
Compiler-Assisted Energy optimization for Clustered
VLIW Processors

Rahul Nagpal, Y. N. Srikant1

Dept. of CSA, Indian Institute of Science, Bangalore, KA, India

Abstract

Clustered architecture processors are preferred for embedded systems because
centralized register file architectures scale poorly in terms of clock rate, chip area,
and power consumption. Although clustering helps by improving clock speed,
reducing energy consumption of the logic, and making the design simpler, it in-
troduces extra overheads by way of inter-cluster communication. This communi-
cation happens over long global wires having high load capacitance which leads to
delay in execution and significantly high energy consumption. Inter-cluster com-
munication also introduces many short idle cycles, therebysignificantly increasing
the overall leakage energy consumption in the functional units. The trend towards
miniaturization of devices (and associated reduction in threshold voltage) makes
energy consumption in interconnects and functional units even worse and limit
the usability of clustered architectures in smaller technologies. However, tech-
nological advancements now permit design of interconnectsand functional units
with varying performance and power modes. In this paper, we propose scheduling
algorithms that aggregate the scheduling slack of instructions and communication
slack of data values to exploit the low power modes of functional units and inter-
connects. Finally, we present a synergistic combination ofthese algorithms that
simultaneously save energy in functional units and interconnects to improve the
usability of clustered architectures by achieving better overall energy-performance
trade-offs. Even with the conservative estimates of contribution of functional unit
and interconnect to overall processor energy consumption,the proposed combined
scheme obtains on an average 8% and 10% improvement in overall energy-delay

Email addresses:rahul@csa.iisc.ernet.in (Rahul Nagpal),
srikant@csa.iisc.ernet.in (Y. N. Srikant)

1Corresponding Author. Address: Dept of CSA, Indian Institute of Science, Banagalore, Kar-
nataka, India 560012

Preprint submitted to Journal of Parallel and Distributed Computing April 12, 2012

product with 3.5% and 2% performance degradation for a 2-clustered and a 4-
clustered machine respectively. We present a detailed experimental evaluation of
the proposed schemes. Our test bed uses the Trimaran compiler infrastructure.

Keywords: Scheduling, Clustered VLIW Processors, Energy-Aware Scheduling

1. Introduction

Proliferation of embedded systems has opened up many new research issues.
Design challenges posed by embedded processors are ostensibly different from
those offered by general purpose systems. Apart from very high performance they
also demand low power consumption, low cost, and less chip area to be practi-
cal. The ever increasing trend towards miniaturization of devices makes utiliz-
ing huge transistor budget in a manner that enables high clock speed, low design
complexity, and less energy consumption(1) even more challenging. However, re-
solving this challenge can enable the deployment of embedded systems for many
performance-demanding never-before embedded applications at a lower cost. An-
other challenge posed by this technological advancement isthe rising level of the
leakage energy consumption in the logic. The increase in thetransistor density
requires reducing the supply voltage in order to operate thecircuit reliably. The
reduction in supply voltage also requires reduction in the threshold voltage in or-
der to maintain the speedup and this leads to an exponential rise in the leakage
component of the energy consumption(2). With the 65nm and smaller technolo-
gies currently in fabrication, the leakage energy is on par with the dynamic energy
consumption. In future technologies the leakage energy will further dominate the
overall energy consumption(3).

Distribution or clustering is the common design theme that is being employed
in one form or another to meet these challenges. The basic idea is to design sim-
pler and smaller components and put together a collection ofthese components
interconnected using a communication fabric. Smaller components are simpler to
design, enable faster clock speed, and incur less energy consumption. Different ar-
chitectural philosophies(4)(5)(6)(7)(8)(9) have used distribution in its varied form
to tackle the scalability problem in the past. This trend is expected to continue in
the future also with ever growing number of transistors on the chip.

Clustered VLIW architectures(10)(11)(4) use clustering philosophy in con-
text of VLIW architectures. These architectures are being widely adopted in em-
bedded domain because they overcome the scalability problem associated with
centralized VLIW architectures. A clustered VLIW architecture(4) has more than

2

CLUSTER 0 CLUSTER 1 CLUSTER N

INTER−CLUSTER COMMUNICATION NETWORK

...

Figure 1: A General Clustered VLIW Architecture

FU 0 FU 1

INTER−CLUSTER COMMUNICATION NETWORK

LOCAL REGISTER FILE

. . . .FU N

An Individual Cluster

CFU

CFU Communication Function Unit
FU Function Unit

Figure 2: A Cluster

3

one register file and connects only a subset of functional units to a register file (see
Figure 1 and 2). Groups of small computation clusters can be interconnected us-
ing some interconnection topology and communication can beenabled using any
of the various inter-cluster communication models(12). Clustering avoids area
and power consumption problems of centralized register filearchitectures while
retaining high clock speed which can be leveraged to get better performance.
Texas Instrument’s VelociTI(13), HP/ST’s Lx(14), Analog’s TigerSHARC(15),
and BOPS’ ManArray(16) are examples of the architectures developed on the
basis of clustered ILP philosophy. IBM’s eLite(17) is a research proposal for a
novel clustered architecture. Clustered VLIW architectures continue to be pop-
ular in embedded domain and are part of some of the most popular and recent
chips planned to power smart phones and tablets (18) apart from their presence in
low-end phones(19).

Though clustering helps to combat the scalability problem by making compo-
nents simpler and thereby increasing clock rate and reducing dynamic energy con-
sumption of functional components, an interconnection network is required for the
communication of data values among different components. This communication
in clustered architectures happens over long wires having high load capacitance
which in effect takes more time and incurs more energy consumption(1)(20). This
problem is becoming severe with each upcoming process technology. As a result,
clustered architectures are becoming more communication bound in terms of the
performance and energy consumption. Apart from the interconnects, functional
units are another major source of energy consumption in clustered architectures.
The frequent accesses to functional units raises the temperature level and makes
the leakage energy consumption which is specifically a concern in smaller tech-
nologies even worse. Moreover, the contention for limited number of slow in-
terconnects leads to many short idle cycles and that furtherincreases the leakage
energy consumption in functional units.

Clustered VLIW architectures rely on compile-time scheduling. The static
scheduling simplifies the issue logic by alleviating the need for a dedicated hard-
ware for scheduling. Thus, a significant fraction of the total energy consumption
in clustered VLIW architectures is attributed to interconnects and functional units.
Though, the exact percentage depends upon the architectureand circuit details,
earlier studies report that a very high percentage (25% to 30%) of total processor
energy consumption is attributed to interconnects. Similarly a large fraction (30%
to 35%) of static energy consumption in a VLIW architecture is attributed to func-
tional units(21). An architecture level model developed in(22) also confirms that
the leakage energy consumption in functional units constitutes a noticeable frac-

4

tion of the overall processor leakage energy consumption despite having a smaller
transistor count compared to the caches. Thus, optimizing energy in intercon-
nects and functional units in clustered architectures is becoming more and more
important from one process generation to another.

However, the functional units and interconnects are often underutilized in
clustered VLIW architectures. Apart from other usual causes such as data de-
pendencies, the under-utilization of functional units is also due to the contention
for limited number of slow interconnect channels that introduces many short idle
cycles for functional units. At the same time since the functional units are dis-
tributed among clusters, there is also more contention for functional resources
which leads to underutilization of interconnects. Finally, the contention for func-
tional and interconnect resources in clustered VLIW architecture combine in a
synergistic fashion and lead to greater available slack in clustered architectures as
compared to VLIW architectures.

The advancements in VLSI technology now enable designing interconnects
and functional units with different power and performance modes. For example
(23)(24) show that using 45nm technology, it is possible to design wires con-
suming 1/5 the energy but having twice the delay(23). (25) proposes touse in-
terconnect composed of wires with different characteristics to improve theED21

of the superscalar processor. Similarly the capabilities of dual-threshold domino
logic with sleep mode (that can transition between active mode and sleep mode
and vice versa without any performance penalty(26) but withmoderate energy
penalty) can be utilized to do leakage energy management forshort idle cycles in
functional units. One such purely hardware based scheme in the context of a su-
perscalar architecture is due to Dropsho et al.(27). Their scheme puts any integer
ALU into low leakage mode after one cycle of idleness. Their results confirm the
benefits of such an aggressive scheme in smaller technologies. However, being
a purely hardware based scheme, the benefits are severely (onaverage, by 30%)
affected by frequent transitions from active mode to sleep modeand vice-versa
because of many short idle periods.

In this paper, we propose a compiler-directed approach thatleverages on these
advancements in VLSI technology to improve the usability ofclustered VLIW
architecture in smaller technologies, targeting the two major source of energy
consumption namely interconnects and functional units. Though, there has been
some work in the past to reduce leakage energy consumption infunctional units in

1ED2 is defined as Energy*Execution Time* Execution Time

5

the context of superscalar and VLIW architectures, to the best of our knowledge,
there has been no such work in the context of clustered VLIW architectures specif-
ically targeting smaller technologies. Regarding interconnects, the primary focus
of research had been to reduce the latency of communication.We are not aware
of any work that targets to reduce energy consumption in interconnects in clus-
tered VLIW architectures. In context of inter-cluster communication, we limit our
focus on most popular inter-cluster communication models(12) such as explicit
inter-cluster communication through inter-cluster move instructions and extended
operand inter-cluster communication models(12) found in commercial clustered
processors such as Texas Instrument’s VelociTI(13) and HP/ST’s Lx(14). The
novelty of our approach also lies in an integrated scheduling algorithm that si-
multaneously reduces the energy consumption in functionalunits as well as inter-
connects. The contention for a limited number of functionaland communication
resources in a clustered VLIW architecture leads to increased cycles of execution
on a clustered machine as compared to an equivalent VLIW machine. Our ap-
proach aggregates the scheduling slack of instructions andcommunication slack
of data values in a synergistic fashion to convert the inherent idleness of functional
and communication resources in clustered architecture to energy gains. The major
contributions of our approach can be stated as follows:

• A scheduling algorithm for clustered-VLIW architectures that exploits the
scheduling slacks with an aim of reducing the number of transitions and as-
sociated overheads thereby significantly improving the leakage energy con-
sumption compared to the underlying architectural scheme.

• Another scheduling scheme for clustered architectures that exploits com-
munication slack of data values and scheduling slack of instructions to re-
duce the energy consumption in interconnects while achieving better per-
formance for clustered architectures. The proposed schemeprovides per-
formance comparable to a dual bandwidth clustered architectures at nearly
half the energy cost.

• An integrated scheme that simultaneously exploits scheduling slack of in-
structions and communication slack of data values to achieve better overall
energy savings. This scheme converts any inherent performance loss due to
contention for communication and computation resources into energy ben-
efits.

• We have significantly extended Trimaran Compiler Framework to faithfully

6

model different clustered VLIW configurations and inter-cluster communi-
cation models. We have implemented these schemes in extended Trimaran
framework. We present a detailed performance analysis based on exper-
imental evaluation of these algorithms for different clustered VLIW con-
figuration and technology nodes. We specifically discern thebenefits of a
compiler based scheme as compared to a hardware only scheme and com-
pare our results with some of the earlier algorithms. Readersinterested
in results in restricted but more realistic context of commercially available
real clustered machines such as C6X are referred to some of ourearlier
work(28)(29).

It is important to mention here that the work and experimentalresults pre-
sented in this paper also focus on interconnect energy saving and integrated inter-
connect and functional unit energy savings. These results go significantly beyond
some of the initial results presented in one of our earlier work(30) that focuses
solely on scheduling to save energy in functional units. Additionally, in this paper,
we also present results of savings offered by different algorithms across different
technology nodes.

The rest of the paper is structured as follows. Section 2 describes the mo-
tivation for this work and presents some experimental evidences. Section 3 de-
scribes different scheduling algorithms for leakage energy managementin func-
tional units, energy optimization in interconnects, and the combined scheme to
optimize energy in functional units as well as interconnects. Section 3 also de-
scribes the scheduler implementation in detail. Section 4 describes the scheduling
algorithm with the help of examples. Section 5 describes ourexperimental setup,
results, and a detailed analysis of results. Section 6 describes the related work
in the area of scheduling for clustered architectures, energy aware scheduling for
VLIW architectures, architectural approaches for leakageenergy management,
and efficient interconnect design. We conclude in section 7 with pointers to future
directions.

2. Motivation

VLIW and clustered VLIW architectures are optimized for peak performance
in order to meet real-time performance requirements of embedded applications.
However, the functional units are underutilized due to the inherent variations in
the ILP of the programs. The idleness is even more pronouncedfor a clustered
VLIW architecture because of the contention for a limited number of slow inter-
connects which manifests itself in the form of many short idle cycles. The graph

7

Figure 3: Functional Unit Idleness

titled ’Base’ in Figure 3 shows the average cumulative distribution of idle cycles in
integer ALUs for a 2-clustered machine having only 2 integerALUs in each clus-
ter and one bidirectional single cycle latency cross-path between clusters (details
of our experimental setup and energy model appear in section5). On an average,
functional units are idle for 71% cycles in our collection ofmedia benchmarks.
Many small idle cycles constitute a large percentage of overall cycles. As Figure 3
depicts 50% of total 71% idle cycles have a duration less thanor equal to 10 cycles
in ’Base’ architecture. We propose a scheme (Algorithm 1) that exploits instruc-
tion slack to aggregate the idleness in functional units by reducing the frequent
transitions. The graph after applying our scheduling scheme is shown with title
’Optimized’ in Figure 3. This shows that the many small idle cycles have been
converted to large idle cycles by reducing transitions and only 34% of overall idle
cycles are now less than 10 cycle. Idle cycle of length between 10 to 20 cycles
constitute 32% of total idleness for ’Optimized’ scheme while for the ’MaxSleep’
scheme this is only 18%. This clearly shows that our scheme isable to exploit the
slack to reduce the number of transitions thereby increasing the duration of idle
periods.

Another way to reduce idle cycles (attributed to contentions for cross-paths)
and thereby improve the performance is to use high-speed high-bandwidth cross-
path for communication of data values among cluster. Previous studies have re-
ported that the performance degrades by 12% when the latencyof communication
is doubled for a four clustered architecture, and that increasing the interconnection
bandwidth from one to two improves the performance by as muchas 10%(31). We

8

Figure 4: Communication Slack

also observe similar benefit in performance with approximately 15% reduction in
idle cycles on an average by using two bidirectional single-cycle cross-paths be-
tween clusters as compared to the configuration which uses only one cross-path.
However, having both the cross-path optimized for low latency results in high
energy consumption in interconnects. This is because improving the latency of
communication channel requires closely spaced repeaters which increase the area
and energy overheads of repeaters(23). A high speed path forcommunication of
data values among clusters indeed enables better performance, but we argue that
not all data values are critical enough to be communicated ona high speed path,
and that many communications are non-critical and can stillhappen on a slow
path without affecting performance.We define the communication slack of a data
value on clustered architectures as the number of cycles between the time when
the data value to be communicated becomes available (due to completion of ex-
ecution of the producing instruction) and when the instruction that requires the
data value is actually scheduled.The available communication slack of a data
value on clustered architecture is affected by data dependencies among instruc-
tions, limitation on the available number of functional units, and the limitations
on the number of available cross-paths, their bandwidth, and the latency of cross-
path communication. Figure 4 presents quantitative results to substantiate our
arguments. This figure presents the percentage of required communication that
has a slack of three cycles (two cycles and four cycles) or more for a two-cluster
machine with two high speed bidirectional cross-paths between clusters. We ob-
serve that all the benchmarks have many communications withhigh slack values.

9

In particulardjpeg, g721encode, des, and crchave 70% to 75% of communica-
tions with slack value of three cycles or higher. On an average, we observe that
60.88% (82.51% and 43.16%) of communications can sustain a latency of three
cycles (two cycles and four cycles respectively) or higher.

Thus a more suitable option to reduce the idleness in functional units with-
out incurring high energy overhead is to use interconnects between clusters with
some paths optimized for latency and others for energy. We propose a scheduling
mechanism (Algorithm 2) that exploits the communication slack to steer the non-
critical communication over the slower but energy-efficient wires while assigning
critical communication over the fast but more energy-consuming wires. Such a
configuration which uses one bidirectional single-cycle cross-paths and one bi-
direction three-cycle cross-path between clusters reduces the idle cycles by 13%
on an average as compared to the configuration which uses onlyone cross-path.

Though a high bandwidth cross-path mitigates the contentions for cross-path
and improve performance to some extent, the variation in ILPof the program
coupled with cross-path contention still manifest itself in the form of many short
idle cycle. The short idle cycles renders traditional leakage energy management
schemes unusable. A hardware based scheme proposed in (27) utilizes the dual-
threshold logic (and its capability of fast transition to and from low-leakage mode
at moderate energy penalty) to perform leakage energy management for short idle
cycles. However, the effective energy savings of this scheme is low because of
high energy cost of fast transitions happening frequently.Our Transition aware
scheduling scheme as described earlier exploits instruction slack to aggregate the
idleness in functional units to improve the effective leakage energy savings by
reducing the frequent transitions.

Thus, we propose a combined scheme (Algorithm 3) that exploits commu-
nication slack of data value and instruction slack togetherto reduce the energy
in functional units and interconnects. The proposed schemekeeps the idle func-
tional unit idle while maximizing the utilization of activefunctional units. At the
same time, the proposed scheme exploits the communication slack of data value
to utilize the low-power cross-path as much as possible.

3. The Scheduling Algorithm

The Elcor backend of the Trimaran infrastructure has a cyclescheduling al-
gorithm designed and implemented for flat VLIW architectures(32)(33). We have
modified this algorithm to perform leakage energy optimization for clustered VLIW
architectures. Another loop has been added inside the main scheduling loop of

10

the cycle scheduler to perform cluster scheduling in an integrated fashion. The
integrated approach(34)(35)(31) to cluster scheduling makes the cluster assign-
ment decision during temporal scheduling. This is in contrast to phase-decoupled
approaches(36)(37)(38) which perform cluster assignmentprior to temporal schedul-
ing. We propose three different scheduling algorithm. Algorithm 1 performs only
leakage energy management assuming a machine model with low-leakage mode
for functional units(30) but homogeneous interconnect (i.e. the energy cost of
using any cross-path is same). Algorithm 2 performs interconnect energy opti-
mization assuming a machine model with heterogeneous interconnects. However,
this algorithm is more aggressive in interconnect energy management compared
to one we proposed earlier(39) and is evaluated using a detailed interconnect en-
ergy model(40). Algorithm 3 is a new combined algorithm thatsimultaneously
performs both leakage energy management in functional units as well as energy
optimization in interconnect assuming the machine model having both low leak-
age mode for functional units as well as heterogeneous interconnects. However,
it is important to note that combined Algorithm 3 gives preference to leakage en-
ergy management when exploiting slack and uses any left overslack for energy
optimization in interconnects. This avoids excessive performance degradation as
well as extra transitions in the functional units and associated energy overheads.
Another reason we choose to give preference to functional units when exploiting
slack is because its contribution to overall processor energy consumption is pre-
sumably more and it is one of the hot-spot and hence demands more aggressive
energy saving. Table 1 presents summary of all algorithms. These algorithms
differ with respect to cluster selection, functional unit binding, and cross-path as-
signment policies. However, the basic steps in all the algorithm are as follows.

Sr. Name Description Machine Model
1 FuAlgo Energy Efficient Scheduling for Functional Units(FUs) FUs with low power modes
2 ICAlgo Energy Efficient Scheduling for Interconnects(ICs) ICs with varaition in latency and energy
3 FuICAlgo Energy Efficient Scheduling for FUs and ICs (priority to FUs) FUs with low power modes and ICs

with varaition in latency and energy

Table 1: Summary of All Algorithms

1. Prioritizing the ready instructions
2. Assignment of a cluster to the selected instruction
3. Assignment of a functional unit to the selected instruction in the target clus-

ter

11

4. Assignment of cross-paths for communicating the data values to the target
cluster

In what follows, we describe how each of these step is performed and how differ-
ent algorithms differ in their functioning.

3.1. Prioritizing the Ready Instructions

Instructions in the ReadyList are prioritized using a priority function that uses
instruction slack and number of consumers of the instruction. Instructions with
less slack should be scheduled early and are given higher priority over instruction
with more slack to avoid unnecessary stretching of the schedule. Instructions with
the same slack values are further ordered in the decreasing order of the number of
consumers. An instruction with a large number of successorsis more constrained
in the sense that its spatial and temporal placement affects scheduling of more
number of instructions and hence should be given higher priority. Giving prefer-
ence to an instruction with many dependent instructions also enables better future
scheduling decisions by uncovering a larger portion of the graph.

Scheduling slack of an instruction is defined as the difference between the ear-
liest start time and the latest finish time of the instruction. Traditionally, slack
is determined statically during dependence graph analysisbefore the scheduling
begins, assuming a machine with infinite resources of each type. This calcula-
tion is inherently pessimistic as any real machine will havecontentions for re-
sources which prolongs the execution time. Since our algorithm exploits slack
of instructions to delay their execution in order to save energy without affecting
performance, a better quantification of available slack is of utmost importance.
We quantify the slack of instructions while scheduling a region for the specific
target machine by taking resource constraints into account. We first schedule the
instruction using a simple cycle-by-cycle scheduler. The schedule time of the in-
structions is stored during this phase. In the second phase,this schedule time
(termed as Late cycle) is used to determine the slack of the instruction. In our im-
plementation, slack is dynamically updated for all the operations in the ready list
after every cycle. The earliest schedule time of an instruction is set to the current
cycle, before scheduling for the current cycle begin (Earlycycle). The slack is
then determined as a difference of the Early cycle and the Late cycle. Dynamic
update of the slack after each cycle ensures that any consumed slack is taken into
account while scheduling instructions in future cycles.

12

3.2. Cluster Assignment

Once an instruction has been selected for scheduling, we make a cluster as-
signment decision. The primary constraints are :

• The chosen cluster should have at least one free resource of the type needed
to perform this operation

• Given the bandwidth of the channels among clusters and theirusage, it
should be possible to satisfy the communication needs of theoperands of
this instruction on the cluster by scheduling these communications in the
earlier cycles (so that operands are available at the right time).

Selection of a cluster from the set of the feasible clusters is done based on two
criteria. (1) to give preference to clusters that have an active functional unit to
schedule the operation under consideration. (2) to give preference to cluster that
reduces the overall cost of communication. Algorithm 1 (aimed at reducing en-
ergy consumption in functional units) uses criterion (1) asthe primary criterion
for cluster selection and criterion (2) is used only for tie-breaking. Algorithm
2 (aimed at reducing energy consumption in interconnects) uses criterion (2) for
cluster selection. Algorithm 3 again uses criterion 1 as theprimary criterion for
cluster selection and criterion (2) is used as a secondary criterion. The communi-
cation cost is computed by determining the number and type ofcommunications
needed by a binding in the earlier cycles as well as the communication that will
happen in the future. Future communications are determinedby considering the
successors of this instruction which have one of their parents bound on a clus-
ter different from the cluster under consideration. This is due to the fact that if
the instruction is bound to the cluster under consideration, it will surely lead to
communication(s) in the future while scheduling the successors of the instruc-
tions. Although, we have experimented with many other heuristics for cluster
assignment, the above mentioned heuristics seems to generate the best schedule
in almost all cases from both the performance as well as energy perspective(41).

3.3. Functional Unit Binding

A functional unit binding scheme decides the binding of a chosen instruction
to a functional unit and is important only in the context of algorithm 1 and 3. The
algorithm maintains a FU map that explicitly keeps track of the status of each
functional unit. A functional unit is marked to be in sleep mode after one cycle of
idleness and activated on next use.

13

Algorithm 1 Energy Efficient Scheduling for Fus
Initialize ReadyList with root operations of the dependence graph of the region to be scheduled
CurrentCycle← 1
while (ReadyList is not empty)do

Initialize EarlyCycle with CurrentCycle, and LateCycle with SchedulingCycle determined using performance
driven scheduling
slack= LateCycle− EarlyCycle
while (Not all operations in ReadyList have been tried once)do

CurrentOperation← UnS chedList.pop()
ClusterPriority← 1 //Schedule to reduce energy in FUs
Target← DetermineBestAlternative(CurrentOperation,CurrentCycle,ClusterPriority)
if ((TargetCluster== −1) or (S lack≥ S LACKT HRES HOLD and Target.Wakeup= 1)) then

ReadyList.add(CurrentOperation)
CONTINUE

end if
S cheduleFu(CurrentOp,Target. f u,Target.Cluster,CurrentCycle)

end while
CurrentCycle← CurrentCycle+ 1
ReadyList.update()

end while

Algorithm 2 Energy Efficient Scheduling for ICs
Initialize ReadyList with root operations of the dependence graph of the region to be scheduled
CurrentCycle← 0
while (ReadyList is not empty)do

Initialize EarlyCycle with CurrentCycle, and LateCycle with SchedulingCycle determined using performance
driven scheduling
slack= LateCycle− EarlyCycle
while (Not all operations in ReadyList have been tried once)do

CurrentOperation← UnS chedList.pop()
ClusterPriority← 0 //Schedule to reduce energy in ICs
Target← DetermineBestAlternative(CurrentOperation,CurrentCycle,ClusterPriority)
if ((TargetCluster == −1) or (S lack ≥ S LACKT HRES HOLD and Target.CommEnergyCost≥
COMM T HRES HOLD)) then

ReadyList.add(CurrentOperation)
CONTINUE

end if
S cheduleComm(Target.CommOption)
S cheduleFu(CurrentOp,Target. f u,Target.Cluster,CurrentCycle)

end while
CurrentCycle← CurrentCycle+ 1
ReadyList.update()

end while

14

Algorithm 3 Energy Efficient Scheduling for Fus and ICs (priority to Fus)
Initialize ReadyList with root operations of the dependence graph of the region to be scheduled
CurrentCycle← 1
while (ReadyList is not empty)do

Initialize EarlyCycle with CurrentCycle, and LateCycle with SchedulingCycle determined using performance
driven scheduling
slack= LateCycle− EarlyCycle
while (Not all operations in ReadyList have been tried once)do

CurrentOperations← UnS chedList.pop()
ClusterPriority← 1
Target← DetermineBestAlternative(CurrentOperation,CurrentCycle,ClusterPriority)
if ((TargetCluster== −1) or (S lack≥ S LACKT HRES HOLD and(Target.Wakeup== 1)) then

ReadyList.add(CurrentOperation)//Schedule to reduce energy in FUs primarily
CONTINUE

end if
S cheduleComm(Target.CommOption)
S cheduleFu(CurrentOp,Target. f u,Target.Cluster,CurrentCycle)

end while
CurrentCycle← CurrentCycle+ 1
ReadyList.update()

end while

If the functional unit required for the instruction under consideration is active
in the target cluster, it is bound as usual. Otherwise, the available slack of the
instruction is considered. If the slack is below a threshold(we use the threshold
value of 0 in our experiment) the functional unit required bythe instruction is
woken up. In case there is more than one alternative available (for activating), the
functional unit which is in sleep mode for a longer duration is woken up in order
to amortize the cost of waking up. In case the instruction possesses enough slack,
its scheduling is deferred to a future cycle and it is put backin the ReadyList.
Note that the next time this instruction is picked up for scheduling, its earliest
scheduling time and hence the slack gets updated. This guarantees that the slack
of an instruction reduces monotonically and eventually comes below the threshold
ensuring that it is scheduled. Hence the algorithm is guaranteed to terminate.

3.4. Cross-path binding

The cross-path assignment scheme is required only in the context of algorithm
2 and algorithm 3. The scheme is designed to minimize the energy consumption
due to inter-cluster communication without affecting runtime performance. In or-
der to meet this objective, the low power cross-paths are used in preference to
the high power cross-paths wherever possible. More precisely, the assignment of
cross-paths to communications is done as follow. To schedule a communication,
its earliest scheduling cycle, latest scheduling cycle, and slack values are deter-
mined first. The earliest scheduling cycle for a communication is the cycle in

15

Procedure 4 DetermineBestAlternative
INPUT: ThisOp, ThisCycle, ClusterPriority
OUT PUT: Determines best scheduling alternative for this binding
FirstTarget.Cluster← −1;
FirstTarget.CommCost← 1000000;
FirstTarget.CommEnergyCost← 1000000;
S econdTarget.Cluster← −1
S econdTarget.CommCost← 1000000;
S econdTarget.CommEnergyCost← 1000000;
for (CurrentCluster ranging from FirstCluster through LastCluster)do

if (FU required by ThisOp is available in ThisCycle for CurrentCluster)then
if (Cross-paths required by ThisOp are available in ThisCyclefor CurrentCluster)then

CommAlternative← DetermineBestCommAlternatives(ThisOperation,CurrentCluster,ThisCycle)
FuAlternative← DetermineBestFuAlternatives(ThisOperation,CurrentCluster,ThisCycle)
if ((FU under consideration is in active mode) and (FirstTarget.CommEnergycost≥ CommAlterna-
tive.CommEnergyCost))then

FirstTarget.CommCost← CommAlternative.CommCost
FirstTarget.CommEnergyCost← CommAlternative.CommEnergyCost
FirstTarget.CommOption← CommAlternative.CommOption
FirstTarget.Cluster← CurrentCluster
FirstTarget.Fu← FuAlternative.Fu

else
if (SecondTarget.CommEnergycost≥ CommAlternative.CommEnergyCost)then

S econdTarget.CommCost← CommAlternative.CommCost
S econdTarget.CommEnergyCost← CommAlternative.CommEnergyCost
S econdTarget.CommOption← CommAlternative.CommOption
S econdTarget.Cluster← CurrentCluster
S econdTarget.Fu← FuAlternative.FallBackFu

end if
end if

end if
end if

end for
if ((FirstTarget.cluster! = −1) and (ClusterPriority == 0 or FirstTarget.CommCost <=
S econdTarget.CommCos)) then

FinalTarget← FirstTarget
FinalTarget.Wakeup← 0

else
FinalTarget← S econdTarget
FinalTarget.Wakeup← 1

end if
RETURNFinalTarget

16

Procedure 5 DetermineBestFuAlternative
INPUT: ThisOp, ThisCluster, ThisCycle
OUT PUT: Best functional unit and fallback functional unit for thisBinding
for (CurrentFu ranging from FirstFu through LastFu in ThisCluster) do

if (CurrentFu is available in ThisCycle and Current Fu can execute ThisOp)then
if (CurrentFu is active)then

Target.Fu← CurrentFu
Target.FallBackFu← −1
RETURN Target

else
if (CurrentFu.S leepPeriod> Target.S leepPeriod) then

Target.FallBackFu← CurrentFu
Target.S leepPeriod← CurrentFu.S leepPeriod

end if
end if

end if
end for
RETURNTarget

Procedure 6 DetermineBestCommAlternative
INPUT: ThisOp, ThisCluster, ThisCycle
OUT PUT: Best communication alternatives and cost for this binding
for (All Communication required for scheduling ThisOp on ThisCluster in ThisCycle)do

CurrentCommOption← DetermineBestCommOption(CurrentComm)
Target.CommOption.add(CurrentCommOption)
Target.CommCost+=DetermineCommunicationCost(CurrentCommOption)
Target.CommEnergyCost+=DetermineCommEnergyCost(CurrentCommOption)

end for
RETURNTarget

Procedure 7 DetermineBestCommOption
INPUT : ThisComm
OUT PUT: A tuple CommOption (Comm, Cross) that associates best cross-path with ThisComm
CommOption.Comm← ThisComm
Determine the EarlyCommCycle, LateCommCycle and the CommSlack forThisComm
Determine the free minimum energy consuming cross-path,target cross that can transfer CurrentComm between Ear-
lyCommCycle and LateCommCycle
CommOption.Cross← targetcross
RETURNCommOption

Procedure 8 ScheduleComm
INPUT: ThisCommOption
while (CurrentComm=ThisCommOption.pop())do

Schedule CurrentComm.Comm on CurrentComm.CrossPath on CurrentComm.ScheduleCycle
Mark CurrentComm.CrossPath busy from CurrentComm.ScheduleCycle for CurrentComm.CrossPath.Latency Cy-
cles

end while

Procedure 9 ScheduleFu
INPUT: ThisOp, ThisFu, ThisCluster, ThisCycle
Schedule ThisOp on ThisFu on ThisCluster on ThisCycle
Mark ThisFu in ThisCluster Busy from ThisCycle for ThisFu.Latency Cycles

17

which the data value to be communicated is produced in the source cluster, plus
one. The latest scheduling time for communication is the scheduling cycle of first
consuming instruction, minus one. The difference between the earliest schedul-
ing cycle and the latest scheduling cycle is the communication slack. In order
to avoid delaying the consuming instruction and the consequent possible stretch
of the schedule, a communication is assigned to a least energy consuming cross-
path that can transfer the data value within the available slack for communication.
Thus the cross-path assignment scheme maximizes the usage of low power cross-
paths subject to the availability of slack in the communication, and thus, as far as
possible, performance degradation is minimized and energysaving is maximized.

Algorithm 2 uses a more aggressive scheme that exploits the instruction slack
also and converts it to communication slack. This scheme defer an instruction
that requires communications with total energy cost above communication thresh-
old (COMM THRESHOLD) if it possess a slack that is above a slack threshold
(SLACK THRESHOLD). The average energy cost of communications associated
with a binding is determined according to following cost metric.

CommEnergyCost= (A ∗
∑

FastComm+ B ∗
∑

S lowComm

+ C ∗
∑

FutureComm)/TotalComm (1)

whereFastCommrepresents number of the transfers that can happen on the
fast cross path.SlowCommrepresents number of communications that can hap-
pen over the slow cross path andFutureCommrepresents the future communi-
cation that will happen on fast or slow cross-path dependingon availability. To-
talCommis the total number of communication that happen as a side effect of
this binding. The selection of A, B, and C is architecture specific and depends
on available communication options in a clustered architecture and their relative
cost. We found that A=1.0, B=0.33 and C=0.67 work well in practice for the
kind of heterogeneous interconnect we consider in our experiments. Of course,
the weight can be chosen to reflect the heterogeneous interconnect under consid-
eration. For our experiments, we have found that SLACKTHRESHOLD= 1 and
COMM THRESHOLD=.67 works well in practice. The above heuristic leads to
scheduling the instruction under consideration at a later cycle preferably on a slow
but more energy efficient cross-path. Again it is important to note that the next
time this instruction is picked up for scheduling, its earliest scheduling time and
hence the slack get updated. This guarantees that the slack of an instruction re-
duces monotonically and eventually comes below the threshold ensuring that it

18

is scheduled. Hence the algorithm is guaranteed to terminate. Finally, the com-
bined Algorithm 3 exploits instruction slack only for leakage energy management
in functional units (as Algorithm 1) and uses the communication slack only for
interconnect energy optimization. Combined Algorithm 3 does not delay the in-
structions in order to seek opportunities to schedule communication on low power
cross-path. Thus, it does not convert the instruction slackinto communication
slack to save energy in the interconnect.

3.5. Scheduler Implementation

The cycle scheduler as implemented in Trimaran(32) targetsa flat VLIW class
of architectures(33). It maintains aReadyListof operations whose predecessors
have already been scheduled. In each iteration of the main scheduling loop, the
highest priority operation is selected from theReadyListand scheduled in the
current cycle if it satisfies all the resource constraints. In our implementation,
slack and hence priority is recalculated at the beginning ofeach cycle for all the
operations in theReadyListusing the schedule time determined in an earlier per-
formance oriented scheduling pass. After taking the highest priority instruction,
DetermineBestAlternativedetermines all scheduling alternatives ofCurrentOper-
ation in all clusters.DetermineBestAlternativescans each cluster one by one and
check if the instruction under consideration can be scheduled in current cycle on
cluster under consideration using some functional unit (though it can be in sleep
mode) and available cross-path for requisite communication for this scheduling. It
prioritizes clusters which match this feasibility criteria into two categories.First-
Targetstores the cluster that can accommodate the instruction under consideration
in current cycle with minimum communication cost and also has an active func-
tional unit. SecondTargetstores the cluster that can accommodate the instruction
under consideration in current cycle with minimum communication cost but does
not has an active functional unit. To make these decision, ituses procedureDe-
termineBestFuAlternativeandDetermineBestCommAlternativeto return the best
functional unit for scheduling the instruction under consideration and best option
for communicating the requisite data values for the scheduling under considera-
tion and its associated cost. The best functional unit for performing the operation
is one which is available and active. If no functional units is active, this procedure
return the functional unit which is in sleep mode for longesttime as a FallBack-
AlterNative. For determining the best alternative for communication, Procedure
DetermineBestCommAlternativeconsiders each required communication one by
one, for each such communication it chooses the best communication option us-
ing procedureDetermineBestCommOption. ProcedureDetermineBestCommOp-

19

tion returns the minimum energy consuming cross-path that is available and can
schedule the communication under consideration within theavailable communi-
cation slack associated with communication under consideration. The procedure
DetermineBestCommOptionfinally aggregate the cost of all communication so
determined to calculate the overall cost of the binding. It also computes the av-
erage energy cost of the binding by averaging the energy costof all requisite
communication for this binding using cost function described earlier. Finally,
the procedureDetermineBestAlternativedecides between the Target clusters de-
termined using above mentioned two criteria. Algorithm 2 uses FirstTarget or
SecondTargetasFinalTargetdepending on which one has the minimum commu-
nication cost. Algorithm 1 and Algorithm 3 usesFirstTargetif it is not empty and
it usesSecondTarget, otherwise.

The top level scheduling algorithm proceeds after getting information about
FinalTarget. Algorithm 1 puts back the instruction if it required wakingup a re-
source inTargetCluster(i.e., there is no cluster available in the current cycle with
an active functional unit to schedule the instruction) and instruction slack is above
a threshold. Thus, this scheme exploits scheduling slack ofinstructions to save
energy in function resources by keeping them idle for longerperiod of time while
reducing transitions. The Algorithm 2 puts the instructionback in theReadyList
if the FinalTarget.CommCostis above a threshold and instruction also has enough
slack. By doing this, it converts the instruction slack into communication slack
in order to save energy in interconnects. However, if this isnot the case the in-
struction is scheduled inTarget.Clusteron Target.FuusingTarget.CommOption.
The proceduresScheduleCommandScheduleFuassociate the communication and
computation resources for this binding and mark them busy. Finally, algorithm 3
performs cluster selection based on communication cost subject to availability of
active resource and delays scheduling the instruction in the current cycle if it pos-
sesses enough slack and requires waking up a resource. Of course the cross-path
assignment scheme still assigns the communications required by this instruction to
slower cross-paths subject to availability and save energyin interconnects. How-
ever, the important difference between Algorithm 3 and Algorithm 2 is that unlike
Algorithm 2 the instruction slack is not exploited to delay instructions to save
energy in interconnect in Algorithm 3.

4. Example

In this subsection, we present two examples that illustratehow the available
slack of instructions and communications is exploited by the proposed schedul-

20

Figure 5: Dependence Graph 1 Figure 6: Dependence Graph 2

Figure 7: (a) Schedule 1 and 2 (for Graph 1) (b) Schedule 3,4 and 5 (for Graph 2)

ing algorithms 2 and 1 respectively to get energy benefits without hurting perfor-
mance.

Figure 5 shows a portion of a data dependency graph and Figure7 (a) shows
two possible schedules for this dependency graph. We assumea two-clustered
machine with each cluster having an adder, a multiplier and afast communication
bus. Schedule 1 has ADD1 and ADD2 scheduled on adders of cluster 1 and cluster
2 respectively in cycle 1. To perform multiplication, the results of these operations
are transferred to the other cluster in cycle 2. The remaining addition operation
ADD3 is also initiated in cycle 2 on cluster 1. The results of ADD1 and ADD2
can be used in cycle 3 on cluster 1 and cluster 2 respectively to perform MPY2
and MPY1 on multipliers. Though MPY3 does not require any inter-cluster com-
munication, it is still executed in cluster 1 at cycle 4 because of non-availability of
a multiplier in cycle 3. The scheduler decides to schedule MPY2 ahead of MPY3
in schedule 1 assuming that MPY2 is on the critical path. However, MPY3 gets
preference if it is on the critical path as shown in schedule 2. Note that in this
case, MPY2 needs to be scheduled in cycle 4 on cluster 1 again because cluster
1 has only one multiplier.The important point to note here is that the scheduler
when scheduling MPY2 in cycle 4 in cluster 2 has the knowledge that it can take
two cycles to transfer the result of ADD2 over the communication channel without

21

stretching the schedule. In such a situation if a slow but more energy-efficient bus
is available, our scheduling algorithm 2 decide to steer communication to such
a cross-path (as shown with darker arrow in schedule 2). Notably, even though
three additions are ready to be scheduled in the first cycle only two of them can
be scheduled (only two adders are available in this case). Similarly though the ad-
dition operations finish in opposite clusters in cycle one the results can not be uti-
lized for multiplications in cycle 2 because it takes at least one cycle to transfer the
results to the other clusters. This shows how contention among computation and
communication resources in clustered architectures manifests itself in the form
of greater computation and communication slack. Notably, the contention for re-
sources is more in clustered architectures as compared to flat architectures because
of distribution of resources. Our scheduling algorithm 2 leverages this increased
slack and takes into consideration the criticality of an instruction and the available
cycles to communicate requisite data values while scheduling an instruction in a
given cycle. Accordingly, communication is assigned to themost energy-efficient
cross-path that can transfer the value in the available communication cycles.

Figure 6 shows another dependence graph and Figure 7 (b) shows possible
schedules for this dependency graph generated for a 2-clustered VLIW archi-
tecture having 1 adder and 1 multiplier in each cluster and a bidirectional bus
between the two clusters with 1 cycle transfer latency. Schedule 3 is generated
by a performance-oriented scheduler. Performance oriented scheduler schedules
MPY1, and ADD1 in cluster 1 and MPY2, and ADD2 in cluster 2 in cycle 1
as shown in Schedule 3. The remaining ready operation MPY4 and ADD4 are
scheduled in cycle 2 in Cluster 1 and Cluster 2 respectively. ADD3 (MPY3 resp.)
is scheduled in cycle 3 (cycle 4 resp.) because it takes a cycle to transfer the result
of ADD2 (MPY2 resp.) from cluster 2. Similarly MPY3 is scheduled in cycle 4
because of an extra cycle needed to transfer results from cluster 2. Consequently,
the scheduling of MPY5 happens in cycle 6 whereas ADD5 is scheduled in cycle
5 in cluster 2. Finally ADD6 operation is scheduled in cycle 8using the result of
ADD5 from cluster 2. The Total schedule length is 9 cycles andtotal number of
inter-cluster communication needed by the performance oriented scheduler based
on eager (as early as possible) approach is 4.

Scheduling the same set of operations using our energy-efficient Schelling al-
gorithm 1 generates schedule 4. The major point to note is that the scheduler
leverages the available slack and map all the MPY operations(that are on the crit-
ical path) in cluster 1 while scheduling all add operations in parallel on cluster
2. The number of transitions from active mode to low leakage mode and vice-
versa for M1, M2, A1, and A2 are 2, 2, 4, 4 for schedule 3 and 2, 0,2, 2 for

22

schedule 4 respectively. Finally, schedule 4 is much more balanced. The re-
source usage vector of schedule 3 is (4,2,1,1,1,1,0,1,0) and that of the schedule 4
is (2,2,2,2,1,1,0,1,0). Cycle to cycle variation in resource usage is clearly reduced
in schedule 4 as compared to schedule 3 that in turn helps in reducing step power
(cycle to cycle variation in power) and peak power dissipation (maximum power
consumed in a cycle)(42)2 in addition to reducing transition energy overheads that
maximize the leakage energy savings. Additionally, Schedule 4 reduces the num-
ber of inter-cluster communication to 1 whereas schedule 3 requires 4 inter-cluster
communications.

Slight tweaking of our energy aware scheduling heuristic helps to make more
conservative spreading of computation to map all the operation to just cluster 1
in case of this dependence graph, keeping cluster 2 completely idle as shown
in schedule 5. This further saves even more leakage energy insome scheduling
regions depending upon the dependencies among operations.The number of tran-
sitions from active mode to low leakage mode and vice-versa for M1, M2, A1,
and A2 are 2, 0, 2, 0 for schedule 5. Schedule 5 is much more balanced. The
resource usage vector of schedule 5 is (1,1,2,2,1,2,1,1,0). Finally, schedule 5 does
not require any inter-cluster communication that helps to save even more energy.

5. Experimental Evaluation

5.1. Setup

We have used the Trimaran suite(32) for our experimentation. Trimaran was
developed to conduct state-of-the-art research in compilation techniques for ILP
architectures with a specific focus on VLIW class of architectures. We have mod-
ified the Trimaran suite to generate and simulate code for a variety of clustered
VLIW configurations. The machine description module has been upgraded to
describe various clustering related parameters such as thenumber of clusters,
number and types of functional units in each cluster, interconnection network
parameters such as number and types of buses between different clusters, and
their latency parameters. These parameters are fed to the parameterized machine-
dependent optimization modules in the backend. Major modifications have been
performed in the Trimaran scheduler and register allocatormodule (which was
originally written for a class of flat VLIW architectures) tofaithfully account for

2It is noteworthy that the energy is total power consumed overall execution cycles and con-
versely average power is total energy consumed divided by total number of cycles(43)

23

the conflicts due to limitations on the number of available functional units and reg-
isters in a cluster as well as the limitations on the number ofavailable cross-paths
between clusters. The scheduler has been modified to implement the scheduling
algorithm described in the last section. We have used twelvebenchmarks out of
which nine are from mediabench(44)(45)(viz. cjpeg, djpeg, rawcaudio, rawdau-
dio, g721encode, g721decode, md5, des, and idea), two from netbench(46)(47)
(viz. crc, and dh), and one(susan)is from MiBench(48)(49). We have tried other
benchmarks from these suits as well but these are the only ones which compiled
successfully and executed correctly in the Trimaran framework and hence we re-
port results for them.

We present results for an unclustered, a two-cluster machine and a four-cluster
VLIW machine. The unclustered VLIW configuration has 4 ALUs,2 load-store
units, 1 branch unit, and 64 registers. The 2-clustered configuration has 2 ALUs,
1-load store units, 1 branch unit and 32 registers in each cluster, whereas the 4-
clustered configuration has 1 ALU, 1-load store unit, 1 branch unit and 16 registers
in each cluster. We consider two interconnect configurationnamed LL configu-
ration and PP configuration. LL configuration has two fast cross-path between
clustered allows transfer of two data values per cycles. LP configuration allows
transfer of 2 data values 1 per cycle on L cross-path and 1 per 3cycles on P cross-
path. The number of functional units selected for the VLIW configurations are
such that the performance achieved using this configurationis within 95% of the
peak performance achieved by using many more functional units. This moder-
ate number of functional resources guarantees that the benefits reported have not
been obtained by trivially putting the numerous idle functional units into the low
leakage mode. We report results only for Integer ALUs which are heavily used
and pose a challenge for any leakage energy management scheme. Thus the ben-
efits reported here have not been magnified by the leakage energy benefits of the
load-store, branch, and FP units which are mostly idle. It isimportant to note that
reducing the integer functional unit beyond this point for example reducing the
number of integer functional units to one per cluster leads to drastic performance
degradation (on an average close to 20%). This increase in execution time due
to serialization of potentially parallel operations further aggravate the amount of
inter-cluster communication required that in turn shows upas more idleness in the
functional units which is favorably exploited by our algorithms (that is designed
to thrive on even short idle cycles) for energy benefit.

24

5.2. Energy Model

We have used the same analytical energy model as in (27) to directly compare
the functional unit energy benefits of the proposed schemes over the pure hard-
ware based scheme proposed in(27). We briefly describe this model here. The
reader is referred to (27) for details. The total energy in a functional unit in this
model is determined as follows:

E
′

total = DynamicEnergy + LeakageEnergy+
TransitionEnergy + SleepModeEnergy

E
′

total = nA(αEA + (1 − D)ES1) + (nAD + nUI) ∗ (αEs0

+(1 − α)Es1) +Mz((1 − α)EA + ESleep) + nZEs0

HerenA is the number of active cycles,nUI is the number of uncontrolled idle
cycles,nZ is the number of sleep cycles andMz is the number of transitions. We
have determined these values differently for each configuration by using the tri-
maran simulator.Es0 andEs1 are low leakage and high leakage energy and are
related by the following equations.
Es0 = s ∗ ES1 , 0.0001 ≤ s ≤ 0.01 andEs1 = p ∗ EA, 0 ≤ p

Wherep is the ratio of the maximum leakage energy expended to the max-
imum energy for evaluation per unit of time (1 cycle). After simplifying and
normalizing the equations with respect to active energy, The following model for
total energy consumption is obtained :

Etotal = nA(α + (1 − D)p) + (nAD + nUI)(αsp + (1 − α)p)
+Mz((1 − α) + ESleep/EA) + nZsp

The technology parameters that we have used (s=0.01 andES leep/EA = 0.01)
are also the same as in (27) in order to compare the benefits of our scheduling
algorithm to the hardware-only scheme. Considering the current 70nm fabrication
technology where leakage energy is on par with dynamic energy, we set p to 0.5
.α is activity factor andD is the duty cycle of the clock. We use a typical value of
0.5 for both of these parameters in our simulation as in (27).For determining the
energy benefits in interconnects we have used the INTACTE energy model(40).

25

Figure 8: % Reduction in Transitions with scheduling w.r.t.H/W only Scheme for Algorithm 1

5.3. Results

We have performed a detailed experimental evaluation of theproposed algo-
rithms in terms of execution time, energy benefits and overall energy delay prod-
uct as well as impact of technology scaling on the energy benefits. The functional
unit energy benefits are presented with respect to hardware only scheme that puts
a functional unit into low leakage mode after one cycle of idleness. Figure 8
presents percentage reduction in number of transitions by using the scheduling
algorithm 1 targeted to exploit instruction slack to reducethe unnecessary transi-
tions and the associated energy benefit. Algorithm 1 reducesthe number of tran-
sitions by 53.97%, and 58.29% as compared to hardware only scheme. Figure 9
presents the associated energy benefits of these reduced transitions for 2-Clustered
and 4-Clustered machine using analytical energy model as described in last sub-
section. Algorithm 1 improves the functional unit energy consumption by 15.11%
and 16.92% for 2-clustered and 4-clustered architecture respectively. The reduc-
tion in the number of transitions and achievable energy benefit depends on the
total available slack in scheduling instructions as well asthe distribution of idle
cycles in the benchmark. Benchmarks like des, dh, crc, and susan have many short
idle cycles and our algorithm is able to exploit the available slack in these appli-
cations to avoid many transitions. In the case of g721encodeand g721decode, the
available slack is relatively less and consequently the reduction is also less.

As compared to the performance oriented scheduler, the proposed algorithm
suffers only a marginal performance loss of 0.3% and 0.5% in the context of 2-
clustered and 4-clustered architecture. The reason for this performance loss is

26

Figure 9: % Functional unit Energy Benefit w.r.t H/W only Scheme for Algorithm 1

Figure 10: % Increase in Execution Time of LP conf. w.r.t. LL conf. for Algorithm 2

27

Figure 11: % Energy Benefit of LP conf. w.r.t. LL conf. for Algorithm 2

inherent inaccuracies in determining the available slack.Due to this, slack is
sometime over-estimated which in certain cases lead to performance penalty due
to serialization of operations. However, as the results show that it is rare and its
overall effect on performance is only marginal.

The impact of technology on the benefits of our compiler directed leakage
management scheme is depicted in Figure 12 which plots the benefit of our scheme
on the top of hardware only scheme for three different technology nodes namely
90 nm, 65 nm, and 45 nm. The benefits of our scheme are even higher for tech-
nologies such as 90nm where is leakage is 20% to 30% of overallenergy (we
assume 25% with p=0.25 in this experiment). The benefit in even smaller tech-
nologies such as 45nm (assuming leakage is 65% with p=.65) are slightly less
but still significant. The reason for these trend is as follows: Our scheme is ac-
tually geared towards reducing the transitions and associated energy overheads.
Thus, when the overall contribution of leakage is more and corresponding dy-
namic energy contribution is less, the extra transitions and the impact of savings
by reducing these transitions is also relatively less.

Figure 10 presents the percentage increase in execution time of using LP con-
figuration (having 1 fast and 1 slow cross-path) with the proposed scheduling
algorithm over LL configuration (having 2 fast cross-path).The average percent-
age increase in execution time is 1.8% and 1.5% for 2-clustered and 4-clustered
machine respectively. The percentage energy benefit of using LP configuration
scheduled using algorithm 2 as compared to LL configuration is 41.5% and 46.8%
respectively for 2-clustered and 4-clustered machine as determined using the IN-

28

Figure 12: Scalability Results For Fu Energy Savings (90nm,65nm, and 45nm) for Algorithm 1

Figure 13: Scalability Results for IC Energy Savings (90nm ,65nm, and 45nm) for Algorithm 2

29

Figure 14: % Increase in Execution Time of LP conf. w.r.t. LL conf. for Algorithm 3

TACTE (40) interconnect energy model. Programs having more communications
with high slack valuesviz. djpeg, g721encode, des, and crcsuffer only a marginal
performance degradation and gives significant energy benefit because many of the
communication in these programs are scheduled on slow cross-path by the pro-
posed scheduling algorithm 2. In contrast, programs with fewer communications
with high slack valuesviz. idea, md5, and susansuffer a moderate performance
degradation with the LP configuration and give relatively less energy benefits.
However, a very small overall performance degradation occurs with the LP con-
figuration whereas a significant amount of communication energy savings are ob-
tained. This shows the effectiveness of our communication scheduling mechanism
that selectively maps communications with high latency tolerance onto a high la-
tency bus and communication with low latency tolerance to low latency bus.

Figure 13 depicts the impact of technology scaling on the benefit of our com-
piler scheduling scheme for heterogeneous interconnect for three different tech-
nology nodes namely 90nm 65nm and 45nm. The benefit of our scheme are
roughly the same across different technology nodes with slight variations. This is
because the smaller technologies though leads to increase in leakage part in some
interconnect components such as repeaters, buffers, and flops (note that wire does
not have the leakage component), there is also reduction in dynamic component of
the energy in all the components including wires. This leadsto roughly the same
benefits of using the slower interconnect over faster interconnect across different
technology nodes.

Figure 14 presents the percentage increase in execution time by applying al-

30

Figure 15: % Energy Benefit of LP conf. w.r.t. LL conf. for Algorithm 3

Figure 16: % Functional Unit Energy benefits of scheduling over H/W only scheme for Algorithm
3

31

Figure 17: % Overall Benefit in EDP of scheduling Algorithm3 on LP conf. as compated to LL
conf. and H/W only scheme for Fu Transitions

gorithm 3 that exploit the instruction slack to save leakageenergy in functional
units by reducing the transition and also migrates the communication with high
slack value to slow bus. The percentage increase is presented w.r.t clustered archi-
tecture with LL configuration scheduled by performance oriented scheduler and
have a hardware based scheme to optimize leakage energy in functional units(27).
The average increase in execution time is 3.3% and 2.5% for 2-clustered and 4-
clustered architectures which is higher than the average increase in execution time
for algorithm 2 that only optimize the interconnect energy.This is because com-
bined scheme uses the instruction slack for doing the leakage energy management
in functional units and this leads to more cases where two communication simul-
taneously need the fast cross-path. In other words some of the instruction slack
that was used up implicitly in Algorithm 2 is no longer available (because it is al-
ready used up for leakage energy management in functional units) and this shows
up in the form of extra execution cycles in combined scheme.

Figure 15 shows the percentage saving in communication energy of schedul-
ing Algorithm 3 on LP configuration as compared to LL configuration. Algorithm
3 saves the average communication energy by 37.1% and 43.1% which is slightly
lesser than Algorithm 2 because the Algorithm 3 does not exploit instruction slack
for saving communication energy explicitly and it gives priority to saving energy
in functional units. However, there is still significant communication energy sav-
ings achieved by the combined algorithm attributed to available communication
slack. Figure 16 presents the percentage savings in functional unit energy of com-
bined algorithm as compared to hardware only scheme. The average saving in

32

functional unit energy is 15.3% and 17.2% for 2-Clustered and4-Clustered ma-
chine respectively. As expected the percentage savings areroughly the same as
Algorithm 1 because combined algorithm gives first priorityto functional unit en-
ergy savings. The slight increase in functional unit energyis attributed to increase
execution time with combined scheduling algorithm which isdue to usage of slow
cross-path in certain cases that leads to extra idleness in functional units.

Figure 17 gives the percentage savings in energy-delay product of processor
by using combined scheme conservatively assuming that functional units consti-
tute 30% of processor energy and interconnect constitute 20% of processor energy
(because the actual figure can vary from system to system and has strong depen-
dence on circuit, design style and technology parameters).We observe that even
with this conservative assumption, the overall energy-delay product of the proces-
sor is improved on an average by 8% and 10% for 2-Clustered and 4-Clustered
architecture which is a significant saving.

6. Related Work

In this section, we briefly describe the earlier work done in the area of instruc-
tion scheduling for clustered architectures, architectural approaches for leakage
energy management, energy aware scheduling for VLIW architectures, and effi-
cient cross-path design.

6.1. Instruction Scheduling for Clustered Architectures

Earlier proposals for scheduling on clustered VLIW architectures can be clas-
sified into two main categories, viz., phase-decoupled approaches and phase-
coupled approaches. A phase-decoupled approach to scheduling works on a data
flow graph (DFG) and performs partitioning of instructions into clusters to re-
duce inter-cluster communication while approximately balancing the load among
clusters. The annotated DFG is then scheduled using a traditional list scheduler
while adhering to earlier spatial decisions. A major argument in favor of this ap-
proach is that a partitioner having a global view of a DFG can perform a better
job of reducing inter-cluster communication and load-balancing. The proposals
in this direction are due to Desoli(37), Gonzalez(36), Lapinskii(38), Mahlke(50),
Lee(51), and Nystrom(52). However, the phase-decoupled approach is known to
suffer from the phase ordering problem. Since the spatial scheduler has only an
approximate knowledge of load on clusters, usage of functional units, and cross-
paths, approximate load-balancing often leads to cluster assignments which un-
necessarily constrain the temporal scheduler in the later phase. Moreover, some

33

of these schemes are designed for reducing inter-cluster communication and end
up reducing the ILP in the program in this pursuit(34)(31).

An integrated approach to scheduling combats the phase-ordering problem
by combining spatial and temporal scheduling decisions in asingle phase. The
integrated approach considers instructions ready to be scheduled in a cycle and
the available clusters in some priority order. The priorityorder for considering
instructions is decided based on mobility, scheduling alternatives, the number
of successors of an instruction etc. Similarly, the priority order for considering
clusters is decided based on communication cost of assignment, earliest possible
schedule time etc. An instruction is assigned a cluster to reduce communication
or to schedule it at the earliest. The proposals in this direction are due to Ozer(34),
Leupers(35), Kailas(31), and Nagpal(41)(53).

6.2. Architectural Approaches for Leakage Energy Management

Study of leakage energy management at the architectural level has mostly fo-
cused on storage structure such as cache. Yang et al., propose power supply gating
of L1 cache cells(54). Kaxiras et al., dynamically adjust the interval after which
a cache line is put into low leakage mode(55). Flaunter et al., propose a state-
preserving drowsy cache design and a simple control scheme which is able to
deliver most of the leakage energy benefits(56).

In contrast to storage structures, little work has been doneon architecture level
leakage energy management in the context of functional units. Our work directly
improves over the work due to Albonesi et al. (27). This work proposes and eval-
uates an architectural policy for aggressively controlling leakage energy in integer
ALUs. The ’MaxSleep’ policy puts a functional unit into low leakage mode af-
ter one cycle of idleness. This scheme depends on dual threshold domino logic
circuit with sleep mode proposed in (26) which has no delay penalty of transi-
tion between active mode and sleep mode.Their performance evaluation using
an analytical energy models in the context of spec benchmarks for superscalar
architectures shows that for technology such as 65nm, the leakage energy bene-
fit gained by such an aggressive scheme is significant. Howeverthe overhead of
transitions from active mode into low-leakage mode and vice-versa are significant
(on an average 30% when compared to a ’NoOverhead’ scheme).

6.3. Energy-Efficient Scheduling

Zhang et al.,(57) have proposed a rescheduling scheme to reduce dynamic and
leakage energy in the functional units of a VLIW processor byexploiting the rem-
nant slack of a performance-oriented schedule. In contrastZhang et al., our ap-

34

proach works on raw unscheduled code with all the available slack for scheduling
and directly exploits all the available slack thereby complementing any hardware
based mechanism for leakage energy management. Kim et al.,(21) have proposed
a leakage energy management scheme for VLIW processors thatapproximates the
ILP available in the program using heuristics (as the exact estimation problem is
itself NP complete). The calculation is done at the loop level granularity assuming
that there is little variation in the ILP within the loop. Their scheme keeps only
canonical subset of functional units that is sufficient to exploit this approximated
ILP active. In contrast, our approach adaptively applies leakage energy manage-
ment at a finer granularity based on available ILP. Gupta et al.,(58) propose a
novel data structure called power-aware flow graph. Their leakage energy man-
agement scheme in the context of superscalar processors works over this graph
to determine larger program regions called power blocks which offer opportuni-
ties to save leakage energy. ISA and architectural support is needed to switch on
and off the functional unit at the boundaries of power blocks and nullify spurious
on-off. Kim et al.,(42) have proposed a modulo scheduling algorithm that pro-
duces a more balanced schedule for software pipelined loopswith an objective to
reduce the peak power and step power dissipation. Though ouralgorithm is not
directly designed towards improving the peak power and steppower dissipation,
it generates a more balanced schedule. This is because it tries to keep minimum
number of functional unit active and try to use the active functional units as much
as possible while keeping the idle functional units idle forlonger durations(30).

6.4. Efficient Cross-path Design

As compared to reducing energy consumption in function blocks, study of
energy efficiency in interconnects is still in its infancy. Previous work has con-
centrated on improving latency for interconnects in the context of distributed ar-
chitectures. Gonzalez et al.(59) have evaluated different kinds of interconnects
with different topologies and concluded that a point-to-point interconnect with an
effective steering scheme is more efficient than a bus-based interconnect. Their
experimental results also demonstrate that an asynchronous interconnect offers a
performance comparable to an idealized interconnect at a low hardware imple-
mentation cost. Terechko et al.(12) has proposed various inter-cluster commu-
nication models for clustered architecture and perform a quantitative analysis to
compare their benefits.

Closest to our proposal is the work by Balasubramonian et al.(25). They have
also used the same interconnect energy model as proposed in (24) to evaluate
techniques such as cache pipelining, exploiting narrow bit-width operands, and

35

interconnect load balancing in the context of superscalar architectures with het-
erogeneous interconnect. In contrast, our work is more focused on how communi-
cation slack in the context of clustered VLIW architecture can be exploited to gain
the energy benefits and to explore the energy-performance trade-off while going
from a BASE architecture to different configurations of clustered VLIW architec-
tures.Our results demonstrate that compile-time instruction scheduling utilizing
a larger view of program can combine the instruction scheduling and communi-
cation scheduling in a profitable manner. On the other hand, aarchitecture with
dynamic scheduling suffers from the problem of limited program view and incurs
overheads and complexities of extra hardware for exploitingheterogeneous inter-
connects at run-time.Thus, the choice of a heterogeneous interconnect is more
suitable and beneficial for statically scheduled VLIW architectures as compared
to dynamically scheduled architectures. Moreover, our results are based on a de-
tailed and verified model of interconnect energy estimationwhereas their study
is mostly based on guesstimates based on earlier studies on interconnect energy
estimation.

7. Conclusions and Future directions

In this work, we have proposed energy-aware instruction scheduling algo-
rithms that exploits instruction slack and communication slack to save energy in
two major energy hungry components of clustered VLIW architecture namely
functional units and interconnects. We also proposed combined scheduling algo-
rithm that simultaneously save energy in functional units and interconnect. A de-
tailed experimental evaluation using trimaran framework confirms that proposed
schemes are capable of providing significant energy savingsthereby improving
the usability of clustered architectures specifically in smaller technologies. Our
compiler assisted leakage energy management scheme for functional units reduce
the energy consumption of functional units approximately by 15% and 17% in the
context of a 2-clustered and a 4-clustered VLIW architecture respectively with
negligible performance degradation on the top of a hardware-only scheme. The
interconnect energy optimization scheme improves the energy consumption of in-
terconnect on an average by 41% and 46% for a 2-clustered and a4-clustered
machine respectively with 2% and 1.5% performance degradation. The combined
scheme obtains slightly better energy benefit in functionalunits and 37% and 43%
energy benefit in interconnect with slightly higher performance degradation. Even
with the conservative estimates of contribution of functional unit and intercon-
nect to overall processor energy consumption, the proposedcombined scheme

36

obtains on an average 8% and 10% improvement in overall energy-delay product
with 3.5% and 2% performance degradation for a 2-clustered and a 4-clustered
machine respectively. In future, we are interested in evaluating the temperature
benefit of the proposed scheme which is becoming more and moreimportant in
smaller technologies.

[1] D. Matzke, Will Physical Scalability Sabotage Performance Gains, IEEE
Computer.

[2] T. N. Mudge, Power: A First Class Design Constraint for Future Architecture
and Automation, in: HiPC ’00: Proceedings of the 7th International Confer-
ence on High Performance Computing, Springer-Verlag, London, UK, 2000,
pp. 215–224.

[3] D. Sylvester, H. Kaul, Power-Driven Challenges in Nanometer De-
sign, IEEE Design and Test of Computers 18 (6) (2001) 12–22.
doi:http://doi.ieeecomputersociety.org/10.1109/54.970420.

[4] P. Faraboschi, G. Brown, J. A. Fisher, G. Desoli, ClusteredInstruction-level
Parallel Processors, Tech. rep., Hewlett-Packard (1998).

[5] J. M. P. R. Canal, A. Gonzalez, Dynamic cluster assignment mechanisms,
in: Proc. of Sixth IEEE Intl. Symp. on High Performance Computer Archi-
tecture, 2000.

[6] G. S. Sohi, S. E. Breach, T. N. Vijaykumar, Multiscalar processors, in: 25
Years ISCA: Retrospectives and Reprints, 1998, pp. 521–532.

[7] U. Kapasi, W. J. Dally, S. Rixner, J. D. Owens, B. Khailany, The imagine
stream processor, in: Proc. of 2002 IEEE Intl. Conf. on Computer Design:
VLSI in Computers and Processors (ICCD’02), IEEE Computer Society,
Washington, DC, USA, 2002, p. 282.

[8] P. Marcuello, A. Gonzalez, Clustered speculative multithreaded pro-
cessors, in: ICS ’99: Proc. of 13th Intl. Conf. on Supercom-
puting, ACM Press, New York, NY, USA, 1999, pp. 365–372.
doi:http://doi.acm.org/10.1145/305138.305214.

[9] J. E. Smith, Instruction-level distributed processing, Computer 34 (4) (2001)
59–65. doi:http://dx.doi.org/10.1109/2.917541.

37

[10] A. Capitanio, N. Dutt, A. Nicolau, Partitioned registerfiles for VLIWs: a
preliminary analysis of tradeoffs, in: Proceedings of the 25th annual inter-
national symposium on Microarchitecture, IEEE Computer Society Press,
1992, pp. 292–300. doi:http://doi.acm.org/10.1145/144953.145839.

[11] K. I. Farkas, P. Chow, N. P. Jouppi, Z. Vranesic, The multicluster architec-
ture: reducing cycle time through partitioning, in: Proceedings of the 30th
annual ACM/IEEE international symposium on Microarchitecture, IEEE
Computer Society, 1997, pp. 149–159.

[12] A. Terechko, E. L. Thenaff, M. Garg, J. V. Eijndhoven, H. Corporaal, Inter-
Cluster Communication Models for Clustered VLIW Processors, in: Proc.
of Intl. Symp. on High-Performance Computer Architecture, 2003, p. 354.

[13] Texas Instruments Inc., TMS320C6000 CPU and InstructionSet reference
Guide, http://www.ti.com/sc/docs/products/dsp/c6000/index.htm (1998).

[14] P. Faraboschi, G. Brown, J. A. Fisher, G. Desoli, F. Homewood, Lx: A Tech-
nology Platform for Customizable VLIW Embedded Processing,in: Proc.
of 27th annual Intl. Symp. on Computer architecture, 2000, pp. 203–213.

[15] J. Fridman, Z. Greefield, The TigerSHARC DSP architecture, IEEE Micro
(2000) 66–76.

[16] G. G. Pechanek, S. Vassiliadis, The ManArray Embedded Processor Archi-
tecture, in: Proc. of Euromicro Conf., 2000, pp. 348–355.

[17] J. Derby, J. Moreno, A High-performance Embedded DSP Core with Novel
SIMD Features, in: Proc. of 2003 Intl. Conf. on Acoustics, Speech, and
Signal Processing, 2003.

[18] OMAP5, http://www.ti.com/ww/en/omap/omap5/omap5-platform.html.

[19] N. Seshan, High VelociTI processing, IEEE Signal Processing Society 15
(1998) 86–101.

[20] R. Ho, K. Mai, M. Horowitz, The Future of Wires, Proc. of IEEE 89 (4)
(2001) 490–504.

[21] H. S. Kim, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, Adapting Instruc-
tion Level Parallelism for Optimizing Leakage in VLIW Architectures, in:

38

Proc. of Conf. on Language, Compiler, and Tool for Embedded Systems,
2003, pp. 275–283.

[22] J. A. Butts, G. S. Sohi, A Static Power Model for Architects, in: MICRO
33: Proceedings of the 33rd annual ACM/IEEE international symposium on
Microarchitecture, ACM Press, New York, NY, USA, 2000, pp. 191–201.
doi:http://doi.acm.org/10.1145/360128.360148.

[23] K. Banerjee, A. Mehrotra, A Power-Optimal Repeater Insertion Method-
ology for Global Interconnects in Nanometer Designs, in: Proc. of IEEE
Transactions on Electron Devices, 2002, pp. 2001–2007.

[24] M. L. Mui, K. Banerjee, A. Mehrotra, A Global Interconnect Optimization
Scheme for Nanometer Scale VLSI with Implications for Latency, Band-
width and Power Dissipation, in: IEEE Transactions on Electron Devices,
2004, pp. 195–203.

[25] R. Balasubramonian, N. Muralimanohar, K. Ramani, V. Venkatachalapathy,
Microarchitectural Wire Management for Performance and Power in Parti-
tioned Architectures, in: Proc. of Intl. Symp. on High-Performance Com-
puter Architecture, 2005, pp. 28–39.

[26] V. Kursun, E. G. Friedman, Low swing Dual Threshold Voltage Domino
Logic, in: GLSVLSI ’02: Proceedings of the 12th ACM Great Lakes sym-
posium on VLSI, ACM Press, New York, NY, USA, 2002, pp. 47–52.
doi:http://doi.acm.org/10.1145/505306.505317.

[27] S. Dropsho, V. Kursun, D. H. Albonesi, S. Dwarkadas, E. G. Friedman, Man-
aging static leakage energy in microprocessor functional units, in: Proceed-
ings of the 35th annual ACM/IEEE international symposium on Microarchi-
tecture, IEEE Computer Society Press, Los Alamitos, CA, USA, 2002, pp.
321–332.

[28] R. Nagpal, Y. N. Srikant, Integrated temporal and spatial scheduling for ex-
tended operand clustered vliw processors, in: Conf. Computing Frontiers,
2004, pp. 457–470.

[29] R. Nagpal, Y. N. Srikant, A graph matching based integrated scheduling
framework for clustered vliw processors, in: ICPP Workshops, 2004, pp.
530–537.

39

[30] R. Nagpal, Y. N. Srikant, Compiler-assisted leakage energy opti-
mization for clustered vliw architectures, in: EMSOFT ’06:Pro-
ceedings of the 6th ACM & IEEE International conference on Em-
bedded software, ACM, New York, NY, USA, 2006, pp. 233–241.
doi:http://doi.acm.org/10.1145/1176887.1176921.

[31] K. Kailas, A. Agrawala, K. Ebcioglu, CARS: A New Code Generation
Framework for Clustered ILP Processors, in: Proc. of 7th Intl. Symp. on
High-Performance Computer Architecture, 2001, p. 133.

[32] Trimaran System, http://www.trimaran.org/.

[33] S. G. Abraham, W. M. Meleis, I. D. Baev, Efficient Backtracking Instruction
Schedulers, in: Proc. of Intl. Conf. on Parallel Architectures and Compila-
tion Techniques, 2000, pp. 301–308.

[34] E. Ozer, S. Banerjia, T. M. Conte, Unified Assign and Schedule: A New
Approach to Scheduling for Clustered Register File Microarchitectures, in:
Proc. of Intl. Symp. on Microarchitecture, 1998, pp. 308–315.

[35] R. Leupers, Instruction scheduling for clustered VLIW DSPs, in: PACT ’00:
Proc. of 2000 Intl. Conf. on Parallel Architectures and Compilation Tech-
niques, IEEE Computer Society, Washington, DC, USA, 2000, p. 291.

[36] A. Aleta, J. M. Codina, J. Sanchez, A. Gonzalez, Graph-partitioning based
Instruction Scheduling for Clustered Processors, in: Proc.of Intl. Symp. on
Microarchitecture, 2001, pp. 150–159.

[37] G. Desoli, Instruction Assignment for Clustered VLIW DSP Compilers: A
New Approach, Technical Report, Hewlett-Packard (1998).

[38] V. S. Lapinskii, M. F. Jacome, G. A. De Veciana, Cluster Assignment for
High-Performance Embedded VLIW processors, ACM Trans. on Design and
Automation of Electronic Systems (2002) 430–454.

[39] R. Nagpal, Y. N. Srikant, Exploring energy-performancetrade-offs for het-
erogeneous interconnect clustered vliw processors., in: Proc. of Intl. Conf.
on High Performance Computing, 2006, pp. 497–508.

40

[40] R. Nagpal, A. Madan, A. Bharadwaj, Y. N. Srikant, INTACTE: An Intercon-
nect Area, Delay, and Energy Estimation Tool for Microarchitectural Explo-
rations, in: Proceedings of the international conference on compilers, archi-
tecture, and synthesis for embedded systems, ACM Press, New York, NY,
USA, 2007.

[41] R. Nagpal, Y. N. Srikant, Integrated Temporal and Spatial Scheduling for
Extended Operand Clustered VLIW Processors, in: Proc. of Conf. on com-
puting frontiers, 2004, pp. 457–470.

[42] H. Yun, J. Kim, Power-aware Modulo Scheduling for High-Performance
VLIW Processors, in: Proc. of 2001 Intl. Symp. on Low Power Electron-
ics and Design, ACM Press, 2001, pp. 40–45.

[43] V. Venkatachalam, M. Franz, Power reduction techniques for mi-
croprocessor systems, ACM Computing Survey 37 (2005) 195–237.
doi:http://doi.acm.org/10.1145/1108956.1108957.
URL http://doi.acm.org/10.1145/1108956.1108957

[44] C. Lee, M. Potkonjak, W. H. Mangione-Smith, MediaBench: ATool for
Evaluating and Synthesizing Multimedia and CommunicationsSystems,
Intl. Symp. on Microarchitecture.

[45] MediaBench, http://cares.icsl.ucla.edu/MediaBench/.

[46] B. M.-S. Gokhan Memic, W. Hu, NetBench: A Benchmarking Suitfor Net-
work Processor, CARES Technical Report.

[47] NetBench, http://cares.icsl.ucla.edu/NetBench/.

[48] J. R. Matthew Guthaus, D. Ernst, MiBench: A Free, Commercially Rep-
resentative Embedded Benchmark Suite, IEEE 4th Annual Workshop on
Workload Characterization.

[49] MiBench, http://www.eecs.umich.edu/mibench/.

[50] M. Chu, K. Fan, S. Mahlke, Region-based Hierarchical Operation Partition-
ing for Multicluster Processors, SIGPLAN Notices (2003) 300–311.

[51] W. Lee, D. Puppin, S. Swenson, S. Amarasinghe, Convergent Scheduling,
in: Proc. of Intl. Symp. on Microarchitecture, 2002, pp. 111–122.

41

[52] E. Nystrom, A. E. Eichenberger, Effective Cluster Assignment for Modulo
Scheduling, in: Proc. of 31st annual ACM/IEEE Intl. Symp. on Microarchi-
tecture, IEEE Computer Society Press, 1998, pp. 103–114.

[53] R. Nagpal, Y. N. Srikant, A Graph Matching Based Integrated Scheduling
Framework for Clustered VLIW Processors, in: Proc. of ICPP Workshop on
Compile and Runtime Techniques Parallel Computing, 2004, pp. 530–537.

[54] S.-H. Yang, B. Falsafi, M. D. Powell, K. Roy, T. N. Vijaykumar, An
Integrated Circuit/Architecture Approach to Reducing Leakage in Deep-
Submicron High-Performance I-Caches, in: HPCA ’01: Proceedings of the
7th International Symposium on High-Performance Computer Architecture,
IEEE Computer Society, Washington, DC, USA, 2001, p. 147.

[55] S. Kaxiras, Z. Hu, M. Martonosi, Cache Decay: ExploitingGenera-
tional Behavior to Reduce Cache Leakage Power, in: ISCA ’01: Pro-
ceedings of the 28th annual international symposium on Computer ar-
chitecture, ACM Press, New York, NY, USA, 2001, pp. 240–251.
doi:http://doi.acm.org/10.1145/379240.379268.

[56] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, T. Mudge, Drowsy Caches:
Simple Techniques for Reducing Leakage Power, in: ISCA ’02: Proceedings
of the 29th annual international symposium on Computer architecture, IEEE
Computer Society, Washington, DC, USA, 2002, pp. 148–157.

[57] W. Zhang, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, D.Duarte, Y.-F.
Tsai, Exploiting VLIW Schedule Slacks for Dynamic and Leakage Energy
Reduction, in: Proc. of Intl. Symp. on Microarchitecture, 2001, pp. 102–113.

[58] S. Rele, S. Pande, S. Onder, R. Gupta, Optimizing Static Power Dissipation
by Functional Units in Superscalar Processors, in: Proc. of11th Intl. Conf.
on Compiler Construction, 2002, pp. 261–275.

[59] A. G. Joan-Manuel Parcerisa, Julio Sahuquillo, J. Duato, Efficient Intercon-
nects for Clustered Microarchitectures, in: Proc. of Int. Conf. on Parallel
Architectures and Compilation Techniques, 2002, pp. 291–300.

42

