
rc

en
ta

ge
 o

f T
ot

al
 T

im
e

Sp
en

t o
n

N
et

w
or

k(
%

)

MiBench

Figure 2.1: Experiments of different applications show that 40%-70% of
the total simulation time is spent on the network.

In doing so, they miss two critical aspects of the industrial priority-based
NoCs [44, 98, 47]. First, routers give priority to the flits in the network to
achieve predictable latency within the interconnect. flits to the local node in
Figure 2.2 are already in the NoC, while flits from class-3 to the neighboring

Figure 2.2: The high priority queue (Qhigh) stores two different traffic
classes which are already in the NoC, while the low priority queue (Qlow)
stores the newly injected flits from the local node. As flits from class–2 are
routed to the local node, low-priority flits compete with only class–1 flits
in Qhigh.

8

router must wait in the input buffer to be admitted. Consequently, flits
in the NoC (class-1 and class-2) experience deterministic service time
at the expense of increased waiting time for new flits. Second, flits from
different priority classes can be stored in the same queue. For instance, new
read/write requests from the core to tag directories use the same physical
and virtual channels as the requests forwarded from the directories to the
memory controllers. Moreover, only a fraction of the flits in either the high
or low priority queue can compete with the flits in the other queue. For
example, suppose the class-2 flits in Figure 2.2 are delivered to the local
node. Then, class-3 flits must compete with only class-1 flits in the high-
priority queue. Analytical models that ignore this traffic split significantly
overestimate the latency, as shown in Section 6.2. In contrast, analytical
models that ignore priority would significantly underestimate the latency.
Thus, prior approaches that do not model priority [83, 115, 96] and simple
performance models for the priority queues [52, 46] are inapplicable to
priority-based industrial NoCs.

This chapter presents a novel NoC performance analysis technique
that considers traffic classes with different priorities. This problem is theo-
retically challenging due to the non-trivial interactions between classes
and shared resources. For example, queues can be shared by flits with
different priorities, as shown in Figure 2.2. Similarly, routers may merge
different classes coming through separate ports, or act as switches that can
disjoin flits coming from different physical channels. To address these
challenges, we propose a two-step approach that consists of an analysis
technique followed by an iterative algorithm. The first step establishes
that priority-based NoCs can be decomposed into separate queues using
traffic splits of two types. Since existing performance analysis techniques
cannot model these structures with traffic splits, we develop analytical
models for these canonical queuing structures. The second step involves
a novel iterative algorithm that composes an end-to-end latency model

9

Figure 2.3: Overview of the proposed methodology.

for the queuing network of a given NoC topology and input traffic pat-
tern. The proposed approach is evaluated thoroughly using both 2D mesh
and ring architectures used in industrial NoCs. It achieves 97% accuracy
with respect to cycle-accurate simulations for realistic architectures and
applications.

Background and Motivation

Proposed Performance Analysis Flow

The primary target of the proposed model is to accelerate virtual plat-
forms [6] and full-system simulations [10, 89, 71] by replacing time con-
suming NoC simulations with accurate lightweight analytical models.
At the beginning of the simulation, the proposed technique parses the
priority-based NoC topology to construct the analytical models, as shown
in Figure 2.3. The host, such as a virtual platform, maintains a record of
traffic load and the destination address for each node. It also periodically
(each 10K-100K cycles) sends the traffic injections of requesting nodes,
such as cores, to the proposed technique. Then, the proposed technique

10

applies the analytical models (steps 2 and 3 in Figure 2.3) to compute
the end-to-end latency. Whenever there is a new request from an end
node, the host system estimates the latency using the proposed model as
a function of the source-destination pair. That is, our model replaces the
cycle-by-cycle simulation of flits in NoCs.

Basic Priority-Based Queuing Models

We assume a discrete time system in which micro-architectural events,
such as writing to a buffer, arbitration and switch traversal happen in the
integral number of clock cycles. Therefore, we develop queuing models
based on arrival process that follows geometric distribution, in contrast
to continuous time models that are based on Poisson (M for Markovian)
arrival assumption. More specifically, we adopt the Geo/G/1 model, in
which the inter-arrival time of the incoming flits to the queue follows
geometric distribution (denoted by Geo), service time of the queue follows
a general discrete-time distribution (denoted by G), and the queue has
one server (the ‘1’ in the Geo/G/1 notation). The proposed technique
estimates the end-to-end latency for realistic applications accurately, as we

Figure 2.4: (a) A system with two queues. Flits in Qhigh have higher
priority than flits in Qlow. (b) A system with N queues, where Qi has
higher priority than Qj for i < j

11

demonstrate in Section 6.4. However, the accuracy is expected to drop if
the NoC operates close to its maximum load since the Geometric (similar
to Poisson) packet inter-arrival time assumption becomes invalid [83].

Performance analysis techniques in the literature [8, 46, 52] discuss
basic priority-based networks in which each priority class has a dedicated
queue, as illustrated in Figure 2.4(a). In this architecture, the flits in Qhigh
have higher priority than the flits in Qlow. That is, flits in Qlow will be
served only when Qhigh is empty and the server is ready to serve new flits.
Another example withN priority classes is shown in Figure 2.4(b). The
flits in Qi have higher priority than flits in Qj if i < j. The average waiting
time for each priority class Wi for 1 6 i 6 N is known for continuous
time M/G/1 queues [8]. In the M/G/1 queuing system, flits arrive in the
queue following Poisson distribution (M) and the service time of the queue
follows general distribution (G). In this work, we first derive waiting time
expressions for discrete time Geo/G/1 queues. Then, we employ these
models to derive end-to-end NoC latency models.

The average waiting time of flits in a queue can be divided into two
parts: (1) waiting time due to the flits already buffered in the queue, and
(2) waiting time due to the flits which are in the middle of their service,
i.e., the residual time. The following lemma expresses the waiting time as
a function of input traffic and NoC parameters.
Lemma 1: Consider a queuing network with N priority classes as shown
in Figure 2.4(b). Suppose that we are given the injection rates λi, service
rates µi, residual time Ri, and server utilizations ρi for 1 6 i 6 N, where
N > 2 Then, the waiting time of class-i flitsWi is given as:

Wi =

∑N
k=1 Rk
1−ρ1

, for i = 1∑N
k=1 Rk+

∑i−1
k=1

(
ρk+ρkWk

)
1−∑i

k=1 ρk
, for i > 1

(2.1)

The remaining details of the work is described in Appendix A of the

12

report and in the reference [73].

2.2 Performance Analysis of NoCs with Bursty
Traffic

Industrial many-core processors incorporate priority arbitration for the
routers in NoC [44]. Moreover, these designs execute bursty traffic since
real applications exhibit burstiness [11]. Accurate NoC performance mod-
els are required to perform design space exploration and accelerate full-
system simulations [52, 96]. Most existing analysis techniques assume fair
arbitration in routers, which does not hold for NoCs with priority arbitra-
tion used in manycore processors, such as high-end servers [106] and high
performance computing (HPC) [44]. A recent technique targets priority-
aware NoCs [73], but it assumes that the input traffic follows geometric
distribution. While this assumption simplifies analytical models, it fails to
capture the bursty behavior of real applications [11]. Indeed, our evaluations
show that the geometric distribution assumption leads up to 60% error
in latency estimation unless the bursty nature of applications is explicitly
modeled. Therefore, there is a strong need for NoC performance analysis
techniques that consider both priority arbitration and bursty traffic.

This work proposes a novel performance modeling technique for priority-
aware NoCs that takes bursty traffic into account. It first models the input
traffic as a generalized geometric (GGeo) discrete-time distribution that
includes a parameter for burstiness.

We achieve high scalability by employing the principle of maximum en-
tropy (ME) to transform the given queuing network into a near equivalent
set of individual queue nodes of multiple-classes with revised characteris-
tics (e.g., modifying service process). Furthermore, our solution involves
transformations to handle priority arbitration of the routers across a net-
work of queues. Finally, we construct analytical models of the transformed

13

queue nodes to obtain end-to-end latency.
The proposed performance analysis technique is evaluated with SYSmark®

2014 SE [5], applications from SPEC CPU® 2006 [38] and SPEC CPU®

2017 [16] benchmark suites, as well as synthetic traffic. The proposed
technique has less than 10% modeling error with respect to an industrial
cycle-accurate NoC simulator.

The major contributions of this work are as follows:

• Accurate and scalable high-level performance modeling of priority-
based NoCs considering burstiness,

• Dynamic approximation of realistic bursty traffic via GGeo distribu-
tion,

• Thorough evaluations on industrial priority-based NoCs with syn-
thetic traffic and real applications.

Background of Generalized Geometric Distribution

The goal of this work is to construct accurate performance models for
industrial NoCs under priority-arbitration and bursty traffic. We mainly
target manycore processors used in servers, HPC, and high-end client
CPUs [44, 106]. The proposed technique takes burstiness and injection
rate of the traffic as input and then provides end-to-end latency of each
traffic class.
Input traffic model assumptions: Applications usually produce bursty
NoC traffic with varying inter-arrival times [11, 96]. We approximate the
input traffic using the GGeo discrete-time distribution model, which takes
both burstiness and discrete-time feature of NoCs into account [55, 96].
GGeo model includes Geometric and null (no delay) branches, as shown
in Figure 2.5. Selection between branches conforms to the Bernoulli trial,
where the null (upper) and Geo (lower) branches are selected with prob-
ability pb and 1 − pb, respectively. The Geo branch leads to geometrically

14

Figure 2.5: GGeo traffic model

distributed inter-arrival time, while the null branch issues additional flit
in the current time slot leading to a burst. Both the number of flits in a
time slot and the inter-arrival rate depend on pb [55]. Hence, we use pb
as a parameter of burstiness. GGeo distribution has two important prop-
erties [55]. First, it is pseudo-memoryless, i.e. the remaining inter-arrival
time is geometrically distributed. Second, it can be described by its first
two moments (λ, Ca), where C2

a = 2/(1 − pb) − λ− 1. We exploit these
properties to construct analytical models. The remaining details of the
work is described in Appendix B of the report and in the reference [72].

2.3 Performance Analysis of NoCs with
Deflection Routing

Pre-silicon design-space exploration and system-level simulations consti-
tute a crucial component of the industrial design cycle [87, 31]. They are
used to confirm that new generation designs meet power-performance
targets before labor- and time-intensive RTL implementation starts [10].
Furthermore, virtual platforms combine power-performance simulators
and functional models to enable firmware and software development
while hardware design is in progress [65]. These pre-silicon evaluation
environments incorporate cycle-accurate NoC simulators due to the criti-
cality of shared communication and memory resources in overall perfor-

15

mance [2, 45]. However, slow cycle-accurate simulators have become the
major bottleneck of pre-silicon evaluation. Similarly, exhaustive design-
space exploration is not feasible due to the long simulation times. There-
fore, there is a strong need for fast, yet accurate, analytical models to
replace cycle-accurate simulations to increase the speed and scope of pre-
silicon evaluations [122].

Analytical NoC performance models are used primarily for fast design
space exploration since they provide significant speed-up compared to
detailed simulators [83, 52, 48, 96]. However, most existing analytical
models fail to capture two important aspects of industrial NoCs [44]. First,
they do not model routers that employ priority arbitration. Second, exist-
ing analytical models assume that the destination nodes always sink the
incoming packets. In reality, network interfaces between the routers and
cores have finite (and typically limited) ingress buffers. Hence, packets
bounce (i.e., they are deflected) at the destination nodes when the ingress
queue is full. Recently proposed performance models target priority-aware
NoCs [73, 72]. However, these ignore deflection due to finite buffers and
uses the packet injection rate as the primary input. This is a significant
limitation since the deflection probability (pd) increases both the hop
count and traffic congestion. Indeed, Figure 2.6 shows that the average
NoC latency increases significantly with the probability of deflection. For
example, the average latency varies from 6–70 cycles for an injection rate
of 0.25 packets/cycle/source when pd varies from 0.1–0.5. Therefore, per-
formance models for priority-aware NoCs have to account for deflection
probability at the destinations.

This work proposes an accurate analytical model for priority-aware NoCs
with deflection routing under bursty traffic. In addition to increasing the hop
count, deflection routing also aggravates traffic congestion due to extra
packets traveling in the network. Since the deflected packets also have a
complex effect on the egress queues of the traffic sources, analytical mod-

16

0 . 0 0
0 . 0 5

0 . 1 0
0 . 1 5

0 . 2 0
0 . 2 5 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5

1 0

2 0

3 0

6 5
7 0

D e f l e c t i o n

P r o b a b i l i t y

Av
era

ge
 La

ten
cy

(cy

cle
s)

I n j e c t i o n R a t e (p a c k e t s / c y c l e / s o u r c e)
Figure 2.6: Cycle-accurate simulations on a 6×6 NoC show that the average
latency increases significantly with larger deflection probability (pd) at
the sink.

eling of priority-aware NoCs with deflection routing is challenging. To
address this problem, we first need to approximate the probability distri-
bution of inter-arrival time of deflected packets. Specifically, we compute
the first two moments of inter-arrival time of deflected packets since we
consider bursty traffic. To this end, the proposed approach starts with
a canonical queuing system with deflection routing. We first model the
distribution of deflected traffic and the average queuing delay for this
system. However, this methodology is not scalable when the network
has multiple queues with complex interactions between them. Therefore,
we also propose a superposition-based technique to obtain the waiting
time of the packets in arbitrarily sized industrial NoCs. This technique
decomposes the queuing system into multiple subsystems. The structure
of these subsystems is similar to the canonical queuing system. After
deriving the analytical expressions for the parameters of the distribution
model of deflected packets of individual subsystems, we superimpose

17

the result to solve the original system with multiple queues. Thorough
experimental evaluations with industrial NoCs and their cycle-accurate
simulation models show that the proposed technique significantly out-
performs prior approaches [52, 73]. In particular, the proposed technique
achieves less than 8% modeling error when tested with real applications
from different benchmark suites. The major contributions of this chapter are
as follows:

• An accurate performance model for priority-aware NoCs with de-
flection routing under bursty traffic,

• An algorithm to obtain end-to-end latency using the proposed per-
formance model,

• Detailed experimental evaluation with industrial priority-aware NoC
under varying degrees of deflection.

Router links

Path of deflected
packets

Path of packet
w/o deflection

Sink / Junction
Routers

1 3 4

5 6 7 8

9 11

13 14 15 16

2

10 12

Figure 2.7: A representative 4×4 mesh with deflection routing.

18

Background on Deflection Routing

Assumptions and Notations

Architecture: This work considers priority-aware NoCs used in high-end
servers and many core architectures [44]. Each column of the NoC archi-
tecture, shown in Figure 2.7, is also used in client systems such as Intel
i7 processors [99]. Hence, the proposed analysis technique is broadly
applicable to a wide range of industrial NoCs.

In priority-aware NoCs, the packets already in the network have higher
priority than the packets waiting in the egress queues of the sources.
Assume that Node 2 in Figure 2.7 sends a packet to Node 12 following
Y-X routing (highlighted by red arrows). Suppose that a packet in the
egress queue of Node 6 collides with this packet. The packet from Node 2
to Node 12 will take precedence since the packets already in the NoC have
higher priority. Hence, packets experience a queuing delay at the egress
queues but have predictable latency until they reach the destination or
turning point (Node 10 in Figure 2.7). Then, it competes with the packets
already in the corresponding row. That is, the path from the source (Node
2) to the destination (Node 12) can be considered as two segments, which
consist of a queuing delay followed by a predictable latency.

Deflection in priority-aware NoCs happens when the ingress queue at
the turning point (Node 10) or final destination (Node 12) become full.
This can happen if the receiving node, such as a cache controller, cannot
process the packets fast enough. The probability of observing a full queue
increases with smaller queues (needed to save area) and heavy traffic
load from the cores. If the packet is deflected at the destination node, it
circulates within the same row, as shown in Figure 2.7. Consequently, a
combination of regular and deflected traffic can load the corresponding
row and pressure the ingress queue at the turning point (Node 10). This,
in turn, can lead to deflection on the column and propagates the congestion

19

towards the source. Finally, if a packet is deflected more than a specific
number of times, it reserves a slot in the ingress queue. This bounds the
maximum number of deflections and avoids livelock.
Traffic: Industrial priority-aware NoCs can experience bursty traffic, which
is characteristic of real applications [11, 96]. This work considers gener-
alized geometric (GGeo) distribution for the input traffic, which takes
burstiness into account [55]. GGeo traffic is characterized by an average
injection rate (λ) and the coefficient of variation of inter-arrival time (CA).
We define a traffic class as the traffic of each source-destination pair. The
average injection rate and coefficient of variation of inter-arrival time of
class-i are denoted by λi and as CAi respectively, as shown in Table 8.1. Fi-
nally, the mean service time and coefficient of variation of inter-departure
time of class-i are denoted as Ti and CSi .

Overview of the Proposed Approach

Our goal is to construct an accurate analytical model to compute the
end-to-end latency for priority-aware NoCs with deflection routing. The
proposed approach can be used to accelerate full system simulations and
also to perform design space exploration. We assume that the parameters
of the GGeo distribution of the input traffic to the NoC (λ,CA) are known
from the knowledge of the application. The proposed model uses the
deflection probability (pd) as the second major input, in contrast to existing
techniques that ignore deflection. Its range is found from architecture
simulations as a function of the NoC architecture (topology, number of
processors, and buffer sizes). Its analytical modeling is left for future work.
The proposed analytical model utilizes the distribution of the input traffic
to the NoC (λ,CA) and the deflection probability (pd) to compute the
average end-to-end latency as a sum of four components: (1) Queuing
delay at the source, (2) the latency from the source router to the junction
router, (3) queuing delay at the junction router, and (4) the latency from

20

the junction router to the destination. Note that all these components
account for deflection, and it is challenging to compute them, especially
under high traffic load. The remaining details of the work is described in
Appendix C of the report and in the reference [74].

2.4 Communication-Aware Hardware
Accelerators for Deep Neural Networks
(DNNs)

In recent years, deep neural networks (DNNs) have shown tremendous
success in recognition and detection tasks such as image processing, health
monitoring, and language processing [59, 77]. Higher accuracy in DNNs
is achieved by using larger and more complex models. However, such
models require a large number of weights, and consequently, traditional
DNN hardware accelerators require a large number of memory accesses
to fetch the weights from off-chip memory, leading to a large number of
off-chip memory accesses lead to higher latency and energy consumption.
On average, a single off-chip memory access consumes 1,000× the energy
of a single computation [39]. Therefore, there is a strong need to minimize
the latency and energy consumption due to the off-chip memory accesses
in DNN accelerators.

In-Memory Computing (IMC) techniques reduce memory access re-
lated latency and energy consumption through the integration of com-
putation with memory accesses. A prime example is the crossbar-based
IMC architecture which provides a significant throughput boost for DNN
acceleration. Prior works have shown that both SRAM- and ReRAM-based
crossbar architectures effectively improve performance and energy effi-
ciency [100, 120, 105, 108]. Such advantages stem from the efficiency of
matrix multiplication implementation in crossbar architectures. At the

21

Figure 2.8: Multi-tiled IMC architecture with bus-based H-Tree intercon-
nect [18].
same time, crossbar-based in-memory computing dramatically increases
the volume of on-chip communication, when all weights and activations
are stored on-chip. Emerging DNNs with higher accuracy, such as those
derived through Neural Architecture Search (NAS) [117, 125, 126], further
exacerbate the problem of on-chip communication due to larger model size
and more complex connections. Therefore, designing an efficient on-chip
communication architecture is crucial for the in-memory acceleration of
DNNs.

State-of-the-art IMC architectures usually deploy a bus-based H-Tree in-
terconnect [79, 105]. Figure 2.8 shows such a multi-tiled IMC architecture
with bus-based H-Tree interconnect [18]. In this figure, the tiles in differ-
ent layers shown in different colors, are connected through a bus-based
H-Tree interconnect. We evaluate a range of DNNs for such an architecture
using the NeuroSim [18] benchmarking tool. Figure 2.9 shows that up to
90% of the total inference latency of a DNN hardware is spent on on-chip
communication when the H-Tree interconnect is used.

In order to reduce on-chip communication latency, NoC-based inter-
connects are employed for conventional SoCs [44, 75] and DNN acceler-
ators [19, 100]. Eyeriss-V2 [19] proposes to use three different NoCs for
weights, activations, and partial sums. Such an architectural choice allows

22

Figure 2.9: Percentage contribution of different components of the IMC
hardware to total latency. 40%-90% of the total latency is spent on on-chip
communication when bus-based H-Tree interconnect is used.

for higher performance at the cost of both area and energy consumption.
ISAAC [100] employs a concentrated-mesh (cmesh) NoC at the tile-level
of the IMC accelerator. These empirical approaches demonstrate the ne-
cessity of NoC for in-memory computing of DNNs. However, a regular
NoC does not guarantee minimum possible communication latency for
DNN architectures. The performance of the NoC depends on both the
NoC structure and the underlying workload.

In this chapter, we minimize the communication energy across a large
number of tiles using an NoC architecture with optimized tile-to-router
mapping and scheduling. We also propose an optimization technique to
determine the optimal number of NoC routers required for each layer of the
DNN. Next, we propose a methodology to generate a latency-optimized
NoC architecture along with a scheduling technique customized for dif-
ferent DNNs. We prove, through induction, that the proposed NoC ar-
chitecture achieves minimum possible communication latency using the
minimum number of links between the routers. These two techniques
together generate a custom NoC for IMC acceleration of a given DNN.

23

We show that the proposed custom IMC architecture achieves 20%-80%
improvement in overall communication latency and 5%-25% reduction in
end-to-end inference latency with respect to state-of-the-art NoC based
IMC architectures [100].

Constructing a custom NoC for each DNN is not a practical choice as
fabricating custom hardware is expensive. The optimum DNN configura-
tion changes due to on-line adaptation of algorithmic pruning ratio [123]
and accuracy vs speed/power trade-off [119]. Consequently, communica-
tion patterns between different layers also change with the DNN config-
uration. Hence, the NoC needs to be configured to maintain optimality.
Moreover, new DNNs are being designed at a fast rate due to the large
research volume in this domain. Therefore, an exhaustive design-time
exploration that considers all possible DNNs is not feasible. As a result,
the NoC designed considering only the known DNNs will not be optimal
for new DNNs. Hence, it must be configured at run-time to maintain
the optimality. To this end, we propose a reconfigurable solution for two
categories of DNNs namely, edge We categorize the DNNs based on its
application. For example, authors in [17] show the extensive usage of
LeNet, SqueezeNet, VGG in various edge devices, and [30] use ResNet-152
DNN for cloud-based applications such as video analytics. However, there
exist multiple factors which differentiate these DNNs, namely, number of
layers, number of parameters, connection density, etc. In this paper we con-
sider LeNet, NiN, SqueezeNet, VGG-16, and VGG-19 as edge-computing
based DNNs and ResNet-50, ResNet-152, and DenseNet (100,24) as cloud
computing-based DNNs. We construct separate NoC architectures for
these two categories offline. When a new DNN that was not known at
design-time is to be executed, the NoC architecture is reconfigured to ac-
commodate the DNN. Through leave-one-out experiments, we show that
the proposed reconfigurable NoC has less than 5% performance degra-
dation on average with respect to the customized solution. Overall, the

24

proposed methodology generates both custom and reconfigurable NoC-
based IMC hardware architectures that provide better performance than
state-of-the-art IMC hardware for DNNs.

The major contributions in this chapter are as follows:

• A methodology to construct an NoC architecture along with a schedul-
ing technique that provides minimum communication latency for a
given DNN. We prove by induction that the proposed NoC achieves
minimum communication latency.

• Reconfigurable NoC architecture for edge computing-based and
cloud computing-based DNNs.

• Experimental evaluation of the proposed NoC-based IMC architec-
ture showing up to 80% reduction in communication latency with
respect to state-of-the-art interconnect solution for IMC hardware of
DNNs.

Background and Overview

Background of In-Memory Computing

Conventional architectures separate the data access from memory and
the computation in the computing unit. In contrast, IMC seamlessly in-
tegrates computation and memory access in a single unit such as the
crossbar [100, 105, 108, 120]. It has emerged as a promising method to
address the memory access bottleneck. Both SRAM and NVM-based
(e.g. ReRAM) IMC hardware architectures provide a dense and paral-
lel structure to achieve high performance and energy efficiency. This
localizes computation and data memory in a more compact design and
enhances parallelism with multiple-row access, resulting in improved
performance [100, 105].

25

Figure 2.10: IMC architecture with an arbitrary DNN mapped onto differ-
ent tiles with, (a) the mesh-NoC and (b) the proposed latency-optimized
NoC.

The IMC architecture consists of Processing Elements (PE) or crossbar
arrays built with IMC cells which hold the weights of the DNN. The size
of the PE can vary from 64×64 to 512×512. Along with the computing
unit, peripheral circuits such as ADC, Sample and Hold circuit (S&H) and
accumulator circuits are used to obtain each DNN layer’s computation
result. The Word-Line (WL) is activated by the input activation which
allows for the MAC operation to be performed along the Bit-Line (BL) via
analog voltage/current accumulation. The analog MAC result is converted
to digital values using an ADC, and subsequently accumulated using a
shifter and adder circuit.

26

Overview of the Proposed IMC Architecture with
Latency-optimized NoC

Figure 2.10 shows a representative IMC hardware architecture for DNN
inference acceleration [18]. The proposed IMC system utilizes a hierarchi-
cal architecture where each tile has computing elements (CEs) and each
CE employs processing elements (PEs). We assume all the weights and
activations are stored on-chip. Each tile consists of four CEs, input-output
(IO) buffers, accumulator circuits, and a ReLU activation circuit. An H-
Tree-based interconnect is used to connect the different hardware units
in the tile. In addition, there is a global pooling and accumulator unit to
perform pooling and inter-tile accumulation, respectively.

Each CE in a tile consists of four PEs that communicate through a
bus-based interconnect. The PEs represent the crossbar structure (SRAM
or ReRAM) which performs the computation. Each CE further consists of
a read-out circuit that converts the MAC results from analog to the digital
domain. The read-out circuit consists of a sample and hold circuit, flash
ADCs, and a shift and add circuit. The choice of ADC stems from the
precision of the partial sums required for the best accuracy and the physical
footprint and performance of the ADC. A multiplexer circuit is employed to
share the read-out circuit among different columns of the IMC crossbar. We
multiplex 8 columns for each read-out circuit in a time-multiplexed manner
to reduce both area and energy for the peripheral circuitry. Finally, the
architecture does not utilize a DAC; it assumes sequential input signaling,
i.e., an n-bit input signal is fed over n clock cycles in a bit-serial manner.

Figure 2.10(a) shows the IMC architecture with a regular mesh NoC
at the tile level. The regular mesh NoC has one router-per-tile and em-
ploys the standard X-Y routing algorithm. Figure 2.10(b) shows the IMC
architecture with the proposed latency-optimized NoC. The proposed
latency-optimized NoC architecture utilizes the optimal number of routers
and links to perform on-chip communication. Such an architecture re-

27

sults in reduced energy and latency. The remaining details of the work is
described in Appendix D of the report and in the reference [57, 76].

28

3 proposed work-1: multi-objective optimization
to design latency-optimized noc

Networks-on-chip continues playing a central role as many-core processors
with 40 or more cores start dominating the server market [3, 26]. As the
commercial solutions scale up, the latency, area, and power consumption
overheads of NoCs become increasingly crucial. The designers need analyt-
ical power-performance models to guide complex design decisions during
the architecture development and implementation phases. After that, the
same type of models are required by virtual platforms, commonly used
to develop and evaluate the software ecosystem, and applications [20].
Hence, there is a strong demand for high-fidelity analytical techniques
that accurately model fundamental aspects of industrial designs across all
segments ranging from systems-on-chip to client and server systems.

NoCs can be broadly classified in terms of buffer usage as buffered and
bufferless architectures [80, 28, 82]. The majority of early solutions adapted
buffered techniques, such as wormhole and virtual-channel switching,
where the packets (or their flits) are stored in intermediate routers. Area,
latency, and energy consumption of buffers have later led to bufferless
architectures, where the intermediate routers simply forward the incoming
flits if they can and deflect otherwise.

Bufferless NoCs successfully save significant buffer area and enable
ultra-fast, as low as single-cycle routing decisions [80, 28]. Therefore, many
industrial NoCs used in server and client architectures employ bufferless
solutions to minimize the communication latency between the cores, last-
level caches (LLC), and main memory [104, 26]. These solutions give
priority to the packets already in the network to enable predictable and
fast communication while stalling the newly generated packets from the
processing and storage nodes. However, buffer area savings and low
communication latency come at the cost of the early onset of congestion.

29

Indeed, the packets wait longer at the end nodes, and the throughput
saturates faster when the NoC load increases. Moreover, all routers in
the NoCs remain powered on, increasing the NoC power consumption.
Therefore, there is a strong need to address these shortcomings.

Buffered NoCs with virtual channel routers have been used more com-
monly in academic work and most recent industry standards [90]. Shared
buffering resources, such as input and output channels, require arbitrat-
ing among different requesters. For example, suppose that packets in
different input channels request to be routed to the same output chan-
nel. An arbiter unit needs to resolve the conflicts and grant access to the
requester to avoid packet loss. The architectures proposed to date pre-
dominantly employ a basic round-robin (RR) arbiter to provide fairness
to all requesters [101, 63, 116]. Although the decisions are locally fair,
the number of arbitrations a packet goes through grows with its path
length. Hence, RR arbitration is globally not fair. More importantly, basic
RR cannot provide preference to a particular input, which is typically
desired since not all requests are equal. For example, data and acknowl-
edgment packets can have higher priority than new requests to complete
outstanding transactions, especially when the network is congested.

WRR arbitration provides flexibility in allocating bandwidth propor-
tionally to the importance of the traffic classes, unlike basis round-robin
and priority-based arbitration. Each requester has an assigned weight,
which is a measure of its importance. A larger weight indicates that the
requester is given more preference in arbitration. Due to its generality,
WRR arbitration has been employed in several NoC proposals in the lit-
erature [94, 37, 124]. Indeed, NoCs with WRR arbitration provide better
throughput compared to RR arbitration [37]. Despite its potential, the WRR
arbitration technique has not been analyzed theoretically, especially in the context
of large-scale NoCs. A large body of literature has proposed performance
analysis techniques for buffered and bufferless NoCs since analytical mod-

30

els play a crucial role in fast design space exploration and pre-silicon
evaluation [112, 96, 51]. In contrast, no analytical modeling technique has
been proposed to date for NoCs with WRR arbitration. A formal analysis
is required to understand the behavior of NoCs with WRR arbitration.
At the same time, executable performance models are needed to guide
many-core processor design and enable virtual platforms for pre-silicon
evaluation.

WRR arbitration is promising for NoCs since it can tailor the communi-
cation bandwidth to different traffic classes. Furthermore, it can provide
end-to-end latency-fairness to different source-destination pairs, unlike
basic round-robin and priority arbitration techniques. However, these
capabilities come at the expense of a vast design parameter space. An
n×mmesh with P-port routers hasn×m×P tunable weights, e.g., an 8×8
2D mesh would have 320 WRR weights. Due to this large design space,
the current practice is limited to assigning two weights to each router (e.g.,
one weight to local ports and another one to packets already in the NoC).

The benefits of the proposed theoretical analysis are two-fold. First, it
can enable accurate pre-silicon evaluations and design space exploration
without time-consuming cycle-accurate simulations. Second, it can be used
to find the combination of weights that optimizes the performance, i.e., to
solve the optimization problem described in the previous paragraph.

31

4 proposed work-2: hardware accelerator for
graph convolutional networks (gcns)

Graph convolutional networks (GCNs) have shown tremendous success
for various applications, including node classification, social recommen-
dations, and link predictions [27, 121, 23]. Their powerful learning ca-
pabilities on graphs have attracted attention to additional research areas
like image processing and job scheduling [111, 78]. Consequently, leading
technology companies like Google and Facebook have developed libraries
and systems for GCNs [64, 1], stimulating further research.

GCNs operate on graphs by preserving each node’s connectivity in-
formation. They have irregular data patterns since the relation between
the nodes, i.e., the edge connections, do not necessarily follow a spe-
cific pattern. In strong contrast, classical convolutional neural networks
(CNNs) are optimized for regular data, which prevents them from cap-
turing the connectivity information in the graph. GCNs use a neighbor
aggregation scheme that computes each node’s features using a recursive
aggregation and transformation. The aggregation process depends on
the graph structure, while the transformation process uses a technique
similar to CNN computations. These processes repeat until embeddings
for each node are generated at the end. As the data is sparse, irregular, and
high dimensional, general-purpose platforms like CPU and GPU require
energy-intensive memory accesses even if they use complex caching and
prefetching techniques [22]. Hence, the state-of-the-art GCN models are
large and complex [33, 35, 53]. Multiple software-based techniques have
been proposed to reduce the computations by utilizing the sparsity of the
graph [107, 68]. However, GCN execution still suffers from high latency
and energy consumption.

The prevalence and computational complexity of GCNs call for high-

32

Figure 4.1: Communication energy with a baseline IMC-based GCN accel-
erator. In the baseline architecture, the number of compute elements is
equal to the number of GCN nodes and compute elements are intercon-
nected by a 2D mesh NoC through a dedicated router. The x-axis is sorted
by increasing number of GCN nodes.

performance and energy-efficient hardware accelerators. In contrast to soft-
ware implementations, hardware accelerators perform GCN computations
with significantly lower latency and higher energy efficiency. Due to this
potential, a couple of recent studies proposed GCN accelerators [118, 66].
These techniques implement systolic array-based architectures to perform
the computations. Since this approach requires a large number of weights,
the resulting GCN hardware accelerators need to make many memory
accesses to fetch the weights from off-chip memory. In turn, frequent off-
chip memory accesses lead to higher latency and energy consumption as
single off-chip memory access consumes on average 1,000×more energy
than computation [39]. Therefore, there is an urgent need to minimize the
latency and energy consumption due to the off-chip memory accesses in
GCN accelerators.

In-memory computing (IMC) decreases memory access-related la-
tency and energy consumption by integrating computation with memory

33

accesses embedding [105]. A notable example is the crossbar-based IMC
architecture, which provides a significant throughput boost for hardware
acceleration by storing the weights on the chip. However, crossbar-based
in-memory computing dramatically increases the volume of on-chip com-
munication when all weights and activations are stored on-chip. In turn,
the communication energy also increases exorbitantly. To quantify this
effect, we implemented an IMC-based GCN accelerator baseline for popu-
lar benchmarks. Each node in the GCN is implemented using a compute
element (CE) (array of IMC crossbars) that performs the required opera-
tions. The CEs that make up the design are interconnected by a 2D mesh
network-on-chip (NoC) through dedicated routers. Figure 4.1 shows that
the communication energy increases with the number of GCN nodes. Fur-
thermore, with larger GCNs, the required number of compute elements as
well the number of routers become very high, resulting in an increased area
of the chip. Therefore, designing an efficient on-chip communication architecture
is crucial for the in-memory acceleration of GCNs.

We propose a communication-aware in-memory computing architec-
ture for GCN hardware acceleration. The architecture distributes the GCN
computations into multiple compute elements, referred to as CEs. Each CE
utilizes RRAM-based crossbars to perform computation while significantly
reducing frequent off-chip memory accesses. Furthermore, it considers
the intra- and inter-CE communications to design an optimized on-chip
interconnection network. Specifically, we construct an objective function
that represents the energy-delay product of communication. We show that
the objective function is convex. Then, we minimize the objective function
to obtain the number of CEs.

34

5 conclusion of the report

In this report, we propose an approach to build analytical models for
priority-based NoCs with multi-class flits under bursty traffic and deflec-
tion routing. As we emphasized, no prior work has presented analytical
models that consider priority arbitration and multi-class flits in a single
queue simultaneously. Such a priority-based queuing network is decom-
posed into independent queues using novel transformations proposed in
this work. We evaluate the efficiency of the proposed approach by comput-
ing end-to-end latency of flits in a realistic industrial platform and using
real application benchmarks. Our extensive evaluations show that the
proposed technique achieves a high accuracy of 97% accuracy compared
to cycle-accurate simulations for different network sizes and traffic flows.

We also present a latency-optimized reconfigurable NoC for in-memory
acceleration of DNNs. State-of-the-art interconnect methodologies include
bus-based H-Tree interconnect and mesh-NoC. We show that bus-based
H-Tree interconnect contributes significantly to the total inference latency
of DNN hardware and are not a viable option. Mesh-NoC based IMC archi-
tectures are better than bus-based H-tree but they too do not consider the
non-uniform weight distribution of different DNNs, DNN graph structure,
and the computation-to-communication imbalance of the DNNs.None of
the architectures holistically investigated minimization of communication
latency. In contrast, our proposed latency-optimized NoC guarantees
minimum possible communication latency between two consecutive lay-
ers of a given DNN. Experimental evaluations on a wide range of DNNs
confirm that the proposed NoC architecture enables 60%-80% reduction
in communication latency with respect to state-of-the-art interconnect
solutions.

Finally, we plan to construct analytical modeling technique for NoCs
with weighted round robin (WRR) arbitration, since WRR provides more

35

fairness than round robin arbitration or priority arbitration. We also
plan to develop communication-aware hardware accelerator for graph
convolutional network (GCN) in future.

36

6 appendix a: performance analysis of
priority-aware nocs

6.1 Related Work
Performance analysis techniques are useful for exploring design space [88]
and speeding up simulations [83, 52, 115]. Indeed, there is continuous
interest in applying novel techniques such as machine learning [96] and
network calculus [95] to NoC performance analysis. However, these stud-
ies do not consider multiple traffic classes with different priorities. Since
state-of-the-art industrial NoC designs [26, 44] use priority-based arbitration
with multi-class traffic, it is important to develop performance analysis for
this type of architectures.

Kashif et al. have recently presented priority-aware router architec-
tures [48]. However, this work presents analytical models only for worst-
case latency. In practice, analyzing the average latency is important since
using worst-case latency estimation in full-system would lead to inaccurate
conclusions. A recent technique proposed an analytical latency model
for priority-based NoC [52]. This technique, however, assumes that each
queue in the network contains a single class of flits.

Several techniques present performance analysis of priority-based
queuing networks outside the NoC domain [8, 13, 42]. Nevertheless,
these techniques do not consider multiple traffic classes in the same queue.
The work presented in [4] considers multiple traffic classes, but it assumes
that high priority packets preempt the lower priority packets. However,
this is not a valid assumption in the NoC context. A technique that can
handle two traffic classes, Empty Buffer Approximation (EBA), has been
proposed in [7] for a priority-based queuing system. This approach was
later extended to multi-class systems [46]. However, EBA ignores the
residual time caused by low priority flits on high priority traffic. Hence, it

37

is impractical to use EBA for priority-aware industrial NoCs.
The aforementioned prior studies assume a continuous-time queu-

ing network model, while the events in synchronous NoCs take place in
discrete clock cycles. A discrete-time priority-based queuing system is an-
alyzed in [110]. This technique forms a Markov chain for a given queuing
system, then analyzes this model in z-domain through probability generat-
ing functions (PGF). PGFs deal with joint probability distributions where
the number of random variables is equal to the number of traffic classes
in the queuing system. This approach is not scalable for systems with
large number of traffic classes because the corresponding analysis becomes
intractable. For example, an industrial 8×8 NoC would have 64 sources
and 64 destinations which will result in 4096 (64×64) variables with PGF.
Furthermore, our approach outperforms this technique, as demonstrated
in Section 6.4.

In contrast to prior approaches, we propose a scalable and accurate
closed form solution for a priority-based queuing network with multi-class
traffic. The proposed technique constructs end-to-end latency models
using two canonical structures identified for priority-based NoCs. Unlike
prior approaches, our technique scales to any number of traffic classes. To
the best of our knowledge, this is the first analytical model for priority-
based NoCs that considers both (1) shared queues among multiple priority
classes and (2) traffic arbitration dependencies across the queues.

6.2 Proposed Network Transformations
This section describes two canonical queuing structures observed in priority-
based NoCs. We first describe these structures and explain why prior
analysis techniques fail to analyze them. Then, we present two novel
transformations and accurate analysis techniques.

38

Transformation 1: Split at High Priority Queue

Conceptual Illustration: Consider the structure shown in Figure 6.1(a).
As illustrated in Section ??, flits from traffic class-1 and 2 are already
in the network, while flits from traffic class-3 are waiting in Qlow to be
admitted. Since routers give priority to the flits in the network in industrial
NoCs, class-1 flits have higher priority than those in Qlow. To facilitate
the description of the proposed models, we represent this system by the
structure shown in Figure 6.1(b). In this figure, µi represents the service
rate of class-i for i = 1, 2, 3. If we use Equation 2.1 to obtain an analytical
model for the waiting time of traffic class-3, the resulting waiting time will
be highly pessimistic, as shown in Figure 6.2. The basic priority-based
queuing model overestimates the latency, since it assumes each class in
the network occupy separate queues. Hence, all flits in Q1 have higher
priority than those in Q2.
Proposed Transformation: The basic priority equations cannot be ap-
plied to this system since flit distribution of class-1 as seen by class-3 flits
will change depending on the presence of class-2 traffic. To address this
challenge, we propose a novel structural transformation, Figure 6.1(b) to
Figure 6.1(c). Comparison of the structures before and after the transfor-
mation reveals:

• The top portion (Q1 with its server) is identical to the original structure,

Figure 6.1: Split at high priority: Structural Transformation.

39

0 0.05 0.1 0.15 0.2 0.25

Injection Rate (flits/cycle)

0

10

20

30

40

W
a
it

in
g

 T
im

e
 (

c
y
c
le

s
)

fo
r

C
la

s
s
-3

 F
li
ts

Simulation

Analytical (basic priority equation)

Analytical (proposed)

Figure 6.2: Comparison of simulation with the basic priority-based queu-
ing model and proposed analytical model.

since µ1 and µ2 remain the same due to higher priority of class-1 over
class-3.

• The bottom portion (Q1 and Q2) forms a basic priority queue structure,
as highlighted by the red dotted box.

The basic priority queue structure is useful since we have already derived
its waiting time model in Equation 2.1. However, the arrival process at Q1
must be derived to apply this equation and ensure the equivalence of the
structures before and after the transformation.

We derive the second order moment of inter-departure time of class-
1 using the decomposition technique presented in [13]. These inter-
departure distributions are functions of inter-arrival distributions of all
traffic classes flowing in the same queue and service rate of the classes, as
illustrated in Figure 6.3. This technique first calculates the effective coeffi-
cient of variation at the input (C2

A) as the weighted sum of the coefficient
of variation of individual classes (C2

Ai
in Figure 6.3-Phase 1). Then, it finds

the effective coefficient of variation for the inter-departure time (C2
D) using

C2
A and the coefficient of variation for the service time (C2

B). In the final
phase, the coefficient of variation for inter-departure time of individual

40

classes is found, as illustrated in Figure 6.3(Phase 3). By calculating the
first two moments of the inter-arrival statistics of Q1 as λ1 and C2

D1 , we
ensure that the transformed structure in Figure 6.1(c) approximates the
original system. This decomposition enables us to find the residual time
for class-1 RQ1

1 as:

RQ1
1 =

1
2
ρ1
µ1

(
C2
D1 + C

2
B

2

)
−
ρ1µ1

2 (6.1)

Figure 6.3: Decomposition technique: In phase 1, different traffic flows
merge into a single flow with an inter-arrival time CA; in phase 2, flits
flow into the queue and leave the queue with an inter-departure time CD;
in phase 3, flits split into different flows with individual inter-departure
time.
Proposed Analytical Model: The bottom part of the transformed system
in Figure 6.1(c) is the basic priority queue (marked with the dotted red
box). Therefore, the higher priority part of Equation 2.1 can be used to
express the waiting time of class-1 flits as:

WQ1
1 =

RQ1
1 + R3
1 − ρ1

(6.2)

where the residual time of class-1 flits RQ1
1 is found using Equation 6.1.

Subsequently, this result is substituted in the lower priority portion of

41

Equation 2.1 to find the waiting time for class-3 flits:

W3 =
RQ1

1 + R3 + ρ1 + ρ1W
Q1
1

1 − ρ1 − ρ3
(6.3)

We also note the waiting time of class-2 flits, W2, is not affected by this
transformation. Hence, we can express it asW2 =

R2
1−ρ2

, using Equation 2.1
for the degenerate case of N = 1.

Figure 6.2 shows that the waiting time calculated by the proposed
analytical model for flits of traffic class-3 is quite accurate with respect
to the waiting time obtained from the simulation. The average error in
waiting time of traffic class-3 is 2% for the system shown in Figure 6.1(a),
with a deterministic service time of two cycles.

Transformation 2: Split at Low Priority Queue

Conceptual Illustration: Consider the queuing system shown in Fig-
ure 6.4(a). In this system, class-1 flits (λ1) are waiting in Qhigh, while
class-2 flits (λ2) and class-3 flits (λ3) are waiting in Qlow. Class-1 and
class-3 flits share the same channel and compete for the same output,
while class-2 flits are sent to a separate output. Class-1 flits always win the
arbitration since they have higher priority. Similar to the previous trans-
formation, the queuing model in Figure 6.4(b) is used as an intermediate

Figure 6.4: Split at low priority: Service Rate Transformation. µ∗ denotes
transformed service rate. The waiting time of class-1 flits depends on the
residual time of the class-3 flits, as shown in Equation 6.4.

42

0.05 0.1 0.15 0.2

Injection Rate (flits/cycle)

0

5

10

15

W
a
it

in
g

 T
im

e
 (

c
y
c
le

s
)

fo
r

C
la

s
s
-3

 F
li
ts

Simulation

Analytical (basic priority equation)

Analytical (proposed)

Figure 6.5: Comparison of simulation with the basic priority-based queu-
ing model and proposed analytical model.

representation to facilitate the discussion. In this system, Qhigh and Qlow
are represented as Q1 and Q2 respectively.

If we ignore the impact of class-1 traffic while modeling the waiting
time for class-3, the resulting analytical models will be highly optimistic,
as shown in Figure 6.5. Accounting for the impact of class-1 traffic on
class-2 is challenging, since only fraction of the flits in Q2 that compete
with class-1 are blocked. In other words, class-2 flits which go to the local
node are not directly blocked by class-1 flits. Hence, there is a need for a
new transformation that can address the split at the low-priority queue.
Proposed Transformation: The high-priority flow (class-1) is not affected
by class-2 traffic since they do not share the same server. Therefore, the
waiting time of class-1 flits can be readily obtained using Equation 2.1 as:

W1 =
R1 + R3
1 − ρ1

(6.4)

Hence, we represent Q1 as a stand-alone queue, as shown in Figure 6.4(c).
However, the opposite is not true; class-1 flits affect both class-2 (indirectly)
and class-3 (directly). Therefore, we represent them using a new queue
with modified service rate statistics. To ensure that Figure 6.4(c) closely
approximates the original system, we characterize the effect on the service

43

rate of class-3 using a novel analytical model.
Proposed Analytical Model: Both the service time and residual time
of class-3 change due to the interaction with class-1. To quantify these
changes, we set λ2 = 0 such that the effect of class-2 is isolated. In this
case, the waiting time of class-3 flits can be found using Equation 2.1 as:

W3
∣∣∣
λ2=0

=
R1 + R3 + ρ1 + ρ1W1

1 − ρ1 − ρ3
(6.5)

We can find W3 also by using the modified service time (T∗3) and residual
time R∗3 of class-3. The probability that a class-3 flit cannot be served due
to class-1 is equal to server utilization ρ1. Moreover, there will be extra
utilization due to the residual effect of class-3 on class-1, i.e., λ1R3 flits in
Q1. Hence, the probability that a class-3 flit is delayed due to class-1 flits
is:

p = ρ1 + λ1R3 (6.6)

Each time class-3 flit is blocked by the class-1 flits, the extra delay will
be T1, i.e., class-1 service time. Since each flit can be blocked multiple
consecutive times, the additional busy period of serving class-3 (∆T3) is
expressed as:

∆T3 = T1p(1 − p) + 2T1p
2(1 − p) + + nT1p

n(1 − p) + · · ·

= T1
p

1 − p

(6.7)

Consequently, the modified service time (T∗3) and utilization (ρ∗3) of class-3
can be expressed as:

T∗3 = T3 + ∆T3

ρ∗3 = λ3T
∗
3 (6.8)

Suppose that the modified residual time of class-3 is denoted by R∗3 .

44

We can plug R∗3 , the modified utilization ρ∗3 from Equation 6.8, and the
additional busy period ∆T3 from Equation 6.7 into Geo/G/1 model to
express the waiting timeW3 as:

W3 =
R∗3

1 − ρ∗3
+ ∆T3 (6.9)

When λ2 is set to zero, this expression should give the class-3 waiting
time W3

∣∣∣
λ2=0

found in Equation 6.5. Hence, we can find the following
expression for R∗3 by combining Equation 6.5 and Equation 6.9:

R∗3 = (1 − ρ∗3)(W3
∣∣∣
λ2=0

− ∆T3) (6.10)

Since the modified service time and residual times are computed, we can
apply the Geo/G/1 queuing model one more time to find the waiting time
of class-2 and class-3 flits as:

W2 =
R∗3 + R2

1 − ρ∗3 − ρ2

W3 =
R∗3 + R2

1 − ρ∗3 − ρ2
+ ∆T3 (6.11)

Figure 6.5 shows that the class-3 waiting time calculated using the pro-
posed analytical modeling technique is very close to simulation results.
The modeling error is within 4% using a deterministic service time of 2
cycles.

6.3 Generalization for Arbitrary Number of
Queues

In this section, we show how the proposed transformations are used to gen-
erate analytical models for priority-based NoCs with arbitrary topologies

45

Figure 6.6: Applying the proposed methodology on a representative seg-
ment of a priority-based network. ST and RT denote Structural and Service
Rate Transformation, respectively. Red-dotted squares show the trans-
formed part from the previous step. Figure (a) shows the original queuing
system. After applying ST on Q1, we obtain the system shown in Figure
(b). The system in Figure (c) is obtained by applying RT on Q2. ST is
applied again on Q2 to obtain the system shown in Figure (d). Finally, RT
is applied on Q3 to obtain the fully decomposed queuing system shown in
Figure (e).

and input traffic. Algorithm 1 describes the model generation technique,
which is a part of the proposed methodology to be used in a virtual plat-
form. This algorithm takes injection rates for all traffic classes, the NoC
topology, and the routing of individual traffic classes. Then, it uses the
transformations described in Section 6.2 and Section 6.2 iteratively to con-
struct analytical performance models for each traffic class.

First, Algorithm 1 extracts all traffic classes originating from a partic-
ular queue, as shown in line 6. Next, the waiting time for each of these
classes is computed separately, as each has a different dependency on
other classes due to priority arbitration. At line 8, all classes that have
higher priority than the current class are obtained. In lines 11–16, the

46

Algorithm 1: End-to-end queuing time calculation for different
traffic classes
1 Input: Injection rates for all traffic classes, NoC topology and

Traffic routing pattern
2 Output: Queuing time for all traffic classes
3 for n = 1: no. of queues do
4 For queuing time expression of the current queue:
5 Initialize: num1 ←0, den1 ←1
6 Get all classes in current queue
7 for i = 1: no. of classes do
8 Get all higher priority classes than current class
9 For reference queuing time (Wref) of current class:

10 Initialize: num2 ←Ri, den2 ←(1- ρi)
11 for j = 1:no. of higher priority classes do
12 Calculate coefficient of variation (CD) for current high

priority class
13 Calculate queuing time expression (Wij) and residual

time expression (Rij) using CD using Eq. 6.1, Eq. 6.2,
and Eq. 6.3

14 num2 ←num2 + Rij + ρij +Wijρij
15 den2 ←den2 − ρij
16 end
17 Wref =

num2
den2

(Eq. 6.5)
18 Modify service rate (T∗i) of ithclass
19 Calculate residual time (R∗i) using T∗i andWref using

Eq. 6.10
20 num1 ←num1 + R∗i
21 den1 ←den1 - ρ∗i
22 end
23 Queuing time of class-i in nth queue = num1

den1
+ ∆Ti

24 end

structural transformation as described in Section 6.2 is applied. For that,
the coefficient of variation of inter-departure time (CD) for each of the
higher priority classes is computed. Through structural transformation,

47

reference waiting time (Wref) for the current class is obtained, as depicted
in line 17 of the algorithm. At line 18, we compute the modified service
time (T∗i) of the current class following the method described in Section 6.2.
Using T∗i andWref, the residual time (R∗i in line 19) is computed. Using
residual time expressions for all classes in a queue, we obtain waiting time
expressions for each class separately, as shown in line 23 of the algorithm.

Figure 6.6 illustrates the proposed approach on a representative exam-
ple of a priority-based network to decompose the system. Figure 6.6(a)
shows the original queuing network. This network consists of three queues:
Q1, Q2, and Q3. Q1 stores flits from class-1 and class-2 flows, while Q2
buffers class-3 and class-4 flits. Flits of class-2 have higher priority than
both class-3 and class-4, as denoted by the first port of the switch that con-
nects these flows. Finally, class-5 flits are stored in Q3. We note that class-5
flits have lower priority than that of class-3, while they are independent of
class-2 and class-4 flits. To solve this queuing system, we first apply the
structural transformation on class-1 and class-2 of Q1 by bypassing class-2
flits to Q1 as shown in Figure 6.6(b). Next, the service rate transformation
on class-3 and class-4 is applied to obtain modified service time (µ∗). This
transformation allows us to form the network by decomposing Q1 and Q2,
as depicted in Figure 6.6(c). After that, structural transformation is ap-
plied on class-3 as flits of class-3 have higher priority than those of class-5.
Finally, service rate transformation is performed on class-5 to achieve a
fully decomposed system, which is shown in Figure 6.6(e).
Automation of Model Generation Technique: We developed a frame-
work to automatically generate the analytical performance model for NoCs
with arbitrary size 2D Mesh and ring topologies. The proposed framework
operates in two steps. In the first step, we extract all architecture-related
information of the NoC. This includes information about the traffic classes
in each queue and priority relations between classes. In the second step,
the automation framework uses this architecture information to generate

48

analytical models.

6.4 Experimental Evaluations

Experimental Setup

We applied the proposed analytical models to a widely used priority-based
industrial NoC design [44]. We implemented the proposed analytical
models in C and observed that on average it takes 0.66µs to calculate
latency value per source-to-destination pair. At each router of the NoC,
there are queues in which tokens wait to be routed. This NoC design
incorporates deterministic service time across all queues. We compared
average latency values in the steady state found in this approach against
an industrial cycle-accurate simulator written in SystemC [85, 84]. We
ran each simulation for 10 million cycles to obtain steady state latency
values, with a warm-up period of 5000 cycles. Average latency values
are obtained by averaging latencies of all flits injected after the warm-up
period. Injection rates are swept from λ1 to λmax. Beyond λmax, server
utilization becomes greater than one, which is not practical. We show the
average latency of flits as a function of the flit injection rate for different
NoC topologies. We also present experimental results considering the
cache coherency protocol with different hit rates, network topologies,
and floorplans. With a decreasing hit rate, traffic towards the memory
controller increases, leading to more congestion in the network.

Full-System Simulations on gem5

Applications are profiled in the full-system simulator gem5 [10] using
Linux ‘perf’ tools [24]. The ‘perf’ tool captures the time taken by each
function call and their children in the gem5 source. It represents the
statistics through a function call graph. From this call graph, we obtain

49

the time taken by the functions related to Garnet2.0, which is the on-chip
interconnect for gem5. Figure 6.7 shows components of Garnet2.0, which
takes up a significant portion of the total simulation time while running
Streamcluster application on gem5. These components are router, network-
link, and functional write. The ‘other components’ shown in Figure 6.7
consists of the functions not related to network simulation. We observe
that the functional write takes 50%, and the whole network takes around
60% of the total simulation time in this case.

Figure 6.7: The fraction of simulation time spent by different functions
while running Streamcluster in gem5. NoC-related functions take 60% of
simulation time.

Simulation Time: To evaluate the decrease in simulation time with the
proposed approach, we first run the Streamcluster application with a 16-
core CPU on gem5 in full system mode using Garnet2.0, a cycle-accurate
network simulator. Then, we repeat the same simulation by replacing the
cycle-accurate simulation with the proposed analytical model. The total
simulation time is reduced from 12,466 seconds to 4986 seconds when we
replace the cycle-accurate NoC simulations with the proposed analytical
models. Hence, we achieve a 2.5× speedup in cycle-accurate full-system
simulation with the proposed NoC performance analysis technique.

50

Validation on Ring Architectures

This section evaluates the proposed analytical models on priority-based
ring architecture that consists of eight nodes. In this experiment, all nodes
inject flits with an equal injection rate. Flits injected from a node go to other
nodes with equal probability. We obtain the latency between each source-
destination pair using the proposed analytical models. The simulation
and analysis results are compared in Figure 6.8. The proposed analysis
technique has only 2% error on average. The accuracy is higher at lower
injection rates and degrades gradually with increasing injection rates, as
expected. However, the error at the highest injection rate is only 5.2%.

1 max

Injection Rate (flits/cycle)

0.2

0.4

0.6

0.8

A
v

e
ra

g
e

 L
a

te
n

c
y

 (
n

o
rm

a
li

z
e

d
)

 Simulation

Analytical (proposed)

Figure 6.8: Evaluation of the proposed model on a ring with eight nodes.

Validation on Mesh Architectures

This section evaluates the proposed analytical model for 6×6 and 8×8
priority-based mesh NoCs with Y-X routing. As described in [44], a mesh
is a combination of horizontal and vertical half rings. The analytical model
generation technique for priority-based NoC architecture is applied to
horizontal and vertical rings individually. Then, these latencies, as well
as the time it takes to switch from one to the other are used to obtain the
latency for each source-destination pair. We first consider uniform random
all-to-all traffic, as in Section 6.4. The comparison with the cycle-accurate

51

simulator shows that the proposed analytical models are on average 97%
and 96% accurate for 6×6 and 8×8 mesh, as shown in Figure 6.9 and
Figure 6.10, respectively. At the highest injection rate, the analytical models
show 11% error for both cases.
Comparison to Prior Techniques: We compare the proposed analytical
models to the existing priority-aware analytical models in literature [110].
Since these techniques do not consider multiple priority traffic classes
in the network, they fail to accurately estimate the end-to-end latency.
For example, Figure 6.9 and Figure 6.10 show that they overestimate NoC
latency at high injection rates for 6×6 and 8×8 mesh networks, respectively.
In contrast, since it captures the interactions between different classes,
the proposed technique is able to estimate latencies accurately. Finally,
we analyze the impact of using each transformation individually. If we
apply only the Structural Transformation (ST), then the latency is severely
underestimated at higher injection rates, since contentions are not captured
accurately. In contrast, applying only Service Rate Transformation (RT)
results in overestimating the latency at higher injection rates as the model
becomes pessimistic.

1 maxInjection Rate (flits/cycle)

0

0.2

0.4

0.6

0.8

1

A
v
e
ra

g
e
 L

a
te

n
c
y

(n
o

rm
a
li
z
e
d

)

Simulation

State-of-the-art

ST only

RT only

Analytical (proposed)

Figure 6.9: Evaluation of the proposed model
on a 6×6 mesh.

Impact of coefficient of variation: One of the important parameters in

52

1 maxInjection Rate (flits/cycle)

0

0.5

1

A
v

e
ra

g
e

 L
a

te
n

c
y

 (
n

o
rm

a
li

z
e

d
)

Simulation

State-of-the-art

ST only

RT only

Analytical (proposed)

Figure 6.10: Evaluation of the proposed model
on an 8×8 mesh.

our analytical model is the coefficient of variation of inter-arrival time.
When the inter-arrival time between the incoming flits follows geometric
distribution, increasing coefficient of variation implies larger inter-arrival
time. Hence, the average flit latency is expected to decrease with an increas-
ing coefficient of variation. Indeed, the simulation and analysis results
demonstrate this behavior for a 6×6 mesh in Figure 6.11. We observe that
the proposed technique accurately estimates the average latency in com-
parison to cycle-accurate simulation. On average, the analytical models
are 97% accurate with respect to latency obtained from the simulation in
this case.
Evaluation with Intel® Xeon® Scalable Server Processor Architecture:

This section evaluates the proposed analytical model with the floorplan
of a variant of the Intel® Xeon® Scalable Server Processor Architecture [26]
architecture. This version of the Xeon server has 26 cores, 26 banks of
the last level cache (LLC), and 2 memory controllers. The cores and LLC
are distributed on a 6×6 mesh NoC. The comparison of simulation and
proposed analytical models with this floorplan is shown in Figure 6.12.
On average, the accuracy is 98% when all cores send flits to all caches
with equal injection rates. Similar to the evaluations on 6×6 mesh and

53

Figure 6.11: Effect of coefficient of variation of inter-arrival time on average
latency for a 6×6 mesh.

1 maxInjection Rate (flits/cycle)

0

0.5

1

A
v

e
ra

g
e

 L
a

te
n

c
y

(n
o

rm
a

li
z
e

d
)

Simulation

State-of-the-art

ST only

RT only

Analytical (proposed)

Figure 6.12: Evaluation of the proposed model on one variant of the Xeon
server architecture.

8×8 mesh, the state-of-the-art NoC performance analysis technique [110]
highly overestimates the average latency for this server architecture, as
shown in Figure 6.12. Applying only ST underestimates the average
latency and applying only RT overestimates the average latency.

The NoC latency is a function of the traffic class, since higher priority
classes experience less contention. To demonstrate the latency for dif-
ferent classes, we present the NoC latencies for 9 representative traffic
classes of the server architecture described above. Figure 6.13 shows the
latency of each class of the server architecture described above normalized

54

Table 6.1: Accuracy for cache-coherency traffic flow
LLC

Hit Rate (%)
Accuracy for

Address Network (%)
Accuracy for

Data Network (%)
100 98.8 93.9
50 97.7 98.1
0 97.7 98.0

with respect to the average latency obtained from the simulation. Higher
priority classes experience lower latency, as expected. The proposed per-
formance analysis technique achieves 91% accuracy on average for the
classes which have the lowest priority in the NoC. For the classes having
medium priority and highest priority, the accuracy is 99% on average.
Therefore, the proposed technique is reliable for all classes with different
levels of priority.

0
1
2
3
4
5

Highest PriorityMedium Priority

 Simulation Analytical (proposed)

N
or

m
al

iz
ed

 L
at

en
cy

Lowest Priority

Figure 6.13: Per-class latency comparison for the server example.

Finally, we evaluate the proposed technique with different LLC hit
rates. Table 6.1 shows that the proposed approach achieves over 97%
accuracy in estimating the average latency of the address network for all
hit rates. Similarly, the latencies in the data network are estimated with
98% or greater accuracy for 0% and 50% hit rates. The accuracy drops to
93.9% for 100% hit rates, since this scenario leads to the highest level of
congestion due to all-to-all traffic behavior.

55

Evaluation with Real Applications

In this section, evaluations of the proposed technique with real applica-
tions are shown. We use gem5 [10] to extract traces of applications in
Full-System (FS) mode. Garnet2.0 [2] is used as the network simulator
in gem5 with the Ruby memory system. Table 6.2 shows the various
configuration settings we used for FS simulation in gem5.

We collect traces of six 16-threaded applications from PARSEC [9]
benchmark suites: Blackscholes, Canneal, Swaptions, Bodytrack, Fluidan-
imate, and Streamcluster. We selected applications that show relatively
higher network utilization as discussed in [114]. The accuracy obtained
for these applications is an important indicator of the practicality of the
proposed technique since real applications do not necessarily comply with
a known inter-arrival time distribution [12], such as the geometric distri-
bution used in this work. The traces are parsed and simulated through
our custom in-house simulator with priority-based router model. For each
application, a window of one million cycles with the highest injection rate
is chosen for simulation. From the traces of these applications, we get the
average injection rate of each source and destination pair. These injection

Table 6.2: Configuration settings in the gem5 simulation

Processor
Number of Cores 16
Frequency of Cores 2 GHz
Instruction Set x86

Interconnect
Network

Topology 4x4 Mesh
Routing Algorithm X-Y deterministic

Memory
System

L1 Cache
16KB of instruction
and data cache
for each core

Memory Size 3 GB
Kernel Type Linux

Version 3.4.112

56

Figure 6.14: Model comparison for different applications from PARSEC
suite.

rates are fed to our analytical models to obtain average latency.
Figure 6.14 shows the comparison of the average latency between the

proposed analytical model and the simulation. The x-axes represent mean
absolute percentage error (MAPE) between the average simulation latency
(Lsim) and average latency obtained from analytical models (Lanalytical).
MAPE is defined by the following equation:

MAPE = 100
(
|Lsim − Lanalytical|

Lsim

)
(6.12)

The y-axes in the plots represent the percentage of source to destination
pairs having the corresponding MAPE. From this figure, we observe that
the latency obtained from the proposed analytical model is always within
10% of the latency reported by the cycle-accurate simulations. In particular,
only 1% source-destination pair has MAPE of 10% for the Canneal appli-

57

window 1

window 2

window 3

window 4

window 5

window 6

window 7

window 8

window 9

window 10
0.0

0.8

0.9

1.0
 Simulation Analytical (proposed)

N
or

m
al

iz
ed

 L
at

en
cy

Figure 6.15: Evaluation of the proposed model under a finer level of time
granularity (100K cycles) for Streamcluster application.

cation. On average, the analytical models have 3% error in comparison to
latency obtained from the simulation for real applications. These results
demonstrate that our technique achieves high accuracy for applications
which may have arbitrary inter-arrival time distributions.

We further divide the window of one million cycles into 10 smaller
windows containing 100,000 cycles each. Average latency comparison
for Streamcluster application in these smaller windows is shown in Fig-
ure 6.15. The largest MAPE between latency obtained from the simulation
and analytical model is observed for window 10, which is 7%. On average,
the proposed analytical models are 98% accurate for these 10 windows.
This confirms the reliability of the proposed analytical models at an even
more granular level for the application. Finally, we note that the experi-
ments with synthetic traffic shown in Section 6.4 and Section 6.4 exercise
higher injection rates than these applications. Hence, the proposed tech-
nique performs well both under real application traces and heavy traffic
scenarios.

Prior work showed that the deviation from Poisson distribution be-
comes larger as the network load approaches saturation [83]. Similar to
this result, we also observe that the Geometric distribution assumption is a

58

good approximation until the NoC operates near saturation point. There-
fore, we obtain high accuracy for real application workloads. Since this
accuracy can degrade with increasing traffic load, we plan to generalize
the proposed models by relaxing the assumption of Geometric distribution
in our future work.

6.5 Conclusion
In this work, we propose an approach to build analytical models for
priority-based NoCs with multi-class flits. As we emphasized, no prior
work has presented analytical models that consider priority arbitration and
multi-class flits in a single queue simultaneously. Such a priority-based
queuing network is decomposed into independent queues using novel
transformations proposed in this work. We evaluate the efficiency of the
proposed approach by computing end-to-end latency of flits in a realistic
industrial platform and using real application benchmarks. Our extensive
evaluations show that the proposed technique achieves a high accuracy of
97% accuracy compared to cycle-accurate simulations for different network
sizes and traffic flows.

59

7 appendix b: performance analysis of nocs
with bursty traffic

7.1 Related Work
NoC analytical performance analysis techniques primarily target fast de-
sign space exploration and accelerating full-system simulations. Most of
the existing techniques consider NoC routers with fair arbitration [86, 96],
but this assumption does not hold for NoCs that employ priority arbitra-
tion [44, 106].

Several performance analysis techniques target priority-aware NoCs [52,
73]. The technique presented in [52] assumes that each class of traffic
in the NoC occupies different queues. This assumption is not practical
since most of the industrial NoCs share queues between multiple traffic
classes. Analytical model for industrial NoCs, which estimates average
end-to-end latency is proposed in [73]. However, these models assume
that the input traffic follows geometric distribution, which is not applicable
for workloads with bursty traffic.

Analytical modeling of priority-based queuing networks has also been
studied outside of the realm of the on-chip interconnect [13, 110]. An-
alytical models constructed in [13] considers a queuing network in the
continuous-time domain. This assumption is not valid for NoCs, as events
happen in discrete clock cycles. In [110], performance analysis models
are constructed in the discrete-time domain. Since the number of random
variables required in this technique is equal to the number of classes (ex-
ponential on the number of routers) present in the NoC, this approach
does not scale. In contrast, the analytical models presented in this paper
use the discrete-time domain and scale to thousands of traffic classes.

60

7.2 Proposed Approach to Handle Bursty
Traffic

In industrial NoCs, flits already in the network have higher priority than
new injections to achieve predictable latency [44]. This leads to nontrivial
timing dependencies between the multi-class flits in the network. Hence,
we propose a systematic approach for accurate and scalable performance
analysis. We note that the proposed technique can be extended to NoCs
with fair arbitration if we assume that all classes have the same priority.
However, we do not focus on non-priority NoCs since this domain has
been studied in the past [86].

Maximum entropy for queuing networks

We apply the principle of ME to queuing systems to find the probability
distribution of desired metrics (e.g., queue occupancy) [55]. According to
this principle, the selected distribution should be the least biased among all
feasible distributions satisfying the prior information in the form of mean
values. The optimal distribution is found by maximizing the correspond-
ing entropy function: we formulate a nonlinear programming problem and
solve it analytically via the Lagrange method of undetermined multipliers
as discussed next.

Decomposition of basic priority queuing
In a non-preemptive priority queuing system, the router does not preempt
a higher priority flit while processing a lower priority flit. An example
system with two queues and a shared server is shown in Figure 7.1(a).
There are two flows arriving at a priority-based arbiter and a shared server.
The shaded circle corresponds to high priority input (class 1) to the arbiter.
We denote this structure as basic priority queuing. Our goal is to decompose

61

this system into individual queue-nodes with modified servers, as shown
in Figure 7.1(b). The combination of a queue and its corresponding server
is referred to as a queue-node. The effective expected service time of class
2 flits, T̂2, is larger than the original mean service time T2, since class 2
flits wait for the higher priority (class 1) flits in the original system. We
calculate the effective service time in the transformed network using Little’s
Law as:

T̂m =
1 − pm(0)

λm
(7.1)

where pm(0) is the marginal probability of having no flits of classm in the
queue-node, as listed in Table 7.1.
Computing pm(0) using ME: We find pm(0) using the ME principle by
maximizing the entropy function H(p(n)) given in (7.2) subject to the

Table 7.1: Summary of the notations used in this paper
λ, λm Mean arrival rate of total traffic and class m
pb Probability of burstiness
Tm, T̂m Original and modified mean service time of class m flits
R,Rmk Total residual time and residual time of class m while class k is served
ρm Mean server utilization of class m flits (=λmTm)
Ca, Cam Coeff. of variation of interarrival time of total traffic and class m flits
Csm , Ĉsm Coeff. of variation of original and modified service time of class m flits
Cd, Cdm Coeff. of variation of interdeparture time of total traffic and class m flits
Wm Mean waiting time of class m flits
nm,nm Mean and current occupancy of class m flits in a queue-node
βm Mean number of bursty arrivals of class m
nmk Mean queue-node occupancy of classm with serving class k
n State vector, n = (n1,n2, ...,nM) of priority queue-nodes
p(n) Probability that a queue-node is in state n
pm(0) Marginal probability of zero flits of class m in a queue-node.
αm(n) αm(n) = 1 if classm in service and 0 otherwise
M Number of classes that share same server

62

constraints listed in (7.3):

maximize
p

H(p(n)) = −
∑

n
p(n) log(p(n)) (7.2)

subject to
∞∑

n=0

p(n) = 1,
∞∑

n=0except
nm=1

αm(n)p(n) = ρm, m = 1, . . . ,M (7.3)

∞∑
n=0except

nm=nk=1

nmαk(n)p(n) = n̄mk,m,k = 1, ..,M

The notation ∞ means a state vector n with all elements set to ∞, and
(n = 0 except nm = 1) refers to a vector n with the mth element set to
1 and other elements set to 0. The constraints in (7.3) comprise three
types: normalization, mean server utilization and mean occupancy. We
introduced an extended set of mean occupancy constraints compared
to [55] to provide further information about the underlying system. When
a flit of a certain class arrives at the system, it may find the server busy
with its own class or other classes since the server is a shared resource,
as shown in Figure 7.1(a). Therefore, the mean occupancy of each class
can be partitioned according to the contribution of each class occupying
the server. We exploit this inherent partitioning to generateM additional
occupancy constraints. The occupancy related constraints depend on three
components, βm, Rmk andWm (defined in Table 7.1) derived in [55, 73].

We solve the nonlinear programming problem in (7.2, 7.3) to find p(n)
which we use to determine the probability of having zero flits of classm,
pm(0). The convergence of this solution is guaranteed when the queuing
system is in a stable region. We derived the general expression for M

63

1

2

S

Ŝ1

Ŝ2

(𝑇 2, 𝐶 𝑠2)

(𝑇 1, 𝐶 𝑠1)

(𝑇1 , 𝐶𝑠1)
(𝑇2 , 𝐶𝑠2)

(a) (b)

𝑞2

𝑞1
(𝜆1 , 𝐶𝑎1)

(𝜆2 , 𝐶𝑎2)

(𝜆1 , 𝐶𝑎1)

(𝜆2 , 𝐶𝑎2)

𝑞1

𝑞2

Figure 7.1: Decomposition of a basic priority queuing

queues in a priority structure with a single class per queue as:

pm(0) = 1 − ρm −

M∑
k=1,k6=m

ρk
nmk

ρk + nmk
(7.4)

Plugging the expression of pm(0) from (7.4) into (7.1), we obtain the first
moment of the service process.
Computing second moment of the service time: Since we also need the
second moment to characterize the GGeo traffic, we calculate the modified
squared coefficient of variation of the service time for classm (Ĉ2

sm
). We

utilize the queuing occupancy formulation of GGeo/G/1 [55] and the
modified server utilization ρ̂m = λmT̂m to obtain the following expression
for Ĉ2

sm
:

Ĉ2
sm

=
(1 − ρ̂m)(2nm − ρ̂m) − ρ̂mC

2
am

ρ̂2
m

(7.5)

Decomposition of priority queuing with partial
contention

Priority-aware NoCs involve complex queuing structures that cannot be
modeled accurately using only the models for basic priority queuing.
The complexity is primarily attributed to the partial priority contention

64

across queues. We identified two basic structures with partial priority
dependency that constitute the building blocks of practical priority-aware
NoCs.

The first basic structure is shown in Figure 7.2(a) where high priority
class 1 is in contention with a portion of the traffic in q2 (class 2) through
server SA. Class 2 and 3 flits have the same priority and share q2 before
entering the traffic splitter that assigns class 2 and 3 flits to server SA and
SB respectively, following a notation similar to the one adopted in [34]. We
denote this structure as contention at low priority. To decompose q1 and q2,
we need to calculate the first two moments of the modified service process
of class 1 and 2. The decomposed structure is shown in Figure 7.2(b). First,
we set λ3 to zero which leads to a basic priority structure. Then, we apply
the decomposition method discussed in Section 7.2 to obtain (T̂1, Ĉs1) and
(T̂2, Ĉs2). We derived mean queuing time (Wm) of individual classes of
q2 in the decomposed form as:

Wm =
R+

∑M
k=1 ρ̂kT̂kβk

1 −
∑M
k=1 ρ̂k

+ T̂m(βm + 1) − Tm (7.6)

where R =
∑M
k=1

1
2 ρ̂k(T̂k − 1 + T̂kĈ

2
sk
) and βm = 1

2(C
2
Am

+ λm − 1).
The other basic structure, contention at high priority, is shown in Fig-

ure 7.3(a). In this scenario, only a fraction of the classes in q1 (class 2) has
higher priority than class 3 since class 1 in q1 is served by SA. Determining
T̂3 is challenging due to class 1 that influences the inter-departure time
of class 2. To incorporate this effect, we calculate the squared coefficient
of variation of inter-departure time, C2

d2 , of class 2 using the split process
formulation of GGeo streams given in [55]. We introduce a virtual queue,
qv and feed it with the flits of class 2. Therefore, qv and q2 form a basic
priority structure, as shown in Figure 7.3(b). Subsequently, we apply the
decomposition method described in Section 7.2 to calculate (T̂3, Ĉs3) as
well as (T̂2, Ĉs2). The decomposed structure is shown in Figure 7.3(c).

65

1

2

SA

ŜA

Ŝc

(𝑇 2, 𝐶 𝑠2)

(𝑇 1, 𝐶 𝑠1)

(𝑇1 , 𝐶𝑠1)

(𝑇2 , 𝐶𝑠2)

(a) (b)

𝑞2

𝑞1
(𝜆1 , 𝐶𝑎1)

(𝜆2 , 𝐶𝑎2)

(𝜆1 , 𝐶𝑎1)

(𝜆2 , 𝐶𝑎2)

𝑞1

𝑞2
SB

(𝑇3 , 𝐶𝑠3)
(𝜆3 , 𝐶𝑎3) 𝜆3 (𝜆3 , 𝐶𝑎3)

𝜆2

(𝑇3 , 𝐶𝑠3)

Figure 7.2: Decomposition of flow contention at low priority

1

2

SA

(𝑇1 , 𝐶𝑠1)

(𝑇2 , 𝐶𝑠2)

(a) (b)

𝑞2

𝑞1
(𝜆1 , 𝐶𝑎1)

(𝜆2 , 𝐶𝑎2)

(𝜆1 , 𝐶𝑎1)

(𝜆2 , 𝐶𝑎2)

𝑞1

𝑞2

SB

(𝑇3 , 𝐶𝑠3)
(𝜆3 , 𝐶𝑎3)

𝜆1

(𝜆3 , 𝐶𝑎3)

𝜆2

𝒒𝒗

SA

SB
(𝑇1 , 𝐶𝑠1)

(𝑇2 , 𝐶𝑠2)

2

1

SB

(𝑇2 , 𝐶𝑠2)

(𝑇3 , 𝐶𝑠3)

(𝜆2 , 𝐶𝑑2)

𝜆1

𝜆2

ŜB

Ŝc

(𝑇 2, 𝐶 𝑠2)

(𝑇 3, 𝐶 𝑠3)

(c)

𝑞1

𝑞2

(𝜆3 , 𝐶𝑎3)

(𝜆1 , 𝐶𝑎1)

(𝜆2 , 𝐶𝑎2)
(𝑇1 , 𝐶𝑠1)

Figure 7.3: Decomposition of flow contention at high priority

Iterative decomposition algorithm

Algorithm 2 shows a step-by-step procedure to obtain the analytical model
using our approach described in Section 7.2. The inputs to the algorithm
are NoC topology, routing algorithm and server process. The analytical
models presented for the canonical queuing system are independent of

66

the NoC topology. Therefore, the analytical models are valid for any NoC,
including irregular topologies. First, we identify priority dependencies
between different classes in the network. Next, we apply decomposition for
contention at high and low priority, as shown in line 7 – 8 of Algorithm 2.
Subsequently, we calculate the modified service process (T̂ , Ĉ2

s) using (7.1,
7.4) and (7.5). Then, we compute the waiting time per class following (7.6).
Finally, we obtain the average waiting time in each queue (Wq), as shown
in line 12.

7.3 Experimental Results with Bursty Traffic
The proposed technique is implemented in C++ to facilitate integration
with system-level simulators. Analysis takes 2.7 ms for a 6×6 NoC and
the worst-case complexity isO(n3), where n is the number of nodes. In all
experiments, 200K cycles of warm-up period is considered. The accuracy of

Algorithm 2: Iterative Decomposition Algorithm
1 Input: NoC topology, routing algorithm, server process, (λ) and

(pb) for each class as parameters
2 Output: Average waiting time for each queue (Wq)
3 N = number of queues in the network
4 Sq = set of classes in queue q
5 for q = 1:N do
6 for m = 1:|Sq| do
7 Apply decomp. for contention at high priority (if found)
8 Apply decomp. for contention at low priority (if found)
9 Compute T̂ , Ĉ2

s using (7.1, 7.4) and (7.5)
10 Compute queuing time (Wq,m) using (7.6)
11 end

12 Wq =
∑|Sq|

i=1 λq,mWq,m∑|Sq|

i=1 λq,m

13 end

67

Table 7.2: Comparisons against existing alternatives (Reference [52] and
Reference [73]). H denotes errors over 100%.

Topology 6×1 Ring 8×1 Ring 4×4 Mesh 6×6 Mesh
pb 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6
λ 0.1 0.4 0.6 0.1 0.4 0.6 0.1 0.4 0.6 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8 0.1 0.4 0.6 0.1 0.4 0.6 0.1 0.3 0.6

Er
r(

%
) Prop. 0.2 5.6 12 0.8 0.6 12 0.2 4.3 14 0.5 3.7 7.3 0.9 5.1 12 0.5 3.1 12 2.3 5.0 11 2.9 7.5 13 2.0 9.1 12 4.7 0.6 11 4.3 8.2 10 6.1 7.9 12

Ref[52] 17 H H 30 H H 54 H H 66 H H H H H H H H 30 H H 10 H H 12 H H 28 H H 54 H H 78 H H
Ref[73] 8.5 12 18 20 30 55 36 47 79 7.5 8.8 11 18 24 39 33 42 85 10 21 40 21 38 82 37 56 88 7.2 13 45 14 34 64 28 48 76

the models is evaluated against an industrial cycle-accurate simulator [84]
under both real applications and synthetic traffic that models uniformly
distributed core to last-level cache traffic with 100% hit rate.

Evaluation on Architectures with Ring NoCs

This section analyzes the accuracy of the proposed analytical models
using uniform traffic on a priority-based 6×1 and 8×1 ring NoCs, similar
to those used in high-end client CPUs with integrated GPU and memory
controller. Table 7.2 shows that the average errors between our technique
and simulation are 6%, 4% and 6% for burst probability of 0.2, 0.4 and 0.6,
respectively. These errors hardly reach 14% even at the highest injection,
which is hard to model. Table 7.2 also shows that priority-based analytical
models which do not consider burstiness [73] significantly underestimate
the latency by 33% on average (highlighted with the shaded row). In
contrast, the work without the proposed decomposition technique [52]
leads to over 100% overestimation even at low traffic loads (highlighted
with text in italics). In this case, GGeo models can not handle partial
contention, since it assumes all packets in the high-priority queue have
higher priority than each packet in the low priority queue. These results
demonstrate that the proposed priority-aware NoC performance models
have significantly higher accuracy than the existing alternatives.

68

Figure 7.4: Comparison of a proposed analytical model with cycle-accurate
simulation for 8×8 and 6×6 mesh for (a) pb = 0.2 and (b) pb = 0.6.

Evaluation on Architectures with Mesh NoCs
Table 7.2 compares the analytical model and simulation results for a
priority-based 4×4 and 6×6 mesh NoC, similar to those used in high-
end servers [44]. Our technique incurs on average 6%, 7% and 10% error
for burst probability of 0.2, 0.4 and 0.6, respectively. Priority-based ana-
lytical models which neglect burstiness [73] underestimate the latency
by 60% on average similar to the results on the ring architectures. Like-
wise, GGeo models without the proposed decomposition technique lead
to overestimation. We also provide detailed comparison of proposed an-

69

Table 7.3: Modeling Error (%) with Real Applications
xalan-
cbmk mcf gcc bwaves Gems

FDTD
omnet-
pp

perl-
bench

SYSmark
14se

Prop 2.17 4.97 0.92 0.15 0.38 5.10 3.63 0.73
Ref [52] 14.62 11.99 7.69 12.29 5.18 13.64 11.46 7.256×6

Mesh Ref [73] 17.36 23.29 7.71 22.02 6.99 14.11 12.95 11.13
Prop 3.59 4.08 3.81 4.87 0.44 7.48 3.67 1.10

Ref [52] 10.33 12.73 12.07 22.90 19.17 9.93 5.99 19.048×8
Mesh Ref [73] 12.15 29.99 10.00 19.65 5.44 10.78 14.74 7.94

alytical models on 6×6 and 8×8 NoC for burst probability of 0.2 and 0.6
in Figure 7.4(a) and Figure 7.4(b), respectively. The proposed models
significantly outperform the other alternatives and lead to less than 10%
error on average.

Evaluation with Real Applications
This section validates the proposed analytical models using SYSmark®

2014 SE [5], and applications from SPEC CPU® 2006 [38] and SPEC CPU®

2017 [16] benchmark suites. These applications are chosen since they
show different levels of burstiness. First, we run these applications on
gem5 [10] and collect traces with timestamps for each packet injection.
Then, we use the traces to compute the injection rate (λ) and pb.
Computing pb: For each source, we feed traffic arrivals with timestamps
over a 200K clock cycle window into a virtual queue with the same service
rate as the NoC to determine the queue occupancy. At the end of the
window, we compute the average occupancy. Then, we employ the model
described in [55] to find the occupancy and then pb of each class.

The proposed analytical models are used to estimate the latency using
the injection rate and burst parameters, as well as the NoC architecture
and routing algorithm. The applications show burstiness in the range of
0.2 – 0.5. As shown in Table 7.3, the proposed technique has on average
2% and 4% error compared to cycle-accurate simulations for 6×6 mesh
and 8×8 mesh, respectively. In contrast, the analytical models presented
in [52] and [73] incur significant modeling error.

70

7.4 Conclusion
We presented analytical models for priority-aware NoCs under bursty
traffic. We model bursty traffic as generalized geometric distribution and
applied the maximum entropy method to construct analytical models.
Experimental evaluations show that the proposed technique has less 10%
modeling error with respect to cycle-accurate NoC simulation for real
applications.

71

8 appendix c: performance analysis of nocs
with deflection routing

8.1 Related Work
Deflection routing was first introduced in the domain of optical NoC as
hot-potato routing [14]. Later, it was adapted for the NoCs used in high-
performance SoCs to minimize buffer requirements and increase energy
efficiency [80, 28, 29]. This routing mechanism always assigns the packets
to a free output port of a router, even if the assignment does not result in
minimum latency. This way, the buffer size requirement in the routers is
minimized. Authors in [69] perform a thorough study on the effectiveness
of deflection routing for different NoC topology and routing algorithm.
Deflection routing is also used in industrial priority-aware NoC [44]. Since
arbitrary deflections can cause livelocks and unpredictable latency, indus-
trial priority-aware NoCs deflect the packets only at the destination nodes
when the ingress buffer is full. Furthermore, the deflected packets always
remain within the same row or column, and they are guaranteed to be
sunk after a fixed number of deflections.

NoC performance analysis techniques have been used for design space
exploration and architectural studies such as buffer sizing [83, 115, 92].
However, most of these techniques do not consider NoCs with priority
arbitration and deflection routing, which are the key features of industrial
NoCs [44]. Performance analysis of priority-aware queuing networks
has also been studied for off-chip networks [8, 13, 110]. These analytical
models consider the queuing networks in continuous time. However, each
transaction in NoC happens at each clock cycle. Therefore, the underlying
queuing system needs to be considered in the discrete time domain. A
performance analysis technique for a priority-aware queuing network
in discrete time domain is presented in [110]. However, this technique

72

suffers from high complexity for a complex queuing network, hence not
applicable to industrial priority-aware NoCs.

A recent technique targets priority-aware NoCs [52], but it considers
only a single class of packets in each queue of the network. In contrast,
industrial priority-aware NoCs have multiple classes of packets that can
exist in the same queue. NoCs with multiple priority traffic classes has
recently been analyzed in [73]. However, this analysis assumes that the
input traffic follows a geometric distribution. This technique has limited
applications since industrial NoCs can experience bursty traffic. Further-
more, it does not consider deflection routing. Since deflection routing
increases traffic congestion, it is crucial to incorporate this aspect while
constructing performance models. An analytical bound on maximum
delay in networks with deflection routing is presented in [15]. However,
evaluating maximum delay is not useful since it leads to significant over-
estimation. Another analytical model for NoCs with deflection routing
is proposed in [32]. The authors first compute the blocking probability
at each port of a router using an M/G/1 queuing model. Then, they com-
pute the contention matrix at each router port. The average waiting time
of packets at each port is computed using the contention matrix. How-
ever, this analysis ignores different priority classes and applies to only
continuous-time queuing systems.

In contrast to prior work, we propose a performance analysis tech-
nique that considers both priority-aware NoCs with deflection routing
under bursty and high traffic load. The proposed technique applies the
superposition principle to obtain the statistical distribution of the deflected
packets. Using this distribution, it computes the average waiting time for
each queue. To the best of our knowledge, this is the first analytical model
for priority-aware industrial NoCs with deflection routing under high
traffic load.

73

8.2 Proposed Superposition-based Approach
This section presents the proposed performance analysis technique for
estimating the end-to-end latency for priority-aware NoCs with deflection
routing. We first construct a model for a canonical system with a single
traffic class, where the deflected traffic distribution is approximated using
a GGeo distribution (Section 8.2). Subsequently, we introduce a scalable
approach for a network with multiple traffic classes. In this approach, we
first develop a solution for the canonical system. Then, employ the princi-
ple of superposition to extend the analytical model to larger and realistic
NoCs with multiple traffic classes (Section 8.2). Finally, we propose an al-
gorithm that uses our analytical models to compute the average end-to-end
latency for a priority-aware NoC with deflection routing (Section 17).

An Illustration with a Single Traffic Class

Figure 8.1(a) shows an example of a single class input traffic and egress
queue that inject traffic to a network with deflection routing. The input
packets are buffered in the egress queue Qi (analogous to the packets
stored in the egress queue of Node 2 in Figure 2.7). We denote the traffic
of Qi as class-i, which is modeled using GGeo distribution with two
parameters (λi,CAi). The packets inQi are dispatched to a priority arbiter

Sink
destination

Deflected
traffic

1

Ring buffers (𝑸𝒅)

Sink signal
(𝒑𝒅𝒊)

𝝀𝒊 , 𝑪𝒊𝑨

𝝀𝒅𝒊

2

(a)

S

Egress queue
(𝑸𝒊)

Priority
arbiter

1

2

Port with a
lower index has
a higher priority

𝑸𝒊

𝑸𝒅
		𝑺#𝒅𝒊𝝀𝒅𝒊 , 𝑪𝒅

𝑨
𝒊	

𝝀𝒊 , 𝑪𝒊𝑨
		𝑺#𝒊
(𝑻(𝒊 , 𝑪(𝒊𝑺)

𝑪𝒅𝒊
𝑫

𝑪𝒊𝑫
𝑪𝒊𝑴

(𝑻(𝒅𝒊 , 𝑪(𝒅
𝑺
𝒊)

𝟏− 𝒑𝒅𝒊
(To sink)

(b)

𝒑𝒅𝒊
(To 𝑸𝒅)

Figure 8.1: (a) Queuing system of a single class with deflection routing
(b) Approximate queuing system to compute CAdi .

74

Table 8.1: Summary of the notations used in this paper.
λi Arrival rate of class-i
pdj Deflection probability at sink-j
Ti, T̂i Original and modified mean service time of class-i
ρi Mean server utilization of class-i (=λiTi)
CAi

Coefficient of variation
of inter-arrival time of class-i

CSi , ĈSi
Coefficient of variation of original
and modified service time of class-i

CDi
Coefficient of variation
of inter-departure time of class-i

CMi
Coefficient of variation of inter-departure time
of merged traffic of class-i

Wi Mean waiting time of class-i

and assigned a low priority, marked with 2 . In contrast, the packets
already in the network have a high priority, which are routed to the port
marked with 1 . The packet traverses a certain number of hops (similar
to the latency from the source router to the junction router in Figure 2.7)
and reaches the destination. Since the number of hops is constant for a
particular traffic class, we omit these details in Figure 8.1(a) for simplicity.
If the ingress queue at the destination is full (with probability pdi), the
packet is deflected back into the network. Otherwise, it is consumed at the
destination (with probability 1 − pdi). Deflected packets travel through
the NoC (within the column or row as illustrated in Figure 2.7) and pass
through the source router, but this time with higher priority. The profile
of the deflected packets in the network is modeled by a buffer (Qd) in
Figure 8.1(a), since they remain in order and have a fixed latency from
the destination to the original source. This process continues until the
destination can consume the deflected packets.

Our goal is to compute the average waiting timeWi in the source queue,
i.e., components 1 and 3 of the end-to-end latency described in Section 2.3.

75

To obtain Wi, we first need to derive the analytical expression for the
rate of deflected packets of class-i (λdi) and the coefficient of variation of
inter-arrival time of the deflected packets (CAdi) as follows.
Rate of deflected packets (λdi): λdi is obtained by calculating the average
number of times a packet is deflected (Ndi) until it is consumed at the
destination as:

Ndi = pdi(1 − pdi) + 2p2
di
(1 − pdi) + . . . + npndi(1 − pdi) + . . .

=

∞∑
n=1

npndi(1 − pdi) =
pdi

1 − pdi
(8.1)

Therefore, λdi can be expressed as:

λdi = λiNdi = λi
pdi

1 − pdi
(8.2)

Coefficient of variation of inter-arrival time of deflected packets (CAdi):
To compute CAdi , the priority related interaction between the deflected
traffic ofQd and new injections inQi must be captured. This computation
is more involved due to the priority arbitration between the packets in Qd
andQi that involve a circular dependency. We tackle this problem by trans-
forming the system in Figure 8.1(a) into an approximate representation
shown in Figure 8.1(b) to simplify the computations. The idea here is to
transform the priority queuing with a shared resource into separate queue
nodes (queue + server) with a modified server process. This transforma-
tion enables the decomposition of Qd and Qi and their shared server into
individual queue nodes with servers Ŝd and Ŝi respectively. The departure
traffic from these two nodes merge at the destination, consumed with a
probability 1 − pdi and deflected otherwise.

The input traffic to the egress queue, as well as the deflected traffic,
may exhibit bursty behavior. Indeed, the deflected traffic distribution can
be bursty because of the server-process effect and the priority interactions

76

between the input traffic and the deflected traffic, even when the input
traffic is not bursty. Therefore, we approximate the distribution of the
deflected traffic via GGeo distribution. To compute the parameters of the
GGeo traffic, we need to apply the principle of maximum entropy (ME)
as shown in [55]. To obtain the modified service process of class-i, we
first calculate the probability of no packets in Qi and in its corresponding
server (i.e., pQi(0)) using ME as,

pQi(0) = 1 − ρi − ρdi
ni

ni + ρi + ρdi
(8.3)

where ρi and ρdi denote the utilization of the respective servers, and ni is
the occupancy of class-i in Qi. Next, we apply Little’s law to compute the
first order moment of modified service time (T̂i) as:

T̂i =
1 − pQi(0)

λi
(8.4)

Subsequently, we obtain the effective coefficient of variation ĈSi as:

(ĈSi)
2 =

(1 − ρ̂i)(2ni + ρ̂i) − ρ̂i(CAi)2

ρ̂2
i

(8.5)

where ρ̂i = λiT̂i. We follow similar steps (Equation 8.3 – Equation 8.5)
for the deflected traffic to obtain T̂di and ĈSdi . With the modified service
process, the coefficients of variation of inter-departure time of the pack-
ets in Qd (CDdi) and Qi (CDi) are computed using the process merging
method [93]. Then, we find the coefficient of variation (CMi) of the merged
traffic from queues Qd and Qi as:

(CMi)2 =
1

λdi + λi
(λdi(C

D
di
)2 + λi(C

D
i)

2) (8.6)

We note that CMi is a function of the coefficient of variation of the inter-
arrival time of deflected traffic CAdi . Since part of this merged traffic is

77

(a) (b)

𝑸𝒅
1

𝝀𝒅, 𝑪𝒅𝑨 	

S
𝟏− 𝒑𝒅

𝒑𝒅

𝑸𝑵

𝝀𝑵 , 𝑪𝑵𝑨

𝑸𝟏

𝝀𝟏 , 𝑪𝟏𝑨
2

(𝑻𝒅, 𝑪𝒅𝑺)
…

(𝑻𝑵 , 𝑪𝑵𝑺)

𝑸𝟐

𝝀𝟐 , 𝑪𝟐𝑨
3

N+1

(c)

𝝀𝒅 =#𝝀𝒅𝒊

𝑵

𝒊$𝟏

,	

𝑪𝒅𝑨 ≈𝓜	(𝑪𝒅𝟏
𝑨 ,… , 𝑪𝒅𝑵

𝑨)

1
𝑸𝒅

𝝀𝒅, 𝑪𝒅𝑨 𝑸𝟏

𝝀𝟏 , 𝑪𝟏𝑨 S𝑸𝟐

𝝀𝟐 , 𝑪𝟐𝑨

𝑸𝑵

𝝀𝑵 , 𝑪𝑵𝑨

2

3

N+1

𝟏 − 𝒑𝒅

𝑪𝟏𝑴

Subsystem-1

𝟏 − 𝒑𝒅
𝑸𝟏

𝑸𝒅
		𝑺#𝒅𝟏

𝝀𝒅𝟏 , 𝑪𝒅𝟏
𝑨

𝝀𝟏 , 𝑪𝟏𝑨

𝑪𝒅𝟏
𝑫

𝑪𝟏𝑫

(𝑻-𝟏 , 𝑪-𝟏𝑺)

(𝑻-𝒅𝟏 , 𝑪-𝒅𝟏
𝑺)

		𝑺#𝟏

𝑪𝑵𝑴 𝟏 − 𝒑𝒅
𝑸𝑵

𝑸𝒅
		𝑺#𝒅𝑵

𝝀𝒅𝑵 , 𝑪𝒅𝑵
𝑨

𝝀𝑵 , 𝑪𝑵𝑨
		𝑺#𝑵

𝑪𝒅𝑵
𝑫

𝑪𝑵𝑫

(𝑻-𝑵 , 𝑪-𝑵𝑺)

(𝑻-𝒅𝑵 , 𝑪-𝒅𝑵
𝑺)

Subsystem-N

𝒑𝒅

𝒑𝒅

(𝑻𝒅, 𝑪𝒅𝑺)
…

(𝑻𝑵 , 𝑪𝑵𝑺)

Figure 8.2: (a) Queuing system with N classes with deflection routing,
(b) Decomposition into N subsystems to calculate GGeo parameters of
deflected traffic per class, (c) Applying superposition to obtain the GGeo
parameters of overall deflected traffic. M denotes the merging process.

consumed at the sink, we apply the traffic splitting method from [93] to
approximate CAdi as:

(CAdi)
2 = 1 + pdi((C

M
i)2 − 1) (8.7)

Finally, we extend the priority-aware formulations in continuous time
domain [13] to discrete time domain to obtain the average waiting time of
the packets in Qdi and Qi:

Wdi =
ρdi(Tdi − 1) + ρi(Ti − 1) + Tdi((CAdi)2 + λdi − 1)

2(1 − ρdi)
(8.8)

Wi =
ρdi(Tdi + 1) + 2ρdiWdi + ρi(Ti − 1) + Ti((CAi)2 + λi − 1)

2(1 − ρi − ρdi)
(8.9)

78

Queuing System with Multiple Traffic Classes

The analytical model for the system with a single class presented in Sec-
tion 8.2 becomes intractable with a higher number of traffic classes. This
section introduces a scalable approach based on the superposition princi-
ple that builds upon our canonical system used in Section 8.2.

Figure 8.2(a) shows an example with priority arbitration andN egress
queues, one for each traffic class. We note that this queuing system is a
simplified representation of a real system. The packets routed to port i have
higher priority than those routed to port j for i < j. The deflected traffic
in the network is buffered in Qd, which has the highest priority in the
queuing system. The primary goal is to model the queuing time of the
packets of each traffic class. Modeling the coefficient of variations of the
deflected traffic becomes harder since deflected packets interact with all
traffic classes rather than a single class. These interactions complicate the
analytical expressions significantly.

Priority arbitration enables us to sort the queues in the order at which
the packets are served. The queue of the deflected packets has the highest
priority, while the rest are ordered with respect to their indices. Due to this
inherent order between the priority classes, their impact on the deflected
traffic distribution can be approximated as being independent of each
other. This property enables us to decompose the queuing system into
multiple subsystems and model each subsystem separately, as illustrated
in Figure 8.2(b). Then, we apply the principle of superposition to obtain
the parameters of the GGeo distribution of the deflected traffic. Note
that each of these subsystems is identical to the canonical system analyzed in
Section 8.2. Hence, we first compute λdi and CAdi of each subsystem-i
following the procedure described in Section 8.2. Subsequently, we apply
the superposition principle to λdi and CAdi for i = 1 . . .N to obtain the
GGeo distribution parameters of the deflected traffic (λd,CAd).

In general, we obtain the GGeo distribution parameters of the deflected

79

traffic corresponding to class-i by setting all traffic classes to zero expect
class-i, (λj = 0, j = 1 . . .N, j 6= i). The values of λdi and CAdi can be
expressed as:

λdi = λd

∣∣∣
λj=0,j6=i;λi>0

and CAdi = C
A
d

∣∣∣
λj=0,j6=i;λi>0

(8.10)

Subsequently, we apply the principle of superposition to obtain the distri-
bution parameters of Qd as shown in Figure 8.2(c). First, we compute λd
by adding all λdi as:

λd =

N∑
i=1
λdi (8.11)

The value of CAd is approximated by applying the superposition-based
traffic merging process [93] for each CAdi , as shown below:

(CAd)
2 =

N∑
i=1

λdi
λd

(CAdi)
2 (8.12)

Next, we use these distribution parameters (λd,CAd) of the deflected
packets to calculate the waiting time of the traffic classes in the system.
The formulation of the priority-aware queuing system is applied to obtain
the waiting time of each traffic class-i (Wi) [8]:

Wi =
ρd(Td + 1) + 2ρiWd

2(1 − ρd −
∑i
n=1 ρn)

+

∑i−1
n=1(ρn(Tn + 1) + 2ρiWn)

2(1 − ρd −
∑i
n=1 ρn)

+

ρi(Ti − 1) + Ti((CAi)2 + λi − 1)
2(1 − ρd −

∑i
n=1 ρn)

(8.13)

The first term in Equation 8.13 denotes the effect of deflected traffic on
class-i; the second term denotes the effect of higher priority classes (class-j,
j < i) on class-i; and the last term denotes the effect of class-i itself. For

80

more complex scenarios that include traffic splits, we apply an iterative
decomposition algorithm [72] to obtain the queuing time of different
classes.

Figure 8.3 shows the average latency comparison between the proposed
analytical model and simulation for the system in Figure 8.2. In this setup,
we assume the number of classes is 5 (N = 5), pd = 0.3, and input traffic
distribution is geometric. The results show that the analytical model
performs well against the simulation, with only 4% error on average. In
contrast, the analytical model from [52] highly overestimates the latency
as it does not consider multiple traffic classes. The performance model of
the priority-aware NoC in [73] accounts for multiple traffic classes, but it
does not model deflection. Hence, it severely underestimates the average
latency.

0.04 0.08 0.12 0.16
0

8

16

24

32

40

 Simulation Analytical (Proposed)
 Analytical (w/o Decomposition and w/o Deflection) [9]

 Analytical (w/o Deflection Routing) [13]

A
ve

ra
ge

 L
at

en
cy

(c

yc
le

s)

Injection Rate (packets/cycle/source)

[18]
[24]

Figure 8.3: Comparison of average latency between simulation and analyt-
ical model for the canonical example shown in Figure 8.2 with pd = 0.3
and N = 5.

81

Algorithm 3: End-to-end latency computation
1 Input: NoC topology, routing algorithm, service process, input

distribution for each class, (λ, CA), deflection probability (pd) for
each sink

2 Output: Average end-to-end latency (Lavg)
3 S = set of all classes in the network
4 N = number of queues in the network
5 Sn = set of classes in queue n

/* Distribution of deflected traffic */
6 for i = 1: |S| do
7 Compute λdi and CAdi using Equation 8.10
8 Compute λd and CAd using Equation 8.11 and Equation 8.12
9 end

10 ComputeWd using λd and CAd
/* Average waiting time of each class */

11 for n = 1:N do
12 for s = 1:|Sn| do
13 ComputeWns using Equation 8.13 (if |Sn| = 1)
14 ComputeWns following the decomposition method in [72]

(if |Sn| > 1)
15 end
16 end
17 Lavg =

∑N
n=1

∑Sn
s=1(Wns+Lns)λns∑N
n=1

∑Sn
s=1 λns

(For mesh this term includes the latency
both on the rows and the columns.)

Summary & End-to-End Latency Estimation

Summary of the analytical modeling: We presented a scalable approach
for the analytical model generation of end-to-end latency that handles
multiple traffic classes of priority-aware NoCs with deflection routing. It
applies the principle of superposition on subsystems where each subsys-
tem is a canonical queuing system of a single traffic class to significantly
simplify the approximation of the GGeo parameters of deflected traffic
and in turn, the latency calculations.

82

End-to-End latency computation: Algorithm 3 describes the end-to-end
latency computation with our proposed analytical model. The input pa-
rameters of the algorithm are the NoC topology, routing algorithm, service
process of each server, input traffic distribution for each class, and deflec-
tion probability per sink. It outputs the average end-to-end latency (Lavg).
First, the queuing system is decomposed into multiple subsystems as
shown in Figure 8.2(b) and λdi and CAdi for each subsystem-i are com-
puted. Subsequently, the proposed superposition methodology is applied
to compute λd and CAd , shown in lines 6–9 of the algorithm. Then, λd and
CAd are used to compute the average waiting time of the deflected packets
(Wd). Then, the average waiting time for class-s inQn (Wns) is computed
as shown in lines 13–14. The service time combined with static latency
from source to destination (Lns) is added toWns to obtain the end-to-end
latency. Finally, the average end-to-end latency (Lavg) is computed by
taking a weighted average of the latency of each class, as shown in line 16
of the algorithm.

8.3 Experimental Results with Deflection
Routing

This section validates the proposed analytical model against an industrial
cycle-accurate NoC simulator under a wide range of traffic scenarios. The
experiment scenarios include real applications and synthetic traffic that
allow evaluations with varying injection rates and deflection probabilities.
The evaluations include a 6×6 mesh NoC and a 6×1 ring as representative
examples of high-end server CPUs [44] and high-end client CPUs [99],
respectively. In both cases, the traffic sources emulate high-end CPU cores
with a 100% hit rate on the shared last level cache (LLC) to load the NoCs.
The target platforms are more powerful than experimental [109] and
special-purpose [113] platforms with simple cores, although the mesh

83

size is smaller. To further demonstrate the scalability of the proposed
approach, we also present results with mesh sizes up to 16×16. All cycle-
accurate simulations run for 200K cycles, with a warm-up period of 20K
cycles, to allow the NoC to reach the steady-state.

Estimation of Deflected Traffic

One of the key components of the proposed analytical model is estimat-
ing the average number of deflected packets. This section evaluates the
accuracy of this estimation compared to simulation with a 6×6 mesh. To
perform evaluations under heavy load, we set the deflection probability at
each junction and sink to pd = 0.3 and injection rates at each source to 0.33

R o w - 1
R o w - 2

R o w - 3
R o w - 4

R o w - 5
R o w - 6

C o l - 1 C o l - 2 C o l - 3 C o l - 4 C o l - 5 C o l - 6
0

2 0
4 0
6 0
8 0

1 0 0

Es
tim

ati
on

 Ac
cu

rac
y o

f
De

fle
cte

d P
ac

ke
ts

(%
)

Figure 8.4: Estimation accuracy of average number of packets deflected
for each row and column in a 6×6 mesh with pd=0.3.

Table 8.2: Validation of the proposed analytical model for 6×6 mesh and 6×1 ring
with bursty traffic arrival, and comparisons against prior work [52, 73]. ‘E’ signifies
error >100%.

Topo. 6×6 Mesh 6×1 Ring
pd 0.1 0.2 0.3 0.1 0.2 0.3
pbr 0.2 0.6 0.2 0.6 0.2 0.6 0.2 0.6 0.2 0.6 0.2 0.6
λ 0.1 0.3 0.4 0.1 0.3 0.4 0.1 0.3 0.4 0.1 0.3 0.4 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.3 0.4 0.1 0.3 0.4 0.1 0.3 0.4 0.1 0.3 0.4 0.1 0.2 0.3 0.1 0.2 0.3

Er
r.(

%
) Prop. 7.3 9.6 8.1 14 13 14 8.9 8.0 7.7 13 12 12 9.6 9.2 6.5 11 12 13 1.0 4.1 5.8 4.6 5.2 5.5 0.7 2.3 4.2 6.3 7.3 8.6 0.7 0.9 3.3 6.3 8.5 8.6

Ref[52] 2.6 E E 26 E E 22 E E 39 E E 35 18 E 57 E E 7.0 E E 34 E E 23 E E 45 E E 42 E E 54 E E
Ref[73] 12 15 23 3.1 18 23 28 41 65 19 33 49 42 45 55 39 35 31 15.3 18 22 18 24 33 30 38 67 31 44 54 41 50 73 42 50 58

84

0.09 0.18 0.27 0.36 0.45 0.54
0

8

16

24

32

40

0.07 0.14 0.21 0.28 0.35
0

11

22

33

44

55

(a)

 Simulation Analytical (Proposed)
 Analytical (w/o Decomposition and w/o Deflection) [9] Analytical (w/o Deflection Routing) [13]

A
ve

ra
ge

 L
at

en
cy

(c

yc
le

s)

Injection Rate (packets/cycle/source)

pd = 0.1

(b)

A
ve

ra
ge

 L
at

en
cy

(c

yc
le

s)

Injection Rate (packets/cycle/source)

pd = 0.3

[18] [24]

Figure 8.5: Comparison of average latency between simulation, the an-
alytical model proposed in this work, and analytical models proposed
in [52, 73] for a 6×6 mesh with deflection probability (a) 0.1 and (b) 0.3.

packets/cycle/source, which are relatively large values seen in actual sys-
tems. We first run cycle-accurate simulations to obtain the average number
of deflected packets at each row and column of the mesh. Then, the ana-
lytical model estimates the same quantities for the 6×6 mesh. Figure 8.4
shows the estimation accuracy for all rows and columns. The average esti-
mation accuracy across all rows and columns is 96% and the worst-case
accuracy is 92%. Overall, this evaluation shows that the proposed model
accurately estimates the average number of deflected packets.

Evaluations with Geometric Traffic Input

This section evaluates the accuracy of our latency estimation technique
when the sources inject packets following a geometric traffic distribution.
We note that our technique can also handle bursty traffic, which is sig-
nificantly harder. However, we start with this assumption to make a fair
comparison to two state-of-the-art techniques from the literature [52, 73].
The model presented in [52] does not incorporate multiple traffic classes
and deflection routing. On the other hand, the model presented in [73]
considers multiple traffic classes but does not consider bursty traffic and
deflection routing.

85

The evaluations are performed first on the server-like 6×6 mesh for
deflection probabilities pd = 0.1 and pd = 0.3 while sweeping the packet
injection rates. Figure 8.5(a) and Figure 8.5(b) show that the proposed
technique follows the simulation results closely for all injections. More
specifically, the proposed analytical model has only 7% and 6% percentage
error on average for deflection probabilities of 0.1 and 0.3, respectively.
In sharp contrast, the analytical model proposed in [52] significantly
overestimates the latency starting with moderate injection rates, since
it does not consider multiple traffic classes. Its performance degrades even
further with larger deflection probability, as depicted in Figure 8.5(b). We
note that it also slightly underestimates the latency at low injection rates
since it ignores deflection. Unlike this approach, the technique presented
in [73] considers multiple traffic classes in the same queue, but it ignores
deflected packets. Consequently, it severely underestimates the latency
impact of deflection, as shown in Figure 8.5.

We repeated the same evaluation on a 6×1 priority-aware ring NoC
which follows a high-end industrial quad-core CPU with an integrated
GPU and memory-controller [44]. The average error between the proposed
analytical model and simulations are 7% and 4% for deflection probabili-
ties of 0.1 and 0.3, respectively. In contrast, the model presented in [52]
underestimates the latency at low injection rates and significantly overes-
timates it under high traffic load similar to the 6×6 results in Figure 8.5.
Similarly, the analytical model presented in [73] severely underestimates
the average latency. It leads to an average 43% error with respect to simu-
lation. The plots of these results are not included for space considerations
since they closely follow the results in Figure 8.5.

Latency Estimation with Bursty Traffic Input

Since real applications exhibit burstiness, it is crucial to perform accurate
analytical modeling under bursty traffic. Therefore, this section presents

86

SYS
ma
rk1
4 gcc

bwa
ves mc

f

Gem
sFD

TD

OM
NeT

++
Xal
an

Per
lbe
nch

0.0

0.8

1.6

2.4

3.2

A
ve

ra
ge

 L
at

en
cy

(N
or

m
al

iz
ed

)
 Simulation Analytical (Proposed)

 Analytical (w/o Decomposition and w/o Deflection) [9] Analytical (w/o Deflection Routing) [13]

(a) (b)

SYS
ma
rk1
4 gcc

bwa
ves mc

f

Gem
sFD

TD

OM
NeT

++
Xal
an

Per
lbe
nch

0.0

0.8

1.6

2.4

3.2 pd = 0.3pd = 0.1

A
ve

ra
ge

 L
at

en
cy

(N
or

m
al

iz
ed

)

[18] [24]

Figure 8.6: Average latency comparison between simulation, the analytical
model proposed in this work, and analytical models proposed in [52, 73]
for a 6×6 mesh with (a) pd = 0.1 and (b) pd = 0.3. modify the reference
in the figure

the comparison of our proposed analytical model with respect to sim-
ulation under bursty traffic. For an extensive and thorough validation,
we sweep the packet injection rate (λ), probability of burstiness (pbr),
and deflection probability (pd). The injection rates cover a wide range
to capture various traffic congestion scenarios in the network. Likewise,
we report evaluation results for two different burstiness (pbr = {0.2,0.6}),
and three different deflection probabilities (pd = {0.1,0.2,0.3}). The coeffi-
cient of variation for the input traffic (CA), the final input to the model,
is then computed as a function of pbr and λ [54]. We simulate the 6×6
mesh and 6×1 ring NoCs using their cycle-accurate models for all input
parameter values mentioned above. Then, we estimate the average packet
latencies using the proposed technique, as well as the most relevant prior
work [52, 73].

The estimation error of all three performance analysis techniques is
reported in Table 8.2 for all input parameters. The mean and median esti-
mation errors of our proposed technique are 9.3% and 9.5%, respectively.
Furthermore, we do not observe more than 14% error even with relatively
higher traffic load, probability of deflection, and burstiness than seen in
real applications (presented in the following section). In strong contrast,

87

the analytical models proposed in [52] severely overestimate the latency
similar to the results presented in Section 8.3. The estimation error is more
than 100% for most cases since the impact of multiple traffic classes and
deflected packet become more significant under these challenging sce-
narios. Similarly, the model proposed in [73] underestimates the latency
because it does not model bursty traffic.

The right-hand side of Table 8.2 summarizes the estimation errors
obtained on the 6×1 ring NoC that follows high-end client systems. In
most cases, the error with the proposed analytical model is within 10% of
simulation, and the error is as low as 1%. With pd = 0.1, pbr = 0.6 and
λ = 0.4, the error is 14%, which is acceptable, considering that the network
is severely congested. In contrast, the analytical models proposed in [52]
overestimate the latency, whereas the models in [73] underestimate the
latency which conforms the results with geometric traffic, as in the 6×6
mesh results.

Experiments with Real Applications

In addition to the synthetic traffic, the proposed analytical model is eval-
uated with applications from SPEC CPU®2006 [38], SPEC CPU®2017
benchmark suites [16], and the SYSmark®2014 application [5]. Specifi-
cally, the evaluation includes SYSmark14, gcc, bwaves, mcf, GemsFDTD,
OMNeT++, Xalan, and perlbench applications. The chosen applications
represent a variety of injection rates for each source in the NoC and dif-
ferent levels of burstiness. Each application is profiled offline to find the
input traffic parameters. Of note, the probability of burstiness for these
applications ranges from pb = 0.25 to pb = 0.55, which is aligned with the
evaluations in Section 8.3.

The benchmark applications are executed on both 6×6 mesh and 6×1
ring architectures. The comparison of average latency between simulation
and proposed analytical model for the 6×6 mesh is shown in Figure 8.6.

88

4 x 4 6 x 6 8 x 8 1 0 x 1 0 1 2 x 1 2 1 4 x 1 4 1 6 x 1 61 0 - 3

1 0 - 2

1 0 - 1

1 0 0

M e s h S i z e

Ex
ec

uti
on

 Ti
me

 of
An

aly
tic

al
Mo

de
l (s

)

Figure 8.7: Execution time of the proposed analytical model (in seconds)
for different mesh sizes.

The proposed model follows the simulation results very closely for de-
flection probability pd = 0.1 and pd = 0.3, as shown in Figure 8.6(a) and
Figure 8.6(b), respectively. These plots show the average packet latencies
normalized to the smallest latency from the 6×1 ring simulations due
to the confidentiality of the results. On average, the proposed analytical
model achieves less than 5% modeling error. In contrast, the analytical
models which do not consider deflection routing [52, 73] underestimate
the latency, since the injection rates of these applications are in the range
of 0.02–0.1 flits/cycle/source (low injection region).

We observe similar results for the 6×1 ring NoC. The average estimation
error of our proposed technique is less than 8% for all applications. In
contrast, the prior techniques underestimate the latency by more than 2×
since they ignore deflected packets, and the average traffic loads are small.
In conclusion, the proposed technique outperforms state-of-the-art for
real applications and a wide range of synthetic traffic inputs.

Scalability Analysis

Finally, we evaluate the scalability of the proposed technique for larger
NoCs. We note that accuracy results for larger NoCs are not available

89

since they do not have detailed cycle-accurate simulation models. We
implemented the analytical model in C. Figure 8.7 shows that the analysis
completes in the order of seconds for up to 16×16 mesh. In comparison,
cycle-accurate simulations take hours with this size, even considering
linear scaling. When we scale the mesh size aggressively to 16×16, the
analysis completes in about 5 seconds, which is orders of magnitude faster
than cycle-accurate simulations of NoCs of this size.

8.4 Conclusion
Industrial NoCs incorporate priority-arbitration and deflection routing to
minimize buffer requirement and achieve predictable latency. Analytical
performance modeling of these NoCs is needed to perform design space
exploration, fast system simulations, and tuning architectural parameters.
However, state-of-the-art performance analysis models for NoCs do not
incorporate priority arbitration and deflection routing together. This paper
presented a performance analysis technique for industrial priority aware
NoCs with deflection routing under heavy traffic. Experimental evalua-
tions with industrial NoCs show that the proposed technique significantly
outperforms existing analytical models under both real application and a
wide range of synthetic traffic workloads.

90

9 appendix d: communication-aware hardware
accelerators for deep neural networks (dnns)

9.1 Related Work
IMC-based hardware architectures have emerged as a promising alter-
native to conventional von-Neumann architectures. Prior works have
proposed IMC hardware based on both SRAM and nanoscale non-volatile
memory (e.g. resistive RAM or ReRAM) [100, 105, 79, 50, 120]. Authors
in [100] proposed a ReRAM-based IMC architecture for DNN inference.
The architecture utilizes a crossbar of size 128×128 to perform the Multiply-
and-Accumulate (MAC) operations. They employ a parallel read-out
method to accelerate the MAC computations in the analog domain. In
addition, a Digital-to-Analog Converter (DAC) and an Analog-to-Digital
Converter (ADC) is employed to switch between digital and analog do-
mains. In contrast, [105] utilized spike-based computation to perform
MAC operations in the time domain. Such an architecture does not need
DAC and ADC units. An atomic computation-based ReRAM IMC architec-
ture for both training and inference of DNNs is proposed in [97]. Authors
in [79] proposed a systolic array-based ReRAM IMC design for DNN
inference. Other works proposed in the past have explored SRAM-based
IMC [120, 50].

All of the prior works focus on accelerating the computation while
giving less importance to inter-layer data movement. Crossbar-based IMC
hardware designs for DNNs significantly increase the volume of on-chip
communications, making the role of on-chip interconnect crucial. Differ-
ent on-chip interconnect solutions have been used for IMC-based DNN
accelerators in the literature. Bus-based H-Tree interconnect is proposed
in [18, 91]. However, bus-based interconnect contributes up to 90% of the
total inference latency, as shown in Figure 2.9. Hence, a bus-based intercon-

91

nect does not provide a scalable solution for DNN accelerators. Shafiee et
al. employs a concentrated mesh (cmesh)-based NoC to connect multiple
tiles on-chip [100]. An IMC-based DNN accelerator for high-precision
training is proposed in [43]. Ni et al. proposed a distributed in-memory
computing architecture with a binary RRAM-based crossbar [81]. How-
ever, all these techniques assume a fixed interconnect architecture for
different DNNs, i.e. these techniques do not cater to the communication
needs of different DNNs.

The DNN accelerators presented in MAERI [61] and Eyeriss-v2 [19]
use a flexible interconnect for DNN accelerators. In MAERI [61], a fat-
tree-based programmable interconnect is used to support various sparse
and non-sparse DNN dataflows. The work in [19] proposes a hierarchical
mesh-NoC for DNNs with different operating modes to support different
levels of data reuse in different dataflow patterns. However, these works do
not consider the non-uniform weight distribution of different DNNs [70],
DNN graph structure, and the computation-to-communication imbalance
of the DNNs. A communication-centric IMC architecture is proposed
in [57]. In this work, an optimization-based technique is incorporated to
construct the schedules of a given DNN on mesh interconnect. Nonethe-
less, this architecture does not guarantee minimum possible communica-
tion latency for different DNNs.

In contrast to prior works, we propose an NoC architecture along with a
scheduling technique that achieves the minimum possible communication
latency for a given DNN. Specifically, our proposed approach takes differ-
ent DNN parameters such as graph structure and weights distribution as
input and constructs an NoC architecture with schedules ensuring mini-
mum possible communication latency. This NoC is customized to a given
DNN and does not inherit any of state-of-the-art topology (e.g. tree, mesh,
torus, etc.). Furthermore, we propose a reconfigurable NoC architecture
for two representative class of DNNs, namely, edge computing-based and

92

cloud computing-based DNNs. The reconfigurable architecture assumes
that the IMC resources (IMC tiles and associated peripheral circuits) are
available on-chip. Then, based on the DNN, the NoC architecture is recon-
figured to obtain the lowest possible communication latency.

9.2 Area-aware NoC Optimization
Energy-Aware Optimization for NoC: As a result of the proposed area-
aware optimization, the total number of tiles in an IMC architecture can
be very high. For example, DenseNet (100,24) requires 1,088 tiles [18].
For such an architecture, one-to-one mapping of a router to tile [60] will
require a large number of NoC routers and consume high power, as shown
in Figure 9.1. Therefore, in our framework we introduce an energy-aware
optimization for the NoC.
Mapping Tiles to Routers: We first construct an objective function that rep-
resents the NoC energy consumption. Let nk be the number of routers
required for the kth layer of the DNN. The number of activations communi-

Figure 9.1: NoC optimization effectively reduces the power consumption
because of its non-linear dependence on the mesh size. We obtain NoC
power through BookSim [45] simulations.

93

cated between nk and nk+1 routers is Ik. Hence, the number of activations
between each source-destination pair is given by Ik/(nk × nk+1). The total
amount of communication volume can be found by adding this across all
K layers and routers:

E(n̄) =
(K−1∑
k=1

Ik

nknk+1

)(K∑
k=1

nk

)
(9.1)

E(n̄) is proportional to the total communication energy of the DNN assum-
ing that all transactions have a uniform size. We minimize this objective
function with an upper bound on the total number of routers, N as:

minimize
n̄

E(n̄)

subject to nk > 1; k = 1, . . . ,K,
K∑
k=1

nk < N.
(9.2)

where the first constraint ensures that each layer of the DNN is associated
with at least one router. N is a user-defined constraint (input to the op-
timization framework) that represents the maximum number of routers
in the IMC architecture. At the end of this optimization, we obtain the
number of routers needed for each layer (nk) of the DNN.
Packet Scheduling in NoC: If the activations of a layer are injected into the
NoC in the order of computation, there is a high possibility of congestion re-
sulting in high communication latency in the NoC. Therefore, we propose
a scheduling technique for the NoC to schedule the activations between
two layers of the DNN. The scheduling technique is applied on top of the
optimal tile-to-router mapping for the NoC. This scheduling technique
provides a starting time for activations from each source to destination
pair in the NoC. Without loss of generality, we assume that all activations
for a particular source-destination pair can be injected back-to-back.

94

Using the NoC topology and the routing algorithm, we first find the
source-destination pairs which contend for the same link in the NoC. We
model each source-destination pair (sd) as an individual task. The start
time of the task corresponding to the pair sd is denoted by tsd and the
duration of the task equals to the number of packets for that pair (nsd).
Next, we put constraints on the start time of each task so that there is no
contention between two transactions for the same link. The set of all tasks is
denoted by T and the set of all non-overlapping tasks is denoted by C. (9.3)
shows the formulation of the non-overlap constraint, where the start time
of two tasks is separated by the duration. Furthermore, the start time of all
tasks are integers and greater than zero. We add one terminal task with
the constraint that the start time of the terminal task (tterminal) is greater
than the start time of any of the source-destination pairs. We minimize
tterminal to obtain the optimal schedule for all source-destination pairs.

minimize tterminal

subject to tmn > tpq + npq ∨ tpq > tmn + npq,
∀tmn, tpq ∈ C,
txy > 0,∀ txy ∈ T

tterminal > txy + nxy,∀ txy ∈ T.

(9.3)

9.3 Latency-aware NoC optimization

Determining Minimum Communication Latency

We aim to construct an NoC architecture, customized for different DNNs,
which achieves minimum possible communication latency. To this end,
we first show how the minimum possible communication latency between
two consecutive layers of a given DNN for one round of communication

95

is achieved. In one round of communication, each source router of a layer
sends one packet to each destination router in the next layer. Since each
router sends/receives maximum one packet per cycle, the minimum possi-
ble communication latency to finish all the transactions is max(Nk, Nk+1),
where Nk is the number of routers in kth layer.

Figure 9.2(a) represents an IMC hardware of a neural network with
one hidden layer, where each square represents a tile. There are three
tiles in the input layer (Layer 1), two tiles in the hidden layer (Layer 2),
and three tiles in the output layer (Layer 3). We assume that there is an
NoC router associated with each tile, and all routers have one input and
one output port. We also assume layer-by-layer operation for the DNN,
i.e. after all packets reach layer 2 from layer 1, then the communication
between layer 2 and layer 3 will start. If each router of a layer is connected
to every other router of the next layer (as shown in Figure 9.2(a)), then
the minimum possible communication latency is achieved. We utilize
below key insights to construct the schedules for obtaining minimum

Figure 9.2: (a) Communication between layers in a DNN and (b) The
schedules for obtaining minimum communication latency between layers.
Without loss of generality, it is assumed that the computation time in the
tile is 0 cycles.

96

Figure 9.3: The number of packets between two routers with (a) one
router per tile, and (b) the proposed technique. All the numbers are
normalized with a factor of 4 × 105 (the highest number of packets per
router between two layers with one router per tile, which occurs between
4th and 5th layer of SqueezeNet). The number of packets between routers
decreases significantly with the proposed approach for all DNNs except
DenseNet (100,24) and ResNet-50. However, the number of routers used
for DenseNet with our proposed technique (300) is less than the number
of routers required (1088) if one router is allocated per tile. Our technique
achieves around 72% reduction in the NoC area. Similar improvement is
seen for ResNet-50 as well.

communication latency.
Key insight 1: A single router can not send/receive more than one packet
in a cycle. However, multiple routers can send/receive packets in parallel.
Key insight 2: Since a router can send/receive only one packet in a cycle,
the congestion is minimum i.e., no more than a transaction is scheduled
through a particular link.

Figure 9.2(b) shows the schedules for each round of communication
between two layers to achieve the minimum possible communication
latency. With these schedules, there is no congestion in the NoC, since no
link is scheduled to carry more than one packet in a particular cycle. With
this NoC topology, the number of links required (to achieve minimum
possible communication latency) between the kth layer and (k+ 1)th layer
is Nk ×Nk+1. Thus the number of links is O(N2), where N is the number
of routers in a layer. The total number of links can be very large for DNNs

97

Table 9.1: Summary of the notations used in this paper.

Ak Number of output activations in the kth layer
Nk Number of routers in the kth layer
Rk,n nth router in the kth layer
Rk1,n1 − Rk2,n2 The packet between Rk1,n1 and Rk2,n2
Lk1,n1 − Lk2,n2 The link between Rk1,n1 and Rk2,n2

with a large number of routers per layer. For example, with this NoC
topology, more than 1.5 × 104 links are required for DenseNet (100,24).
Since the number of links increases the NoC area, this NoC topology is
impractical to implement. To overcome this challenge, we first propose a
technique to determine the optimal number of routers required for each
layer of a DNN. In addition, we propose an NoC architecture that achieves
the minimum possible communication latency between two consecutive
layers of DNNs with minimum number of links.

Determining the Optimal Number of Routers

The optimal number of routers in each layer of a DNN is a function of
the number of packets that are sent from one layer to the next. Since a
higher number of packets between two source-destination router pairs
increase communication latency (due to higher congestion), determining
the optimal number of routers for each DNN layer is crucial. We per-
form an analysis which shows that the inefficient distribution of routers
can cause higher communication latency. In Figure 9.3(a), we show the
number of packets between two routers for each layer of different DNNs
when one router is allocated per tile. The number of packets is normalized
with respect to the highest number of packets (4 × 105), which occurs
between two routers in the 4th and 5th layers of SqueezeNet. High number
of packets between two routers increases congestion in the NoC, resulting
in high communication latency.

98

Therefore, we propose a technique to determine the optimal number
of routers required for each layer of the DNN. The objective function is
shown in Equation (9.4). It is a function of the number of routers in each
layer which is denoted by N̄, where N̄ = {N1,N2, . . . ,NK}. The number
of activations between the kth and the (k + 1)th layer is denoted by Ak.
Therefore, if we divide Ak by the product of Nk and Nk+1, we obtain the
number of activations between a pair of routers.

L(N̄) =

K−1∑
k=1

(⌈ Ak

NkNk+1

Q

W

⌉)
max(Nk,Nk+1) (9.4)

minimize
N̄

L(N̄)

subject to Nk > 0;k = 1, . . . ,K,
K∑
k=1

Nk < N.

(9.5)

Furthermore, after multiplying the expression by the bit precision (Q)
and dividing it by the NoC-bus width (W), we obtain the number of
packets between a pair of routers (Ak

NkNk+1
Q
W

). To convert the value to
integer we take the ceiling of the expression. The minimum possible
latency to finish each round of communication is max(Nk, Nk+1) cycles
as shown in Section 9.3, and the number of rounds equals the number
of packets between a pair of routers. Therefore, multiplying these two
terms we obtain the total communication latency of the DNN with the
proposed NoC architecture (Equation (9.4)). At this point, the number of
routers for each layer is unknown. Therefore, we minimize the objective
function by setting all elements of N̄ positive and a user-defined upper
bound on the total number of routers (N) for the DNN, as shown in
Equation (9.5). We solve the optimization problem using the gradient-
based interior point algorithm. A sub-gradient based methodology is
incorporated in the region where the function is not differentiable. In this

99

work, we assume that packet transmissions happen only in two consecutive
layers. Therefore ensuring local minimum (minimum number of links
between two consecutive layers) is sufficient to ensure global minimum
latency with a minimum number of links.

Next, we show how the minimum communication latency for the con-
figuration shown in Figure 9.2(a) is achieved. For each round of commu-
nication, one packet is communicated between a pair of routers in two
consecutive layers. Therefore,

⌈
Ak

NkNk+1
Q
W

⌉
= 1 in Equation 9.4. For the

configuration shown in Figure 9.2(a), N1 = 3,N2 = 2,N3 = 3. Putting
this in Equation 9.4 we obtain, L(N̄) = max(3, 2) + max(2, 3) = 3 + 3 = 6.
Therefore, minimum communication latency for this configuration is 6
cycles, which supports the schedules shown in Figure 9.2(b).

Figure 9.3(b) shows the number of normalized packets between two
routers for different DNNs with our proposed tile-to-router mapping
methodology. We observe that with the proposed mapping methodology,
the number of packets between two routers for different layers of different
DNNs is always less than 0.25. We observe an increase in the number of
packets between two routers in the case of DenseNet and ResNet-50 due
to a decrease in the number of routers with our proposed methodology.
The number of routers used for DenseNet with our proposed technique
(300) is less than the number of routers required (1088) if one router is
allocated per tile. This provides 72% reduction in the NoC area. Similar
improvement is seen for ResNet-50 as well.

Constructing the Custom NoC

In this sub-section, we construct our proposed latency-optimized NoC
architecture. The optimal number of routers required for each layer of a
given DNN is computed using the methodology described in Section 9.3.
We analyze a given DNN layer-by-layer to obtain the latency-optimized
NoC architecture and the corresponding schedules. We show, by induction,

100

that the proposed NoC architecture along with the schedules achieves the
minimum communication latency using the minimum number of links
for one round of communication. Without loss of generality, let us assume
Nk and Nk+1 are the number of routers in two consecutive layers. We
consider three cases: 1) Nk = Nk+1, 2) Nk < Nk+1 and 3) Nk > Nk+1.
The minimum possible latency for one round of communication between
the two layers is max(Nk, Nk+1). For each of these cases, we develop the
latency-optimized NoC architecture and the corresponding schedules. We
also prove that the constructed NoC architecture achieves the minimum
possible latency for all cases.
Case 1 (Nk = Nk+1): We first consider a case where two consecutive layers
of a DNN have three routers each, i.e. Nk = Nk+1 = 3. Since each router
of (k+ 1)th layer can receive at most one packet per cycle, the minimum
number of cycles required to receive packets from all routers in kth layer is
Nk = max(Nk,Nk+1). Therefore, the minimum possible latency for one
round of communication between each of the three source routers to each
of the three destination routers is three cycles. Figure 9.4(a) shows our
proposed NoC architecture and Figure 9.4(b) shows the corresponding
schedule to finish all transactions in three cycles. We assume that the
communication starts at cycle-1. In one round, each router in kth layer
sends the same packet (output activation) to all routers in (k+ 1)th layer.
We also assume that when a packet reaches a router, the associated tile
computes on the packets, and the transaction is considered to be completed.
In the next cycle, the router can send the received packet to other routers
if necessary. We denote the packet to be transmitted from ith router of kth

layer to jth router of (k + 1)th layer as Rk,i − Rk+1,j as shown in Table 9.1.
At cycle-1, all routers in kth layer send the packet to a router in (k + 1)th

layer through the horizontal links as shown in Figure 9.4(a). First three
rows in Figure 9.4(b) show the transaction in cycle-1. In the next cycle,
each router in (k+ 1)th layer transmits the packet received in cycle-1 both

101

Figure 9.4: (a) NoC architecture which achieves the minimum possible
latency when two consecutive layers each have three routers, (b) Schedule
to achieve the minimum possible latency.

through upward and downward vertical link if the links exist. In the
subsequent cycles, each router in (k+ 1)th layer sends the packet received
from north to south, and the packet received from south to north through
the downward and upward vertical link, respectively. All transactions are
finished in three cycles. Since no link is scheduled to transmit more than
one packet at a particular cycle, there is no contention in the NoC. We note
that if any of the links shown in Figure 9.4(a) is removed, then some of
the transactions will not be possible. Therefore, the NoC architecture in
Figure 9.4(a) achieves the minimum possible latency using the minimum
number of links.

Next, we prove (by induction) that, if the NoC architecture with Nk =

Nk+1 = N − 1 achieves minimum latency, then the architecture with
Nk = Nk+1 = N also achieves minimum latency. Figure 9.5 shows the
architecture with Nk = Nk+1 = N. The dotted box shows the architecture
which is assumed to achieve minimum possible latency, i.e. all transactions

102

Figure 9.5: NoC architecture which achieves the minimum possible latency
when two consecutive layers consist of N routers each.

will finish at (N−1) cycles. The dark blue circles indicate the newly added
routers (Nth) in each layer. By adding the new routers and corresponding
links, new transactions are introduced. Our goal is to schedule the new
transactions in a way that there is no contention with any transaction
scheduled with the architecture having (N− 1) routers in each layer. This
can be achieved by scheduling the new transaction in the links in the
manner shown below.

• Horizontal Link: (Lk,N− L(k+1),N) carries the packet Rk,N−R(k+1),N
in cycle-1.

• Upward vertical link: New transactions occur for the packet sent by
the router N of the (k+ 1)th layer. The link (L(k+1),N − L(k+1),(N−1))
carries this packet at cycle-2. All other upward vertical links carry
this packet after the last transaction through the links with the archi-
tecture consisting of N− 1 routers in each layer. The packet reaches
the 1st router of the (k+ 1)th layer at cycle-N.

• Downward vertical link: New transactions occur only through the
link (L(k+1),(N−1) − L(k+1),N). Since this is a newly added link, the

103

Table 9.2: Schedules for Nk = Nk+1

Link Type Cycle Link Transaction Range
Horizontal 1 Lk,n−

L(k+1),n

Rk,n−
R(k+1),n

n = 1 . . .N
Upward
Vertical m L(k+1),n−

L(k1),(n−1)

Rk,(n+m−2)−
R(k+1),(n−1)

n = 2 . . .N
Downward
Vertical m L(k+1),n−

L(k+1),(n+1)

Rk,(n−m+2)−
R(k+1),(n+1)

n = 1 . . . (N− 1)

transaction does not contend with any other link. Through this link,
the transaction which occurs last is Rk,1 − R(k+1),N at cycle-N.

Therefore, all transactions for the architecture with N routers finish at
cycle-N, which is the minimum possible latency with N routers in each
layer. Table 9.2 shows the schedules for this case.
Case 2 (Nk < Nk+1, Nk = N): Next, we consider the case where Nk <
Nk+1. Without loss of generality, we assume that Nk = N. The latency-
optimized NoC architecture for this case is shown in Figure 9.9(a).

Table 9.3 shows the schedules for this case. The transactions in the
horizontal link and upward vertical link are same as the Case 1, since
there is no change in the configuration of these links. The downward
vertical links in the (k+ 1)th layer carries a packet in each cycle till all the
transactions are finished.
Proof for Case 2 (Nk < Nk+1, Nk = N): First, we consider the configu-
ration with Nk+1 = N + 1 as shown in Figure 9.6(a). Since each router
of kth layer can send at most one packet per cycle, the minimum num-
ber of cycles required to send packets to all routers in the (k+ 1)th layer
is Nk+1 = max(Nk,Nk+1). The NoC configuration shown in the dot-
ted box is optimal as it has an equal number of routers in both layers.
By adding the router R(k+1),(N+1), we add the downward vertical link
L(k+1),N−L(k+1),(N+1). The new transactions due to the newly added router
will only happen through this link. Specifically, the router R(k+1),(N+1) will

104

Table 9.3: Schedules for Nk < Nk+1

Link Type Cycle Link Transaction Range
Horizontal 1 Lk,n−

L(k+1),n

Rk,n−
R(k+1),n

n = 1 . . .Nk
Upward
Vertical m L(k+1),n−

L(k+1),(n−1)

Rk,(n+m−2)−
R(k+1),(n−1)

n = 2 . . .Nk
Downward
Vertical m L(k+1),n−

L(k+1),(n+1)

Rk,(n−m+2)−
R(k+1),(n+1)

n = 1 . . .Nk+1 − 1

receive one packet at each cycle starting from cycle-2 only from the router
R(k+1),N. The last transaction through this link is R(k+1),1 − R(k+1),(N+1)
and that will happen in cycle-(N+1). Therefore, the NoC configuration
shown in Figure 9.6(a) completes all transactions in minimum possible
cycles and therefore it is optimal.

Next, we assume that the architecture with Nk+1 = N + j is optimal
as shown in the dotted box in Figure 9.6(b). We will prove by induction
that if the architecture with Nk+1 = N + j is optimal, then the architec-
ture with Nk+1 = N + j + 1 is also optimal which proves the general
case. By introducing the router R(k+1),(N+j+1), the downward vertical link
L(k+1),(N+j) − L(k+1),(N+j+1) is introduced. The new transactions due to
the newly added router will only happen through this link. Specifically,
the router R(k+1),(N+j+1) will receive one packet at each cycle starting from
cycle-2 only from the router R(k+1),(N+j). The last transaction through
this link is R(k+1),1 −R(k+1),(N+j+1) and that will happen in cycle-(N+j+1).
Therefore, the NoC configuration shown in Figure 9.6(b) completes all
transactions in minimum possible cycles and therefore it is optimal.
Case 3 (Nk > Nk+1,Nk+1 = N): Next, we consider the case where Nk <
Nk+1. Without loss of generality, we assume that Nk+1 = N. The latency-
optimized NoC architecture for this case is shown in Figure 9.9(b). Ta-
ble 9.4 shows the schedules for this case. The transactions in the hori-
zontal links Lk,n − L(k+1),n to Lk,(N−1) − L(k+1),(N−1) happens in cycle-1.

105

Figure 9.6: NoC architecture to achieve minimum latency for Case 2. (a)
shows the case when there is one more router in (k+1)th layer than kth layer.
(b) shows the general case. The dotted box shows the optimal architecture
(already proved) and the circles filled with dark color represent the newly
added router.

Apart from carrying a packet in cycle-1, the link Lk,N − L(k+1),N also car-
ries packets from routers Rk,(N+j) to R(k+1),N in subsequent cycles, where
j = 1 . . . (Nk −N).

In Appendix C, we show the operation of the proposed NoC architec-
Table 9.4: Schedules for Nk > Nk+1

Link Type Cycle Link Transaction Range
Horizontal 1 Lk,n−

L(k+1),n

Rk,n−
R(k+1),n

n = 1 . . .Nk+1

Horizontal m Lk,Nk+1−

L(k+1),Nk+1

Rk,(Nk+1+m−1)−
R(k+1),Nk+1

-
Upward
Vertical m Lk,Nk+1+n−

Lk,Nk+1+n−1
Rk,(Nk+1+n+m−1)−
R(k+1),Nk+1

n = 1 . . .
(Nk −Nk+1)

Upward
Vertical m L(k+1),n−

L(k1),(n−1)

Rk,(n+m−2)−
R(k+1),(n−1)

n = 2 . . .Nk+1

Downward
Vertical m L(k+1),n−

L(k+1),(n+1)

Rk,(n−m+2)−
R(k+1),(n+1)

n = 1 . . .
(Nk+1 − 1)

106

Figure 9.7: NoC architecture to achieve minimum latency for Case 3. (a)
shows the case when there is one more router in (k+1)th layer than kth layer,
(b) shows the general case. The dotted box shows the optimal architecture
(already proved) and the circles filled with dark color represent the newly
added router.

Figure 9.8: Operation of the proposed NoC for a section of DenseNet
(100,24) [40]. (a) A representative section of DenseNet (100,24). (b)–(d)
show the communication between the layers of DenseNet (100,24).

ture for densely connected DNNs such as DenseNet [40].
Proof for Case 3 (Nk > Nk+1,Nk+1 = N): First, we consider the configu-
ration with Nk+1 = N + 1 as shown in Figure 9.7(a). Since each router
of (k+ 1)th layer can receive at most one packet per cycle, the minimum
number of cycles required to receive packets from all routers in kth layer is
Nk = max(Nk,Nk+1). The NoC configuration shown in the dotted box is

107

Figure 9.9: NoC architecture which achieves minimum possible latency
when (a) Nk < Nk+1 and (b) Nk > Nk+1.

optimal as it has an equal number of routers in both layers. By adding the
router Rk,(N+1), we add the upward vertical link Lk,N − Lk,(N+1). Specifi-
cally, the router Rk,(N+1) will send one packet at cycle-1 to the router Rk,N.
This packet will be sent to R(k+1),N through the link Lk,N−L(k+1),N at cycle-
2. We note that this link is free at cycle-2 with the configuration shown
in the dotted box. Subsequently, this packet will reach the router R(k+1),1
at cycle-(N+1) which is the last transaction with this NoC configuration.
Therefore, the NoC configuration shown in Figure 9.7(a) completes all
transactions in minimum possible cycles and therefore it is optimal.

Next, we assume that the architecture with Nk = N+ j is optimal as
shown in the dotted box in Figure 9.7(b). We will prove by induction that
if the architecture with Nk = N+ j is optimal then the architecture with
Nk = N+j+1 is also optimal which proves the general case. By introducing
the router Rk+,(N+j+1), the upward vertical link Lk,(N+j) − Lk,(N+j+1) is
introduced. Specifically, the router Rk,(N+j+1) will send one packet at
cycle-1 to the router Rk,(N+j). This packet will reach the router Rk,N at
cycle-(j+1). In cycle-j it will be sent to the router R(k+1),N and in the

108

subsequent cycle the packet will traverse through the upward vertical link
till it reaches the router R(k+1),1. The last transaction that will happen in
cycle-(N+j+1). Therefore, the NoC configuration shown in Figure 9.7(b)
completes all transactions in minimum possible cycles and therefore it is
optimal.
Execution of the proposed network on dense neural network: Figure 9.8
shows the operation of the proposed NoC on DenseNet [40]. We consider
the 13th–16th layer of DenseNet which is a representative section of this
DNN. In DenseNet, all neurons in a particular layer are connected with
all other neurons in the subsequent layers as shown in Figure 9.8(a). The
number of routers allocated with our proposed methodology for the 13th,
14th, 15th and 16th layers are 3,3,4,4 respectively which is shown in Fig-
ure 9.8(b). Different packets generated in different layers are shown in
different markers in Figure 9.8(b)–9.8(e). We denote the number of pack-
ets to be communicated for each source to destination pair from kth layer
to (k+ 1)th layer as Pk. We assume that at cycle-C the packets (shown in)
in the 13th layer is ready to be communicated to the 14th layer. Specifically,
at each round of communication, each router in 13th layer will send one
packet (marked with) to each router in 14th layer. According to our
proposed approach, each round of communication between 13th and 14th

layer will take 3 cycles (max(N13,N14) = max(3, 3) = 3). Therefore, one
round of communication will be finished at cycle-(C+3P13). After that, the
computations are performed in the 14th layer. Without loss of generality,
we assume that computations are performed in the same cycle the packets
(activations) reach the layer. After computations, new packets are gener-
ated which are to be communicated to the next layer. The new packets
are denoted by the marker . Each type of the packets marked with and

are to be communicated to 15th layer. Each round of communication
takes 4 cycles (max(N14,N15) = max(3, 4) = 4). Therefore, all the packets
reach 15th layer at cycle-(C+3P13+4P14). After that, the computations are

109

Algorithm 4: Proposed Algorithm to Reconfigure the NoC at
Runtime
1 Input: Number of layers of the DNN (K), number of input activations for each layer

(Ak), precision bit (Q), NoC bus width (W), Number of routers available on-chip for
each layer (Nmaxk)

2 Output: Number of routers required for each layer (Nk) and the optimal schedule
(schedout)

3 Initialization: schedout ← []
4 Obtain Nk following Equation 9.4 and Equation 9.5
5 for k = 1: K do
6 Nk = min(Nk,Nmaxk)
7 end
8 for k = 1: K-1 do

/* Number of packets */
9

10 Pk =
⌈

Ak
NkNk+1

Q
W

⌉
/* Constructing the schedules */

11
12 for p = 1 : Pk do
13 if Nk == Nk+1 then
14 schedp = schedule constructed by following Table 9.2
15 schedout ← [schedout; schedp]
16 end
17 if Nk < Nk+1 then
18 schedp = schedule constructed by following Table 9.3
19 schedout ← [schedout; schedp]
20 end
21 if Nk > Nk+1 then
22 schedp = schedule constructed by following Table 9.4
23 schedout ← [schedout; schedp]
24 end
25 end
26 end

performed in the 15th layer and the new packets (shown in) are generated.
Similarly, the packets will reach the 16th layer at cycle-(C+3P13+4P14+4P15)
and upon computation, new packets will be generated (shown in pentagon
filled in black). Thus the proposed NoC architecture works seamlessly for
densely connected networks.

110

Constructing a Reconfigurable NoC

So far, we have discussed our proposed methodology to construct a latency-
optimized NoC customized for a given DNN. However, an NoC architec-
ture customized for a specific DNN is not practical due to the lack of
reconfigurability. Since DNNs are ever-evolving, we can never guarantee
that the set of DNNs considered at design time is exhaustive. Therefore, at
run-time the NoC might need to execute a DNN which was not considered
at design time. To overcome this challenge, we propose a technique to
construct two reconfigurable NoCs for two categories of DNNs, namely,
edge-based and cloud-based DNNs. There are two steps involved in con-
structing the reconfigurable architecture. First, we set the number of layers
to be supported by the NoC architecture. Second, we set the number of
routers per layer for the NoC architecture.
Setting number of layers: For each category, we set the number of layers
to be the maximum number of layers among all DNNs available at design
time in that particular category. Specifically, if D(i) is the number of
layers of a DNN i and the number of DNNs considered in that category
is I, then the number of layers the NoC architecture can accommodate is
D = max(D(1),D(2), . . . ,D(I)). For the DNNs we consider in the edge
computing category, SqueezeNet has the maximum number of layers
(D = 26). Similarly, DNNs we consider in the cloud computing category,
ResNet-152 has the maximum number of layers (D = 152).
Setting number of routers per layer: Next, we compute the number of
routers to be allocated for each layer. To this end, for each DNN of that
category, we evaluate the optimal number of routers required for each
layer following the methodology described in Section 9.3. Then, for that
particular layer, we allocate the maximum number of routers obtained
across all DNNs of the category. If N(i)

k is the number of routers required
for the kth layer of a DNN i, then the number of routers allocated in the
NoC architecture for kth layer is Nmaxk = max (N

(1)
k ,N(2)

k , . . .N(I)
k), where

111

k = 1, 2, . . .D and N(i)
k = 0 if D(i) < k.

At runtime, we reconfigure the NoC to determine how many routers
need to be used and determine the schedules of the packets between each
pair of layers of the new DNN. Algorithm 4 shows the proposed algorithm
which is executed on-chip to reconfigure the proposed NoC architecture.
The algorithm takes different DNN parameters (number of layers, number
of input activations, precision bit), NoC bus width, and number of routers
available on-chip for each layer as input. The number of routers required
for each layer and the optimal schedules are obtained as outputs.

The number of routers required for each layer (Nk) of DNN is deter-
mined by following the procedure described in Section 9.3 (shown in line
4 of Algorithm 4). If the required number of routers (Nk) are not available
on-chip, then the maximum available routers (Nmaxk) are utilized for that
particular layer of the DNN (shown in line 5–7 of Algorithm 4). After
that, we compute the schedules between two consecutive layers of the
DNNs. First, we compute the number of packets between each source to
each destination (line 9) and construct the schedules for the packets. In
order to construct the schedules, we consider the three cases described in
Section 26. Depending on the case, the schedules are constructed follow-
ing Table 9.2 or Table 9.3 or Table 9.4. Second, the constructed schedule
is then appended to the list of optimal layer-wise schedules (schedopt)
(shown in line 10–20 of Algorithm 4). The same procedure is repeated for
all layers to obtain the complete schedule of the reconfigurable NoC.

Router Architecture of the Proposed NoC

Figure 9.10 shows the router architecture of the proposed NoC. The router
has three input ports: one input port (IP) connects with a router in the
previous layer and the other two input ports are connected with routers of
the same layer. We assume that all the packets to be sent in the next layer
are stored in a buffer inside the compute elements in the previous layer.

112

The input port IN gets the input from the router situated to the north and
the input port IS gets the input from the router situated to the south. The
router has two output ports: ON sends the output to the router situated
to the north and OS sends the output to the router situated to the south.
Inside the router, there are two multiplexers: MA and MB. MA selects
between the inputs coming from IP and IS and sends it to ON. MB selects
between the inputs coming from IP and IN and sends it to OS. As discussed
in Section 26, at cycle-2 of each round of the communication, the input
from the previous layer is sent to both the routers situated to the north
and south. In all other cycles, the input from the south is sent to the north
and vice-versa. Therefore, MA and MB are controlled by the cycle-index
(C) in each round of communication as shown in Figure 9.10. The router
is interfaced with the tiles in the current layer. Upon receiving a packet,
the router sends it to the corresponding computing tile. The tile computes
on the packet and sends it back to the router, which then forwards it to
the next router.

Figure 9.10: Router architecture of the proposed NoC

113

9.4 Experimental Evaluation

Experimental setup

We evaluate our proposed latency-optimized NoC for IMC architecture
for a wide range of DNNs. We consider LeNet [62] on MNIST dataset,
NiN [67], ResNet-152 [36], VGG-16, VGG-19 [102], and DenseNet(100,24) [40]
on CIFAR-100 dataset [58], and SqueezeNet [41] and ResNet-50 [36] on
ImageNet dataset [25]. The DNNs we consider have parameters that range
from 0.28M for LeNet to 45M for VGG-19 and the number of layers ranges
from 5 for LeNet to 152 for ResNet-152. Moreover, the DNNs we chose
have different connection patterns; linear (LeNet, NiN, SqueezeNet, VGG),
residual (ResNet) and dense (DenseNet). These DNNs are a combination
of fully connected (FC) and convolutional (Conv) layers. Therefore, our
proposed methodology is applicable to fully connected layers as well as
convolutional layers of a DNN.
Benchmarking Simulator: We developed an in-house simulator to eval-
uate the IMC architecture with the proposed latency-optimized NoC for
different DNNs. The circuit part and interconnect part of the simulator are
calibrated with NeuroSim [18] and BookSim [45], respectively. The inputs
of the simulator include the DNN structure, technology node, NoC bus-
width, type of IMC technology (ReRAM, SRAM, etc.), the number of bits
per IMC cell, and frequency of operation. The circuit simulator performs
the mapping of the entire DNN to a multi-tiled IMC architecture [100]
and reports performance metrics, such as area, energy, and latency of
the computing logic. The interconnect performance is evaluated using
the interconnect simulator. The circuit simulator provides the number
of tiles per layer, activations, and number of layers as output. These are
used to construct the latency-optimized NoC, which are then fed to the
interconnect simulator to compute the area, energy, and latency for the
interconnect. The overall performance of the architecture is calculated

114

Figure 9.11: Layer-wise improvement for NiN in (a) PE utilization for each
layer with SRAM-based heterogeneous tile architecture. The tile structure
for each layer (ck, pk) is shown on top of each bar and (b) communication
latency for each layer with proposed NoC optimization.

by combining the circuit-level and interconnect-level performance. The
details of the simulator is described in [56].

Energy-Aware NoC Optimization

The proposed methodology includes an energy-aware tile-to-router map-
ping and scheduling technique for the NoC. The upper bound on the
number of routers is set as three times the number of DNN layers to bal-
ance energy and performance. Figure 9.11(b) shows the improvement
in latency for each layer of NiN due to the proposed NoC optimization.
The proposed NoC mapping reduces the communication latency between
layers 1 and 2 from 51ms to 47ms. As we integrate the NoC mapping with
the scheduling technique, latency reduces further to 22ms. The first three

115

Figure 9.12: Improvement in (a) communication energy of the proposed
energy-aware NoC optimization with respect to the baseline (SRAM) and
(b) energy-area product of the generated SRAM-based architecture with
respect to the baseline (SRAM).

layers of NiN contain more than 50% of the total number of activations.
Therefore, the proposed NoC mapping reserves more routers for the first
three layers, resulting in a significant reduction in latency for those layers.
Additionally, the total number of routers is reduced which reduces the
NoC area. A direct consequence of both latency and area reduction is
lower communication energy, as shown in Figure 9.12(a) with an average
reduction of 74%. The energy reduction is the highest for the case of VGG
networks – 97%/98% for VGG-16/VGG-19. For ResNet-152, energy reduc-
tion is the lowest (15%), since the tiles are well distributed across layers
for the baseline architecture, leaving less room for improvement.
Baseline Architecture: We utilize a crossbar-based multi-tiled IMC archi-
tecture to evaluate our proposed approach. Analog MAC computation is

116

Le
Net NiN

Squ
ee

zeN
et

ResN
et-

15
2

ResN
et-

50

VGG-16

VGG-19

Den
seN

et

(10
0,2

4)

106

107

108

109

1010

1011

(d)(c)

(b)

 64x64 128x128 256x256 512x512

En
er

gy
 (p

J)

(a)
Le

Net NiN

Squ
ee

zeN
et

ResN
et-

15
2

ResN
et-

50

VGG-16

VGG-19

Den
seN

et

(10
0,2

4)

104

105

106

107

108

De
la

y
(n

s)

Le
Net NiN

Squ
ee

zeN
et

ResN
et-

15
2

ResN
et-

50

VGG-16

VGG-19

Den
seN

et

(10
0,2

4)

0

200

400

600

800

1000

Ar
ea

 (m
m

2)

Le
Net NiN

Squ
ee

zeN
et

ResN
et-

15
2

ResN
et-

50

VGG-16

VGG-19

Den
seN

et

(10
0,2

4)

1011

1013

1015

1017

1019

1021

ED
AP

 (m
m

2 .p
J.

ns
)

Figure 9.13: Performance of the baseline SRAM-based IMC architecture
for different DNNs with different crossbar size. We observe that a crossbar
size of 128×128 or 256×256 performs better (with mesh-NoC) than other
crossbar sizes.

performed along the bitline, the analog voltage/current is digitized with
a 4-bit flash ADC, a sample and hold circuit, and a shift and add circuit
(read-out circuit) at the column periphery. 8 columns are multiplexed
together to one read-out circuit to reduce chip area. Sequential input
signalling is employed to do away with the DAC. Each tile consists of 4
compute elements (CEs) and each CE consists of 4 processing elements
(PEs) or crossbar arrays [18]. We consider 32nm technology node [100],
1GHz frequency of operation, and a parallel read-out for the crossbar [105].
A mesh-based NoC with bus width of 32 bits and one router-per-tile is
considered for the interconnect for the baseline architecture.

117

Figure 9.14: Improvement in communication latency for each layer of
VGG-19.

Figure 9.15: Improvement in communication latency for each layer of
ResNet-50.

Optimal Size of Crossbar Array

In this section, we show the area, energy, and latency comparison of
different DNNs with the baseline IMC architecture having different sized
crossbars. The performance of IMC architecture for different DNNs vary
with number of layers, connection density (number of connections per
neuron) and number of parameters of the DNN. We consider SRAM-
based bitcell/array design [18]. Figure 9.13 shows the comparison of
energy, delay, area, and energy-delay-area product (EDAP) of crossbar
size varying from 64×64 to 512×512. In each of the subfigures, the DNNs
are presented in increasing order of area (LeNet has the lowest area and
is at the left end while DenseNet(100,24) has the highest area and is at

118

Figure 9.16: Improvement in communication latency for different DNNs
(with crossbar size of 256×256) and weights and activation precision with
respect to mesh-NoC for cmesh [100] and the proposed approach.

the right end). Figure 9.13(a) shows the energy consumption for different
DNNs with different crossbar sizes. We observe that a crossbar size of
256×256 has the lowest energy consumption for 5 out of the 8 DNNs we
evaluated. The IMC architecture with a crossbar size of 64×64 has poor
performance in terms of energy consumption, inference latency, and area as
shown in Figure 9.13(a), 9.13(b), and 9.13(c) respectively. Figure 9.13(d)
shows the energy-delay-area product (EDAP) of different DNNs with
different crossbar sizes. We observe that the architecture with a crossbar
size of 128×128 and 256×256 has better performance in terms of EDAP for
almost all DNNs. We observe a similar trend for IMC architecture with
ReRAM-based crossbar arrays. Since larger crossbar size results in the
chip being more compact, moving forward, we choose a crossbar size of
256×256 for all experiments. We also show some representative results
with a crossbar size of 128×128.

Layer-wise Comparison of Communication Latency

In this section, we show the improvement in communication latency with
the proposed latency-optimized NoC (with an IMC architecture of 8-bit
precision) for different layers of VGG-19 and ResNet-50. Figure 9.14 com-

119

Figure 9.17: Improvement in communication latency with proposed NoC
with respect to mesh for crossbar size of 128×128.

pares the communication latency of VGG-19 between the IMC architectures
with the proposed NoC and the baseline mesh-NoC. We observe that the
improvement in communication latency for the first 4 layers of VGG-19 is
significant. Improvement in communication latency is highest between
the first two layers of VGG-19, which is 86%.

We also observe significant improvement in communication latency
for different layers of ResNet-50. Figure 9.15 shows the improvement for
a few representative layers of ResNet-50 (we limit it for better visibility).
The maximum improvement is seen between layer 42 and layer 43, which
is 96%. The improvement in communication latency for each layer con-
tributes to the improvement in total communication latency as shown
in the next section. Such high improvement stems from the proposed
latency-optimized NoC and the efficient distribution of routers among
layers as discussed in Section 9.3.

Overall Improvement in Communication Performance

Next, we evaluate the proposed latency-optimized NoC-based IMC archi-
tecture for different DNNs. We compare the total communication latency
of the proposed NoC with the cmesh interconnect proposed in [100].

120

Figure 9.18: Comparison of interconnect power consumption with different
techniques.

Figure 9.19: Interconnect EDAP comparison for different DNNs.

Figure 9.16 shows the comparison of communication latency for three dif-
ferent data precisions (weights and activations): 4-bit, 8-bit, and 16-bit. In
this case, we consider an IMC architecture with a crossbar size of 256×256.
The communication latency values are normalized with respect to the com-
munication latency values obtained with the baseline NoC. We observe
that the communication latency for the cmesh interconnect is similar to
that of the baseline NoC for LeNet, NiN, DenseNet (100,24), and ResNet-
152. The cmesh-based IMC architecture performs significantly better for
VGG-16, VGG-19, and ResNet-50. Specifically, for ResNet-50, on average,

121

the cmesh interconnect achieves 57% improvement in communication
latency with respect to the baseline mesh-NoC.

Our proposed latency-optimized NoC reduces the communication
latency significantly both with respect to baseline NoC and cmesh-based
NoC as shown in Figure 9.16. With respect to cmesh-based NoC, there is
a 20%-80% improvement for different DNNs with different bit precisions.
Highest improvement with respect to the baseline NoC is observed for
ResNet-50 with a 4-bit data precision. On average, the proposed latency
optimized NoC improves the communication latency by 62% with respect
to mesh-NoC, and 57% with respect to cmesh interconnect. Since our
proposed NoC architecture achieves minimum latency, there is a significant
improvement in communication latency with respect to state-of-the-art
works.

In Figure 9.17, we show the improvement in communication latency
with the proposed NoC with respect to mesh-NoC for an IMC architecture
with a crossbar size of 128×128 and 8-bit precision. We observe that
the improvement in communication latency follows a similar trend as the
crossbar size of 256×256. Therefore, the improvement due to the proposed
latency-optimized NoC is independent of crossbar size.

Figure 9.18 presents the comparison of interconnect power consump-
tion for an IMC architecture with 8-bit precision for both weights and
activations. Our proposed latency-optimized NoC achieves up to 4.6×
improvement in interconnect power consumption with respect to baseline
mesh-NoC. The power consumption with the proposed interconnect for
ResNet-152 is higher than the baseline mesh-NoC due to the use of higher
number of routers. However, this results in 3.32× improvement in inter-
connect latency with the proposed interconnect. We achieve 2.26×–47×
improvement in power consumption as compared to the cmesh intercon-
nect. The improvement is highest for DenseNet and least for SqueezeNet.

To further understand the efficacy of the proposed NoC, we compare

122

the energy-delay-area product (EDAP) with respect to the baseline mesh-
NoC and cmesh interconnect for different DNNs. Figure 9.19 shows the
comparison for an IMC architecture with 8-bit precision for both weights
and activations. Our proposed latency-optimized NoC achieves up to
328× improvement in the EDAP of the interconnect with respect to base-
line mesh-NoC. We achieve EDAP improvement for the interconnect in
the range of 12×–6600× as compared to the cmesh interconnect. The
improvement is highest for VGG-19 and least for NiN. Since cmesh inter-
connect uses additional number of routers and links to reduce latency, it
results in higher area and energy. Therefore, the performance of cmesh
interconnect is worse than mesh-NoC in terms of EDAP. The proposed
latency-optimized NoC provides a large improvement in communication
latency which results in reduced energy with reduced or comparable area.
Therefore, our proposed latency-optimized NoC architecture performs
significantly better in terms of area, energy and latency than both cmesh
interconnect and the baseline NoC.

Overall Improvement

In this section, we discuss the overall improvement in inference perfor-
mance for an SRAM-based IMC architecture with our proposed latency-
optimized NoC architecture. Figure 9.20(a) shows the improvement in
total inference latency with respect to the baseline architecture with mesh-
NoC. The improvement is in the range of 5%-25% for different DNNs. We
observe higher improvement for SqueezeNet and ResNet-152. These two
DNNs have a higher number of activations between layers compared to
other DNNs. Higher number of activation leads to higher communica-
tion volume, which in turn results in more congestion for mesh-NoC. In
contrast, our proposed latency-optimized NoC schedules the packets in
such a way that there is no congestion in the NoC leading to significant
improvement over mesh-NoC. The efficiency of IMC architecture with

123

Figure 9.20: Overall improvement in (a) total inference latency and (b)
total EDAP of a SRAM-based IMC architecture with the proposed latency-
optimized interconnect with respect to the baseline.

mesh-NoC over [105, 97] is shown in [57]. Moreover, we observe that
our proposed NoC architecture results in 13%-85% improvement in infer-
ence latency with respect to the IMC architecture with bus-based H-Tree
interconnect [105, 79].

Figure 9.20(b) shows the improvement in total system EDAP for an
SRAM-based IMC architecture with proposed latency-optimized NoC for
all DNNs. Since improvement in inference latency is higher compared to
the improvement in energy and area, we observe that the improvement in
EDAP follows a similar trend as that of inference latency. On average, the
proposed latency optimized NoC delivers 9.8% improvement in overall
EDAP with respect to baseline architecture with mesh-NoC. Since intercon-

124

Figure 9.21: Results of leave-one-out experiments with reconfigurable
NoC for edge computing- and cloud computing-based DNNs.

nect plays an important role in overall performance of an IMC architecture,
the proposed NoC architecture contributes to a considerable improvement
in overall inference performance for different DNNs.

Results with the Reconfigurable NoC

In this section, we show the results of our proposed reconfigurable NoC.
We identify two broad class of DNNs, namely, edge-based and cloud-
based DNNs. We categorize the DNNs based on its application on edge-
computing or cloud-computing based devices. We consider LeNet, Squeeze
Net, NiN, VGG-16 and VGG-19 in the category of edge-based DNNs and
ResNet-50, ResNet-152 and DenseNet (100, 24) in the category of cloud-
based DNNs. We assume that the circuit part of the IMC architecture is
reconfigurable and supports the specific class of DNNs under consider-
ation. We perform leave-one-out experiment to evaluate our proposed
reconfigurable NoC. For example, while performing experiment for VGG-
19 (edge computing-based DNN), we assume that information of VGG-19
is not available at design time.

The number of layers for a reconfigurable NoC for edge-computing is

125

set at 26. For each layer, we set the number of routers as the maximum
number of routers required for all DNNs for that particular layer. For
example, for 1st layer, the optimal number of routers required for LeNet,
NiN, SqueezeNet, and VGG-16 are 4, 2, 5, and 4, respectively. Therefore,
we allocate 5 routers for 1st layer.

At runtime, on encountering the new DNN (VGG-19), we execute
Algorithm 4 to generate the NoC schedules and execute VGG-19 with
available resources on-chip. For fairness, we perform the same experiment
with multiple DNNs as shown in Figure 9.21. We observe that there is<5%
degradation in communication latency for VGG-19 and ResNet-50, while
other DNNs have the same performance as that of the custom NoC. Since
the optimal number of routers required for a few layers of the DNN may
not be present on-chip, there might be a degradation in communication
latency with respect to custom NoC. For example, for the experiment with
VGG-19, 5 routers are allocated for the 1st layer. However, the custom NoC
optimized for VGG-19 requires 6 routers. Since it can use up to 5 routers
for the first layer, the communication latency of VGG-19 with reconfig-
urable NoC is more than the custom NoC. Still, for VGG-19 and ResNet-50,
the proposed reconfigurable NoC performs significantly better than the
baseline mesh-NoC as shown in Figure 9.21. We also observe that the
runtime overhead of the proposed algorithm ranges from 0.049s (LeNet)
to 49.93s (DenseNet). However, the overhead is negligible considering
that the reconfiguration is a one-time effort for each DNN. Therefore, the
proposed algorithm reconfigures the available NoC resources depending
on the DNN being executed and provides significant benefit with respect
to the baseline mesh-NoC.

126

9.5 Conclusion
In this work, we present a latency-optimized reconfigurable NoC for in-
memory acceleration of DNNs. State-of-the-art interconnect methodolo-
gies include bus-based H-Tree interconnect and mesh-NoC. We show that
bus-based H-Tree interconnect contributes significantly to the total infer-
ence latency of DNN hardware and are not a viable option. Mesh-NoC
based IMC architectures are better than bus-based H-tree but they too do
not consider the non-uniform weight distribution of different DNNs, DNN
graph structure, and the computation-to-communication imbalance of the
DNNs.None of the architectures holistically investigated minimization of
communication latency. In contrast, our proposed latency-optimized NoC
guarantees minimum possible communication latency between two con-
secutive layers of a given DNN. Furthermore, we proposed reconfigurable
NoC for two representative categories of DNNs, namely, edge computing-
based and cloud computing-based DNNs. Experimental evaluations on a
wide range of DNNs confirm that the proposed NoC architecture enables
60%-80% reduction in communication latency with respect to state-of-the-
art interconnect solutions.

127

bibliography

[1] Graph nets library. https://deepmind.com/research/
open-source/graph-nets-library.

[2] N. Agarwal et al. GARNET: A Detailed on-chip Network Model In-
side a Full-system Simulator. In 2009 IEEE intl. symp. on performance
analysis of systems and software, pages 33–42.

[3] M. Arafa and thers. Cascade Lake: Next Generation Intel Xeon
Scalable Processor. IEEE Micro, 39(2):29–36, 2019.

[4] I. Awan and R. Fretwell. Analysis of Discrete-Time Queues with
Space and Service Priorities for Arbitrary Arrival Processes. In
Parallel and Distributed Systems. Proc. 11th Intl Conf. on, volume 2,
pages 115–119, 2005.

[5] B. A. P. C. (BAPCo). Benchmark, sysmark2014. http://bapco.com/
products/sysmark-2014, accessed 27 May 2020.

[6] A. Bartolini et al. A Virtual Platform Environment For Exploring
Power, Thermal And Reliability Management Control Strategies In
High-Performance Multicores. In Proc. of the Great lakes Symp. on
VLSI, pages 311–316, 2010.

[7] A. W. Berger and W. Whitt. Workload Bounds in Fluid Models with
Priorities. Performance evaluation, 41(4):249–267, 2000.

[8] D. P. Bertsekas, R. G. Gallager, and P. Humblet. Data Networks,
volume 2. Prentice-Hall International New Jersey, 1992.

[9] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC Benchmark
Suite: Characterization and Architectural Implications. In Proc. of
the Intl. Conf. on Parallel Arch. and Compilation Tech., pages 72–81,
2008.

[10] N. Binkert et al. The Gem5 Simulator. SIGARCH Comp. Arch. News,
May. 2011.

https://deepmind.com/research/open-source/graph-nets-library
https://deepmind.com/research/open-source/graph-nets-library
http://bapco.com/products/sysmark-2014
http://bapco.com/products/sysmark-2014

128

[11] P. Bogdan and R. Marculescu. Workload Characterization and Its
Impact on Multicore Platform Design. In Proc. of the Intl. Conf. on
Hardware/Software Codesign and System Synthesis, pages 231–240,
2010.

[12] P. Bogdan and R. Marculescu. Non-stationary Traffic Analysis
and its Implications on Multicore Platform Design. IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, 30(4):508–
519, 2011.

[13] G. Bolch, S. Greiner, H. De Meer, and K. S. Trivedi. Queueing Net-
works and Markov Chains: Modeling and Performance Evaluation with
Computer Science Applications. John Wiley & Sons, 2006.

[14] A. Borodin, Y. Rabani, and B. Schieber. Deterministic Many-to-Many
Hot Potato Routing. IEEE Transactions on Parallel and Distributed
Systems, 8(6):587–596, 1997.

[15] J. T. Brassil and R. L. Cruz. Bounds on Maximum Delay in Networks
with Deflection Routing. IEEE Transactions on Parallel and Distributed
Systems, 6(7):724–732, 1995.

[16] J. Bucek, K.-D. Lange, and J. v. Kistowski. SPEC CPU2017:
Next-Generation Compute Benchmark. In Companion of the 2018
ACM/SPEC International Conference on Performance Engineering,
pages 41–42, 2018.

[17] J. Chen and X. Ran. Deep Learning with Edge Computing: A
Review. Proceedings of the IEEE, 107(8):1655–1674, 2019.

[18] P.-Y. Chen, X. Peng, and S. Yu. NeuroSim: A Circuit-level Macro
Model for Benchmarking Neuro-Inspired Architectures in Online
Learning. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 37(12):3067–3080, 2018.

[19] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze. Eyeriss v2: A Flexible
Accelerator for Emerging Deep Neural Networks on Mobile Devices.
IEEE Journal on Emerging and Selected Topics in Circuits and Systems,
9(2):292–308, 2019.

129

[20] M.-C. Chiang, T.-C. Yeh, and G.-F. Tseng. A QEMU and SystemC-
based Cycle-accurate ISS for Performance Estimation on SoC De-
velopment. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 30(4):593–606, 2011.

[21] W. Choi et al. On-Chip Communication Network for Efficient Train-
ing of Deep Convolutional Networks on Heterogeneous Manycore
Systems. IEEE Trans. on Computers, 67(5):672–686, 2017.

[22] I.-H. Chung, C. Kim, H.-F. Wen, and G. Cong. Application data
prefetching on the ibm blue gene/q supercomputer. In SC’12: Pro-
ceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, pages 1–8. IEEE, 2012.

[23] H. Dai, Z. Kozareva, B. Dai, A. Smola, and L. Song. Learning steady-
states of iterative algorithms over graphs. In International conference
on machine learning, pages 1106–1114. PMLR, 2018.

[24] A. C. de Melo. The New Linux Perf Tools. In Linux Kongress, vol-
ume 18, 2010.

[25] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet:
A Large-scale Hierarchical Image Database. In 2009 IEEE conference
on computer vision and pattern recognition, pages 248–255, 2009.

[26] J. Doweck et al. Inside 6th-generation Intel Core: New Microarchi-
tecture Code-named Skylake. IEEE Micro, (2):52–62, 2017.

[27] D. Duvenaud et al. Convolutional networks on graphs for learning
molecular fingerprints. arXiv preprint arXiv:1509.09292, 2015.

[28] C. Fallin, C. Craik, and O. Mutlu. CHIPPER: A Low-Complexity
Bufferless Deflection Router. In 2011 IEEE 17th International Sym-
posium on High Performance Computer Architecture, pages 144–155,
2011.

[29] C. Fallin, G. Nazario, X. Yu, K. Chang, R. Ausavarungnirun, and
O. Mutlu. MinBD: Minimally-buffered Deflection Routing for
Energy-efficient Interconnect. In 2012 IEEE/ACM Sixth International
Symposium on Networks-on-Chip, pages 1–10, 2012.

130

[30] Z. Fang, D. Hong, and R. K. Gupta. Serving Deep Neural Networks
at the Cloud Edge for Vision Applications on Mobile Platforms. In
Proceedings of the 10th ACM Multimedia Systems Conference, pages
36–47, 2019.

[31] A. Ghosh and T. Givargis. Analytical Design Space Exploration of
Caches for Embedded Systems. In 2003 Design, Automation and Test
in Europe Conference and Exhibition, pages 650–655, 2003.

[32] P. Ghosh, A. Ravi, and A. Sen. An Analytical Framework with
Bounded Deflection Adaptive Routing for Networks-on-Chip. In
2010 IEEE Computer Society Annual Symposium on VLSI, pages 363–
368, 2010.

[33] C. L. Giles, K. D. Bollacker, and S. Lawrence. Citeseer: An automatic
citation indexing system. In Proceedings of the third ACM conference
on Digital libraries, pages 89–98, 1998.

[34] A. Gotmanov et al. Verifying Deadlock-Freedom of Communication
Fabrics. In Intl. Workshop on Verification, Model Checking, and Abstract
Interpretation, pages 214–231. Springer, 2011.

[35] W. L. Hamilton, R. Ying, and J. Leskovec. Inductive representation
learning on large graphs. arXiv preprint arXiv:1706.02216, 2017.

[36] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for
Image Recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.

[37] J. Heißwolf, R. König, and J. Becker. A Scalable NoC Router Design
Providing QoS Support using Weighted Round Robin Scheduling.
In 2012 IEEE 10th International Symposium on Parallel and Distributed
Processing with Applications, pages 625–632, 2012.

[38] J. L. Henning. SPEC CPU2006 Benchmark Descriptions. ACM
SIGARCH Computer Architecture News, 34(4):1–17, 2006.

[39] M. Horowitz. Computing’s Energy Problem (and What We Can
Do About It). In IEEE ISSCC, pages 10–14, 2014.

131

[40] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely
Connected Convolutional Networks. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages 4700–4708,
2017.

[41] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer. SqueezeNet: AlexNet-Level Accuracy with
50x Fewer Parameters and< 0.5 MB Model Size. arXiv preprint
arXiv:1602.07360, 2016.

[42] S. Ikehara and M. Miyazaki. Approximate Analysis of Queueing
Networks with Nonpreemptive Priority Scheduling. In Proc. 11th
Int. Teletraffic Congr.

[43] M. Imani, S. Gupta, Y. Kim, and T. Rosing. Floatpim: In-memory
Acceleration of Deep Neural Network Training with High Preci-
sion. In Proceedings of the 46th International Symposium on Computer
Architecture, pages 802–815, 2019.

[44] J. Jeffers, J. Reinders, and A. Sodani. Intel Xeon Phi Processor High Per-
formance Programming: Knights Landing Edition. Morgan Kaufmann,
2016.

[45] N. Jiang et al. A Detailed and Flexible Cycle-accurate Network-on-
chip Simulator. In 2013 IEEE Intl. Symp. on Performance Analysis of
Systems and Software (ISPASS), pages 86–96.

[46] X. Jin and G. Min. Modelling and Analysis of Priority Queueing
Systems with Multi-class Self-similar Network Traffic: a Novel and
Efficient Queue-decomposition Approach. IEEE Trans. on Communi-
cations, 57(5), 2009.

[47] J. A. Kahle et al. Introduction to the Cell multiprocessor. IBM
journal of Research and Development, 49(4.5):589–604, 2005.

[48] H. Kashif and H. Patel. Bounding Buffer Space Requirements for
Real-time Priority-aware Networks. In Asia and South Pacific Design
Autom. Conf., pages 113–118, 2014.

[49] C. N. Keltcher, K. J. McGrath, A. Ahmed, and P. Conway. The
AMD Opteron Processor for Multiprocessor Servers. IEEE Micro,
23(2):66–76, 2003.

132

[50] W.-S. Khwa, J.-J. Chen, J.-F. Li, X. Si, E.-Y. Yang, X. Sun, R. Liu,
P.-Y. Chen, Q. Li, S. Yu, et al. A 65nm 4Kb Algorithm-dependent
Computing-In-Memory SRAM Unit-macro with 2.3 ns and 55.8 TOP-
S/W Fully Parallel Product-sum Operation for Binary DNN Edge
Processors. In 2018 IEEE International Solid-State Circuits Conference-
(ISSCC), pages 496–498.

[51] A. E. Kiasari, Z. Lu, and A. Jantsch. An Analytical Latency Model for
Networks-on-Chip. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 21(1):113–123, 2012.

[52] A. E. Kiasari, Z. Lu, and A. Jantsch. An Analytical Latency Model
for Networks-on-Chip. IEEE Trans. on Very Large Scale Integration
(VLSI) Systems, 21(1):113–123, 2013.

[53] T. N. Kipf and M. Welling. Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907,
2016.

[54] D. Kouvatsos and P. Luker. On the analysis of queueing network
models: Maximum entropy and simulation. In UKSC 84, pages
488–496. 1984.

[55] D. D. Kouvatsos. Entropy Maximisation and Queuing Network
Models. Annals of Operations Research, 48(1):63–126, 1994.

[56] G. Krishnan, S. K. Mandai, C. Chakrabarti, J.-s. Seo, U. Y. Ogras, and
Y. Cao. Interconnect-centric benchmarking of in-memory accelera-
tion for dnns. In 2021 China Semiconductor Technology International
Conference (CSTIC), pages 1–4. IEEE, 2021.

[57] G. Krishnan, S. K. Mandal, C. Chakrabarti, J.-s. Seo, U. Y. Ogras,
and Y. Cao. Interconnect-Aware Area and Energy Optimization for
In-Memory Acceleration of DNNs. IEEE Design & Test, 2020.

[58] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features
from tiny images. Technical report, Citeseer, 2009.

[59] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet Classifi-
cation with Deep Convolutional Neural Networks. In Advances in
neural information processing systems, pages 1097–1105, 2012.

133

[60] H. Kwon, A. Samajdar, and T. Krishna. Rethinking Nocs for Spatial
Neural Network Accelerators. In 2017 Eleventh IEEE/ACM Intl.
Symp. on NOCS, pages 1–8, 2017.

[61] H. Kwon, A. Samajdar, and T. Krishna. Maeri: Enabling Flexible
Dataflow Mapping over DNN Accelerators via Reconfigurable In-
terconnects. In ACM SIGPLAN Notices, volume 53, pages 461–475,
2018.

[62] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based
Learning Applied to Document Recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[63] Y.-L. Lee, J. M. Jou, and Y.-Y. Chen. A High-speed and Decentralized
Arbiter Design for NoC. In 2009 IEEE/ACS International Conference
on Computer Systems and Applications, pages 350–353, 2009.

[64] A. Lerer et al. Pytorch-biggraph: A large-scale graph embedding
system. arXiv preprint arXiv:1903.12287, 2019.

[65] R. Leupers et al. Virtual Manycore platforms: Moving towards 100+
processor cores. In Proc. of DATE, pages 1–6, 2011.

[66] S. Liang et al. Engn: A high-throughput and energy-efficient ac-
celerator for large graph neural networks. IEEE Transactions on
Computers, 2020.

[67] M. Lin, Q. Chen, and S. Yan. Network in Network. arXiv preprint
arXiv:1312.4400, 2013.

[68] W. Liu and B. Vinter. A Framework for General Sparse Matrix–
Matrix Multiplication on GPUs and Heterogeneous Processors. Jour-
nal of Parallel and Distributed Computing, 85:47–61, 2015.

[69] Z. Lu, M. Zhong, and A. Jantsch. Evaluation of On-chip Networks
using Deflection Routing. In Proceedings of the 16th ACM Great Lakes
Symposium on VLSI, pages 296–301, 2006.

[70] Y. Ma, Y. Cao, S. Vrudhula, and J.-s. Seo. Optimizing the Convolu-
tion Operation to Accelerate Deep Neural Networks on FPGA. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 26(7):1354–
1367, 2018.

134

[71] P. S. Magnusson et al. Simics: A Full System Simulation Platform.
Computer, 35(2):50–58.

[72] S. K. Mandal, R. Ayoub, M. Kishinevsky, M. M. Islam, and U. Y.
Ogras. Analytical Performance Modeling of NoCs under Priority
Arbitration and Bursty Traffic. IEEE Embedded Systems Letters, 2020.

[73] S. K. Mandal, R. Ayoub, M. Kishinevsky, and U. Y. Ogras. Analytical
performance models for nocs with multiple priority traffic classes.
ACM Transactions on Embedded Computing Systems (TECS), 18(5s):1–
21, 2019.

[74] S. K. Mandal, A. Krishnakumar, R. Ayoub, M. Kishinevsky, and
U. Y. Ogras. Performance analysis of priority-aware nocs with de-
flection routing under traffic congestion. In Proceedings of the 39th
International Conference on Computer-Aided Design, pages 1–9, 2020.

[75] S. K. Mandal, A. Krishnakumar, and U. Y. Ogras. Energy-efficient
networks-on-chip architectures: Design and run-time optimization.
Network-on-Chip Security and Privacy, page 55, 2021.

[76] S. K. Mandal, G. Krishnan, C. Chakrabarti, J.-S. Seo, Y. Cao, and
U. Y. Ogras. A latency-optimized reconfigurable noc for in-memory
acceleration of dnns. IEEE Journal on Emerging and Selected Topics in
Circuits and Systems, 10(3):362–375, 2020.

[77] C. D. Manning, C. D. Manning, and H. Schütze. Foundations of
Statistical Natural Language Processing. MIT press, 1999.

[78] H. Mao et al. Learning scheduling algorithms for data processing
clusters. In Proceedings of the ACM Special Interest Group on Data
Communication, pages 270–288. 2019.

[79] M. Mao, X. Peng, R. Liu, J. Li, S. Yu, and C. Chakrabarti. MAX2: An
ReRAM-based Neural Network Accelerator that Maximizes Data
Reuse and Area Utilization. IEEE Journal on Emerging and Selected
Topics in Circuits and Systems, 2019.

[80] T. Moscibroda and O. Mutlu. A Case for Bufferless Routing in
On-chip Networks. In Proceedings of the 36th Annual International
Symposium on Computer Architecture, pages 196–207, 2009.

135

[81] L. Ni, H. Huang, Z. Liu, R. V. Joshi, and H. Yu. Distributed In-
Memory Computing on Binary RRAM Crossbar. ACM Journal on
Emerging Technologies in Computing Systems (JETC), 13(3):1–18, 2017.

[82] L. M. Ni and P. K. McKinley. A Survey of Wormhole Routing Tech-
niques in Direct Networks. Computer, 26(2):62–76, 1993.

[83] U. Y. Ogras, P. Bogdan, and R. Marculescu. An Analytical Ap-
proach for Network-on-Chip Performance Analysis. IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, 29(12):2001–
2013, 2010.

[84] U. Y. Ogras, Y. Emre, J. Xu, T. Kam, and M. Kishinevsky. Energy-
Guided Exploration of On-Chip Network Design for Exa-Scale Com-
puting. In Proc. of Intl. Workshop on System Level Interconnect Predic-
tion, pages 24–31, 2012.

[85] U. Y. Ogras, M. Kishinevsky, and S. Chatterjee. xPLORE: Commu-
nication Fabric Design and Optimization Framework. Developed at
Strategic CAD Labs, Intel Corp.

[86] U. Y. Ogras and R. Marculescu. Modeling, Analysis and Optimization of
Network-on-Chip Communication Architectures, volume 184. Springer
Science & Business Media, 2013.

[87] M. Palesi and T. Givargis. Multi-objective Design Space Exploration
Using Genetic Algorithms. In Proc. of the Intl. Symp. on Hardware/-
Software Codesign, pages 67–72, 2002.

[88] P. P. Pande, C. Grecu, M. Jones, A. Ivanov, and R. Saleh. Performance
Evaluation and Design Trade-offs for Network-on-Chip Interconnect
Architectures. IEEE transactions on Computers, 54(8):1025–1040,
2005.

[89] A. Patel et al. MARSS: a Full System Simulator for Multicore x86
CPUs. In Design Autom. Conf., pages 1050–1055, 2011.

[90] A. Pellegrini et al. The Arm Neoverse N1 Platform: Building Blocks
for the Next-gen Cloud-to-Edge Infrastructure SoC. IEEE Micro,
40(2):53–62, 2020.

136

[91] X. Peng, R. Liu, and S. Yu. Optimizing Weight Mapping and
Data Flow for Convolutional Neural Networks on RRAM based
Processing-In-Memory Architecture. In IEEE International Sympo-
sium on Circuits and Systems (ISCAS), pages 1–5, 2019.

[92] M. Petracca, B. G. Lee, K. Bergman, and L. P. Carloni. Photonic
NoCs: System-Level Design Exploration. IEEE Micro, 29(4):74–85,
2009.

[93] G. Pujolle and W. Ai. A Solution for Multiserver and Multiclass
Open Queueing Networks. INFOR: Information Systems and Opera-
tional Research, 24(3):221–230, 1986.

[94] Y. Qian, Z. Lu, and Q. Dou. Qos Scheduling for NoCs: Strict Priority
Queueing versus Weighted Round Robin. In 2010 IEEE International
Conference on Computer Design, pages 52–59, 2010.

[95] Y. Qian, Z. Lu, and W. Dou. Analysis of Worst-case Delay Bounds
for Best-effort Communication in Wormhole Networks on Chip. In
2009 3rd ACM/IEEE Interl. Symp. on Networks-on-Chip, pages 44–53.

[96] Z.-L. Qian et al. A Support Vector Regression (SVR)-based Latency
Model for Network-on-Chip (NoC) Architectures. IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, 35(3):471–
484, 2015.

[97] X. Qiao, X. Cao, H. Yang, L. Song, and H. Li. Atomlayer: A Universal
ReRAM-based CNN Accelerator with Atomic Layer Computation.
In Proceedings of the 55th Annual Design Automation Conference, pages
1–6.

[98] A. Rico et al. ARM HPC Ecosystem and the Reemergence of Vectors.
In Proc. of the Computing Frontiers Conf., pages 329–334. ACM, 2017.

[99] E. Rotem and S. P. Engineer. Intel Architecture, Code Name Skylake
Deep Dive: A New Architecture to Manage Power Performance and
Energy Efficiency. In Intel Developer Forum, 2015.

137

[100] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P.
Strachan, M. Hu, R. S. Williams, and V. Srikumar. ISAAC: A Convo-
lutional Neural Network Accelerator with in-situ Analog Arithmetic
in Crossbars. In Proceedings of the 43rd International Symposium on
Computer Architecture, pages 14–26, 2016.

[101] E. S. Shin, V. J. Mooney III, and G. F. Riley. Round-robin Arbiter
Design and Generation. In Proceedings of the 15th international sym-
posium on System Synthesis, pages 243–248, 2002.

[102] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks
for Large-Scale Image Recognition. arXiv preprint arXiv:1409.1556,
2014.

[103] M. P. Singh and M. K. Jain. Evolution of Processor Architecture in
Mobile Phones. Intl. Journ. of Computer Applications, 90(4), 2014.

[104] A. Sodani et al. Knights Landing: Second-generation Intel Xeon Phi
Product. Ieee micro, 36(2):34–46, 2016.

[105] L. Song, X. Qian, H. Li, and Y. Chen. Pipelayer: A Pipelined ReRAM-
based Accelerator for Deep Learning. In 2017 IEEE International
Symposium on High Performance Computer Architecture (HPCA), pages
541–552. IEEE, 2017.

[106] S. M. Tam et al. SkyLake-SP: A 14nm 28-Core Xeon® Processor. In
2018 IEEE ISSCC, pages 34–36, 2018.

[107] C. Tian, L. Ma, Z. Yang, and Y. Dai. PCGCN: Partition-Centric
Processing for Accelerating Graph Convolutional Network. In
2020 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pages 936–945, 2020.

[108] H. Valavi, P. J. Ramadge, E. Nestler, and N. Verma. A 64-tile 2.4-
Mb In-Memory-Computing CNN Accelerator Employing Charge-
domain Compute. IEEE Journal of Solid-State Circuits, 54(6):1789–
1799, 2019.

[109] S. R. Vangal et al. An 80-tile sub-100-w teraflops processor in 65-nm
cmos. IEEE Journal of Solid-State Circuits, 43(1):29–41, 2008.

138

[110] J. Walraevens. Discrete-time Queueing Models with Priorities. PhD
thesis, Ghent University, 2004.

[111] L. Wang, Y. Huang, Y. Hou, S. Zhang, and J. Shan. Graph attention
convolution for point cloud semantic segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 10296–10305, 2019.

[112] L. Wang, G. Min, D. D. Kouvatsos, and X. Jin. Analytical Modeling
of an Integrated Priority and WFQ Scheduling Scheme in Multi-
service Networks. Computer Communications, 33:S93–S101, 2010.

[113] D. Wentzlaff et al. On-chip Interconnection Architecture of the Tile
Processor. IEEE micro, 27(5):15–31, 2007.

[114] P. Wettin et al. Performance Evaluation of Wireless NoCs in Presence
of Irregular Network Routing Strategies. In Proc. of the conf. on DATE,
page 272, 2014.

[115] Y. Wu et al. Analytical Modelling of Networks in Multicomputer
Systems under Bursty and Batch Arrival Traffic. The Journ. of Super-
computing, 51(2):115–130, 2010.

[116] G. Xiaopeng, Z. Zhe, and L. Xiang. Round Robin Arbiters for Vir-
tual Channel Router. In The Proceedings of the Multiconference on"
Computational Engineering in Systems Applications", volume 2, pages
1610–1614, 2006.

[117] S. Xie, A. Kirillov, R. Girshick, and K. He. Exploring Randomly
Wired Neural Networks for Image Recognition. In Proceedings of the
IEEE International Conference on Computer Vision, pages 1284–1293,
2019.

[118] M. Yan et al. Hygcn: A gcn accelerator with hybrid architecture.
In 2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pages 15–29. IEEE, 2020.

[119] L. Yang, Z. He, Y. Cao, and D. Fan. Non-uniform DNN Structured
Subnets Sampling for Dynamic Inference. In 2020 57th ACM/IEEE
Design Automation Conference (DAC), pages 1–6. IEEE, 2020.

139

[120] S. Yin, Z. Jiang, M. Kim, T. Gupta, M. Seok, and J.-s. Seo. Vesti:
Energy-Efficient In-Memory Computing Accelerator for Deep Neu-
ral Networks. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 28(1):48–61, 2019.

[121] R. Ying et al. Hierarchical graph representation learning with dif-
ferentiable pooling. arXiv preprint arXiv:1806.08804, 2018.

[122] S. Yoo, G. Nicolescu, L. Gauthier, and A. A. Jerraya. Automatic
Generation of Fast Timed Simulation Models for Operating Systems
in SoC Design. In Proceedings 2002 Design, Automation and Test in
Europe Conference and Exhibition, pages 620–627, 2002.

[123] J. Yu, L. Yang, N. Xu, J. Yang, and T. Huang. Slimmable Neural
Networks. In International Conference on Learning Representations,
2018.

[124] C. A. Zeferino and A. A. Susin. SoCIN: A Parametric and Scal-
able Network-on-Chip. In 16th Symposium on Integrated Circuits and
Systems Design, 2003. SBCCI 2003. Proceedings., pages 169–174, 2003.

[125] B. Zoph and Q. V. Le. Neural Architecture Search with Reinforce-
ment Learning. arXiv preprint arXiv:1611.01578, 2016.

[126] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning Transferable
Architectures for Scalable Image Recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 8697–
8710, 2018.

	Contents
	Abstract
	Introduction
	Overview of the Preliminary Work
	Performance Analysis of Priority-Aware NoCs
	Performance Analysis of NoCs with Bursty Traffic
	Performance Analysis of NoCs with Deflection Routing
	Communication-Aware Hardware Accelerators for Deep Neural Networks (DNNs)

	Proposed Work-1: Multi-Objective Optimization to Design Latency-Optimized NoC
	Proposed Work-2: Hardware Accelerator for Graph Convolutional Networks (GCNs)
	Conclusion of the Report
	Appendix A: Performance Analysis of Priority-Aware NoCs
	Related Work
	Proposed Network Transformations
	Generalization for Arbitrary Number of Queues
	Experimental Evaluations
	Conclusion

	Appendix B: Performance Analysis of NoCs with Bursty Traffic
	Related Work
	Proposed Approach to Handle Bursty Traffic
	Experimental Results with Bursty Traffic
	Conclusion

	Appendix C: Performance Analysis of NoCs with Deflection Routing
	Related Work
	Proposed Superposition-based Approach
	Experimental Results with Deflection Routing
	Conclusion

	Appendix D: Communication-Aware Hardware Accelerators for Deep Neural Networks (DNNs)
	Related Work
	Area-aware NoC Optimization
	Latency-aware NoC optimization
	Experimental Evaluation
	Conclusion

	Bibliography

