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ABSTRACT

Knowledge about program worst case execution time(WCET)
is essential in validating real-time systems and helps in ef-
fective scheduling. One popular approach used in industry
is to measure program components on the target architec-
ture and combine them using static analysis of the program.
Measurements involve instrumentation and need to be least
intrusive so that the accuracy of estimated WCET is not
affected. Several programs exhibit phase behavior, wherein
program dynamic execution is observed to be composed of
phases. Each phase being distinct from the other, exhibit
homogeneous behavior with respect to cycles per instruc-
tion(CPI), data cache misses etc. In this paper, we show
that phase behavior has important implications on timing
analysis. We make use of the homogeneity of a phase to
reduce instrumentation overhead at the same time ensuring
that accuracy is not largely affected. We propose a model for
estimating WCET using static worst case instruction counts
of individual phases and a function of measured average CPI
of each phase. We describe a WCET analyzer built on this
model which targets two different architectures and is evalu-
ated against Chronos, a well known static WCET analyzer.
Compared to Chronos, the proposed method provides esti-
mates that are tighter by 13% for an architecture containing
only an L1 instruction cache and tighter by 196% for an ar-
chitecture containing L1 instruction and data cache and an
unified L2 cache.

Categories and Subject Descriptors

C.3 [Special-Purpose and Application-Based Systems]:
Real-time and embedded systems; C.4 [Performance of
Systems]: Measurement Techniques

General Terms

Structural analysis, software phase markers, binary instru-
mentation, measurements
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1. INTRODUCTION

The goal of worst case execution time (WCET) analysis
is to compute the longest execution time of a program on
a given architecture. WCET analysis is critical in real-time
system design where programs are expected to meet strin-
gent performance goals. It is also valuable to systems that
use dynamic task scheduling; knowing WCET of individ-
ual processes can produce effective schedules and improve
resource management. Factors such as unknown worst case
input, influence of underlying hardware architecture, impact
of dynamic interactions among different components during
program execution make WCET estimation challenging. An
estimate is safe if it is greater than or equal to actual WCET.
An estimate is tight if it is within a few percent of actual
WCET.

Traditionally there have been two major schools of thought
regarding WCET analysis. Static WCET analyzers estimate
WCET for a given architecture without actually running the
program[1]. Measurement based WCET analyzers measure
smaller program components like basic blocks[2] or program
segments[3] or paths[4] etc. These measurements are me-
thodically combined to yield the final WCET. Measurement
based method is simple and can model target architecture
better than static analysis. However it becomes difficult to
guarantee safety as only finite measurements are taken and
it is intractable to take into account the effect of all possible
inputs on all possible program paths under all possible archi-
tectural states. Static methods intrinsically model the effect
of the worst case path and architectural state and hence can
guarantee safety. For this reason, measurement based meth-
ods are more suited for soft real-time systems that do not
have hard deadlines to adhere to. Such systems are typically
driven by human perception and hence can afford to miss a
few deadlines without causing noticeable change in system
behavior.

Measurement based WCET analyzers are mainly charac-
terized by the number of instrumentation points placed in
the program. To achieve an accurate estimate with less in-
strumentation is a non-trivial task[5]. Higher number of
instrumentation points can make the measurement process
intrusive affecting accuracy of measurements. In this pa-
per, we propose a new way of measuring programs so that
the number of instrumentation points is kept low without
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Figure 1: Variation of CPI and address values in the
Program Counter with respect to time for a single run
of Matmul PISA binary.

compromising on the accuracy of the estimate.

Our approach is based on the observation that several
programs exhibit phase behavior[7, 8, 9]. The dynamic be-
havior of such a program can be divided into phases during
its execution. Each phase exhibits relatively homogeneous
behavior with respect to architectural metrics like average
cycles per instruction(CPI), L1 data cache misses, branch
predictor misses and so on. Distinct behavior is seen across
different phases. A program could either comprise of a single
phase as shown in Figure 1. For Example, Matmul(Table 2)
is predominantly made of a single loop repeatedly accessing
a fixed set of data. Alternatively it could comprise of a num-
ber of phases. For example, Bitcount(Table 2) is composed
of a set of functions each performing a single simple task, as
shown in Figure 2. !

Phase behavior is used for architectural simulation effort
reduction[9, 11] apart from other applications like power and
energy control, memory optimization etc. Our objective is to
show that phase behavior has important implications on pro-
gram timing analysis as well. We build on the observation
that program CPI remains relatively stable within a phase.
That is, the coefficient of variation(COV) of CPI within a
phase is very less as compared to the COV of CPI across
phases. Hence we can measure CPI at the phase level to
effectively characterize timing of program phases and hence
the whole program. Accounting for phase behavior helps
alleviate instrumentation overhead compared to other mea-
surement based approaches as phases typically comprise of
thousands of instructions.

A program can be classified into phases in different ways
depending on the parameter used for classification. In this
paper, we classify programs into phases considering the pro-
gram structure and patterns of instruction execution. Each
classification method views the program with a specific gran-
ularity. In this work, we choose to use static code regions

1Figures 1 and 2 were plotted by sampling CPI and program counter
address(masking its most significant bits), for every 1000 instructions
executed. X-axes indicate time in terms of instructions executed.
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Figure 2: Variation of CPI and address values in the
Program Counter with respect to time for a single run
of Bitcount PISA binary.

to define phases as in [14],[11] rather than using an arbi-
trarily selected fixed-size granularity that can go out of sync
with the natural period of the program. Selecting code to
identify phases is more dependable as code executed has
an important influence on architectural behavior(Figure 2).
Classifying the program thus, makes phases architecture in-
dependent. Once we map phases to a code region, we can
easily model a timing equation for that region.

In this work, we employ code structural analysis [14] to
mark phases in the binary. The CPI for every phase is mea-
sured by running the program with a large number of inputs.
Measurements are taken using the cycle accurate simulator,
Simplescalar[15]. The worst case CPI is defined as a func-
tion on measured CPI. The worst case number of instruc-
tions that can be executed within a phase is determined by
static analysis of the program control flow graph (CFG). The
WCET of a phase is then computed as a product of worst
case CPI and worst case instruction count. The WCET of
the whole program is computed as sum of WCETs of the in-
dividual phases. If the program has only one phase, WCET
is simply a product of worst case instruction count and worst
case CPL.

The proposed method is highly retargetable as one can
measure per-phase CPI of the program on a different archi-
tecture without having to re-do phase marking. This makes
our approach highly attractive to use for developers build-
ing a large system and who need a quick WCET estimate of
his/her programs on a set of architectures even if its approx-
imate. Most of the processors of today have performance
counters available in their hardware that ensure accurate
measurement of several program metrics like CPL.

The proposed method assumes single-threaded programs
that execute without preemption. Although the proposed
method can model any general uniprocessor architecture,
we target the WCET analyzer for two different architec-
tures (Table 1) and test the method on a large set of stan-
dard WCET benchmarks(Table 2). The accuracy of the es-
timated WCET is evaluated by comparing it with a popular



static WCET analyzer Chronos[16]. For most programs, the
proposed method is observed to give safe estimates. On an
average, the proposed estimates are observed to be tighter
by 13% than Chronos for architecture A and tighter by 196%
than Chronos for architecture B. The contributions of this
work can be summarized as follows.

e This paper demonstrates that program phase behavior
has important implications on timing analysis. Phases
can be used in measurement based WCET analyzers
to reduce instrumentation overhead without affecting
accuracy of the resultant WCET estimate.

e A model for estimating WCET of a program in terms
of its phases is proposed. WCET of a phase is es-
timated as a product of static worst case instruction
count and worst case CPI.

e We formulate an integer linear programming problem
(ILP) to estimate worst case instruction count of a
phase. Many static WCET analyzers use the ILP
framework to estimate WCET[1]. Phases are identi-
fied by code structural analysis[14].

e The WCET analyzer is implemented based on this
model for two different architectures and evaluated by
running it on standard WCET benchmarks. The es-
timates are compared with Chronos, a popular static
WCET analyzer for the two architectures. The pro-
posed method is observed to give much tighter esti-
mates compared to Chronos for architectures that have
a data cache.

Name Architectural configuration

Arch A Issue, decode and commit width=1, RUU size=8,
Instn cache 8KB L1 2-way set associative, 2 level
branch predictor, Fetch Queue size=4, In-order issue,
No Data cache

Arch B Issue, decode & commit width=1, RUU size=8,
Instn cache 8KB L1 direct mapped, In-order issue,
Data cache 8KB L1 2-way set associative, Unified
64KB 8-way associative L2 cache, 2 level branch
predictor, Fetch Queue size=4

Table 1: Architectural configurations used for experi-
mentation.

2. PROPOSED SOLUTION

For a program, exhibiting predominantly a single phase,
WCET is computed as

WCET = (WIC) « (WCPI) (1)

WIC( Worst case instruction count): is statically determined
by analyzing program CFG.
WCPI (Worst case CPI): The average CPI of a program for
a given input i, CPI;, is computed as a ratio of total number
of cycles taken for execution to total number of instructions
executed. WCPI is defined as Max(CPI;), across all test
inputs, i. The CPI within a phase is expected to be fairly
stable, hence average CPI is used in characterizing the ex-
ecution time of a phase for a single input. We consider the
warmup CPI separately in our calculations.

For a program, exhibiting multiple phases, WCET is com-
puted as,

WCET = E(jel .. D) (TJ * WIC7 * WCPI7) (2)

Where, p is the number of phases occurring during pro-
gram execution, 7Tj is the number of times phase j occurs
in the worst case, WICj is the worst case instruction count
of code region corresponding to phase j, WCPI; is the worst
case CPI of phase j.

The high level organization of the proposed solution is as
described in Figure 3. The number of phases(p) in the bi-
nary is determined using code structural analysis[14]. Static
analysis is then performed for each code region correspond-
ing to a phase to determine WIC; and T, of equation (2).
To complete the equation, we substitute cycles per instruc-
tion (CPI;) for each phase j, got by direct measurement of
the program on a large number of test inputs on the target
architecture. Note that estimation of WIC for each phase
and measurement of WCPI can be done in parallel. We now
describe each step in detail, beginning with phase identifi-
cation.

: Output
’ Test Simulator/ ——
Binary “nputs ™| Machine
Dynamic A
Instrumentation
Test WCPI
; WCET per phase
inputs
y"P A Estimation
Phase Static WIC
Identification Analysis A
WCET
A WIC per phase

Phase
Markers

Figure 3: High level architecture of the proposed solu-
tion.

2.1 Phase ldentification

Code structure analysis[14] takes the application binary as
input and builds a dynamic hierarchical call-loop graph using
profile information. A call-loop graph is a directed graph,
whose nodes represent either a procedure call or a loop. It is
termed hierarchical as the edges store hierarchical execution
information along the path from call and loop nodes and are
hence said to abstract path information in some sense. This
graph is analyzed to locate instructions in the binary that
accurately identify start of unique stable behaviors across
different inputs. Such instructions are termed as software
phase markers.

Each loop is associated with two nodes- loop head and
loop body, to differentiate between loop invocation and each
iteration of the loop respectively. Each call is associated
with one node for non-recursive calls, two nodes for recur-
sive calls®>. Each edge stores average number of instruc-
tions executed along that path(A), coefficient of variation
in instructions executed each time this edge was traversed
(COVinstn), maximum number of instructions executed along
that path (Npaee) and total number of times the edge was
traversed(C). After the graph is constructed using profile in-
formation, all edges whose average instruction count exceeds
a pre-determined threshold are considered as candidates for
software phase markers. This is to ensure that each phase

2 . . .
In this work, we do not consider recursive programs.



is long enough.® Those candidate edges that also show min-
imum COVinstrn finally qualify as software phase markers.
This means that each time, such an edge is traversed, the
amount of instructions hierarchically executed is more or less
the same. That proves our assumption that we are seeing a
faithful repetition of a phase everytime we enter this path
making it a valid software phase marker edge.

C=1, A=50085

C=1000, A=49653
cov, =15.87% 'cov . =9.98%
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Figure 4: Hierarchical Call-loop graph for Bitcount: C
is the number of times, each edge is traversed. A is
the average number of hierarchical instructions executed
each time the edge is traversed. COV,, ; is the hierar-
chical instruction count coefficient of variation. P1, P2,
P3.. are phase numbers.

A program is said to be composed of a single phase if
its hierarchical call loop graph contains exactly one edge
that satisfies these properties and that edge encompasses
the whole program. Programs that cannot be classified into
phases using this algorithm are also viewed as single-phase
programs. However such programs depict a high degree of
variance in their CPI throughout execution. nsch (Table 2)
is an example.

Figure 4 depicts a part of the dynamic hierarchical call
loop graph constructed for Bitcount that is run for 1000 it-
erations. The edge marked with an asterisk indicates that it
satisfies the condition of a large enough average instruction
count and small enough coefficient of variation in CPI and
hence has been selected as a valid software phase marker
edge. The phase marker edges picked by the algorithm for
one input are observed to work well for other inputs as
well[14]. The number of phase marker edges defines p in
Equation (2).

Phase markers are typically edges representing call-loop
boundaries. Hence they can be easily mapped on to bi-
naries. Since phases are architecture-independent, we can
see that phase markers obtained by analyzing alpha binaries
with ATOM/[17] hold good for MIPS R3K PISA binaries as
shown in Figure 5. The original algorithm identifies instruc-
tions where a phase change is likely to occur. We modify the

3The phase length depends on the length of the application itself.
For programs that execute a few thousand instructions, a minimum
phase length threshold of 100 instructions is used.
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Figure 5: Time varying CPI graphs with phase markers
for bitcount for an Alpha executable. The phase markers
were selected from the call loop profile graph from the
Alpha binary, were mapped back to source code level
and then used to mark the MIPS PISA binary.

original algorithm to number phases as they occur. Execu-
tion of a program thus marked produces a phase sequence
that indicates the order in which instructions belonging to
different phases were executed. The phase sequence encoun-
tered for each program considered in this paper is shown in
Table 2. Depending on the structural complexity of a pro-
gram, multiple phase sequences are possible. The WCET for
such a program is computed as a maximum of the WCETs
of all possible phase sequences. Most of the programs con-
sidered here are simple and hence exhibit only one phase
sequence irrespective of input.

2.1.1 Context Sengitivity

A program analysis is termed as context sensitive if it dif-
ferentiates two instances of a procedure occurring at two dif-
ferent contexts. In this work, we perform procedure cloning
and treat each call instance as a separate call. This might
cause the algorithm to assign different phase numbers to two
call instances of the same procedure(now two different pro-
cedures) even if their CPI behavior is similar. This has an
effect of increasing the number of phases but has no bear-
ing on correctness of the impending timing analysis. An
example is Crc that has two phases, one for each clone and
average CPI for each phase is about the same.

2.2 Estimating WIC

This step involves computation of worst case instructions
of the code region representing a phase by statically analyz-
ing the program CFG. We formulate an integer linear pro-
gramming(ILP) problem for this purpose. ILP is used by
many static WCET analyzers to estimate WCET[1]. Each
basic block B in the CFG is associated with an integer vari-
able Np, denoting total execution count of basic block B.
The static worst case instruction count of the CFG is then
given by the linear objective function,

Mazimize Yvp, (Np*Wg) (3)



Where, Wp is a constant denoting the number of instruc-
tions of a basic block. The linear constraints on Ng are
developed from flow equations based on the CFG. Thus for
basic block B,

Yp g (Fpop) = Np= YXp,p (Epsp) (4)

Where, Eg/_, g (Ep—p») is an ILP variable denoting num-
ber of times control flows through the CFG edges B'— B (B
— B”). If an edge happens to reside within a loop, the loop
iteration bound (L) limits the number of times an edge can
execute. The bounds can either be got by automatic loop
bound detection techniques [18] or provided manually by an
expert. For this work, we assume iteration bounds are given
for all loops in the CFG. The corresponding linear constraint
is specified as follows.

Eig,j <=L (5)
2.2.1 Infeasible Paths

An infeasible path is one which can never occur in any
valid execution of the program. Weeding out infeasible paths
helps compute a much tighter WCET estimate. We follow
the approach used in Vivy et al[19] and identify branch-
branch conflict pairs and assignment-branch conflict pairs.
A branch-branch(BB) conflict pair is a set of branch in-
duced paths that can never occur together. Similarly an
assignment-branch(AB) conflict pair is an assignment and a
branch path that can never occur together. Figure 6 shows
a simple example of an AB and a BB conflict that can occur.

int test(int z, int x)

{

if(x<10) {
z=10
}

else if(x>20) {

if(2z>100)
sum=x+z;

else
sum=x;

Figure 6: Illustration of Branch-Branch (BB)
conflicts, Assignment-Branch (AB) conflicts.
BB={n1—n3,n2—n4}, AB={n3,n4—n5}.

Infeasible paths are modeled as additional linear edge con-
straints and are added to our linear system of equations-
(3),(4) and (5). Two branch edges that figure in a BB pair,
say, E;—; and E;,—, have a linear constraint as shown in
Equation (6). Similarly an assignment (node) and a branch
edge that figures in an AB pair have a linear constraint as
shown in Equation (7).

BB conflict: Eij + Emon =1 (6)

AB conflict: Np+ E;i; =1 (7)

Alternatively, WIC can be estimated statically by viewing
the CFG as a weighted directed graph with basic blocks as

nodes, Wg as edge weights and computing weighted longest
path in the graph.

2.3 Estimating WCPI

This step determines worst case CPI of a phase by taking
measurements. The CPI of a phase is measured by sampling
the phase® at large intervals of instructions and averaging
the samples. If the COV of CPI is very less within a phase,
we can afford to take fewer samples without affecting the
accuracy[11]. Which means, very less instrumentation is
required within such a phase. WCPI or worst case CPI is
defined as a function of measured per-phase CPI. For single-
phase programs, WCPI is computed as a maximum of the
observed overall program CPI across a large number of in-
puts, i. For programs containing multiple phases, p,

For each p, WCPI, = Maz v;(CPI)) (8)

Warmup is an essential component of program execution
that refers to the initial stage when all the architectural
structures get filled in. The warmup CPI is typically higher
than the stable program CPI. For programs executing mil-
lions of instructions, the effect of warmup can be ignored.
The dynamic instruction count of the programs considered
in this work range from a few thousand up to few millions.
Hence for single-phase programs, CPI calculation considers
the warmup stage as well. For multi-phase programs, we
consider the warmup as a special phase and add the warmup
cycles separately to our estimated program execution time.

3. EXPERIMENTAL EVALUATION

We perform our experiments for a large set of benchmarks
(Table 2) taken from Mibench[20] and Milardalen WCET
benchmarks[22]. All programs are compiled to MIPS PISA
binaries with -O2 -static flags. We use Simplescalar v3.0 for
measuring CPI of programs across a large number of inputs.
The inputs are chosen so as to satisfy coverage criteria at the
level of statements, decisions, conditions and modified condi-
tion/decisions [23]. Invalid inputs and inputs that produce
very short sequence of instructions are pruned away from
calculations. We test the WCET analyzer for two different
architectures as shown in Table 1. We sample programs at
every phase marker instruction in addition to sampling ev-
ery 1K instructions within a phase to note CPI. We have
experimentally verified that the sampling interval within a
phase can be varied arbitrarily without causing any impact
on WCPI of the phase. We choose Chronos for comparison,
as the target architecture is common for both. aiT[21] is a
commercial static WCET analyzer widely used in the indus-
try. However it does not work with Simplescalar. Currently,
we are in the process of modifying Simplescalar to support
ARMY binaries as that is one of the targets supported by
aiT.

3.1 Percentage COV of CPI

A phase is said to be well selected if it exhibits minimum
variance in CPI. The percentage COV of CPI for most of the
single-phase programs is observed to be within a few percent
as shown in Figure 7 for both architectures. These programs
are dominated by loops that exhibit repetitive behavior re-
sulting in the CPI becoming stable. nsch is dominated by
execution of a large number of branches that results in a
large COV in instructions executed and hence makes phase
identification difficult. For multi-phase programs, Figure 8

4CPI for a phase is the measured CPI when the code region corre-
sponding to the phase is executed.



Benchmark and Description

Number of Inputs Phase Sequence

bezier: Draws a set of 200 lines of 4 reference points on a 800X600 image.

500 sets of lines P1 P2

bitc[20]: Performs bit operations on a 1K bit-vector, 1000 times.

500 vectors P1 P2 P3 P4 P5 P6

bs[22]: Binary Search for a key in a 10K number vector. 20K (key, vector) combinations single
bub[22]: Bubble sort on an array of size 3K. 500 vectors single
crc[22]: Cyclic redundancy check on a 16KB char vector. 500 vectors P1 P2
cnt[22]: Counts positive numbers in a 200X200 matrix. 500 matrices P1 P2
dij[20]: Finds 100 shortest paths in a graph of 200 vertices using 500 graphs single
dijkstra’s algorithm.

edn[22]: Implements set of signal processing algorithms. 500 signals P1 P2 P3 P4 P5 P6 P7
fir[22]: Finite impulse response filter over a signal of size 400. 500 signals single

fft[20]: Fast fourier transform on a wave of size 16K. 500 signals P1 P2
ins[22]: Insertion Sort on a 3K number vector. 500 vectors single
jan[22]: Janne_complex is a nested loop program, inner loop max iterations. 500 combinations of a,b single
depends on outer loop, a, b are input parameters.

Ims[22]: LMS adaptive signal enhancement. 500 signals single
1ud[22]: LU decomposition algorithm for a 200X200 matrix. 500 matrices P1 P2 P3 P4
mat[22]: Matrix multiplication of two 200X200 matrices. 500 matrices single

nsch[22]: Simulates an extended petrinet, dummy; is an input parameter.

dummy,; = 32, 500 starting states | single

Table 2: Benchmarks and their inputs.

Percentage co-efficient of variation in CPI

Bub Bs Dij Fir Ins Jan Lms Mat Nsc

Figure 7: Percentage coefficient of variation of CPI for
single-phase programs during execution on both archi-
tectures.

plots percentage COV of CPI per phase, phases obtained as
described earlier. The per-phase COV of CPI for most pro-
grams is observed to rarely exceed 2%. Had these programs
not been classified into phases, they would exhibit much
higher variance in CPI (shown as No phase) in the same
figure. Edn exhibits highest No phase variation in CPI as
it is composed of seven phases, each exhibiting a different
average CPI. The variance reduces after phase classification
for programs on architecture B as well and hence not illus-
trated here. This confirms the fact that phases got by code
structural analysis are architecture independent.

It is this property of low variance in CPI that ensures accu-
racy of estimated WCET using the proposed method.

3.2 Accuracy of WCET Estimation

A common approach to evaluate a new WCET analyzer
is to compare estimated WCET with maximum observed
cycles, M, got by running the program with a large number
of inputs that ensure high path coverage. Estimated WCET
is said to be safe if the ratio WCET/M is always greater
than or equal to 1. The closer the ratio is to 1, tighter is the
estimated WCET.

The proposed method splits WCET into two factors- WIC
and WCPI. Worst case IC that is estimated statically, SWIC,
could intrinsically be associated with a certain amount of
pessimism. This is especially true for programs involving

70

60

50 [

40t

30

N No phase

201

o
o = I_.MI 1 1 i |

Figure 8: Per-phase percentage coefficient of variation
of CPI of multi-phase programs on architecture A. (per-
centage coefficient of variation of CPI when phase clas-
sification is not made is also shown, as No phase).

Percentage coefficient of variation in CPI

complex control flow, conditions driven by values computed
at runtime etc. We can thus compute a softer estimate by
using maximum observed instruction count, MIC, instead
of SWIC in such cases. The second factor, WCPI is the
mazimum CPI observed across all inputs. There might be
programs in which WCPI and WIC might not occur at the
same time in any run. In such cases, a much softer estimate
can be got by considering ACPI- QOwverall average CPI ob-
served across all inputs. For multi-phase programs with p
phases, run with different inputs, 1,

For each p, ACPI, = Avg Vi(CPI,) (9)

Depending on which of {SWIC,MIC,WCPI,ACPI} are used
in timing equations (1) and (2), we have four formulae to es-
timate WCET as follows.

WCPI = WCPI
WIC = SWIC WCET, WCET;
WIC = MIC WCET3 WCET,

[WCET, >= {WCET,, WCET;, WCET,}, WCET; >= WCET, |

WCPI = ACPI

The safest formula would be WCET, with WCET}4 being
the softest. If tightness is desired, either WCET2 or WCET3
can be used.

We now discuss results for architecture A. Programs Bi-
nary search, Fir, Janne_compler, Lms, Matmul exhibit a



Benchmark || WCET,;/M || WCET,/M || WCET;3;/M || WCET,/M || Chronos/M
A B A B A B A B A B

bez 1.02 1.02 1.0 1.0 1.02 1.02 1.0 1.0 1.017 | 1.44

bitc 1.13 1.17 1.05 1.04 1.07 | 1.12 1.0 0.99 1.06 1.05

bs 1.02 1.01 1.0 1.0 1.02 1.01 1.0 1.0 1.02 1.26

bub 1.08 | 1.13 1.02 | 1.01 1.07 | 1.12 1.01 | 1.0 1.03 2.82

cnt 1.0 1.03 0.97 | 1.02 1.0 1.03 0.97 | 1.02 1.07 6.46

crc 1.04 | 1.03 1.03 | 1.03 1.0 1.0 1.0 1.0 1.05 out of memory
dij 5.32 | 5.34 5.32 | 5.34 1.03 | 0.95 1.03 | 0.95 5.2 out of memory
edn 1.06 1.0 1.02 | 0.97 1.06 | 1.0 1.02 | 0.97 1.07 1.28

fft 1.01 | 1.01 1.01 | 1.01 1.0 0.99 1.0 0.99 1.03 out of memory
fir 1.06 | 1.06 1.06 | 1.05 0.99 | 1.0 0.99 | 0.99 1.18 2.14

ins 3.31 | 3.39 3.24 | 3.33 0.99 | 0.99 0.98 | 0.98 3.25 10.57

jan 0.99 | 0.99 0.99 | 0.99 0.99 | 0.99 0.99 | 0.99 1.0 1.01

Ims 1.0 1.01 1.0 1.0 0.99 | 1.0 0.99 | 0.99 1.03 2.03

lud 5.44 | 5.46 5.43 | 5.43 1.23 | 1.21 1.2 1.2 6.06 5.44

mat 0.99 | 0.99 0.99 | 0.99 0.99 | 0.99 0.99 | 0.99 1.0 7.59

nsch 3.46 | 6.3 2.58 | 4.43 0.95 | 0.94 0.92 | 0.93 4.97 out of memory

Table 3: Accuracy of WCET estimate got by the proposed method and Chronos on architectures A and B.

single homogeneous phase throughout execution. These pro-
grams are predominantly loop oriented with little variation
seen in instruction count and CPI across different inputs.
Hence the resulting estimates using any of the four formu-
lae are quite close to the observed maximum, M and are
tighter than their corresponding Chronos counterparts. Pro-
grams Bezier, bitcount, Cnt, Crc, Edn, FFT, and Lud exhibit
distinct phases during execution and perform as well as or
better than Chronos. Bitcount, Bub perform poorer than
Chronos with the usage of WCPI(WCET:, WCET3) but
fare better with ACPI(WCET2, WCET4). Dijkstra, Inser-
tion sort, Lud and msch perform poorer than Chronos with
the usage of SWIC(WCET;, WCET:) and but fare better
with MIC(WCET3, WCET4).

We now discuss results for architecture B. Programs Bi-
nary search, Fir, Janne_complex, Lms, Matmul appear to
perform similarly on architecture B as architecture A. The
reason is that these programs are composed of simple struc-
ture and exhibit very stable CPI within a run and across
runs with different inputs. Hence the resulting behavior is
more due to the program property than due to architecture.
Programs that display high variation in CPI across inputs,
like bitcount, bub also show a corresponding increase in esti-
mated WCET. Other programs that exhibit distinct phases,
Bezier, Cnt, Crc, Edn, FFT, and Lud show a very marginal
increase in the accuracy of WCET estimation when com-
pared to architecture A. Programs Dijkstra, Insertion sort
and nsch exhibit similar improvement with MIC. Bitcount
and Bub encounter greater improvement using ACPI instead
of WCPI since the variation seen in architecture B is greater
than architecture A.

It can be observed that the gap between M and estimated
WCET increases in case of Chronos on architecture B. This
is due to the address analysis method used by Chronos for
modeling data cache misses. Most of the programs under
consideration involve vectors. During static WCET estima-
tion, all addresses of a vector can equally reside in the data
cache at any given point of time hence one has to conserva-
tively assume accesses resulting in misses in absence of any
information about runtime behavior. The effect is more so
if vector size is large as that will increase the number of ad-
dresses. Chronos goes out of memory while analyzing Cre,
Dij, Fft and nsch for architecture B.

Assuming WCET} is used, the proposed method produces
estimates that are tighter by 13% compared to Chronos for

architecture A and by 196% compared to Chronos for archi-
tecture B.

4. RELATED WORK

Most of the existing measurement based WCET analyz-
ers measure execution time of smaller parts of a program
on the target architecture before combining them method-
ically, taking program structure into account. Corti et al
[24] proposes an analytical model that estimates execution
time of a basic block using values of several event coun-
ters that track instruction and data cache misses, pipeline
stalls, branch mispredictions etc. The analytical equation is
limited by availability of performance counters for various
events. Unlike [24] we measure only CPIL

The theoretical WCET might only occur very rarely in
systems. Hence Bernat et al[2] proposed to estimate WCET
probabilistically by instrumenting programs and generat-
ing a trace using which the time taken by program com-
ponents can be determined. The trace also contains fre-
quency information which are combined probabilistically us-
ing timing schemal2] to estimate WCET. Programs are in-
strumented at the object level using hardware support to
avoid intrusion[25]. However object level tracing has many
issues- mapping measurements back to the source code is
difficult. Other issues include limitations of hardware in
recording all branches and a huge rate of trace generation|[25].
The proposed method however takes advantage of phase be-
havior inherent in many programs which enables it to in-
strument over arbitrarily large windows of instructions. The
trace in our case is average CPI sampled over thousands of
instructions and hence very lightweight.

Wenzel et al[3] partitions programs into segments to man-
age complexity of measurement. The accuracy of WCET is
sensitive to number of paths per segment[27]. With large
segments it becomes necessary to use automatic test data
generation methods. In the proposed method, input test
data is generated based on the coverage of program state-
ments including phase marker instructions, conditions, deci-
sions, modified condition/decisions[23]. In-order to ensure,
accuracy of WCET is not affected by sparse instrumenta-
tion, Betts et al[5] proposes the use of instrumentation point
graphs (IPG), a more powerful form of CFG. The location of
instrumentation points determines IPG structure, accuracy
of WCET and amount of trace data generated and hence has



to be determined very carefully. Our method uses program
structure analysis that is a well tested method[14] to rec-
ognize repeated patterns of instructions executed leading to
phases. The variation of CPI within a phase is much more
stable and organized compared to variation of CPI across
phases. The number of phases determine the number of in-
strumentation points to be placed. Within a phase, CPI can
be sampled at arbitrarily large instruction windows without
creating an impact on accuracy of estimated WCET.

Kumar et al[26] apply a modified version of the struc-
tural analysis algorithm[14] to identify program execution
contexts that has highest influence on the soft real-time be-
havior of an application. Specifically, they identify those
contexts that vary the most, across different inputs by ob-
serving variance in number of instructions executed got by
profiling. The proposed method marks phases in a program
and estimates its WCET as the sum of WCET of individual
phases. The WCET of each phase is computed as a prod-
uct of static worst case instruction count and a function of
measured average CPI.

Seshia et al[4] formulate a game between the estimation al-
gorithm(player) and the execution environment(adversary)
to estimate WCET. The player seeks to estimate the length
of any path in a program whereas the adversary sets param-
eters to thwart the player. The game needs to proceed in
several rounds for the player to learn enough about the envi-
ronment to be able to accurately predict path lengths with
high probability. Basis paths of a program form the unit
of measurement; determining them is the most expensive
part of this analysis. Due to the non-availability of these
measurement based tools in the public domain, we are not
able to provide quantitative comparisons with our proposed
method.

5. CONCLUSIONS AND FUTURE WORK

This paper demonstrates that phase behavior has impor-
tant implications on timing analysis. Many programs are
composed of phases, each phase being distinct from the
other. The behavior of architectural metrics like CPI within
each phase is far more stable when compared across phases.
The homogeneity of a phase allows us to instrument pro-
grams at the phase level and at arbitrarily large intervals
within a phase without compromising on the accuracy of
WCET. The paper proposes a model to estimate WCET as
the sum of WCET of individual phases. The WCET of each
phase is computed as a product of static worst case instruc-
tion count and a function of average CPI. Phases are marked
in the program using code structural analysis that identifies
repeated sequence of instructions executed across a large
number of profile runs. Phases thus marked are independent
of architecture, making the proposed method retargetable.
We describe a WCET analyzer, implemented for two dif-
ferent architectures. Compared to Chronos, a well known
static WCET analyzer, the proposed method is observed to
improve tightness of WCET estimates by 13% for an archi-
tecture with just an L1 instruction cache and by 196% on
an architecture with an L1 instruction and data cache along
with an L2 unified cache.

Currently, the phase classification algorithm does not give
bounds on the variation of the CPI within a phase, although
it is observed to be well within a few percent for most pro-
grams. We intend to modify the phase classification algo-
rithm to identify finer variations in CPI at the same time

being able to map back to the binary. Then we will be
able to give bounds on the estimated WCET. The proposed
method estimates WCET to be the sum of WCET of its
constituent phases. This might cause an overestimation in
cases where there exists an infeasible path that cuts across
more than one phase. The occurrence of such a situation
is rare as each phase identified in this work, represents a
cohesive unit of execution. Nevertheless, this information
can be made available to code structural analysis so that
classification can take this into account.
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