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Abstract

Clustered architecture processors are preferred for ensldesigstems because
centralized register file architectures scale poorly imteof clock rate, chip area,
and power consumption. Although clustering helps by imprgwlock speed,
reducing energy consumption of the logic, and making thégdesmpler, it in-
troduces extra overheads by way of inter-cluster commtioitaThis communi-
cation happens over long global wires having high load ctgrace which leads to
delay in execution and significantly high energy consunmptiater-cluster com-
munication also introduces many shortidle cycles, thesaipyificantly increasing
the overall leakage energy consumption in the functionasuihe trend towards
miniaturization of devices (and associated reduction iaghold voltage) makes
energy consumption in interconnects and functional unienevorse and limit
the usability of clustered architectures in smaller ted¢bgies. However, tech-
nological advancements now permit design of interconretisfunctional units
with varying performance and power modes. In this paper,npgse scheduling
algorithms that aggregate the scheduling slack of insgmstand communication
slack of data values to exploit the low power modes of fumalanits and inter-
connects. Finally, we present a synergistic combinatiotihe$e algorithms that
simultaneously save energy in functional units and intenects to improve the
usability of clustered architectures by achieving betterall energy-performance
trade-dts. Even with the conservative estimates of contributioruatfional unit
and interconnect to overall processor energy consumpghemproposed combined
scheme obtains on an average 8% and 10% improvement in loseead)y-delay
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product with 3.5% and 2% performance degradation for a &efted and a 4-
clustered machine respectively. We present a detailediexpetal evaluation of
the proposed schemes. Our test bed uses the Trimaran comfiéstructure.
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1. Introduction

Proliferation of embedded systems has opened up many nearobsissues.
Design challenges posed by embedded processors are bbtahferent from
those dfered by general purpose systems. Apart from very high pedoce they
also demand low power consumption, low cost, and less cleia &r be practi-
cal. The ever increasing trend towards miniaturization efices makes utiliz-
ing huge transistor budget in a manner that enables highk sloeed, low design
complexity, and less energy consumption(1) even moreeahgithg. However, re-
solving this challenge can enable the deployment of emlzkgggtems for many
performance-demanding never-before embedded applisatita lower cost. An-
other challenge posed by this technological advancemdin¢ issing level of the
leakage energy consumption in the logic. The increase inr#msistor density
requires reducing the supply voltage in order to operateitioait reliably. The
reduction in supply voltage also requires reduction in threghold voltage in or-
der to maintain the speedup and this leads to an exponeistairr the leakage
component of the energy consumption(2). With the 65nm arallentechnolo-
gies currently in fabrication, the leakage energy is on gr the dynamic energy
consumption. In future technologies the leakage energyfuvther dominate the
overall energy consumption(3).

Distribution or clustering is the common design theme théiging employed
in one form or another to meet these challenges. The basadsde design sim-
pler and smaller components and put together a collectidghese components
interconnected using a communication fabric. Smaller camepts are simpler to
design, enable faster clock speed, and incur less energycmtion. Diferent ar-
chitectural philosophies(4)(5)(6)(7)(8)(9) have usestrihution in its varied form
to tackle the scalability problem in the past. This trendxigeeted to continue in
the future also with ever growing number of transistors anahip.

Clustered VLIW architectures(10)(11)(4) use clusteringgggophy in con-
text of VLIW architectures. These architectures are beirdely adopted in em-
bedded domain because they overcome the scalability pnoagsociated with
centralized VLIW architectures. A clustered VLIW archi@e(4) has more than



CLUSTER (

CLUSTER]

CLUSTER

——

INTER-CLUSTER COMMUNICATION NETWORK

Figure 1: A General Clustered VLIW Architecture

LOCAL REGISTER FILE

I

I

FU O

FU 1

INTER—CLUSTER COMMUNICATION NETWORK

FU Function Unit

AN Individual Cluster

CFU Communication Function Unit

Figure 2: A Cluster



one register file and connects only a subset of functionas$ timia register file (see
Figure 1 and 2). Groups of small computation clusters camtagdonnected us-
ing some interconnection topology and communication caenabled using any
of the various inter-cluster communication models(12). s@ting avoids area
and power consumption problems of centralized registemfiditectures while
retaining high clock speed which can be leveraged to getbetrformance.
Texas Instrument’s VelociTI(13), HBT’s Lx(14), Analog’s TigerSHARC(15),
and BOPS’ ManArray(16) are examples of the architecturegldped on the
basis of clustered ILP philosophy. IBM’s eLite(17) is a rasbaproposal for a
novel clustered architecture. Clustered VLIW architecdwentinue to be pop-
ular in embedded domain and are part of some of the most popothrecent
chips planned to power smart phones and tablets (18) apattfreir presence in
low-end phones(19).

Though clustering helps to combat the scalability problgmrmiaking compo-
nents simpler and thereby increasing clock rate and redutyinamic energy con-
sumption of functional components, an interconnectiowosk is required for the
communication of data values amondfeient components. This communication
in clustered architectures happens over long wires havigig lbad capacitance
which in efect takes more time and incurs more energy consumptior{L){his
problem is becoming severe with each upcoming processoémiyn As a result,
clustered architectures are becoming more communicabandin terms of the
performance and energy consumption. Apart from the intereots, functional
units are another major source of energy consumption intezied architectures.
The frequent accesses to functional units raises the teyerlevel and makes
the leakage energy consumption which is specifically a aoncesmaller tech-
nologies even worse. Moreover, the contention for limitednber of slow in-
terconnects leads to many short idle cycles and that fuitiveeases the leakage
energy consumption in functional units.

Clustered VLIW architectures rely on compile-time scheaiyli The static
scheduling simplifies the issue logic by alleviating thechése a dedicated hard-
ware for scheduling. Thus, a significant fraction of theltetsergy consumption
in clustered VLIW architectures is attributed to interceats and functional units.
Though, the exact percentage depends upon the architestdreircuit details,
earlier studies report that a very high percentage (25% %)39 total processor
energy consumption is attributed to interconnects. Snhgikalarge fraction (30%
to 35%) of static energy consumption in a VLIW architect@ratiributed to func-
tional units(21). An architecture level model develope@®) also confirms that
the leakage energy consumption in functional units carsta noticeable frac-
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tion of the overall processor leakage energy consumptispitkehaving a smaller
transistor count compared to the caches. Thus, optimizieygy in intercon-
nects and functional units in clustered architectures t®iveng more and more
important from one process generation to another.

However, the functional units and interconnects are oftedeuutilized in
clustered VLIW architectures. Apart from other usual causech as data de-
pendencies, the under-utilization of functional unitslgalue to the contention
for limited number of slow interconnect channels that idtroes many short idle
cycles for functional units. At the same time since the fiomal units are dis-
tributed among clusters, there is also more contention doctional resources
which leads to underutilization of interconnects. Finglhe contention for func-
tional and interconnect resources in clustered VLIW aedtitre combine in a
synergistic fashion and lead to greater available slackustered architectures as
compared to VLIW architectures.

The advancements in VLSI technology now enable designitegdonnects
and functional units with dierent power and performance modes. For example
(23)(24) show that using 45nm technology, it is possible ésigh wires con-
suming 15 the energy but having twice the delay(23). (25) proposass&in-
terconnect composed of wires withfidirent characteristics to improve tE®?!
of the superscalar processor. Similarly the capabilitfedual-threshold domino
logic with sleep mode (that can transition between activelenand sleep mode
and vice versa without any performance penalty(26) but witiderate energy
penalty) can be utilized to do leakage energy managemeshfot idle cycles in
functional units. One such purely hardware based schenteindntext of a su-
perscalar architecture is due to Dropsho et al.(27). Tloliesie puts any integer
ALU into low leakage mode after one cycle of idleness. Thesutts confirm the
benefits of such an aggressive scheme in smaller technslobiewever, being
a purely hardware based scheme, the benefits are severadydmye, by 30%)
affected by frequent transitions from active mode to sleep nasdkvice-versa
because of many short idle periods.

In this paper, we propose a compiler-directed approachetetages on these
advancements in VLSI technology to improve the usabilitycloistered VLIW
architecture in smaller technologies, targeting the twgomsource of energy
consumption namely interconnects and functional unitougih, there has been
some work in the past to reduce leakage energy consumptfanational units in

LED? is defined as Energy*Execution Time* Execution Time



the context of superscalar and VLIW architectures, to thet beour knowledge,
there has been no such work in the context of clustered VLIANitactures specif-
ically targeting smaller technologies. Regarding interests, the primary focus
of research had been to reduce the latency of communicafienare not aware
of any work that targets to reduce energy consumption inmgotenects in clus-
tered VLIW architectures. In context of inter-cluster coomication, we limit our
focus on most popular inter-cluster communication mod@séuch as explicit
inter-cluster communication through inter-cluster maw&nuctions and extended
operand inter-cluster communication models(12) foundammercial clustered
processors such as Texas Instrument’'s VelociTI(13) antSHB Lx(14). The
novelty of our approach also lies in an integrated schedudilgorithm that si-
multaneously reduces the energy consumption in functioniés as well as inter-
connects. The contention for a limited number of functicarad communication
resources in a clustered VLIW architecture leads to in@@agcles of execution
on a clustered machine as compared to an equivalent VLIW imactOur ap-
proach aggregates the scheduling slack of instructionsamununication slack
of data values in a synergistic fashion to convert the infitadéeness of functional
and communication resources in clustered architectunedgg gains. The major
contributions of our approach can be stated as follows:

e A scheduling algorithm for clustered-VLIW architecturést exploits the
scheduling slacks with an aim of reducing the number of ttems and as-
sociated overheads thereby significantly improving thkdga energy con-
sumption compared to the underlying architectural scheme.

e Another scheduling scheme for clustered architecturesekgloits com-
munication slack of data values and scheduling slack ofungbns to re-
duce the energy consumption in interconnects while aamjebitter per-
formance for clustered architectures. The proposed scipeovedes per-
formance comparable to a dual bandwidth clustered ard¢hies at nearly
half the energy cost.

e An integrated scheme that simultaneously exploits schglglack of in-
structions and communication slack of data values to aetbetter overall
energy savings. This scheme converts any inherent perfar@rass due to
contention for communication and computation resourcesenergy ben-
efits.

¢ \We have significantly extended Trimaran Compiler Framewofithfully
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model diterent clustered VLIW configurations and inter-cluster camin

cation models. We have implemented these schemes in extdindearan

framework. We present a detailed performance analysisdbaiseexper-
imental evaluation of these algorithms forffdrent clustered VLIW con-
figuration and technology nodes. We specifically discernbneefits of a
compiler based scheme as compared to a hardware only scimehoera-

pare our results with some of the earlier algorithms. Reanesested
in results in restricted but more realistic context of comeradly available

real clustered machines such as C6X are referred to some calier

work(28)(29).

It is important to mention here that the work and experimengablts pre-
sented in this paper also focus on interconnect energy gaanud integrated inter-
connect and functional unit energy savings. These resalgnificantly beyond
some of the initial results presented in one of our earlier k{®0) that focuses
solely on scheduling to save energy in functional units.idauhlly, in this paper,
we also present results of savinggeoved by dfferent algorithms across glerent
technology nodes.

The rest of the paper is structured as follows. Section 2ridescthe mo-
tivation for this work and presents some experimental exdds. Section 3 de-
scribes diferent scheduling algorithms for leakage energy manageméuanc-
tional units, energy optimization in interconnects, anel tombined scheme to
optimize energy in functional units as well as interconsae@ection 3 also de-
scribes the scheduler implementation in detail. Sectioestidbes the scheduling
algorithm with the help of examples. Section 5 describesaperimental setup,
results, and a detailed analysis of results. Section 6 thescthe related work
in the area of scheduling for clustered architectures,ggnaware scheduling for
VLIW architectures, architectural approaches for leakagergy management,
and eficient interconnect design. We conclude in section 7 witimigos to future
directions.

2. Motivation

VLIW and clustered VLIW architectures are optimized for b@arformance
in order to meet real-time performance requirements of elaba applications.
However, the functional units are underutilized due to tiiteerent variations in
the ILP of the programs. The idleness is even more pronoufwedl clustered
VLIW architecture because of the contention for a limitedntner of slow inter-
connects which manifests itself in the form of many shor icfcles. The graph
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Figure 3: Functional Unit Idleness

titted 'Base’ in Figure 3 shows the average cumulative distion of idle cycles in
integer ALUs for a 2-clustered machine having only 2 intefjeUs in each clus-
ter and one bidirectional single cycle latency cross-patiwben clusters (details
of our experimental setup and energy model appear in seg}iodn an average,
functional units are idle for 71% cycles in our collectionroédia benchmarks.
Many small idle cycles constitute a large percentage ofalveycles. As Figure 3
depicts 50% of total 71% idle cycles have a duration lessdnaqual to 10 cycles
in '‘Base’ architecture. We propose a scheme (Algorithm 1) éixaloits instruc-
tion slack to aggregate the idleness in functional unitsdgducing the frequent
transitions. The graph after applying our scheduling sehershown with title
'Optimized’ in Figure 3. This shows that the many small idieles have been
converted to large idle cycles by reducing transitions amyg 84% of overall idle
cycles are now less than 10 cycle. Idle cycle of length betwig®to 20 cycles
constitute 32% of total idleness for 'Optimized’ schemeleffor the 'MaxSleep’
scheme this is only 18%. This clearly shows that our scheraklésto exploit the
slack to reduce the number of transitions thereby incregatia duration of idle
periods.

Another way to reduce idle cycles (attributed to contertitor cross-paths)
and thereby improve the performance is to use high-spedédidagdwidth cross-
path for communication of data values among cluster. Pusvatudies have re-
ported that the performance degrades by 12% when the latéicoymmunication
is doubled for a four clustered architecture, and that isxsireg the interconnection
bandwidth from one to two improves the performance by as msd0%(31). We
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also observe similar benefit in performance with approxatyat5% reduction in
idle cycles on an average by using two bidirectional siraylele cross-paths be-
tween clusters as compared to the configuration which udgoae cross-path.
However, having both the cross-path optimized for low layeresults in high
energy consumption in interconnects. This is because mmpydhe latency of
communication channel requires closely spaced repeatechwcrease the area
and energy overheads of repeaters(23). A high speed patiofiomunication of
data values among clusters indeed enables better perfoemiamt we argue that
not all data values are critical enough to be communicateal loigh speed path,
and that many communications are non-critical and cansiipen on a slow
path without &ecting performancéle define the communication slack of a data
value on clustered architectures as the number of cyclesdsat the time when
the data value to be communicated becomes available (duentpletion of ex-
ecution of the producing instruction) and when the instuctihat requires the
data value is actually scheduled’he available communication slack of a data
value on clustered architecture ifexted by data dependencies among instruc-
tions, limitation on the available number of functional tsniand the limitations
on the number of available cross-paths, their bandwidtth tlae latency of cross-
path communication. Figure 4 presents quantitative regaltsubstantiate our
arguments. This figure presents the percentage of requin@thanication that
has a slack of three cycles (two cycles and four cycles) oerfuara two-cluster
machine with two high speed bidirectional cross-paths betwclusters. We ob-
serve that all the benchmarks have many communicationshigthslack values.



In particulardjpeg, g721encode, des, and ¢rave 70% to 75% of communica-
tions with slack value of three cycles or higher. On an avwerage observe that
60.88% (82.51% and 43.16%) of communications can sustateady of three
cycles (two cycles and four cycles respectively) or higher.

Thus a more suitable option to reduce the idleness in fumationits with-
out incurring high energy overhead is to use interconnestwéden clusters with
some paths optimized for latency and others for energy. \Geqse a scheduling
mechanism (Algorithm 2) that exploits the communicatiacklto steer the non-
critical communication over the slower but enerdiigent wires while assigning
critical communication over the fast but more energy-camsg wires. Such a
configuration which uses one bidirectional single-cyclessrpaths and one bi-
direction three-cycle cross-path between clusters regdtieeidle cycles by 13%
on an average as compared to the configuration which use®oalgross-path.

Though a high bandwidth cross-path mitigates the contestior cross-path
and improve performance to some extent, the variation in dELfhe program
coupled with cross-path contention still manifest itselthe form of many short
idle cycle. The short idle cycles renders traditional legkanergy management
schemes unusable. A hardware based scheme proposed irtili2é¥ uhe dual-
threshold logic (and its capability of fast transition taldrom low-leakage mode
at moderate energy penalty) to perform leakage energy neamaqf for short idle
cycles. However, thefiective energy savings of this scheme is low because of
high energy cost of fast transitions happening frequer@lyr Transition aware
scheduling scheme as described earlier exploits instrustack to aggregate the
idleness in functional units to improve th&ective leakage energy savings by
reducing the frequent transitions.

Thus, we propose a combined scheme (Algorithm 3) that etsptmmmu-
nication slack of data value and instruction slack togetbhereduce the energy
in functional units and interconnects. The proposed scheraps the idle func-
tional unit idle while maximizing the utilization of actienctional units. At the
same time, the proposed scheme exploits the communicd#iok sf data value
to utilize the low-power cross-path as much as possible.

3. The Scheduling Algorithm

The Elcor backend of the Trimaran infrastructure has a cycheduling al-
gorithm designed and implemented for flat VLIW architect(82)(33). We have
modified this algorithm to perform leakage energy optimarator clustered VLIW
architectures. Another loop has been added inside the rohedsling loop of
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the cycle scheduler to perform cluster scheduling in argnated fashion. The
integrated approach(34)(35)(31) to cluster schedulingae®dhe cluster assign-
ment decision during temporal scheduling. This is in cattra phase-decoupled
approaches(36)(37)(38) which perform cluster assignprenitto temporal schedul-
ing. We propose three filerent scheduling algorithm. Algorithm 1 performs only
leakage energy management assuming a machine model wiledidage mode
for functional units(30) but homogeneous interconneet (ithe energy cost of
using any cross-path is same). Algorithm 2 performs intemeat energy opti-
mization assuming a machine model with heterogeneousoneects. However,
this algorithm is more aggressive in interconnect energgagament compared
to one we proposed earlier(39) and is evaluated using aebiaterconnect en-
ergy model(40). Algorithm 3 is a new combined algorithm th@tultaneously
performs both leakage energy management in functionas asitwell as energy
optimization in interconnect assuming the machine modeingaboth low leak-
age mode for functional units as well as heterogeneousconeects. However,
it is important to note that combined Algorithm 3 gives prefece to leakage en-
ergy management when exploiting slack and uses any leftsiaek for energy
optimization in interconnects. This avoids excessiveqrennce degradation as
well as extra transitions in the functional units and assed energy overheads.
Another reason we choose to give preference to functiond wien exploiting
slack is because its contribution to overall processorggneonsumption is pre-
sumably more and it is one of the hot-spot and hence demands aggressive
energy saving. Table 1 presents summary of all algorithmses& algorithms
differ with respect to cluster selection, functional unit bimgjiand cross-path as-
signment policies. However, the basic steps in all the #@lyorare as follows.

Sr. | Name Description Machine Model

1 FuAlgo Energy Hficient Scheduling for Functional Units(FUs) FUs with low power modes

2 ICAlgo Energy Hficient Scheduling for Interconnects(ICs) ICs with varaition in latency and energ

3 FulCAlgo | Energy Hiicient Scheduling for FUs and ICs (priority to FUs) FUs with low power modes and ICs
with varaition in latency and energy

Table 1: Summary of All Algorithms

1. Prioritizing the ready instructions

. Assignment of a cluster to the selected instruction

3. Assignment of a functional unit to the selected instauctn the target clus-
ter

N
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4. Assignment of cross-paths for communicating the dataegato the target
cluster

In what follows, we describe how each of these step is peddrand how dter-
ent algorithms dfer in their functioning.

3.1. Prioritizing the Ready Instructions

Instructions in the ReadyList are prioritized using a ptiofunction that uses
instruction slack and number of consumers of the instractimstructions with
less slack should be scheduled early and are given highaeitprover instruction
with more slack to avoid unnecessary stretching of the adeethstructions with
the same slack values are further ordered in the decreasiegaf the number of
consumers. An instruction with a large number of succegsor®re constrained
in the sense that its spatial and temporal placemfatis scheduling of more
number of instructions and hence should be given higherifyrigsiving prefer-
ence to an instruction with many dependent instructions @h&bles better future
scheduling decisions by uncovering a larger portion of ttagly.

Scheduling slack of an instruction is defined as thiedence between the ear-
liest start time and the latest finish time of the instructidmaditionally, slack
is determined statically during dependence graph anabefisre the scheduling
begins, assuming a machine with infinite resources of egoh tyhis calcula-
tion is inherently pessimistic as any real machine will havatentions for re-
sources which prolongs the execution time. Since our dlgoriexploits slack
of instructions to delay their execution in order to savergyevithout dfecting
performance, a better quantification of available slackfiatmost importance.
We quantify the slack of instructions while scheduling aisagor the specific
target machine by taking resource constraints into accadfetfirst schedule the
instruction using a simple cycle-by-cycle scheduler. Ttleeslule time of the in-
structions is stored during this phase. In the second pltaseschedule time
(termed as Late cycle) is used to determine the slack of gteuiction. In our im-
plementation, slack is dynamically updated for all the agiens in the ready list
after every cycle. The earliest schedule time of an insvaas set to the current
cycle, before scheduling for the current cycle begin (Eaylgle). The slack is
then determined as aftBrence of the Early cycle and the Late cycle. Dynamic
update of the slack after each cycle ensures that any comsslaek is taken into
account while scheduling instructions in future cycles.
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3.2. Cluster Assignment

Once an instruction has been selected for scheduling, we makuster as-
signment decision. The primary constraints are :

e The chosen cluster should have at least one free resourice tyfte needed
to perform this operation

e Given the bandwidth of the channels among clusters and tisgige, it
should be possible to satisfy the communication needs obpleeands of
this instruction on the cluster by scheduling these compatins in the
earlier cycles (so that operands are available at the rigleft

Selection of a cluster from the set of the feasible clusteidone based on two
criteria. (1) to give preference to clusters that have aivadtinctional unit to
schedule the operation under consideration. (2) to giveepece to cluster that
reduces the overall cost of communication. Algorithm 1 @dinat reducing en-
ergy consumption in functional units) uses criterion (1}tses primary criterion
for cluster selection and criterion (2) is used only for ltireaking. Algorithm
2 (aimed at reducing energy consumption in interconnedss$ ariterion (2) for
cluster selection. Algorithm 3 again uses criterion 1 aspiti@ary criterion for
cluster selection and criterion (2) is used as a seconddeyion. The communi-
cation cost is computed by determining the number and typ®wimunications
needed by a binding in the earlier cycles as well as the conuation that will
happen in the future. Future communications are deternbyezbnsidering the
successors of this instruction which have one of their garbound on a clus-
ter different from the cluster under consideration. This is due ¢of#let that if
the instruction is bound to the cluster under consideraiiowill surely lead to
communication(s) in the future while scheduling the susoes of the instruc-
tions. Although, we have experimented with many other Istigs for cluster
assignment, the above mentioned heuristics seems to genleeabest schedule
in almost all cases from both the performance as well as grpengpective(41).

3.3. Functional Unit Binding

A functional unit binding scheme decides the binding of asgminstruction
to a functional unit and is important only in the context gj@&ithm 1 and 3. The
algorithm maintains a FU map that explicitly keeps track led status of each
functional unit. A functional unit is marked to be in sleepdeafter one cycle of
idleness and activated on next use.
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Algorithm 1 Energy Hficient Scheduling for Fus

Initialize ReadyList with root operations of the dependegeraph of the region to be scheduled
CurrentCycle— 1
while (ReadyList is not emptyjo
Initialize EarlyCycle with CurrentCycle, and LateCycletiiSchedulingCycle determined using performance
driven scheduling
slack= LateCycle- EarlyCycle
while (Not all operations in ReadyList have been tried orde)
CurrentOperation— UnS chedLispop()
ClusterPriority « 1 //Schedule to reduce energy in FUs
Target« DetermineBestAlternati¢€ urrentO perationCurrentCycleClusterPriority)
if ((TargetCluster== -1) or (Slack> SLACKTHRESHOLD and TargaW/ akeup= 1)) then
ReadyList.add(CurrentOperation)
CONTINUE
end if
ScheduleF(CurrentOp Target fu, TargetCluster CurrentCycleg
end while
CurrentCycle— CurrentCycle+ 1
ReadyLisupdatd)
end while

Algorithm 2 Energy Hficient Scheduling for ICs

Initialize ReadyList with root operations of the dependegeaph of the region to be scheduled
CurrentCycle— 0
while (ReadyList is not emptydlo
Initialize EarlyCycle with CurrentCycle, and LateCycletlviSchedulingCycle determined using performance
driven scheduling
slack= LateCycle- EarlyCycle
while (Not all operations in ReadyList have been tried orde)
CurrentOperation— UnS chedLispop()
ClusterPriority < 0//Schedule to reduce energy in ICs
Target« DetermineBestAlternati¢€urrentO perationCurrentCycleClusterPriority)
if ((TargetCluster == -1) or (Slack > SLACKTHRESHOLD and Targe&EommEnergyCost>
COMM_THRESHOLD) then
ReadyList.add(CurrentOperation)
CONTINUE
end if
S cheduleCom(i argetCommO ptioh
S cheduleF(CurrentOp T arget fu, TargetClustet CurrentCyclé
end while
CurrentCycle— CurrentCycle+ 1
ReadyLisupdatd)
end while
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Algorithm 3 Energy Hficient Scheduling for Fus and ICs (priority to Fus)

Initialize ReadyList with root operations of the dependegeaph of the region to be scheduled
CurrentCycle— 1
while (ReadyList is not emptydo
Initialize EarlyCycle with CurrentCycle, and LateCycletwiSchedulingCycle determined using performance
driven scheduling
slack= LateCycle- EarlyCycle
while (Not all operations in ReadyList have been tried orde)
CurrentOperations— UnS chedLispop()
ClusterPriority « 1
Target« DetermineBestAlternati¢€urrentO perationCurrentCycleClusterPriority)
if ((TargetCluster== -1) or (Slack> SLACKTHRESHOLD andT argetWakeup== 1)) then
ReadyList.add(CurrentOperatiofipchedule to reduce energy in FUs primarily
CONTINUE
end if
S cheduleCom(f argetCommO ptiop
ScheduleF(CurrentOp Target fu, TargetClustetr CurrentCyclg
end while
CurrentCycle— CurrentCycle+ 1
ReadyLisupdatd)
end while

If the functional unit required for the instruction undemnsaderation is active
in the target cluster, it is bound as usual. Otherwise, tlaae slack of the
instruction is considered. If the slack is below a threshuald use the threshold
value of 0 in our experiment) the functional unit requiredthg instruction is
woken up. In case there is more than one alternative avai(&i activating), the
functional unit which is in sleep mode for a longer duratismioken up in order
to amortize the cost of waking up. In case the instructiorspsses enough slack,
its scheduling is deferred to a future cycle and it is put biacthe ReadyList.
Note that the next time this instruction is picked up for siling, its earliest
scheduling time and hence the slack gets updated. Thismjeasathat the slack
of an instruction reduces monotonically and eventually esfrelow the threshold
ensuring that it is scheduled. Hence the algorithm is guaeahto terminate.

3.4. Cross-path binding

The cross-path assignment scheme is required only in thtexdasf algorithm
2 and algorithm 3. The scheme is designed to minimize theggramsumption
due to inter-cluster communication withoufexcting runtime performance. In or-
der to meet this objective, the low power cross-paths ard us@reference to
the high power cross-paths wherever possible. More pigctbe assignment of
cross-paths to communications is done as follow. To scleealglommunication,
its earliest scheduling cycle, latest scheduling cyclel slack values are deter-
mined first. The earliest scheduling cycle for a communirais the cycle in
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Procedur e 4 DetermineBestAlternative

INPUT: ThisOp, ThisCycle, ClusterPriority

OUT PUT: Determines best scheduling alternative for this binding
FirstTargetCluster« —1;

FirstTargetCommCost 1000000;

FirstT argetCommEnergyCost- 1000000;
SecondTargeCluster— -1

SecondTarge€ommCost 1000000;
SecondTarge€ommEnergyCost- 1000000;

for (CurrentCluster ranging from FirstCluster through Lag&@#r)do

if (FU required by ThisOp is available in ThisCycle for Cur@iuster)then
if (Cross-paths required by ThisOp are available in ThisCiml€urrentClusterjhen
CommAlternative— DetermineBestCommAlternati@$isO perationCurrentClusterT hisCyclé
FuAlternative— DetermineBestFuAlternativ€BhisOperationCurrentClustes T hisCyclg
if ((FU under consideration is in active mode) and (FirstTa@mnhmEnergycost- CommAlterna-

tive.CommEnergyCostthen

FirstTargetCommCost— CommAlternativeommCost

FirstT argetCommEnergyCost- CommAlternative€ommEnergyCost
FirstT argetCommOption— CommAlternativeeommO ption

FirstT argetCluster « CurrentCluster
FirstTargetFu « FuAlternativeFu
else

if (SecondTarget.CommEnergyces€CommAlternative.CommEnergyCostjen
SecondTargeg€ommCost CommAlternative€ommCost
SecondTarge€ommEnergyCost- CommAlternativeeommEnergyCost
S econdTarge€ommO ption— CommAlternativeCommO ption

SecondTargeCluster— CurrentCluster
SecondTargefu « FuAlternativeFallBackFu
end if
end if
end if
end if
end for
if ((FirstTargetclustet = -1)
SecondTarge€ommCo} then
FinalTarget« FirstTarget
FinalT argetWakeup— 0
else
FinalTarget— SecondT arget
FinalT argetWakeup— 1
end if
RETURNFinalT arget

and (ClusterPriority ==

0 or FirstTargetCommCost <=
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Procedure 5 DetermineBestFuAlternative
INPUT: ThisOp, ThisCluster, ThisCycle
OUT PUT: Best functional unit and fallback functional unit for tiéénding
for (CurrentFu ranging from FirstFu through LastFu in This@usdo
if (CurrentFu is available in ThisCycle and Current Fu can eteThisOp)hen
if (CurrentFu is activejhen
TargetFu « CurrentFu
TargetFallBackFu« -1
RETURN Target
else
if (CurrentFuSleepPeriod> TargetS leepPeriojithen
TargetFallBackFu« CurrentFu
TargetSleepPeriod— CurrentFusS leepPeriod
end if
end if
end if
end for
RETURNT arget

Procedure 6 DetermineBestCommAlternative

INPUT: ThisOp, ThisCluster, ThisCycle

OUT PUT: Best communication alternatives and cost for this binding

for (All Communication required for scheduling ThisOp on This&ér in ThisCyclefo
CurrentCommO ptior— DetermineBestCommO pti@urrentComm
Target. CommOption.add(CurrentCommOption)
Target. CommCost=DetermineCommunicationCost(CurrentCommOption)
Target.CommEnergyCostDetermineCommEnergyCost(CurrentCommOption)

end for

RETURNTarget

Procedure 7 DetermineBestCommOption

INPUT : ThisComm

OUTPUT: A tuple CommOption (Comm, Cross) that associates best crabsata ThisComm
CommOption.Comm— ThisComm

Determine the EarlyCommCycle, LateCommCycle and the CommSladkhisComm

Determine the free minimum energy consuming cross-gatbet_cross that can transfer CurrentComm between Ear-
lyCommCycle and LateCommCycle

CommOption.Cross- targetcross

RETURNCommOption

Procedure 8 ScheduleComm
INPUT: ThisCommOption
while (CurrentComm:ThisCommOption.pop()lo
Schedule CurrentComm.Comm on CurrentComm.CrossPath on GDorent.ScheduleCycle
Mark CurrentComm.CrossPath busy from CurrentComm.Schedale®yr CurrentComm.CrossPath.Latency Cy-
cles
end while

Procedure 9 ScheduleFu
INPUT: ThisOp, ThisFu, ThisCluster, ThisCycle
Schedule ThisOp on ThisFu on ThisCluster on ThisCycle
Mark ThisFu in ThisCluster Busy from ThisCycle for ThisFatency Cycles
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which the data value to be communicated is produced in theceatluster, plus
one. The latest scheduling time for communication is thedaling cycle of first
consuming instruction, minus one. Thdtdrence between the earliest schedul-
ing cycle and the latest scheduling cycle is the commurinasiack. In order
to avoid delaying the consuming instruction and the consegpossible stretch
of the schedule, a communication is assigned to a leastyoerguming cross-
path that can transfer the data value within the availalleksior communication.
Thus the cross-path assignment scheme maximizes the udagepmwer cross-
paths subject to the availability of slack in the communaratand thus, as far as
possible, performance degradation is minimized and ersgagyg is maximized.

Algorithm 2 uses a more aggressive scheme that exploitseiction slack
also and converts it to communication slack. This schemerdsi instruction
that requires communications with total energy cost abowerounication thresh-
old (COMM_THRESHOLD) if it possess a slack that is above a slack threshol
(SLACK_THRESHOLD). The average energy cost of communications &ssoc
with a binding is determined according to following cost ntet

CommEnergyCost= (A= Z FastCommt B x Z SlowComm
+ Cx Z FutureComny T otalComm (2)

whereFastComnrepresents number of the transfers that can happen on the
fast cross pathSlowComnrepresents number of communications that can hap-
pen over the slow cross path aRdtureComnrepresents the future communi-
cation that will happen on fast or slow cross-path dependimgvailability. To-
talCommis the total number of communication that happen as a di@eteof
this binding. The selection of A, B, and C is architecture gpeand depends
on available communication options in a clustered architecand their relative
cost. We found that A1.0, B=0.33 and &0.67 work well in practice for the
kind of heterogeneous interconnect we consider in our e@xgeits. Of course,
the weight can be chosen to reflect the heterogeneous intexcbunder consid-
eration. For our experiments, we have found that SLAOKRESHOLD= 1 and
COMM_THRESHOLD=.67 works well in practice. The above heuristic leads to
scheduling the instruction under consideration at a |ateleqreferably on a slow
but more energyfécient cross-path. Again it is important to note that the next
time this instruction is picked up for scheduling, its esstischeduling time and
hence the slack get updated. This guarantees that the dlackiostruction re-
duces monotonically and eventually comes below the thidstrasuring that it
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is scheduled. Hence the algorithm is guaranteed to termirtanally, the com-
bined Algorithm 3 exploits instruction slack only for legj@aenergy management
in functional units (as Algorithm 1) and uses the commumdcaslack only for
interconnect energy optimization. Combined Algorithm 3 gloet delay the in-
structions in order to seek opportunities to schedule comecation on low power
cross-path. Thus, it does not convert the instruction siattk communication
slack to save energy in the interconnect.

3.5. Scheduler Implementation

The cycle scheduler as implemented in Trimaran(32) taeyééd VLIW class
of architectures(33). It maintainsReadyListof operations whose predecessors
have already been scheduled. In each iteration of the mhedsding loop, the
highest priority operation is selected from tReadyListand scheduled in the
current cycle if it satisfies all the resource constraints.olir implementation,
slack and hence priority is recalculated at the beginningagch cycle for all the
operations in th&keadyListuusing the schedule time determined in an earlier per-
formance oriented scheduling pass. After taking the higpesrity instruction,
DetermineBestAlternativéetermines all scheduling alternativestifrrentOper-
ationin all clusters.DetermineBestAlternativecans each cluster one by one and
check if the instruction under consideration can be scleetn current cycle on
cluster under consideration using some functional undugh it can be in sleep
mode) and available cross-path for requisite communicdtiothis scheduling. It
prioritizes clusters which match this feasibility cri@into two categoried-irst-
Targetstores the cluster that can accommodate the instructioerwadsideration
in current cycle with minimum communication cost and alse &a active func-
tional unit. SecondTargestores the cluster that can accommodate the instruction
under consideration in current cycle with minimum commatian cost but does
not has an active functional unit. To make these decisiamses procedurBe-
termineBestFuAlternativand DetermineBestCommAlternatit@ return the best
functional unit for scheduling the instruction under calesation and best option
for communicating the requisite data values for the schedulnder considera-
tion and its associated cost. The best functional unit foiopeing the operation
is one which is available and active. If no functional unitactive, this procedure
return the functional unit which is in sleep mode for longésie as a FallBack-
AlterNative. For determining the best alternative for conmication, Procedure
DetermineBestCommAlternatizensiders each required communication one by
one, for each such communication it chooses the best coneation option us-
ing procedureDetermineBestCommOptioProcedureDetermineBestCommOp-
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tion returns the minimum energy consuming cross-path that isaé@ and can
schedule the communication under consideration withiratialable communi-
cation slack associated with communication under conaiaer. The procedure
DetermineBestCommOptidmally aggregate the cost of all communication so
determined to calculate the overall cost of the binding.lI90 @omputes the av-
erage energy cost of the binding by averaging the energyafosal requisite
communication for this binding using cost function desedbkearlier. Finally,
the procedurdetermineBestAlternativéecides between the Target clusters de-
termined using above mentioned two criteria. Algorithm 2sisSirstTarget or
SecondTargeasFinalTargetdepending on which one has the minimum commu-
nication cost. Algorithm 1 and Algorithm 3 usEsstTargetif it is not empty and

it usesSecondTargebtherwise.

The top level scheduling algorithm proceeds after gettirigrmation about
FinalTarget Algorithm 1 puts back the instruction if it required waking a re-
source inTargetCluster(i.e., there is no cluster available in the current cycldwit
an active functional unit to schedule the instruction) argdruction slack is above
a threshold. Thus, this scheme exploits scheduling slacksbfuctions to save
energy in function resources by keeping them idle for lonmeiod of time while
reducing transitions. The Algorithm 2 puts the instructiack in theReadyList
if the FinalTarget. CommCos$ above a threshold and instruction also has enough
slack. By doing this, it converts the instruction slack intoronunication slack
in order to save energy in interconnects. However, if thisasthe case the in-
struction is scheduled imarget.Clusteron Target.Fuusing Target. CommOptian
The procedureScheduleCommandScheduleFassociate the communication and
computation resources for this binding and mark them busallly, algorithm 3
performs cluster selection based on communication cog¢stio availability of
active resource and delays scheduling the instructionarctinrent cycle if it pos-
sesses enough slack and requires waking up a resource. B&dbe cross-path
assignment scheme still assigns the communications egbjoyrthis instruction to
slower cross-paths subject to availability and save energyterconnects. How-
ever, the important dierence between Algorithm 3 and Algorithm 2 is that unlike
Algorithm 2 the instruction slack is not exploited to delastructions to save
energy in interconnect in Algorithm 3.

4. Example

In this subsection, we present two examples that illustnate the available
slack of instructions and communications is exploited by phoposed schedul-
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Figure 5: Dependence Graph 1 Figure 6: Dependence Graph 2
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Figure 7: (a) Schedule 1 and 2 (for Graph 1) (b) Schedule 3}%4for Graph 2)

ing algorithms 2 and 1 respectively to get energy benefitsomit hurting perfor-
mance.

Figure 5 shows a portion of a data dependency graph and Figi@eshows
two possible schedules for this dependency graph. We asaume-clustered
machine with each cluster having an adder, a multiplier afadtecommunication
bus. Schedule 1 has ADD1 and ADD2 scheduled on adders oéclliand cluster
2 respectively in cycle 1. To perform multiplication, theudés of these operations
are transferred to the other cluster in cycle 2. The remgiatidition operation
ADD3 is also initiated in cycle 2 on cluster 1. The results @Bl and ADD2
can be used in cycle 3 on cluster 1 and cluster 2 respectigghetform MPY?2
and MPY1 on multipliers. Though MPY3 does not require angrmiaiuster com-
munication, it is still executed in cluster 1 at cycle 4 bessmaaf non-availability of
a multiplier in cycle 3. The scheduler decides to schedul&Ri@head of MPY3
in schedule 1 assuming that MPY2 is on the critical path. HeneMPY3 gets
preference if it is on the critical path as shown in scheduldNdte that in this
case, MPY2 needs to be scheduled in cycle 4 on cluster 1 agaaube cluster
1 has only one multiplierThe important point to note here is that the scheduler
when scheduling MPY2 in cycle 4 in cluster 2 has the knowledgéttban take
two cycles to transfer the result of ADD2 over the commuracathannel without
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stretching the schedulén such a situation if a slow but more energfi@ent bus
is available, our scheduling algorithm 2 decide to steerroomication to such
a cross-path (as shown with darker arrow in schedule 2). ilgtaven though
three additions are ready to be scheduled in the first cydietao of them can
be scheduled (only two adders are available in this case)laBly though the ad-
dition operations finish in opposite clusters in cycle oreergsults can not be uti-
lized for multiplications in cycle 2 because it takes at teae cycle to transfer the
results to the other clusters. This shows how contentiomgneomputation and
communication resources in clustered architectures mstsifitself in the form
of greater computation and communication slack. Notahky,dontention for re-
sources is more in clustered architectures as compared éodtatectures because
of distribution of resources. Our scheduling algorithm&lages this increased
slack and takes into consideration the criticality of anringtion and the available
cycles to communicate requisite data values while scheglan instruction in a
given cycle. Accordingly, communication is assigned torttast energy-gicient
cross-path that can transfer the value in the available aamuation cycles.

Figure 6 shows another dependence graph and Figure 7 (bysghmssible
schedules for this dependency graph generated for a 2ohasivVLIW archi-
tecture having 1 adder and 1 multiplier in each cluster anddmeltional bus
between the two clusters with 1 cycle transfer latency. 8glee3 is generated
by a performance-oriented scheduler. Performance odesdieeduler schedules
MPY1, and ADDL1 in cluster 1 and MPY2, and ADD?2 in cluster 2 ircleyl
as shown in Schedule 3. The remaining ready operation MPY4AyD4 are
scheduled in cycle 2 in Cluster 1 and Cluster 2 respectivelyDBIMPY 3 resp.)
is scheduled in cycle 3 (cycle 4 resp.) because it takes a tyttansfer the result
of ADD2 (MPY2 resp.) from cluster 2. Similarly MPY3 is schddd in cycle 4
because of an extra cycle needed to transfer results frastecld. Consequently,
the scheduling of MPY5 happens in cycle 6 whereas ADD5 ischdlee in cycle
5in cluster 2. Finally ADDG6 operation is scheduled in cyclesing the result of
ADDS from cluster 2. The Total schedule length is 9 cycles ttal number of
inter-cluster communication needed by the performananted scheduler based
on eager (as early as possible) approach is 4.

Scheduling the same set of operations using our endfgyeat Schelling al-
gorithm 1 generates schedule 4. The major point to note istilgascheduler
leverages the available slack and map all the MPY operaftbasare on the crit-
ical path) in cluster 1 while scheduling all add operatiamgarallel on cluster
2. The number of transitions from active mode to low leakagelenand vice-
versa for M1, M2, Al, and A2 are 2, 2, 4, 4 for schedule 3 and 2,® for
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schedule 4 respectively. Finally, schedule 4 is much motanbad. The re-
source usage vector of schedule 3 is (4,2,1,1,1,1,0,1¢DYret of the schedule 4

is (2,2,2,2,1,1,0,1,0). Cycle to cycle variation in reseusage is clearly reduced
in schedule 4 as compared to schedule 3 that in turn helpslutiey step power
(cycle to cycle variation in power) and peak power dissgrafimaximum power
consumed in a cycle)(42in addition to reducing transition energy overheads that
maximize the leakage energy savings. Additionally, Scleedueduces the num-
ber of inter-cluster communication to 1 whereas schedubg|@ires 4 inter-cluster
communications.

Slight tweaking of our energy aware scheduling heuristiphito make more
conservative spreading of computation to map all the ojmerdd just cluster 1
in case of this dependence graph, keeping cluster 2 complete as shown
in schedule 5. This further saves even more leakage energgyme scheduling
regions depending upon the dependencies among operalfo@sumber of tran-
sitions from active mode to low leakage mode and vice-vessdfl, M2, Al,
and A2 are 2, 0, 2, 0 for schedule 5. Schedule 5 is much morededa The
resource usage vector of schedule 5is (1,1,2,2,1,2,1Aifiglly, schedule 5 does
not require any inter-cluster communication that helpsai®@s®ven more energy.

5. Experimental Evaluation

5.1. Setup

We have used the Trimaran suite(32) for our experimentafilomaran was
developed to conduct state-of-the-art research in cotignlaechniques for ILP
architectures with a specific focus on VLIW class of architees. We have mod-
ified the Trimaran suite to generate and simulate code foriatyaof clustered
VLIW configurations. The machine description module hasnbeggraded to
describe various clustering related parameters such asuimber of clusters,
number and types of functional units in each cluster, imenection network
parameters such as number and types of buses betwgeredi clusters, and
their latency parameters. These parameters are fed to thmeterized machine-
dependent optimization modules in the backend. Major nuatitins have been
performed in the Trimaran scheduler and register allocatodule (which was
originally written for a class of flat VLIW architectures) taithfully account for

2t is noteworthy that the energy is total power consumed aWleexecution cycles and con-
versely average power is total energy consumed dividedtaynamber of cycles(43)
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the conflicts due to limitations on the number of availablectional units and reg-
isters in a cluster as well as the limitations on the numbewaflable cross-paths
between clusters. The scheduler has been modified to impteime scheduling
algorithm described in the last section. We have used twadvehmarks out of
which nine are from mediabench(44)(4%)z. cjpeg, djpeg, rawcaudio, rawdau-
dio, g721encode, g721decode, md5, des, and jde®)from netbench(46)(47)
(viz. crc, and dh)and ongsusan)is from MiBench(48)(49). We have tried other
benchmarks from these suits as well but these are the onk/whieh compiled
successfully and executed correctly in the Trimaran fraarkvand hence we re-
port results for them.

We present results for an unclustered, a two-cluster maamd a four-cluster
VLIW machine. The unclustered VLIW configuration has 4 AL2dpad-store
units, 1 branch unit, and 64 registers. The 2-clustered gor#tion has 2 ALUS,
1-load store units, 1 branch unit and 32 registers in eacttarluwhereas the 4-
clustered configuration has 1 ALU, 1-load store unit, 1 breunat and 16 registers
in each cluster. We consider two interconnect configuratimmed LL configu-
ration and PP configuration. LL configuration has two fasssfpath between
clustered allows transfer of two data values per cycles. dffiguration allows
transfer of 2 data values 1 per cycle on L cross-path and 1 pgel8s on P cross-
path. The number of functional units selected for the VLIWifogurations are
such that the performance achieved using this configuraianthin 95% of the
peak performance achieved by using many more functionas$.ufihis moder-
ate number of functional resources guarantees that thditsereported have not
been obtained by trivially putting the numerous idle fuocdl units into the low
leakage mode. We report results only for Integer ALUs whiah feeavily used
and pose a challenge for any leakage energy managementeschbos the ben-
efits reported here have not been magnified by the leakaggyebenefits of the
load-store, branch, and FP units which are mostly idle.imhjgortant to note that
reducing the integer functional unit beyond this point fgample reducing the
number of integer functional units to one per cluster lead$rastic performance
degradation (on an average close to 20%). This increaseeicuégn time due
to serialization of potentially parallel operations fietraggravate the amount of
inter-cluster communication required that in turn showssimore idleness in the
functional units which is favorably exploited by our algbms (that is designed
to thrive on even short idle cycles) for energy benefit.
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5.2. Energy Model

We have used the same analytical energy model as in (27)dctidicompare
the functional unit energy benefits of the proposed schemesstbe pure hard-
ware based scheme proposed in(27). We briefly describe thieinmere. The
reader is referred to (27) for details. The total energy inr&cfional unit in this
model is determined as follows:

E. .4 = DynamicEnergy + L eakageEner gy+
TransitionEnergy + SleepM odeEner gy

Eia = Na(@Ea + (1 - D)Es,) + (NaD + ny) * (aEs,
+(1-)Eg) + M2((1 - @)Ea + Egep) + NzEg

Heren, is the number of active cyclesy, is the number of uncontrolled idle
cycles,nz is the number of sleep cycles aht, is the number of transitions. We
have determined these values$feliently for each configuration by using the tri-
maran simulator.Eg, andEg, are low leakage and high leakage energy and are
related by the following equations.

Eg,, =S*Eg,0.0001 <s<0.0landEs, =p*EA,0<p

Wherep is the ratio of the maximum leakage energy expended to the max
imum energy for evaluation per unit of time (1 cycle). Aftemplifying and
normalizing the equations with respect to active energg folowing model for
total energy consumption is obtained :

Etota = Na(a + (1 = D)p) + (NaD + ny;)(a@sp + (1 - a)p)
+M2((1 - @) + Egeep/En) + NzSP

The technology parameters that we have use0.(1 andEsee/ Ea = 0.01)
are also the same as in (27) in order to compare the benefitsrafcheduling
algorithm to the hardware-only scheme. Considering theeotiifOnm fabrication
technology where leakage energy is on par with dynamic gneng set p to 0.5
. 1s activity factor and is the duty cycle of the clock. We use a typical value of
0.5 for both of these parameters in our simulation as in (E@j.determining the
energy benefits in interconnects we have used the INTACTEygmeodel(40).
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5.3. Results

We have performed a detailed experimental evaluation opthposed algo-
rithms in terms of execution time, energy benefits and olveredrgy delay prod-
uct as well as impact of technology scaling on the energyfiten&he functional
unit energy benefits are presented with respect to hardwdyesoheme that puts
a functional unit into low leakage mode after one cycle oémd#lss. Figure 8
presents percentage reduction in number of transitionssbguhe scheduling
algorithm 1 targeted to exploit instruction slack to redtlo® unnecessary transi-
tions and the associated energy benefit. Algorithm 1 redileesumber of tran-
sitions by 53.97%, and 58.29% as compared to hardware ohbnse. Figure 9
presents the associated energy benefits of these reduasititras for 2-Clustered
and 4-Clustered machine using analytical energy model agilled in last sub-
section. Algorithm 1 improves the functional unit energpsomption by 15.11%
and 16.92% for 2-clustered and 4-clustered architectsgectively. The reduc-
tion in the number of transitions and achievable energy fitetepends on the
total available slack in scheduling instructions as weltreesdistribution of idle
cycles in the benchmark. Benchmarks like des, dh, crc, arathdws/e many short
idle cycles and our algorithm is able to exploit the avagaflbck in these appli-
cations to avoid many transitions. In the case of g721enanodey721decode, the
available slack is relatively less and consequently thegtah is also less.

As compared to the performance oriented scheduler, theopeapalgorithm
sufers only a marginal performance loss of 0.3% and 0.5% in timéegb of 2-
clustered and 4-clustered architecture. The reason ferp@iformance loss is
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inherent inaccuracies in determining the available slabkie to this, slack is
sometime over-estimated which in certain cases lead topeaince penalty due
to serialization of operations. However, as the resultsvsthat it is rare and its
overall éfect on performance is only marginal.

The impact of technology on the benefits of our compiler dee¢deakage
management scheme is depicted in Figure 12 which plots tefibef our scheme
on the top of hardware only scheme for threffetent technology nodes namely
90 nm, 65 nm, and 45 nm. The benefits of our scheme are everr tiagttech-
nologies such as 90nm where is leakage is 20% to 30% of owamalgy (we
assume 25% with$0.25 in this experiment). The benefit in even smaller tech-
nologies such as 45nm (assuming leakage is 65% witlb5) are slightly less
but still significant. The reason for these trend is as folo@ur scheme is ac-
tually geared towards reducing the transitions and assatenergy overheads.
Thus, when the overall contribution of leakage is more andesponding dy-
namic energy contribution is less, the extra transitiorss the impact of savings
by reducing these transitions is also relatively less.

Figure 10 presents the percentage increase in executierofiosing LP con-
figuration (having 1 fast and 1 slow cross-path) with the pemal scheduling
algorithm over LL configuration (having 2 fast cross-patff)e average percent-
age increase in execution time is 1.8% and 1.5% for 2-cledtand 4-clustered
machine respectively. The percentage energy benefit ofjudthconfiguration
scheduled using algorithm 2 as compared to LL configurai@ii5% and 46.8%
respectively for 2-clustered and 4-clustered machine sssm@ed using the IN-
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TACTE (40) interconnect energy model. Programs having monensunications
with high slack valuesiz. djpeg, g721encode, des, and sufer only a marginal
performance degradation and gives significant energy lidreeause many of the
communication in these programs are scheduled on slow-paisby the pro-
posed scheduling algorithm 2. In contrast, programs witfefecommunications
with high slack valuesiz. idea, md5, and susaufer a moderate performance
degradation with the LP configuration and give relativelgslenergy benefits.
However, a very small overall performance degradation kecauth the LP con-
figuration whereas a significant amount of communicatiomggnsavings are ob-
tained. This shows thefectiveness of our communication scheduling mechanism
that selectively maps communications with high latencgrahce onto a high la-
tency bus and communication with low latency tolerance wolbtency bus.

Figure 13 depicts the impact of technology scaling on theebeof our com-
piler scheduling scheme for heterogeneous interconnec¢hfee diferent tech-
nology nodes namely 90nm 65nm and 45nm. The benefit of oumselze
roughly the same acrosdfidirent technology nodes with slight variations. This is
because the smaller technologies though leads to incredsakiage part in some
interconnect components such as repeatefigta) and flops (note that wire does
not have the leakage component), there is also reductigmiandic component of
the energy in all the components including wires. This ldaadsughly the same
benefits of using the slower interconnect over faster iot@mect across terent
technology nodes.

Figure 14 presents the percentage increase in executienbynapplying al-
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conf. and HW only scheme for Fu Transitions

gorithm 3 that exploit the instruction slack to save leakagergy in functional
units by reducing the transition and also migrates the comcation with high
slack value to slow bus. The percentage increase is prebenteclustered archi-
tecture with LL configuration scheduled by performancerded scheduler and
have a hardware based scheme to optimize leakage energyciiofual units(27).
The average increase in execution time is 3.3% and 2.5% &us2ered and 4-
clustered architectures which is higher than the averagease in execution time
for algorithm 2 that only optimize the interconnect energhkis is because com-
bined scheme uses the instruction slack for doing the lea&agrgy management
in functional units and this leads to more cases where twanwanication simul-
taneously need the fast cross-path. In other words somesahstruction slack
that was used up implicitly in Algorithm 2 is no longer availa (because it is al-
ready used up for leakage energy management in functioita) amd this shows
up in the form of extra execution cycles in combined scheme.

Figure 15 shows the percentage saving in communicatiorggrérschedul-
ing Algorithm 3 on LP configuration as compared to LL configima. Algorithm
3 saves the average communication energy by 37.1% and 43hlék is slightly
lesser than Algorithm 2 because the Algorithm 3 does notogxdpistruction slack
for saving communication energy explicitly and it givesopity to saving energy
in functional units. However, there is still significant comanication energy sav-
ings achieved by the combined algorithm attributed to atdé communication
slack. Figure 16 presents the percentage savings in furattimit energy of com-
bined algorithm as compared to hardware only scheme. Thageeaving in
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functional unit energy is 15.3% and 17.2% for 2-Clustered 4/@@lustered ma-
chine respectively. As expected the percentage savingoaghly the same as
Algorithm 1 because combined algorithm gives first priot@tyunctional unit en-

ergy savings. The slight increase in functional unit enés@ttributed to increase
execution time with combined scheduling algorithm whictug to usage of slow
cross-path in certain cases that leads to extra idlenessatibnal units.

Figure 17 gives the percentage savings in energy-delayuptad processor
by using combined scheme conservatively assuming thatiéumat units consti-
tute 30% of processor energy and interconnect constit@ed@rocessor energy
(because the actual figure can vary from system to systemasdttong depen-
dence on circuit, design style and technology paramet@évs)observe that even
with this conservative assumption, the overall energwylploduct of the proces-
sor is improved on an average by 8% and 10% for 2-Clustered «Cldstered
architecture which is a significant saving.

6. Related Work

In this section, we briefly describe the earlier work donénmarea of instruc-
tion scheduling for clustered architectures, architedtapproaches for leakage
energy management, energy aware scheduling for VLIW achites, andf&-
cient cross-path design.

6.1. Instruction Scheduling for Clustered Architectures

Earlier proposals for scheduling on clustered VLIW arattilees can be clas-
sified into two main categories, viz., phase-decoupled aaapres and phase-
coupled approaches. A phase-decoupled approach to sciedarks on a data
flow graph (DFG) and performs partitioning of instructioms$oi clusters to re-
duce inter-cluster communication while approximatelyabaing the load among
clusters. The annotated DFG is then scheduled using aitnaaitist scheduler
while adhering to earlier spatial decisions. A major argotme favor of this ap-
proach is that a partitioner having a global view of a DFG carfgym a better
job of reducing inter-cluster communication and load-beilag. The proposals
in this direction are due to Desoli(37), Gonzalez(36), bagii(38), Mahlke(50),
Lee(51), and Nystrom(52). However, the phase-decouplptbaph is known to
sufer from the phase ordering problem. Since the spatial s¢bedas only an
approximate knowledge of load on clusters, usage of funatianits, and cross-
paths, approximate load-balancing often leads to clusiggaments which un-
necessarily constrain the temporal scheduler in the ldtasga Moreover, some
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of these schemes are designed for reducing inter-clustememication and end
up reducing the ILP in the program in this pursuit(34)(31).

An integrated approach to scheduling combats the phasstogdproblem
by combining spatial and temporal scheduling decisions sigle phase. The
integrated approach considers instructions ready to bedsdfd in a cycle and
the available clusters in some priority order. The priootger for considering
instructions is decided based on mobility, schedulingraiteves, the number
of successors of an instruction etc. Similarly, the prjodtder for considering
clusters is decided based on communication cost of assignerliest possible
schedule time etc. An instruction is assigned a clusterdage communication
or to schedule it at the earliest. The proposals in this toe@re due to Ozer(34),
Leupers(35), Kailas(31), and Nagpal(41)(53).

6.2. Architectural Approaches for Leakage Energy Managegme

Study of leakage energy management at the architectuedlhes mostly fo-
cused on storage structure such as cache. Yang et al., prppagr supply gating
of L1 cache cells(54). Kaxiras et al., dynamically adjust ifiterval after which
a cache line is put into low leakage mode(55). Flaunter eppabpose a state-
preserving drowsy cache design and a simple control scheimnghvis able to
deliver most of the leakage energy benefits(56).

In contrast to storage structures, little work has been dorerchitecture level
leakage energy management in the context of functionas.u@itr work directly
improves over the work due to Albonesi et al. (27). This wartgmses and eval-
uates an architectural policy for aggressively contrglleakage energy in integer
ALUs. The 'MaxSleep’ policy puts a functional unit into lowdkage mode af-
ter one cycle of idleness. This scheme depends on dual tiidedbmino logic
circuit with sleep mode proposed in (26) which has no delayafig of transi-
tion between active mode and sleep modgheir performance evaluation using
an analytical energy models in the context of spec benchsrfarksuperscalar
architectures shows that for technology such as 65nm, thetgaenergy bene-
fit gained by such an aggressive scheme is significant. Howleseverhead of
transitions from active mode into low-leakage mode and varsa are significant
(on an average 30% when compared to a 'NoOverhead’ scheme).

6.3. Energy-Hicient Scheduling

Zhang et al.,(57) have proposed a rescheduling schemeuoaeynamic and
leakage energy in the functional units of a VLIW processoekyloiting the rem-
nant slack of a performance-oriented schedule. In conftfaghg et al., our ap-
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proach works on raw unscheduled code with all the availdatkgor scheduling
and directly exploits all the available slack thereby caenpénting any hardware
based mechanism for leakage energy management. Kim ilahgve proposed
a leakage energy management scheme for VLIW processomgipiaiximates the
ILP available in the program using heuristics (as the exsiitration problem is
itself NP complete). The calculation is done at the loopligvanularity assuming
that there is little variation in the ILP within the loop. Tihecheme keeps only
canonical subset of functional units that igfstient to exploit this approximated
ILP active. In contrast, our approach adaptively appliekdge energy manage-
ment at a finer granularity based on available ILP. Gupta .g68) propose a
novel data structure called power-aware flow graph. Theikdge energy man-
agement scheme in the context of superscalar processoks weer this graph
to determine larger program regions called power blockswhbifer opportuni-
ties to save leakage energy. ISA and architectural suppoteded to switch on
and df the functional unit at the boundaries of power blocks andifgdpurious
on-aof. Kim et al.,(42) have proposed a modulo scheduling algarithat pro-
duces a more balanced schedule for software pipelined withsn objective to
reduce the peak power and step power dissipation. Thoughlgarithm is not
directly designed towards improving the peak power and gteper dissipation,
it generates a more balanced schedule. This is becausesitarkeep minimum
number of functional unit active and try to use the activectional units as much
as possible while keeping the idle functional units idlelésrger durations(30).

6.4. Hficient Cross-path Design

As compared to reducing energy consumption in function Kdpstudy of
energy #iciency in interconnects is still in its infancy. Previousrwias con-
centrated on improving latency for interconnects in thetexinof distributed ar-
chitectures. Gonzalez et al.(59) have evaluatékbdint kinds of interconnects
with different topologies and concluded that a point-to-point aenect with an
effective steering scheme is morii@ent than a bus-based interconnect. Their
experimental results also demonstrate that an asynchsanterconnect fbers a
performance comparable to an idealized interconnect atvehydware imple-
mentation cost. Terechko et al.(12) has proposed varides-@tuster commu-
nication models for clustered architecture and performantjtative analysis to
compare their benefits.

Closest to our proposal is the work by Balasubramonian etl.[they have
also used the same interconnect energy model as proposed)irio( evaluate
techniques such as cache pipelining, exploiting narrowvirith operands, and
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interconnect load balancing in the context of superscalaritectures with het-
erogeneous interconnect. In contrast, our work is moresedwn how communi-
cation slack in the context of clustered VLIW architectuae e exploited to gain
the energy benefits and to explore the energy-performaade-tif while going
from a BASE architecture to flerent configurations of clustered VLIW architec-
tures. Our results demonstrate that compile-time instructionesithiing utilizing

a larger view of program can combine the instruction schedyand communi-
cation scheduling in a profitable manner. On the other handtchitecture with
dynamic scheduling gfers from the problem of limited program view and incurs
overheads and complexities of extra hardware for exploitiegerogeneous inter-
connects at run-timeThus, the choice of a heterogeneous interconnect is more
suitable and beneficial for statically scheduled VLIW aretiures as compared
to dynamically scheduled architectures. Moreover, owltesre based on a de-
tailed and verified model of interconnect energy estimatubrereas their study
is mostly based on guesstimates based on earlier studiegeyndnnect energy
estimation.

7. Conclusionsand Futuredirections

In this work, we have proposed energy-aware instructioredgling algo-
rithms that exploits instruction slack and communicatitatks to save energy in
two major energy hungry components of clustered VLIW aegtttiire namely
functional units and interconnects. We also proposed coeabscheduling algo-
rithm that simultaneously save energy in functional unitd mterconnect. A de-
tailed experimental evaluation using trimaran framewakfecms that proposed
schemes are capable of providing significant energy savhmgeby improving
the usability of clustered architectures specifically inrafier technologies. Our
compiler assisted leakage energy management scheme ébiofued units reduce
the energy consumption of functional units approximatgiyt 5% and 17% in the
context of a 2-clustered and a 4-clustered VLIW architecta@spectively with
negligible performance degradation on the top of a harcdwalhg scheme. The
interconnect energy optimization scheme improves theggreansumption of in-
terconnect on an average by 41% and 46% for a 2-clustered dndustered
machine respectively with 2% and 1.5% performance deg@mdathe combined
scheme obtains slightly better energy benefit in functionés and 37% and 43%
energy benefitin interconnect with slightly higher perfamoe degradation. Even
with the conservative estimates of contribution of funcéibunit and intercon-
nect to overall processor energy consumption, the proposatbined scheme
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obtains on an average 8% and 10% improvement in overall guigy product
with 3.5% and 2% performance degradation for a 2-clustenedaa4-clustered
machine respectively. In future, we are interested in atalg the temperature
benefit of the proposed scheme which is becoming more and im@atant in
smaller technologies.

[1] D. Matzke, Will Physical Scalability Sabotage Performa Gains, IEEE
Computer.

[2] T.N.Mudge, Power: A First Class Design Constraint for Fat@rchitecture
and Automation, in: HiPC '00: Proceedings of the 7th Intéiorel Confer-
ence on High Performance Computing, Springer-Verlag, Lantdd, 2000,
pp. 215-224.

[3] D. Sylvester, H. Kaul, Power-Driven Challenges in NanteneDe-
sign, IEEE Design and Test of Computers 18 (6) (2001) 12-22.
doi:httpy/doi.ieeecomputersociety.gid.110954.970420.

[4] P. Faraboschi, G. Brown, J. A. Fisher, G. Desoli, Clusténstruction-level
Parallel Processors, Tech. rep., Hewlett-Packard (1998).

[5] J. M. P. R. Canal, A. Gonzalez, Dynamic cluster assignmesthanisms,
in: Proc. of Sixth IEEE Intl. Symp. on High Performance Congpuirchi-
tecture, 2000.

[6] G. S. Sohi, S. E. Breach, T. N. Vijaykumar, Multiscalar gessors, in: 25
Years ISCA: Retrospectives and Reprints, 1998, pp. 521-532.

[7] U. Kapasi, W. J. Dally, S. Rixner, J. D. Owens, B. KhailanjieTimagine
stream processor, in: Proc. of 2002 IEEE Intl. Conf. on ComphDgsign:
VLSI in Computers and Processors (ICCD’02), IEEE Computer $gcie
Washington, DC, USA, 2002, p. 282.

[8] P. Marcuello, A. Gonzalez, Clustered speculative muléaded pro-
cessors, in: ICS '99: Proc. of 13th Intl. Conf. on Supercom-
puting, ACM Press, New York, NY, USA, 1999, pp. 365-372.
doi:httpy/doi.acm.orgl0.1143305138.305214.

[9] J. E. Smith, Instruction-level distributed processi@@mputer 34 (4) (2001)
59-65. doi:http7dx.doi.org10.11092.917541.

37



[10] A. Capitanio, N. Dutt, A. Nicolau, Partitioned registdes for VLIWS: a
preliminary analysis of tradéks, in: Proceedings of the 25th annual inter-
national symposium on Microarchitecture, IEEE Computeri&gdress,
1992, pp. 292-300. doi:httfpdoi.acm.orgl0.1143144953.145839.

[11] K. I. Farkas, P. Chow, N. P. Jouppi, Z. Vranesic, The noluster architec-
ture: reducing cycle time through partitioning, in: Prodegs of the 30th
annual ACMIEEE international symposium on Microarchitecture, IEEE
Computer Society, 1997, pp. 149-159.

[12] A. Terechko, E. L. Therfg M. Garg, J. V. Eijndhoven, H. Corporaal, Inter-
Cluster Communication Models for Clustered VLIW Processaors Hroc.
of Intl. Symp. on High-Performance Computer Architectui@2, p. 354.

[13] Texas Instruments Inc., TMS320C6000 CPU and InstrucHetreference
Guide, http//www.ti.conysgdocgproductgdspc600Qindex.htm (1998).

[14] P. Faraboschi, G. Brown, J. A. Fisher, G. Desoli, F. Homasly Lx: A Tech-
nology Platform for Customizable VLIW Embedded Processing,Proc.
of 27th annual Intl. Symp. on Computer architecture, 2000208—-213.

[15] J. Fridman, Z. Greefield, The TigerSHARC DSP architestlEEE Micro
(2000) 66-76.

[16] G. G. Pechanek, S. Vassiliadis, The ManArray Embeddedd3sor Archi-
tecture, in: Proc. of Euromicro Conf., 2000, pp. 348-355.

[17] J. Derby, J. Moreno, A High-performance Embedded DSR@gth Novel
SIMD Features, in: Proc. of 2003 Intl. Conf. on Acoustics, &g and
Signal Processing, 2003.

[18] OMAPS5, http//www.ti.comyww/eryomagomap3omap5-platform.html.

[19] N. Seshan, High VelociTl processing, IEEE Signal Pesieg Society 15
(1998) 86-101.

[20] R. Ho, K. Mai, M. Horowitz, The Future of Wires, Proc. of HE 89 (4)
(2001) 490-504.

[21] H. S. Kim, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, Aapting Instruc-
tion Level Parallelism for Optimizing Leakage in VLIW ArdBctures, in:

38



[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Proc. of Conf. on Language, Compiler, and Tool for Embeddede8ys
2003, pp. 275-283.

J. A. Butts, G. S. Sohi, A Static Power Model for Architgcin: MICRO
33: Proceedings of the 33rd annual AGKEE international symposium on
Microarchitecture, ACM Press, New York, NY, USA, 2000, pp13201.
doi:httpy/doi.acm.orgl0.1143360128.360148.

K. Banerjee, A. Mehrotra, A Power-Optimal Repeater Itiear Method-
ology for Global Interconnects in Nanometer Designs, inocPiof IEEE
Transactions on Electron Devices, 2002, pp. 2001-2007.

M. L. Mui, K. Banerjee, A. Mehrotra, A Global Interconre©ptimization
Scheme for Nanometer Scale VLSI with Implications for LatgrBand-
width and Power Dissipation, in: IEEE Transactions on E@ectiDevices,
2004, pp. 195-203.

R. Balasubramonian, N. Muralimanohar, K. Ramani, V. Véakhalapathy,
Microarchitectural Wire Management for Performance anddtan Parti-
tioned Architectures, in: Proc. of Intl. Symp. on High-Remance Com-
puter Architecture, 2005, pp. 28—-39.

V. Kursun, E. G. Friedman, Low swing Dual Threshold “gé Domino
Logic, in: GLSVLSI '02: Proceedings of the 12th ACM Great Lakgy/m-
posium on VLSI, ACM Press, New York, NY, USA, 2002, pp. 47-52.
doi:httpy/doi.acm.orgl0.1143505306.505317.

S. Dropsho, V. Kursun, D. H. Albonesi, S. Dwarkadas, EFiedman, Man-
aging static leakage energy in microprocessor functionaspin: Proceed-
ings of the 35th annual ACNEEE international symposium on Microarchi-
tecture, IEEE Computer Society Press, Los Alamitos, CA, US®22 pp.
321-332.

R. Nagpal, Y. N. Srikant, Integrated temporal and spataeduling for ex-
tended operand clustered vliw processors, in: Conf. Comgunontiers,
2004, pp. 457-470.

R. Nagpal, Y. N. Srikant, A graph matching based integptascheduling
framework for clustered vliw processors, in: ICPP Workshdi304, pp.
530-537.

39



[30] R. Nagpal, Y. N. Srikant, Compiler-assisted leakage @neopti-
mization for clustered vliw architectures, in: EMSOFT ’'06Pro-
ceedings of the 6th ACM & IEEE International conference on Em-
bedded software, ACM, New York, NY, USA, 2006, pp. 233-241.
doi:httpy/doi.acm.orgl0.114%31176887.1176921.

[31] K. Kailas, A. Agrawala, K. Ebcioglu, CARS: A New Code Geriera
Framework for Clustered ILP Processors, in: Proc. of 7th Byimp. on
High-Performance Computer Architecture, 2001, p. 133.

[32] Trimaran System, httpwww.trimaran.org

[33] S. G. Abraham, W. M. Meleis, |. D. Baevflicient Backtracking Instruction
Schedulers, in: Proc. of Intl. Conf. on Parallel Architeesiand Compila-
tion Techniques, 2000, pp. 301-308.

[34] E. Ozer, S. Banerjia, T. M. Conte, Unified Assign and SclezdA New
Approach to Scheduling for Clustered Register File Microaeciures, in:
Proc. of Intl. Symp. on Microarchitecture, 1998, pp. 30831

[35] R. Leupers, Instruction scheduling for clustered VLIVBBs, in: PACT '00:
Proc. of 2000 Intl. Conf. on Parallel Architectures and Coatmph Tech-
niques, IEEE Computer Society, Washington, DC, USA, 20009p. 2

[36] A. Aleta, J. M. Codina, J. Sanchez, A. Gonzalez, Graptitpaing based
Instruction Scheduling for Clustered Processors, in: Rsbntl. Symp. on
Microarchitecture, 2001, pp. 150-159.

[37] G. Desoli, Instruction Assignment for Clustered VLIW B&ompilers: A
New Approach, Technical Report, Hewlett-Packard (1998).

[38] V. S. Lapinskii, M. F. Jacome, G. A. De Veciana, Clustesiysment for
High-Performance Embedded VLIW processors, ACM Trans. asiddeand
Automation of Electronic Systems (2002) 430—-454.

[39] R. Nagpal, Y. N. Srikant, Exploring energy-performanie-dts for het-
erogeneous interconnect clustered vliw processors.,noc. Bf Intl. Conf.
on High Performance Computing, 2006, pp. 497-508.

40



[40] R. Nagpal, A. Madan, A. Bharadwaj, Y. N. Srikant, INTACTEnAntercon-
nect Area, Delay, and Energy Estimation Tool for Microatetiural Explo-
rations, in: Proceedings of the international conferenceampilers, archi-
tecture, and synthesis for embedded systems, ACM Press, Mdw NY,
USA, 2007.

[41] R. Nagpal, Y. N. Srikant, Integrated Temporal and Sp&iheduling for
Extended Operand Clustered VLIW Processors, in: Proc. of @Qonéom-
puting frontiers, 2004, pp. 457-470.

[42] H. Yun, J. Kim, Power-aware Modulo Scheduling for Higerformance
VLIW Processors, in: Proc. of 2001 Intl. Symp. on Low Poweediton-
ics and Design, ACM Press, 2001, pp. 40-45.

[43] V. Venkatachalam, M. Franz, Power reduction techngguer mi-

croprocessor systems, ACM Computing Survey 37 (2005) 195-237

doi:httpy/doi.acm.orgl0.11431108956.1108957.
URL http://doi.acm.org/10.1145/1108956.1108957

[44] C. Lee, M. Potkonjak, W. H. Mangione-Smith, MediaBench:Téol for
Evaluating and Synthesizing Multimedia and Communicati&ystems,
Intl. Symp. on Microarchitecture.

[45] MediaBench, httg/cares.icsl.ucla.edMediaBench

[46] B. M.-S. Gokhan Memic, W. Hu, NetBench: A Benchmarking SortNet-
work Processor, CARES Technical Report.

[47] NetBench, httg/cares.icsl.ucla.egdNetBenclh.

[48] J. R. Matthew Guthaus, D. Ernst, MiBench: A Free, ComméycRep-
resentative Embedded Benchmark Suite, IEEE 4th Annual Wogkon
Workload Characterization.

[49] MiBench, http//www.eecs.umich.edmibench.

[50] M. Chu, K. Fan, S. Mahlke, Region-based Hierarchical @pen Partition-
ing for Multicluster Processors, SIGPLAN Notices (2003p3811.

[51] W. Lee, D. Puppin, S. Swenson, S. Amarasinghe, Conveigemeduling,
in: Proc. of Intl. Symp. on Microarchitecture, 2002, pp. £122.

41



[52] E. Nystrom, A. E. Eichenberger fiective Cluster Assignment for Modulo
Scheduling, in: Proc. of 31st annual AGIEMEE Intl. Symp. on Microarchi-
tecture, IEEE Computer Society Press, 1998, pp. 103-114.

[53] R. Nagpal, Y. N. Srikant, A Graph Matching Based Integilafheduling
Framework for Clustered VLIW Processors, in: Proc. of ICPPR&bop on
Compile and Runtime Techniques Parallel Computing, 2004, 3{-537.

[54] S.-H. Yang, B. Falsafi, M. D. Powell, K. Roy, T. N. VijaykumaAn
Integrated CircufArchitecture Approach to Reducing Leakage in Deep-
Submicron High-Performance I-Caches, in: HPCA '01: Proasgiof the
7th International Symposium on High-Performance Computehiecture,
IEEE Computer Society, Washington, DC, USA, 2001, p. 147.

[55] S. Kaxiras, Z. Hu, M. Martonosi, Cache Decay: Exploitii&enera-
tional Behavior to Reduce Cache Leakage Power, in: ISCA '01: Pro-
ceedings of the 28th annual international symposium on Céenpar-
chitecture, ACM Press, New York, NY, USA, 2001, pp. 240-251.
doi:httpy/doi.acm.orgl0.114%3379240.379268.

[56] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, T. Mudge, Dvsy Caches:
Simple Techniques for Reducing Leakage Power, in: ISCA '0@c@edings
of the 29th annual international symposium on Computer tachire, IEEE
Computer Society, Washington, DC, USA, 2002, pp. 148-157.

[57] W. Zhang, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, Duarte, Y.-F.
Tsai, Exploiting VLIW Schedule Slacks for Dynamic and Leg&d&Energy
Reduction, in: Proc. of Intl. Symp. on Microarchitecture020pp. 102-113.

[58] S. Rele, S. Pande, S. Onder, R. Gupta, Optimizing StatePDissipation
by Functional Units in Superscalar Processors, in: Protl1df Intl. Conf.
on Compiler Construction, 2002, pp. 261-275.

[59] A. G. Joan-Manuel Parcerisa, Julio Sahuquillo, J. DuBfficient Intercon-
nects for Clustered Microarchitectures, in: Proc. of Int. Cam Parallel
Architectures and Compilation Techniques, 2002, pp. 29030

42



