Probabilistic Dataflow Analysis using Path Profiles on
Structure Graphs

Arun Ramamurthi
Microsoft India R & D Pvt. Lid.
Hyderabad, India
aramamu@microsoft.com

ABSTRACT

Speculative optimizations are increasingly becoming popu-
lar for improving program performance by allowing trans-
formations that benefit frequently traversed program paths.
Such optimizations are based on dataflow facts which are
mostly true, though not always safe. Probabilistic dataflow
analysis frameworks infer such facts about a program, while
also providing the probability with which a fact is likely to
be true. We propose a new Probabilistic Dataflow Analysis
Framework which uses path profiles and information about
the nesting structure of loops to obtain improved probabili-
ties of dataflow facts.

Category and Subject Descriptors
Compilers, optimization

D.3.4 [Processors]:

General Terms Algorithms

1. INTRODUCTION

Control-flow profiling gives us information about which
nodes, edges or program paths are executed frequently dur-
ing program execution. Previous attempts at using profil-
ing information for probabilistic dataflow analysis have used
edge or two-edge profiling techniques [5][9]. We have used
path profiles [1][4] which provides more details than edge
profiles because of factors like branch correlation.

We have merged the ideas of context tupling [3], use of
path profiles [1][7] and structure graphs [4] to develop a new
probabilistic data flow analysis framework. A probabilis-
tic dataflow solution is similar to a normal dataflow anal-
ysis solution except that it is annotated by dataflow facts
with probabilities. Such solutions can be used for improving
performance by techniques like speculative data prefetching
where our probability values can be used to prune out less-
likely dataflow facts below a threshold value.

Related papers: Ammons et al.[1], Mehofer et al.[9], Silva
et al.[5] are publications similar to our work (compared in
Related Work section).

2. BACKGROUND

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ESEC/FSE’11, September 5-9, 2011, Szeged, Hungary.

Copyright 2011 ACM 978-1-4503-0443-6/11/09 ...$10.00.

Subhajit Roy
Indian Institute of Technology,
Kanpur, India
subhajit@iitk.ac.in

Y. N. Srikant
Indian Institute of Science,
Bangalore, India

srikant@csa.iisc.ernet.in

2.1 Structure Graphs

The key idea of Structural Path Profiling [4] is to profile
each loop independently. So, the program can be seen as a
hierarchy of such nested structure graphs. Hierarchical Path
Profiling [12] also proposes similar ideas.

We define a summary node as the representative header
node of a nested loop. An ezit node is the target of a loop-
exit edge. All other nodes are called regular nodes.

Example: Figure 2(b) shows two summary nodes - ¢, g
which get expanded in the inner structure graphs, Figure
2(c), 2(d) respectively. The inner structure graphs include
regular nodes, each representing a basic block of the inner
loop. A structure graph also contains various exit nodes of
the loop such as g, j in Figure 2(c). For the outline structure
graph in Figure 2(a), the end node (j) is the exit node.

A loop-path is a path which begins at the loop header and
terminates at the source of the back edge. A loop-exit path is
a path which begins at a loop header and terminates outside
the loop.

2.2 Path Profiles

Ammons et al.[1] used acyclic path profiles [7] to improve
dataflow solutions by separating facts propagating along fre-
quent paths from the others. Their algorithm constructs a
Labeled Transition System(LTS) (as briefed below) to track
the propagation of dataflow facts along the hot paths:-

e ¢; , a node in the LTS corresponds to a state

o (1 =" @ —=F2 g3 — ... =Fi-1 ¢;) is a path in the
LTS if there exists a hot path k1 — ka2 — ... — ki—1
in the CFG.

e The CFG nodes transform into edge labels on the LTS.

For our running example, the LTSs for the structure graphs
in Figure 2 are shown in Figure 3. Example: In Figure
2(c) the path ¢ — d — f — g transforms to the path
1—-°2—-%3 =54 95 in Figure 3(c).

3. APPLYING PATH PROFILE INFORMA-
TION ON STRUCTURE GRAPHS

3.1 Probability definitions for structure graphs

Our probabilistic dataflow analysis (like any other) com-
putes the probability of a dataflow fact at every program
point. We use an Structural path profiler to get statistics re-
garding frequencies of acyclic paths in a function. We then
use these frequencies to estimate the probabilities of facts
in accordance with the profiler by focusing on each natural
loop (its structure graph) separately.

O eoe%»&a
0
Q- O-0-0-0

a) b)

ple: CFG with 3 loops. the CFG in Figure 1.

For a CFG, let there be a node n with loop nest level of k
and the header nodes be ni,n2,..,n; for each of the corre-
sponding structure graphs L1, Lo, .., Ly respectively. Node
n; will also be a summary node in the structure graph L;_1.

e For any path p; starting from header node n; and end-
ing at node nj4+1 in structure graph Lj;, Prob(p;) w.r.t
L; = (frequency of path p;) / (sum of frequencies of
all paths reaching nj41) where njq1 is the summary
node for the next nested structure graph. Frequency
of path p; is the number of times path p; is traversed
during program execution as seen by the profiler.

e The probability of reaching node n;+1 from the header
node n; of structure graph L; is the sum of probabili-
ties of reaching nj41 via all possible paths from n; to
Nj+1 in Lj.

e The probability of reaching node n from the start node
of the CFG is the product of probabilities of reaching
node n;4+1 from the header node n; in L; for all struc-
ture graphs, 1 to k. For the last k' structure graph,
nj+1 will be node n. The probabilities across differ-
ent loops are multiplied since all the acyclic paths are
in different loops, and hence we assume them to be
independent for simplicity.

Example: The probability of reaching h (Figure 1) in
the CFG is equal to the product of probability of reaching b
(from a) in Figure 2(a), probability of reaching g (from b) in
Figure 2(b) and probability of reaching h (from g) in Figure
2(d).

3.2 Labeled Transition Systems (LTS)

An LTS is a deterministic finite automaton that recog-
nizes hot paths. Our analysis creates a separate LTS for
each structure graph of the CFG. The assignment of proba-
bilities on the different LTSs is done by handling loop-paths
and loop-exit paths separately. We argue that merging the
loop path and loop exit path information (as in the case of
profiling the entire CFG together) leads to assigning a small
probability to a loop-exit node which is incorrect as that
node would be accessed with a high probability irrespective
of the number of loop iterations.

=
ok
O

Figure 1: Our running exam- Figure 2: The four structure graphs for Figure 3:

a) b) ¢) d

The labeled transition dia-
grams for structure graphs in Figure 2.

For Figure 3(c), let us assume the frequencies of loop-
paths 1 - 2 -3 -4, 1 -2 — 6 — 7 are f1 and fo
respectively. Similarly the frequencies of loop-exit paths 1 —
2—-3—-4—51—-2—-6—-7—8andl1 —-2—-6—9
are f3, fa and f5 respectively.

The probability of a loop path relative to the loop-structure
graph is the frequency of that path divided by the sum of
frequencies of all loop paths for that loop in the LTS. In Fig-
ure 3(c), the probability of the reaching node f along path
1—-2—53—4is & Similarly, the probability of a
loop-exit path is calcullated w.r.t all loop-exit paths for that
loop. The probability for the loop in Figure 2(c) to exit via
node j is f3+f7

The computed probability of each path is assigned to its
last state in the LTS and thereafter propagated bottom-
up. At each state in the LTS, the probability would be
equal to the sum of probabilities of its loop node successors.
However, we do not propagate loop-exit probabilities.

The probability of reaching a node in the structure graph
would be equal to the sum of the probabilities of all paths
by which the node could be reached in the LTS. So, the
probability of reaching node f w.r.t loop in Figure 2(c) is
computed as Prob(l — 2 —3 — 4)+Prob(l1 -2 — 6 —7)
in the LTS in Figure 3(c).

The actual probability of reaching a node in the CFG
would be equal to the sum of all path probabilities by which
that node could be reached. So, the overall probability of
reaching node f is computed as Prob(a — b — ¢ — d —
f)+ Prob(a—b—c—e— f).

This path probability would be computed by just mul-
tiplying state probabilities in the LTS. To compute path
probability from the start of the CFG, we need to multiply
path probabilities across different LTS. So, the total proba-
bility of reaching node f via patha — b — ¢ — d — f is the
product of Prob(reaching 3 in Figure 3(a)), Prob(reaching 3
in Figure 3(b))andProb(reaching 4 in Figure 3(c)).

In Figure 2(d), there is one loop path g — h and one loop
exit path ¢ — h — i. So, we assign a probability of 1.0
to node 4 in Figure 3(d) which means that a dataflow fact

generated at f and doesn’t get killed in g or A should still
have a probability of 1.0 at 4.

4. OUR PROBABILISTIC DATAFLOW
ANALYSIS ALGORITHM

Ammons et al.[1] suggested the idea of using Context Tu-
pling [3] for dataflow analysis - where a state (in the LTS)
is a context associated with a node in the CFG. We use
this approach and map each context into a probability value
for the tupled dataflow fact. For our approach, we create a
separate LTS for each structure graph.

4.1 Contexts and context strings

We define a contezt as a state in a given LTS. It is repre-
sented by the tuple, (LT'Sid, state) where each LTS is iden-
tified by a unique LT'Sid. We define a contezt string as a
string of contexts where each context represents a state in
a different LTS. A context string uniquely identifies a path
from the start node in the CFG.

While traversing a path we switch across different LTSs
(or loops). One of the contexts in the context string is the
“active” context: this context is used to trace facts in the
current LTS; while the remaining string is the “latent” con-
text string. We show a context as “q.c”, where “q” is latent
(corresponding to other LTSs) in the context strlng and “c”
is the active context. Table 1 shows the computation of
context strings after the first iteration on the nodes of the
CFG where A, B, C, D refer to the LTSs in Figure 3 respec-
tively. For node e, (A,3),(B,3) is the latent string while
(C, 6) is the active context. Node e’s active context pertains
to the LTS in Figure 3(c) since the innermost loop to which
e belongs is the one in Figure 2(c)).

We associate a context string with each dataflow fact. We
propagate a dataflow fact to its successor only if there is a
valid transition from the active context in the context string
on the label of the successor. For node e, it’s predecessor is
¢ with an active context of (C,2). We look for a transition
from node 2 on the label e and find node 6 in the LTS in
Figure 3(c). Thus, the active context for node e is (C,6)
with the latent context string remaining unchanged. Note
that node f has two context strings for two different paths
a—b—c—d— fanda —b— c— e — f. Similarly
j has three context strings, the third one pertaining to the
patha - b—c—e—j.

Entering and leaving an LTS

We enter another LTS if we encounter a summary node n
in the current LTS. We append the relevant context of the
inner loop LTS to the current context string. Also, as we are
switching across LTSs (entering the nested LTS), we change
the active context to that of the nested LTS in the following
manner: we change the context string, d** — dlr)b where
d is the dataflow fact, ¢ is the latent context and a was the
active context before entering the nested LTS. ¢+ a appends
a to the latent string q. The active context b is the state of
the node n in the inner loop LTS which is now the active
LTS.

Example: At node ¢, the context string gets updated

from <(A,3),(B,3)> to <(A,3),(B,3),(C,2)>. (B,3) is a
summary node due to which we enter the header node 1 in

the inner loop LTS (Figure 3(c)). Here, there is a transition
from 1 on the label ¢ to node 2.

Table 1: The context strings for the nodes of the CFG
in Figure 1 after the first iteration of dataflow analysis.
(The underlined context is the active context.)

[Node | Context string

(42)

<<A 3), (B,2))

), (B,3), (C,2)

(a3
d ((4,3).(8,3).(C.3)
((4,3).(B.3), (C,6)

£ (A,3),(B,4), (C, 4) > (A,3), (B, 4),

>>
g | ((4.3),(8,9,©5),10.2).((43),(B,1), D,2))

(
(4,3),(B,4),(C,5),(D,3)),((4,3), (B, 4), (D (D,3))
i || {a.3),8.5),5).(0,9).((43), 55, C, s) (D,4))

(c
(c
(
j {((A4,9),(B,6),(C,5),(D,4)),{(A,49),(B,6), (C,8),(D,4))
<&, (B,7),(C,9)

We leave an LTS if we encounter an exit node n in the
current LTS. In this case, we switch back to the previously
active LTS (that of the outer loop) and make that as the
active LTS. However, we retain the context of the inner LTS
which has now been exited. The formal definitions are simi-
lar to the one while entering an L'T'S and have been skipped.

Example: One context string at node h is updated from

((A,3),(B.4).(C.5). (D.3)) to ((4,3), (B.5), (C.5). (D, 4))
at node 7. (D,4) is an exit node, hence we go to the outer
loop LTS (Figure 3(b)) where the context is (B,4). Then,

there is a transition from 4 on the label i to node 5. We re-
tain the traversed loop context (D, 4) in the context string.

4.2 Our generic dataflow analysis framework

If z refers to a set of dataflow facts, we define 29°¢ as a set
of facts annotated with context string q.c where ¢ refers to
the latent context and c is the active context.

We define ¢ =% a(c,z) as the transition from one state
to another where a(c, z) is the new context state which is
arrived from state c over the transition = in the current
automaton (without leaving the current LTS). If there is no
valid transition from ¢ —%, then a(c, z) goes to the epsilon
state. The epsilon state is the start node of the LTS and we
define the e-context string as the string whose active context
is the start node of that LTS.

Our generic probabilistic dataflow analysis algorithm now
proceeds as follows. For all possible context strings, we look
for a possible transition from the current state. If such
a transition exists, the current context string q.c makes a
transition to the state g.a(c) where a(c) refers to the new
state in the active LTS. We apply the transfer function (of
the dataflow analysis) over the meet of all predecessors only
with the same context string for all contexts.

There is no valid transition to a node from any of its pre-
decessors if the profiler didn’t encounter the node during
its run. We merge information from all paths to that node
and do so by taking a meet over all predecessors over the
e-context string. Epsilon-transition implies that we com-
pute facts without any profiling information same as normal
dataflow analysis.

Our Dataflow solution at a node x is formally defined as
follows: DFSoln(z) =

d ZcEC,a(c,z);&e[T(®y€pr6d(z) DFSOan»C(y))]Q»O&(C,CE)
: if at least one transition possible from current state

o [Y(®.cpreai)[Ccec DFSoln(y)]*)]**) if x is
entry or if no transitions possible from the current state

where T is the transfer function, &) is the meet opera-
tor, DF Soln(z) refers to the solution of all dataflow facts.
DF Soln®(x) means the set of dataflow facts associated with
context string ¢ and DF Soln(z) = Y .o DFSoln®(x). The
size of the latent string ¢ is bounded by the number of loops
in the CFG.

Example: A node n whose predecessors are p1 and p2
might have a transition from one of the context strings, q.c
in p1 but not in ps. Then, the resultant solution at n with
the context string g.a(c) will be the application of transfer
function over a meet of existing facts with the facts gener-
ated at p1 alone. However, there could be another context
string ¢2.c2 associated with p2 which has a transition on
n. Then, we would have two separate sets of dataflow facts
associated with two different paths (or context strings).

The probability of a dataflow fact at a node n is com-
puted using the context string associated with that fact.
So, in Table 1, for node g, the probability of the dataflow
fact with the context string ((A4,3), (B,4), (C,5), (D, 2)) is
PT(BLTSa) * PT(4LTSb) * PT(5LTSc) * PT‘(QLTSd).

5. RELATED WORK
Profile-guided Analysis

Ammons and Larus [1] proposed a novel technique towards
analyzing and optimizing programs by identifying and du-
plicating hot paths, thus creating a hot path graph. Their
algorithm uses the data-flow tracing — one of the two tech-
niques proposed by Holley and Rosen [3] for solving Quali-
fied Flow-Analysis Problems. They preferred dataflow trac-
ing over Context-Tupling (the second technique for solving
qualified flow-analysis problems by Holley and Rosen). We,
however, use context-tupling as it is more amenable to prob-
abilistic analysis, with each context essentially mapping into
a probability value for the tupled dataflow fact.

Path-Sensitive Analysis

ESP [8] performs property simulation (path-sensitive sym-
bolic execution) to verify a specified program property by
tagging each dataflow fact with the path it was generated
on. We use path-sensitive analysis only on the paths that
were seen by a profiler.

Dillig et al. [10] also proposed algorithms towards path-
sensitive analysis. In contrast to the above algorithm, we
segregate dataflow facts to compute probabilities with which
a dataflow fact might hold at a program point. Also, we do
not propagate facts along all static paths, but only along the
paths seen by the structural acyclic path-profiler.

Probabilistic Analysis

Ramalingam [2] formulated probabilistic dataflow analysis
for finite bi-distributive subset problems using edge profiles
to infer the probability with which each fact holds true.
Mehofer and Scholz [9] used two-edge profiles to improve
the precision of the probabilistic dataflow analysis. As they
utilized execution history for calculating the probabilities of
dataflow facts, they obtained significantly better results.

Silva et al.[5] formulated a scalable one-level context and
flow-sensitive probabilistic pointer analysis framework by us-
ing linear transfer functions efficiently coded as sparse matri-
ces. They used edge profiles for probabilities computation.

To the best of our knowledge, ours is the first attempt at
performing probabilistic dataflow analysis over path-profiles
on structure graphs. As paths encode the history of execu-
tion much better than edge or two-edge profiles, the proba-
bilities computed using path-profiles should be much more
accurate.

6. FUTURE WORK

Having developed a very simple proof of concept [13], our
primary goal right now is to build a robust implementation
of our analysis on a stable compiler framework. This would
allow us to compare the improvements in the solution over
other algorithms that relied on edge/two-edge profiles. We
would also like to implement a few speculative optimizations
and study the effect of an improved probabilistic solution on
the performance of programs. The sensitivity of probabilis-
tic dataflow analyis solutions and speculative optimization
algorithms on improved profiling information make an inter-
esting case study.

Having accomplished our primary goal, we intend to ex-
tend our algorithm to use the k-Iteration path profiles [11].
The k-Iteration profiles, in contrast to acyclic paths, are
capable of recording much longer paths spanning multiple
iterations of a loop. Our solution should hence improve still
further as we would then be able to capture the effect of
inter-iteration dependencies in a loop as well.

7. REFERENCES

[1] Glenn Ammons, James R. Larus. Improving data-flow
analysis with path profiles. In PLDI "98.

[2] G. Ramalingam. Data flow frequency analysis. In
PLDI ’96.

[3] L. H. Holley, B. K. Rosen. Qualified data flow
problems. In POPL ’80.

[4] T.Yasue, T.Suganuma, H.Komatsu, T.Nakatani. An
Efficient Online Path Profiling Framework for Java
Just-In-Time Compilers. In PACT ’03.

[5] Jeff Da Silva , J. G. Steffan. A probabilistic pointer
analysis for speculative optimizations. In ASPLOS ’06.

[6] T.Ball, P.Mataga, M.Sagiv. Edge Profiling versus Path
Profiling: The Showdown. In POPL *98.

[7] T. Ball and J. R. Larus. Efficient path profiling. In
MICRO ’96.

[8] Manuvir Das, S.Lerner, M.Seigle. ESP: path-sensitive
program verification in polynomial time. In PLDI ’02.

[9] E. Mehofer, B. Scholz. A Novel Probabilistic Data
Flow Framework. In CC ’01.

[10] Dillig, I., Dillig, T., and Aiken, A. Sound, complete
and scalable path-sensitive analysis. In PLDI ’08.

[11] Subhajit Roy, Y.N. Srikant. Profiling k-Iteration
Paths: A Generalization of the Ball-Larus Profiling
Algorithm. In CGO ’09.

[12] Y. Wu, A. Adl-Tabatabai, D. Berson, J.Z. Fang, R.
Gupta. US Patent 6848100 : Hierarchical Software
Path Profiling, 2005.

[13] R. Arun. Probabilistic Dataflow Analysis using Path
Profiles on Structure Graphs : M.E. Thesis, Computer
Science & Automation, IISc, 2009.

