
Efficient Online Path Profiling

A Thesis submitted for the degree of

Doctor of Philosophy

in the Faculty of Engineering

by

Kapil Vaswani

Department of Computer Science & Automation

Indian Institute of Science

Bangalore, India

October, 2007

Dedicated to

my beloved parents

Efficient Online Path Profiling

Submitted for the degree of Doctor of Philosophy

September 2007

Abstract

Most dynamic program analysis techniques such as profile-driven compiler optimizations,

software testing and runtime property checking infer program properties by profiling one

or more executions of a program. Unfortunately, program profiling does not come for free.

For example, even the most efficient techniques for profiling acyclic, intra-procedural paths

can slow down program execution by a factor of 2. In this thesis, we propose techniques

that significantly lower the overheads of profiling paths, enabling the use of path-based

dynamic analyzes in cost-sensitive environments.

Preferential path profiling (PPP) is a novel software-only path profiling scheme that

efficiently profiles given subsets of paths, which we refer to as interesting paths. The

algorithm is based on the observation that most consumers of path profiles are only in-

terested in profiling a small set of paths known a priori. Our algorithm can be viewed

as a generalization of the Ball-Larus path profiling algorithm. Whereas the Ball-Larus

algorithm assigns weights to the edges of a given CFG such that the sum of the weights

of the edges along each path through the CFG is unique, our algorithm assigns weights to

the edges such that the sum of the weights along the edges of interesting paths is unique.

Furthermore, our algorithm attempts to achieve a minimal and compact encoding of the

interesting paths; such an encoding significantly reduces the overheads of path profiling

by eliminating expensive hash operations during profiling. Interestingly, we find that both

the Ball-Larus algorithm and PPP are essentially a form of arithmetic coding. We use

this connection to prove that the numbering produced by PPP is optimal.

We also propose a programmable, non-intrusive hardware path profiler (HPP). The

hardware profiler consists of a path detector that detects paths by monitoring the stream

of retiring branch instructions emanating from the processor pipeline. The path detector

can be programmed to detect various types of paths and track architectural events that

occur along paths. The second component of the hardware profiling infrastructure is a

Hot Path Table (HPT), that collects accurate hot path profiles.

Our experimental evaluation shows that PPP reduces the overheads of profiling paths

to 15% on average (with a maximum of 26%). The algorithm can be easily extended

to profile inter-procedural paths at minimal additional overheads (average of 26%). We

modeled HPP using a cycle-accurate superscalar processor simulator and find that HPP

generates accurate path profiles at extremely low overheads (0.6% on average) with a

iv

moderate hardware budget. We also evaluated the use of PPP and HPP in a realistic

profiling scenarios. We find that the profiles generated by HPP can effectively replace

expensive profiles used in profile-driven optimizations. We also find that even well-tested

programs tend to exercise a large number of untested paths in the field, emphasizing the

need for efficient profiling schemes that can be deployed in production environments.

Declaration

Copyright c© 2007 by Kapil Vaswani.

“The copyright of this thesis rests with the author. No quotations from it should be

published without the author’s prior written consent and information derived from it

should be acknowledged”.

v

Acknowledgments

It gives me great pleasure to acknowledge faculty, colleagues and friends who have con-

tributed immensely to this thesis and to four eventful years at the Indian Institute of

Science. First and foremost, I would like to acknowledge my advisors, Prof. Y. N. Srikant

and Prof. Matthew Jacob, for their extraordinary guidance, inspiration and steadfast

support through these years. Under their guidance, I found the freedom to express myself

without inhibitions and explore my interests. The depth and foresight in their thought

processes was exemplary. Working with them has been an absolute honour.

I would also like to acknowledge P. J. Joseph, my colleague at the Department of

Computer Science and Automation, who was instrumental in shaping my thoughts and

my research over these years. I am grateful to him for volumes of technical advise that he

was ever so forthcoming with during our discussions and for his inspirational and calming

presence. I would like to acknowledge my co-researcher Aditya Thakur for his critical

contributions to the thesis. I thoroughly enjoyed my interactions with him in reading

group meetings and discussions over a cup of coffee. Working and collaborating with him

was a truly enriching experience.

I am extremely grateful to Aditya Nori, Trishul Chilimbi and Sriram Rajamani, re-

searchers at Microsoft Research. They brought a fresh perspective to the problems we

collaborated on and were never short of support and encouragement. I learnt a great

deal from the way they approached problems, their persistence, and their attention to

detail. I also thank Michael Bond for his help with the Scale compiler and Microsoft’s

Phoenix compiler team for their assistance with the path profiler implementation. I also

thank Prof. Chiranjib Bhattacharya, Prof. Sirish Shevade, Prof. Priti Shankar and Prof.

Govindarajan for their technical inputs.

I owe a great deal to my colleagues Anand Vardhan, Sujit and Bharath Kumar for

creating a pleasant and enriching environment at the Compiler lab. Their presence, co-

operation and advise went a long way in ensuring an enjoyable stay at IISc. I am also

thankful to Mr. Pushparaj, scientific officer at the Department of CSA for his help in

setting up some of the computational facilities, without which much of our research would

not have been possible. I sincerely thank the staff at the Department of CSA, including Mr.

George Fernandes and Mrs. Lalitha for handling the plethora of administrative matters

vi

vii

ever so efficiently.

I would also like to acknowledge my friends Neerav Abani and Joseph Viathara for their

company through the years. Finally, I owe a great deal to my parents and my brother

Nikhil for being extremely patient and supportive in difficult times and for having trusted

and encouraged me through the years. They have and will continue to be role models for

me.

Contents

Abstract iii

Declaration v

Acknowledgments vi

1 Introduction 1

1.1 Automated program analysis . 3

1.2 Efficiency of dynamic program analysis . 6

1.3 Path profiling . 7

1.4 Contributions of the thesis . 8

1.5 Organization of the thesis . 10

2 Literature Survey 11

2.1 Software path profiling . 11

2.2 Hardware profiling . 13

2.3 Applications of path profiling . 14

2.3.1 Profile-guided Optimizations . 14

2.3.2 Software debugging and testing . 17

2.3.3 Computer architecture . 18

3 Preferential Path Profiling 19

3.1 Introduction . 19

3.2 Preliminaries . 20

3.2.1 Definitions . 20

3.2.2 Ball-Larus Profiling . 21

3.2.3 An illustrative example . 23

3.3 Preferential Path Profiling . 24

3.3.1 The Preferential Path Profiling Algorithm 27

3.3.2 Example . 31

3.3.3 Discussion . 33

3.4 Interprocedural Preferential Path Profiling (IPPP) 33

viii

Contents ix

3.4.1 Preliminary Definitions . 34

3.4.2 Specifying Interesting IPSs . 34

3.4.3 Profiling Interesting IPSs . 35

3.4.4 IPPP Algorithm . 36

3.4.5 Avoiding Inlining through Code Duplication 37

3.4.6 Discussion . 39

3.5 Residual Path Profiling (RPP) . 39

3.5.1 Intra-procedural Residual Path Profiling 39

3.5.2 Inter-procedural Residual Path Profiling 40

3.5.3 Discussion . 41

3.6 Experimental evaluation . 41

3.6.1 Inter-procedural Preferential Path Profiling (IPPP) 45

3.6.2 Intra-procedural Residual Path Profiling 45

3.6.3 Inter-procedural Residual Path Profiling 48

3.6.4 Residual Path Profiling Simulation 49

3.6.5 Code Size Increase . 49

4 Path Profiling - an information theoretic perspective 51

4.1 Arithmetic Coding . 51

4.2 The Ball-Larus algorithm and Arithmetic coding 53

4.2.1 The PPP algorithm and Arithmetic Coding 56

4.3 Analysis of the PPP algorithm . 57

5 A Programmable Hardware Path Profiler 60

5.1 Introduction . 60

5.2 Representing and Detecting Paths in Hardware 63

5.3 Associating architectural metrics with paths 67

5.4 Collecting Hot Path Profiles . 69

5.5 Experimental Evaluation . 71

5.5.1 Experimental Methodology . 72

5.5.2 Quality of Hardware Path Profiles 72

5.5.3 Profiling Overheads . 76

6 Conclusions and Future Work 78

6.1 Conclusions . 78

6.2 Future directions . 79

6.2.1 Algorithmic extensions . 79

6.2.2 Applications of PPP . 80

6.2.3 Applications of HPP . 80

List of Figures

1.1 Overview of automated tools and techniques for analyzing performance and

correctness of programs. 2

1.2 Overview of compile-profile-recompile cycle that generates binaries tuned to

a specific program behavior. 4

1.3 Trade-off between information content and profiling overheads for various

control flow profiling techniques. 6

1.4 Acyclic, intra-procedural paths through a control flow graph. 7

2.1 A scenario where an edge profile may not accurately reflect control flow

behavior. If blocks ABC are candidates for superblock scheduling, the edge

BY is a side exit. From the edge profile, it is not clear how often the blocks

ABC are likely to complete. The frequency with which the side exit is taken

lies between 0 and 500. 15

2.2 A control flow graph illustrating the loss in precision due to the conservative

nature of data flow analysis. In (a), the dataflow fact X=2 holds at the

exit of node A but not at the exit of B. Due to the merge, the analysis

conservatively assumes that the dataflow fact does not hold at the entry

of C. Figure (b) shows the version of the graph after splitting the merge.

Here, the fact X=2 holds at the entry of node C’. 17

3.1 The Ball-Larus Algorithm. 21

3.2 Assignment of weights to edges using the Ball-Larus algorithm 22

3.3 Computing the Ball-Larus identifier of a path from an edge assignment. . . 22

3.4 Motivating example for PPP. (a) A DAG G with 6 paths with edges num-

bered using the Ball-Larus algorithm. (b) G with edges having only PPP

assigned numbers for three interesting paths I = {sacdt, sact, sbct}. (c) G

with edges assigned two numbers, a PPP number and a Ball-Larus number

(in parenthesis). The path array is accessed using the PPP counter. 23

3.5 A counterexample for separation of paths. 25

3.6 A counterexample for perfect edge assignment. 26

3.7 Critical nodes for pairs of paths. 28

x

List of Figures xi

3.8 The assignment of weights to edges under four scenarios 30

3.9 The effect of using the join operator to conservatively assign weights to

edges. (a) Intervals induced by the prefixes before the join, and (b) effective

intervals after the join. 30

3.10 The preferential path profiling (PPP) algorithm for computing an edge as-

signment for a set of interesting paths. 32

3.11 Figure illustrating a scenario in which PPP assigns a sub-optimal numbering

but an optimal numbering clearly exists. 34

3.12 IPPP example. (a) Interesting inter-procedural path originating infoo(),

passes through the function bar(), before returning to foo(). (b) After

function inlining, this path becomes an intra-procedural path in the super-

graph foo s(). 35

3.13 Overview of the inter-procedural preferential path profiling scheme. 37

3.14 An example that illustrates an IPPP approach based on function replication

that avoids increase in code size due to inlining-based IPPP. 38

3.15 Residual path profiling for IPPPs. (a) Profile executed paths on test suite

inputs using the Ball-Larus scheme. (b) Inline functions to convert executed

IPSs to intra-procedural paths and re-execute on test inputs. (c) Use path

profile from (b) to drive PPP and run program with field inputs to detect

untested paths. 40

3.16 Overheads of preferential path profiling. 43

3.17 δ values achieved by preferential path profiling. 44

3.18 Ratio of the δ values obtained using the Ball-Larus algorithm and PPP (on

a log scale). 44

3.19 Runtime overheads of inter-procedural path profiling. 45

3.20 Compact numbering achieved by IPPP for several functions from programs

in the SPEC CPU2000 suite. 47

3.21 Comparison of runtime overheads of Ball-Larus and intra-procedural RPP. . 47

4.1 The Ball-Larus algorithm as a model computation process. 54

4.2 Example for the procedure computeBLModel. 55

4.3 The coding algorithm that takes a model D and path p ∈ paths(G) as

input, and returns the path identifier or the encoding for p. 56

5.1 Components of the Hardware Path Profiling Infrastructure. 61

List of Figures xii

5.2 (a) Cumulative distribution of dynamic instructions along acyclic, intra-

procedural paths. (b) Average cumulative distribution of path frequencies,

L2 cache misses and branch mis-predictions along paths. The top 100 paths

account for more than 80% of the dynamic instructions and a high percent-

age of L2 cache misses and branch mis-predictions in the SPEC CPU2000

programs studied. 62

5.3 Distribution of dynamic instructions according to the length of Ball-Larus

paths they execute along. Paths with at most 16 branches account for over

90% of program execution in most programs. 63

5.4 The control flow graph, path descriptors and a sequence of Ball-Larus paths

and extended loop paths detected for a sample execution of a procedure.

Blocks S and C do not end with branches and block A ends with an uncon-

ditional jump to B. All other blocks end with conditional branches. 65

5.5 (a) A power model that computes power consumption in L1 dcache and

(b) corresponding apportioning logic that assigns costs to instructions that

simultaneously access L1 dcache. Here, both dcache access power and

dcache access cost are computed a priori; these are constants for a spe-

cific process technology. 66

5.6 The Hot Path Table that collects hot path profiles. The HPT is indexed

using bits from the incoming path’s address, length and branch outcomes. . 70

5.7 Complete overlap percentages for various profiler configurations when pro-

filing path frequencies, L2 cache misses and branch mis-predictions. 73

5.8 Average dynamic overlap percentages for various profiler configurations

when profiling path frequencies, L2 cache misses and branch mis-predictions. 74

5.9 Execution times of binaries superblock-scheduled using path profiles from

two HPT configurations normalized against the execution time of a binary

scheduled using a complete path profile. 75

5.10 Accuracy of complete extended path profiles collected using the hardware

path profiler. Paths extend across one backward branch/procedure call. . . 75

5.11 Accuracy of complete path-wise power profiles for various HPT configu-

rations, obtained using an analytical model for power consumption in the

cache hierarchy. 76

5.12 Execution time overheads incurred due to the hardware profiler while pro-

filing BL paths for various branch queue sizes. 77

List of Tables

3.1 Untested intra-procedural path information obtained from residual path

profiling. 46

3.2 Untested IPS information obtained from inter-procedural residual path pro-

filing. 48

3.3 Untested intra-procedural path information obtained using a more robust

test suite. 49

3.4 Increase in code size due to Ball-Larus and PPP intra-procedural profiling. 50

3.5 Increase in code size due to Ball-Larus and inter-procedural path profiling. 50

4.1 A sample probability model for the alphabet Σ = {a, b, c, d, e, !}. 52

4.2 The Ball-Larus probability model DG for the graph G computed by com-

puteBLModel . 55

4.3 The PPP probability model DG for the graph G computed by computePP-

PIncrements. 58

5.1 Branch type−profiler operation mapping for detecting Ball-Larus paths . . 65

5.2 Branch type-Profiler operation mapping for detecting paths for a Whole

Program Path. 66

5.3 Baseline Processor Model . 70

5.4 Parameters considered during experiments based on Plackett-Burman de-

sign to determine an effective HPT configuration. The corresponding low

and high values are also listed. 71

xiii

”To measure is to know”

Lord KelvinChapter 1

Introduction

We are in the midst of a computing revolution. Our lives are increasingly dependent on

computing systems that range from tiny mobile devices to large data centers that drive the

internet. Ideally, we would like to ensure that the systems we use and rely so heavily on

are provably correct, reliable, cost-effective and deliver high performance. However, this

is rarely the case in practice. Systems deployed in the real world break down frequently

despite rigorous design, development and testing procedures. And performance remains a

real concern despite significant advances in processor technology.

This apparent fragility of modern-day systems can be attributed to the ever-increasing

size and complexity of both hardware and software components. Not long ago, most appli-

cations were designed to solve relatively simpler problems, were developed from scratch by

small teams of expert programmers and ran on relatively simple hardware. Consequently,

it was possible for programmers to reason about both the correctness and performance of

most parts of the system. This is rarely the case with systems we build today. Software

applications routinely span several million lines of code. These applications are typically

composed from a large number of distributed components written in different languages

and developed simultaneously by geographically distributed teams of programmers. Very

often, programmers are expected to maintain and extend large and unfamiliar code bases.

The hardware that runs these applications is equally complex with multiple cores, complex

memory, network and I/O subsystems being the norm.

One of the primary reasons why programmers can build software systems at such a

large scale is the presence of several layers of abstraction in the programming stack. For

instance, programming models such as object-oriented programming and aspect oriented

programming allow programmers to write code at a higher level of abstraction. Such pro-

gramming models also simplify the use of libraries and off-the-shelf components, enabling

large-scale reuse of software. Virtual-machine based execution adds several other layers

of abstraction, enabling features such as architecture-independence, runtime optimiza-

tions, automatic memory management and memory safety via type checking and process

1

Chapter 1. Introduction 2

Figure 1.1: Overview of automated tools and techniques for analyzing performance and

correctness of programs.

isolation. Microprocessor vendors have used the Instruction Set Architecture (ISA) as an-

other layer of abstraction to improve processor performance while maintaining backward

compatibility. The ISA, which defines aspects such as the instructions supported by the

processor, the native data types, number of architectural registers etc, serves as the exter-

nal interface of a processor family. Processor architects are free to change the processor

micro-architecture (i.e. the implementation of the ISA) as long as the micro-architecture

adheres to the ISA. This layer of abstraction has enabled several micro-architectural op-

timizations such as caching and speculative execution and has even allowed architects to

change the internal model of execution via techniques such as out-of-order execution.

While these layers of abstraction are critical to the process of designing large scale

software systems, they have an unwarranted side-effect. These layers introduce a discon-

nect between the programmer’s view of the system and the code that eventually runs on

the hardware. This disconnect makes it virtually impossible for programmers to manually

reason about a system’s performance, and to a certain extent, about its correctness. Con-

sider for instance the use of off-the-shelf libraries. A library is typically associated with

an external interface and implicit rules that govern the use of the library. Unless these

rules are explicitly stated and interpreted correctly, a programmer could unintentionally

introduce a bug by not conforming to the rules. The use of libraries also makes it harder

for programmers to identify and alleviate performance bottlenecks since the bottlenecks

may lie deep within the library code. Similarly, the use of OO features, JIT compila-

tion, garbage collection and micro-architectural optimizations such as multi-level caches,

speculation and out-of-order execution also add to the complexity of reasoning about an

application’s performance.

1.1. Automated program analysis 3

1.1 Automated program analysis

One way of bridging the divide between the programmer’s and the machine’s view of

an application is through automated program analysis tools. Ideally, such tools should

automatically (a) identify parts of an application that perform sub-optimally, infer the

reasons behind the sub-optimal performance and suggest possible solutions to alleviate

performance anomalies, and (b) detect whether an application meets a given correctness

criteria, identify the root cause of any violations and if possible, suggest a suitable fix. It

is now widely recognized that such tools are critical to the development of large scale com-

puting systems and their design continues to be an area of active research (see Figure 1.1

for a classification of some of the commonly used program analysis tools).

There exist two fundamentally different approaches to the design of automatic pro-

gram analysis tools. Static program analysis methods infer program properties simply

by analyzing the program’s source code. For example, compilers can statically detect

and eliminate redundant expressions using data flow analysis. Similarly, a software model

checker can detect whether a program violates a given safety property by building an ab-

stract model of the program from its source code. On the other hand, dynamic program

analysis techniques infer program properties by monitoring the program during one or

more of its executions. A program’s execution may be monitored by injecting probes into

the program (instrumentation), via dedicated hardware or by observing the program’s

response to a set of inputs.

Because of this difference in approach to program analysis, static and dynamic tech-

niques exhibit different characteristics. Static analysis techniques can infer stronger pro-

gram properties i.e. properties valid across all inputs to the program. For instance, a

compiler flags an expression as redundant only if the expression is redundant along all

paths from program entry to the statement containing the expression. Similarly, a static

verification tool certifies a program to be correct only if the correctness criteria is met for

all inputs. Furthermore, static analysis techniques can detect defects early in the software

design cycle. On the other hand, a dynamic analysis can only prove properties based on

observations made during a finite number of runs of the program. A dynamic race detec-

tion algorithm, for instance, may be able to detect the presence of a race condition in a

given run of a multi-threaded program, but cannot prove that the program is race-free.

For these reasons, static analysis tools are generally desirable.

Unfortunately, despite significant recent progress in the design of scalable static anal-

ysis tools, the use of automated static analysis tools has been restricted to proving simple

properties of large programs or complex properties of simple programs. For example,

modern compilers for languages like Java can statically detect simple forms of memory

safety violations such as stack overflows even in large programs. On the other hand, static

tools that analyze complex properties such as the shape of heap-allocated data structures,

1.1. Automated program analysis 4

Figure 1.2: Overview of compile-profile-recompile cycle that generates binaries tuned to a

specific program behavior.

presence of races or determine the worst case execution time of a program do not scale

to large programs because of the prohibitively large state space involved in the analysis.

Many static analysis tools address the state space explosion problem by loosing precision.

For instance, most compilers prefer using imprecise and inexpensive pointer analysis algo-

rithms, trading off compilation time with optimization opportunities. Dynamic techniques

do not suffer from these deficiencies because the analysis is restricted to a small number

states that occur during one or more executions of a program. Furthermore, most dynamic

analysis techniques are extremely precise because they can precisely track the values of

program variables at each program point, witness all state transitions and have access

to information that is available only at runtime (such as the state of the heap, I/O and

network requests and hardware performance metrics). It is therefore not surprising that

several dynamic tools have proven successful in analyzing complex properties for large

programs. We now discuss three scenarios where dynamic techniques have been employed

with great success.

Feedback-directed compiler optimizations. Traditionally, optimizing compilers were

designed as static tools that identify, and where ever possible, eliminate inefficient

operations and coding errors in programs. In the static compilation model, compiler

optimizations statically analyze a program’s source code and eliminate inefficient

operations via one or more semantics-preserving program transformations. It turns

out that in most optimizations, identifying inefficient code is not always easy because

both the cost of the operation and the benefit of the optimization depend on several

external factors such as program input, interactions between optimizations, and the

underlying micro-architecture. For instance, given a choice, it may be beneficial to

optimize a piece of code that is more likely to be executed frequently rather than

code that is rarely executed. Since many of these factors are inherently dynamic,

static compilers are unable to resolve these cost-benefit tradeoffs, which, in turn,

reduces the effectiveness of optimizations.

Feedback-directed optimizations [45] overcome these limitations by using a dynamic

approach to optimizations. To employ these optimizations, programmers follow a

compile-profile-recompile cycle (illustrated in Figure 1.2). During the first compila-

tion step, the program is instrumented to collect information about the its runtime

1.1. Automated program analysis 5

behavior. Next, the instrumented binary is executed using a set of representative

inputs provided by the programmer, generating a set of profiles in the process, where

each profile characterizes an aspect of the program’s dynamic behavior. Finally, the

profiles are fed back to the compiler, which uses them to resolve cost-benefit trade-

offs that occur during optimizations. In essence, the use of feedback in the form

of execution profiles biases the optimizations towards the common case behavior of

a program, resulting in highly tuned binaries. Feedback-directed optimizations are

now supported by most industry-strength compilers and experience suggests that

these optimizations can result in substantial performance gains.

Software testing. Software testing is a dynamic analysis technique that attempts to find

errors by subjecting a given program to a number of inputs and checking the outputs

against the expected response. Unlike static analysis, testing does not exhaustively

verify correctness for all possible program inputs and hence, does not guarantee

program correctness. However, it has been found that the reliability of software

components is correlated with the degree of testing i.e. components tested more rig-

orously are less likely to fail when deployed. Testing is also preferred because it does

not require a property or a specification of software artifact, both of which are hard

to obtain (although the availability of either can improve testing efficiency). Fur-

thermore, testing methods are not constrained by the size or complexity of programs

being tested. Both manual and automated testing techniques have been employed

for checking large programs, ranging from compilers to enterprize applications.

Runtime invariant detection and checking. The criteria for correctness of programs

are often expressed as invariants. An invariant is a program property that does

not change during the course of a program’s execution. For example, programmers

often use assert statements to specify intended invariants; expressions in the assert

statements define the set of values program variables are allowed to take. Checking

whether user specified invariants are not violated along any path in the program is

central to program verification. Unlike static analyzes, which try and prove invari-

ants statically, runtime invariant checking is concerned with checking for invariant

violations during program execution. This is typically achieved by placing probes

at specific locations and tracking the values of program variables. For instance, the

Java runtime checks for violations of the (implicit) invariant that array indices do

not exceed the declared bounds. Similarly, a dynamic race detector [44] checks for

violations of the invariant that all accesses to a shared memory location are ordered

by the happens-before relation.

1.2. Efficiency of dynamic program analysis 6

Figure 1.3: Trade-off between information content and profiling overheads for various

control flow profiling techniques.

1.2 Efficiency of dynamic program analysis

Virtually all dynamic analysis techniques have a common characteristic - the analyzes are

based on profiling/monitoring one or more executions of the program. Unfortunately,

although significantly more efficient than static analysis, program profiling does not come

for free. Depending on the nature of profile data being collected, profiling may slow down

a program’s execution considerably. High profiling overheads adversely effect the efficiency

of dynamic analysis techniques and often preclude their use in cost-sensitive settings.

The close connection between profiling overheads and the efficiency of dynamic analysis

is best illustrated by considering the class of control flow profiling techniques. As the name

suggests, a control flow profiling technique attempts to characterize the flow of control in

a program’s execution by identifying parts of the program exercised in a given run, and

optionally, the temporal order and frequency with which they were exercised. Figure 1.3

illustrates some of the most commonly used control-flow profiling techniques and compares

their overheads. Program tracing, a profiling technique that generates an exhaustive trace

of events that occur during a program’s execution, lies on one end of the spectrum. While

a trace records information in sufficient detail for any dynamic analysis technique, tracing

programs is extremely expensive. Not surprisingly, the use of full program tracing has

been mostly restricted to research environments. On the other end of the spectrum are a

number of point profiling techniques, which count the frequency with which specific points

in the program are exercised in a given execution. For instance, a basic block profiler

tracks the number of times each basic block in the program was executed. Similarly, a

call-graph profiler counts the frequency with which a function was called from each of its

callers.

Point profiling techniques are simple and extremely inexpensive because collecting

these profiles requires only a few additional instructions per program point. However,

1.3. Path profiling 7

Figure 1.4: Acyclic, intra-procedural paths through a control flow graph.

this increased profiling efficiency comes at the cost of a loss in precision. Point profiles

are coarse abstractions of a programs control flow behavior. These profiles are lossy

because a programs actual control flow behavior cannot be accurately recovered from a

point profile. In other words, a given point profile may correspond to several executions

of a program, some of which may not even be feasible. Recent research has shown that

this loss in precision may reduce the efficacy of dynamic analysis techniques that use

these profiles. For instance, it has been shown that profile-driven optimizations such as

superblock scheduling are less effective if driven by point profiles instead of more accurate

profiles. Similarly, software testing is less effective if code coverage is measured using point

profiles. This trade-off is fundamental to any profiling technique and the way this trade-off

is resolved has a large bearing on the efficiency of dynamic analysis techniques.

1.3 Path profiling

In the case of analyses that use control flow profiles, this trade-off between precision and

profiling overheads can be resolved using a profiling technique known as path profiling

(proposed by Ball and Larus [6]). A path profiler monitors the control flow of a program

at the granularity of acyclic, intra-procedural paths. An acyclic, intra-procedural

path (simply referred to as path for the rest of this article) is defined as any sequence of

instructions that originates at the beginning of a procedure or a loop and terminates at the

end of a procedure or at a loop back-edge. Consider the control flow graph shown in 1.4.

The node s represents the entry node to the function and t represent the exit/return node.

The sequence of blocks sbcdet constitutes a path that begins and ends at a procedure

boundary. Similarly, blocks sabcde constitute a path that terminate at a loop back-edge.

Much like a point profiler, a path profiler tracks the frequency with which each path

was exercised in a given execution. Path profiles are a succinct and pragmatic abstrac-

1.4. Contributions of the thesis 8

tion of a programs dynamic control-flow behavior. Control-flow information captured by

a path profile is much more precise than basic block or edge profiles. Also, path profiles

are considerably smaller than complete instruction traces. Recording program paths has

proved valuable in a wide variety of areas such as computer architecture, compilers, de-

bugging, program testing, and software maintenance [5]. Several compiler optimizations

perform better when trade-offs are driven by accurate path profiles [2, 20, 55]. Program

paths are also a more credible way of measuring coverage of a given test suite. In addition,

abstractions of paths can help automatic test generation tools generate more robust test

cases. Finally, program path histories often serve as a valuable debugging aid by revealing

the instruction sequence executed in the lead up to interesting program points.

While the benefits of using path profiles over point profiles are obvious, let us consider

how path profilers fare on the overheads front. Our measurements of an implementation

of a state-of-the-art path profiler [6] indicate an average execution time overhead of 50%

with as much as a 132% overhead in the worst case and other studies report similarly

high overheads [9]. Although this represents a significant reduction over whole program

tracing, the overheads are already an order of magnitude more than point profiles. The

overheads of profiling increase manifold if the scope of profiling is extended beyond acyclic,

intra-procedural paths [30, 48]. This has limited the use of path profiles in favor of point

profiles in tasks such as measuring test coverage and driving profile-guided optimizations

such as code placement, inlining, unrolling, and superblock scheduling.

Apart from these traditional usage scenarios, we envisage the use of path profiling

in several cost-sensitive environments. For instance, in residual path profiling, we are

interested in determining the set of paths that a deployed program executed in the field but

were not exercised during testing. This information could be used to improve and augment

test suites, and if included with bug reports resulting from field failures, could help pinpoint

the root cause of errors. Another scenario involves ascertaining whether paths that were

identified as hot paths during testing and used to optimize the program continue to remain

hot during field usage. In addition, we might want to gather detailed information about

these paths, such as cache misses, page faults, and variations in execution time, without

resorting to sampling techniques [39]. Finally, we might be interested in efficiently tracking

a subset of paths in deployed software that meet a certain criteria, for example, paths that

access safety or security critical resources, or that exercise an error prone code region.

These tasks can be performed only if paths can be profiled at low cost and high accuracy.

1.4 Contributions of the thesis

In this thesis, we propose two techniques low overhead path profiling techniques namely

preferential path profiling (PPP) [49] and hardware path profiling (HPP) [51] that

1.4. Contributions of the thesis 9

enable the use of path profiles in cost-sensitive environments.

PPP is a novel software-only path profiling scheme that efficiently profiles arbitrary

path subsets, which we refer to as interesting paths. PPP is based on the observation

that several consumers of path profiles rely on profiling a small subset of paths that are

known a priori, which we refer to as interesting paths. Our algorithm can be viewed as a

generalization of the Ball-Larus algorithm [6]. The Ball-Larus algorithm assigns weights

to the edges of a given CFG such that the sum of the weights of the edges along each path

through the CFG is unique. Our algorithm generalizes this notion to a subset of paths;

it assigns weights to the edges such that the sum of the weights along the edges of the

interesting paths is unique. Furthermore, our algorithm attempts to achieve a minimal

and compact encoding of the interesting paths; such an encoding significantly reduces the

overheads of path profiling by eliminating expensive hash operations during profiling. In

addition, our profiling scheme separates interesting paths from other paths and is able

to classify paths during program execution. The ability to classify paths is important

for many scenarios such as residual path profiling. We also propose an inter-procedural

extension of PPP called IPPP, which profiles paths that span across procedures [13]. In-

terestingly, we find that both the Ball-Larus algorithm and PPP are essentially a form

of arithmetic coding [52], a technique commonly used for data compression. We use this

connection to prove an optimality result for the compactness of path numbering produced

by PPP.

Unlike PPP, HPP is a programmable, non-intrusive scheme that profiles paths in hard-

ware. HPP detects paths by monitoring the stream of retiring branch instructions em-

anating from the processor pipeline during program execution. HPP’s path detection

mechanism can be programmed to detect several types of paths and track various archi-

tectural events that occur along paths, a task hard to emulate using software path profilers.

The detector generates a stream of path descriptors, each describing a path that has just

executed. The second component of HPP is a Hot Path Table (HPT), a compact hardware

structure that processes the stream of path descriptors generated by the path detector.

The HPT is designed to collect accurate hot path profiles, irrespective of the type of path

being profiled, the duration of profiling and the architectural metric associated with paths.

We have implemented and evaluated both path profiling schemes over a number of

standard benchmark programs. Our evaluation shows that the overheads of our profiling

schemes are comparable or even lower than point profiles (Figure 1.3). The two profiling

schemes make for an interesting comparison. While PPP generates accurate profiles, it

incurs slightly higher overheads (15% on average). HPP on the other hand requires hard-

ware support and generates profiles with slightly lower accuracy but imposes significantly

lower overheads (0.6% on average). Consequently, PPP is naturally suited for applications

in software testing and invariant checking where the accuracy of profiling is critical. On

1.5. Organization of the thesis 10

the other hand, HPP is geared towards use in online, profile-driven and micro-architectural

optimizations, where the overheads of profiling are the primary concern.

1.5 Organization of the thesis

This rest of thesis is organized into five chapters. Chapter 2 contains a background to

various hardware and software profiling schemes and illustrates their use in several dynamic

analysis techniques. Chapter 3 describes the preferential path profiling algorithm, the

inter-procedural version of the algorithm and its application to residual path profiling.

Chapter 4 discusses the connection between path profiling and arithmetic coding and

provides the proof of optimality of preferential path profiling based on this connection.

Chapter 5 presents the hardware path profiling scheme. We conclude with pointers for

future work in Chapter 6.

Chapter 2

Literature Survey

The notion of profiling paths through a program execution has always generated significant

academic interest. However, the utility of path profiles in understanding and improving

program behavior has been recognized only recently. This had lead to significant interest

in developing efficient and scalable schemes for profiling paths. In this chapter, we discuss

some of the software and hardware path profiling schemes and describe a few areas where

path profiling has added significant value.

2.1 Software path profiling

Ball and Larus [6] first demonstrated the feasibility of obtaining path profiles in software

automatically and efficiently. The proposed instrumentation-based profiling scheme splits

the dynamic instruction stream into acyclic, intra-procedural sequences, also referred to

as Ball-Larus (BL) paths and tracks the frequency of occurrence of each path. A detailed

description of this scheme can be found in Chapter 3.

Young and Smith [56] define a path as the last k branches of the execution trace

leading to an edge. They propose a scheme for profiling k-paths by first constructing

a path CFG, where each node corresponds to a k-path in the original graph and each

edge represents the last edge of the path. Although k-paths have found utility in specific

compiler optimizations like superblock scheduling [55], profiling these paths is significantly

more expensive than profiling Ball-Larus paths (for reasonable values of k).

Subsequent research in path profiling has focused on alleviating two drawbacks of

Ball-Larus profiling. First, path profiling does not provide information about a program’s

control flow across procedure and loop boundaries, limiting its utility in inter-procedural

and aggressive loop optimizations. Efforts to overcome this limitation include the Whole

Program Path (WPP) [30] and extended path profiling [48]. A WPP is a complete se-

quence of the acyclic, intra-procedural paths traversed by a program. The sequence is

compressed online by generating an equivalent context free grammar, which is compactly

11

2.1. Software path profiling 12

represented as a DAG. Despite high compression ratios, the WPP’s size and profiling over-

heads hinder its widespread use. Inter-procedural path profiling [33] extends Ball-Larus

profiling beyond intra-procedural paths. As a compromise between Ball-Larus paths and

the WPP, Tallam et al [48] propose the notion of extended paths − paths that extend

beyond loop or procedure boundaries. They also propose a profiling scheme that reduces

overheads by approximating the frequencies of extended paths from a profile of overlap-

ping path fragments. Both these techniques have considerably higher overhead than the

Ball-Larus technique (average execution time overheads for profiling extended paths are

reported to be nearly 4 times the overheads of Ball-Larus path profiling).

Several researchers have proposed a variety of techniques to reduce the overhead of

Ball-Larus style path profiling [3, 4, 8, 9, 25, 53], a critical factor in cost-sensitive dynamic

optimization systems. Selective path profiling [3] uses a variation of Ball-Larus numbering

where edges are visited in a specific order to ensure that interesting paths are assigned

a unique number that is higher than the non-unique numbers assigned to other paths,

while minimizing the number of counter updates needed to compute the path number.

The proposed numbering scheme is a variation of the Ball-Larus numbering scheme where

edges that occur along interesting paths are numbered later than other edges. However,

they find that once the number of interesting paths increases beyond a small threshold,

their edges covered most of the DAG and their technique offered little advantage over

Ball-Larus numbering. In addition, they make no attempt to ensure that the interesting

paths are compactly numbered. Instead of minimizing the number of counter updates

needed to compute a path number, we optimize the compactness of numbers assigned to

interesting paths. This reduces overhead by enabling the use of a path array in place of

a hash table. In comparison, our compact numbering scheme is effective even when the

number of interesting paths is large.

Both targeted path profiling [25] and practical path profiling [9] attempt to efficiently

profile hot program paths starting from an edge profile by eliminating unneeded instru-

mentation. Targeted path profiling eliminates profiling cold paths by excluding cold edges

and not instrumenting paths that the edge profile predicts well. It uses Ball-Larus num-

bering for labeling the remaining paths. Practical path profiling attempts to improve

over targeted path profiling using a variety of techniques to eliminate a larger number of

paths. It also performs intelligent instrumentation placement to further reduce overhead.

To minimize overhead, practical path profiling may need to classify warm edges as cold

and consequently could compromise the quality of the path profile. It also uses Ball-Larus

numbers to uniquely identify the remaining paths.

Structural path profiling [53] is a lossy, online path profiling scheme that achieves lower

path profiling overheads by partitioning methods into a hierarchy of nested graphs based

on their loop structure. Each resulting graph has a much smaller number of paths and

2.2. Hardware profiling 13

can be profiled independently. For instance, in a function with a nested loop, the outer

loop is profiled first. Once path profiles for the outer levels have been collected, inner level

loops are profiled until the bottom level is reached. The profiling algorithm constructs a

global path profile by adjusting the local profiles of the structure graphs. Continuous path

profiling is another lossy variation of the Ball-Larus profiling scheme directed at online

environments. The scheme uses a combination of full Ball-Larus instrumentation and

sampling to mitigate the overheads of maintaining hash tables while path profiling. While

methods are instrumented with counter update instructions as per the Ball-Larus scheme,

the hash tables are updated only occasionally.

Although these path profiling schemes reduce profiling overheads without much loss

in accuracy, they cause an increase in the time required to obtain representative profiles,

which in turn delays the optimization process and results in fewer optimization opportuni-

ties being exploited. Moreover, it is not clear whether these schemes can be extended for

profiling other varieties of paths or for profiling program binaries, as is required in binary

translation/optimization systems. Our software profiling technique is orthogonal to both

as it proposes a new dense numbering scheme for interesting paths that minimizes the

overhead of profiling these paths. It is also more general as it can be applied to scenarios

such as residual path profiling (detecting paths not exercised by a test suite), where the

techniques that targeted/continuous/structred path profiling use to reduce instrumenta-

tion overheads do not apply.

2.2 Hardware profiling

The importance of efficient program profiling techniques in improving performance has also

been recognized by computer architects. Most modern processors provide architectural

support for performance monitoring, typically in the form of event counters [46, 47]. To

meet the requirements of profile-guided optimizations, hardware profilers that construct

approximate point profiles using information from the processor have also been proposed

[15,17,34].

Conte et al [15] propose an approach that uses the branch handling hardware present

in most commercial processors for profiling purposes. The profiler samples the branch

prediction hardware using kernel mode instructions at every kernel entry point to construct

weights of a Weighted Control Flow Graph. Merten et al [34] describe a mechanism that

monitors instructions at the retirement stage of the processor pipeline to identify program

hotspots. ProfileMe [17] is a hardware framework that profiles instructions by tracking

their progress through the pipeline and collecting information about associated events.

The Relational Profiling Architecture [22] provides mechanisms that allow the software

to issue queries about information regarding program behavior These queries are serviced

2.3. Applications of path profiling 14

by profiling hardware that monitors the pipeline. Zilles and Sohi [57] suggest a solution

that advocates dedicated hardware for profiling in the form of a programmable profiling

co-processor that receives profile samples from the main processor, processes it and feeds

it back to the main processor. Our hardware profiler subsumes existing hardware profiling

schemes and has comparatively wider applicability because of its ability to collect various

types of path profiles and the added ability to associate architectural metrics with program

paths.

2.3 Applications of path profiling

Path profiles have found applications in a wide variety of dynamic program analysis tech-

niques. While many dynamic analysis techniques have benefitted by simply using richer

path profiles instead of basic block or edge profiles, several other dynamic analyzes have

been formulated using paths exclusively.

2.3.1 Profile-guided Optimizations

Profile-guided optimizations are a special class of compiler optimizations based on the

philosophy of making the common case faster. For programs, the common case is de-

fined by behavior that a program exhibits most frequently. For example, in a banking

application, depositing and withdrawing money are likely to be the most common tasks

whereas opening and closing of accounts not exercised as frequently. Traditional compiler

optimizations do not distinguish between the common and uncommon case and consider

all parts of the program as equally important during optimizations. On the other hand,

profile-guided optimizations (PGO) use program profiles generated using a set of represen-

tative inputs to identify the common case and optimize the common case more aggressively.

Consequently, these optimizations generate highly tuned program binaries that perform

significantly better for the common case.

Traditionally, compilers have relied on simple point profiles to identify the common

case and drive PGO, primarily because these profiles are simple and inexpensive to collect.

More recently, several researchers have shown that the effectiveness of these optimizations

can increased if path profiles are used instead. We now discuss a few optimizations that

are known to benefit from richer profile information.

Path profile-guided superblock scheduling

Instruction scheduling is a compiler optimization that reschedules instructions (typically

within a basic block) such that the resulting schedule utilizes hardware resources more

efficiently, hides the latency of expensive operations and has a lower latency of execution.

Superblock scheduling [23] is a variant of instruction scheduling that schedules code at the

2.3. Applications of path profiling 15

Figure 2.1: A scenario where an edge profile may not accurately reflect control flow be-

havior. If blocks ABC are candidates for superblock scheduling, the edge BY is a side exit.

From the edge profile, it is not clear how often the blocks ABC are likely to complete. The

frequency with which the side exit is taken lies between 0 and 500.

granularity of superblocks instead of basic blocks. A superblock is a single-entry, multiple-

exit sequence of instructions with the additional characteristic that the last exit(s) (exits

at the end of the superblock) are more likely to be taken than the others. In other words,

once a superblock is entered, all the instructions in the superblock should be executed

with high probability. In superblock scheduling, superblocks are formed using a control

flow graph restructuring transformation known as tail duplication. Once superblocks, are

formed, the the compiler schedules instructions in the superblock while assuming that

the instructions belong to one basic block. Since the size of a superblock is typically

much larger than the size of individual basic blocks, the scheduler has greater flexibility

in reordering instructions, which results in better schedules. However, to to compensate

for the effects of reordering instructions within the superblock and ensure correctness, the

scheduler inserts compensation code along edges leading to the side exits.

Traditionally, superblock formation has relied on basic block or edge profiles to identify

sequences of hot basic blocks that can be transformed into superblocks. Young et al [55]

show that in certain scenarios, an edge profile may not accurately reflect the control flow

behavior of a program. Figure 2.1 (adapted from [55]) illustrates one such scenario.

In such scenarios, the superblock scheduler will create superblocks in which control flow

escapes from one of the side exits and does not reach the last exit(s) as often as expected,

which reduces the benefits of scheduling. In contrast, superblocks formed using path

profiles are more likely to execute to completion, making best use of the optimized schedule.

2.3. Applications of path profiling 16

Path-profile guided PRE

Occasionally, programmers and compiler introduce expressions whose value has already

been evaluated in the program and is available for use at the statement containing the

expression. Such expressions are said to be redundant and optimizations that detect

and eliminate such expressions are an integral part of all optimizing compilers. Partial

Redundancy Elimination (PRE) is an optimization that eliminates partially redundant

expressions. An expression is said to be partially redundant if there exists a program

point such that the expression is evaluated along all paths from the point to the exit (the

expression is said to be anticipable at the program point) but the value of the expression

is available only along a subset of paths from the entry to that point (the expression is

partially available at the program point). PRE uses code hoisting to introduce instructions

that evaluate the expression along paths where the expression is not redundant. This code

transformation makes subsequent evaluations of the expression completely redundant and

can be safely eliminated without introducing extra evaluations of the expression along any

path in the program.

The traditional formulation of PRE is not applicable for expressions that are partially

available and partially anticipable. This is because removing these expressions using PRE

transformations as described above would introduce extra evaluations of the expression

along some paths in the program. If these paths turn out to be frequently executed,

the extra evaluations could slow down the program instead of improving performance.

Gupta et al [20] propose a path profile-directed formulation of PRE that eliminates such

expressions. The proposed approach uses path frequencies to determine the benefits of

eliminating partially redundant expressions and the cost of extra evaluations introduced

due to code hoisting. The optimization is performed only if the benefits exceeds the cost

i.e. the cumulative frequencies of paths along with the expression is removed is higher than

the frequency of paths along with an extra evaluation is introduced. A similar approach

can be used to eliminate partial dead code [19].

Precise dataflow analysis using path profiles

Dataflow analysis is a program analysis technique used to detect facts about program

variables that hold at various points in the program. A dataflow analysis is said to be

conservative if the facts computed by the analysis at a program point hold along all paths

from program entry to that point. The conservative nature of dataflow analysis ensures

that compiler optimizations based on the analysis are always safe. However, the safety

of compiler optimizations comes at a cost. A conservative dataflow analysis is forced to

loose information at join points in the program. Consider the join point in Figure 2.2. if

a dataflow fact X = 2 holds at the exit of node A but does not hold at the exit of node B,

the analysis must conservatively assume that the the value of X is unknown at the entry

2.3. Applications of path profiling 17

Figure 2.2: A control flow graph illustrating the loss in precision due to the conservative

nature of data flow analysis. In (a), the dataflow fact X=2 holds at the exit of node A

but not at the exit of B. Due to the merge, the analysis conservatively assumes that the

dataflow fact does not hold at the entry of C. Figure (b) shows the version of the graph

after splitting the merge. Here, the fact X=2 holds at the entry of node C’.

of node C. This loss in precision due to join points reduces the number of optimization

opportunities and adversely effects the benefits obtained from compiler optimizations.

Ammons and Larus [2] propose an approach that improves the precision of data flow

analysis by restructuring the control flow graph to eliminate join points along frequently

executed paths identified using a path profile. Eliminating join points along hot paths

ensures that the cost of restructuring the control flow, which involves some amount of code

duplication, is more than offset by the increase in the number of optimization opportunities

along these paths.

2.3.2 Software debugging and testing

Bugs in programs are associated with a cause and a symptom [7]. When bugs are found,

either by verification tools, via in-house testing or in a deployed program, their symptoms

are reported back to the programmer, typically in the form of a stack trace and a memory

dump. Subsequently, much of the debugging effort is spent in finding the root cause of bugs

from these symptoms, a process that involves tracing (possibly backwards) the sequence of

events that lead to the symptom and identifying the sub-sequence that caused the program

to transition into an invalid state. Paths are naturally suited for reasoning of this kind

since paths efficiently capture a majority of event sequences that occur in a given program

execution. Although existing software debuggers do not support paths explicitly, efforts

have been make to make debuggers more path aware. Bruegge et al [11] propose the use

of path expressions as a generic mechanism for specifying program behavior that a user

wants to monitor in a debugging session. For example, the path expression Open(Read

2.3. Applications of path profiling 18

+ Write)*Close encodes the correct usage of the file API. A path-aware debugger can

translate this expression into a finite-state automata, monitor the automata in parallel

with the program’s execution, and invoke a user-specified action if the automata reaches

an error or final state. Path profiles can be used for localizing faults directly by comparing

profiles obtained from correct and faulty runs and identifying paths that whose execution

is highly correlated with faulty runs [41].

Paths also provide a more credible way of measuring the effectiveness of a test suite.

The number of distinct paths exercised by a test suite more accurately represents the

range of behaviors tested than statement or basic block coverage [14]. For this reason,

paths are ideal targets for automatic test case generation tools. These tools can identify

paths that are likely to cause failures and determine inputs that drive the program along

these paths.

2.3.3 Computer architecture

Paths exhibit several interesting characteristics that can be exploited to improve processor

performance. Paths exhibit locality - programs usually execute a small number of paths re-

peatedly. Furthermore, the manner is which a program exercises paths is very predictable.

The locality and predictability of paths is critical to micro-architectural optimizations such

as branch prediction and trace caches.

A branch predictor allows a pipelined processor to eliminate control dependencies by

predicting the direction and the target address of a branch instruction well before the

branch is resolved and speculatively executing instructions on the predicted path. Early

branch prediction schemes such as the bimodal predictor and local branch predictors relied

completely on the local history of a branch to drive predictions. On the other hand, global

branch prediction schemes such as gShare and path-based branch predictors [36] exploit

the observation that a branch’s behavior depends on the path taken to arrive at the branch.

These predictors track the branch instruction’s history separately for each path leading

to the branch instead of aggregating the history for all paths. High branch prediction

accuracy in high performance processors such as Intel’s Xeon processors, AMD’s K8 and

the Alpha EV6 can be attributed to the use of global branch predictions schemes.

Trace caches [43] exploit locality in paths too, albeit in a different way. A trace cache

stores frequently executed sequences of instructions known as traces. A trace contains

instructions that span across several basic blocks from non-consecutive addresses in mem-

ory. A trace-based processor can predict [24] and fetch a whole trace at at time, reducing

the average fetch latency. Because of locality in paths, a reasonably sized trace cache can

be expected to hold a majority of the program’s working set. Since traces fetched from a

trace cache are executed atomically, processors can aggressively optimize the traces before

placing them in the cache [37].

Chapter 3

Preferential Path Profiling

3.1 Introduction

Let us first examine why existing path profiling schemes incur relatively high overhead.

The efficient path profiling scheme proposed by Ball and Larus, which forms the basis of

all path profilers, assigns weights to edges of a control flow graph (CFG) such that all paths

are allocated unique identifiers (i.e., the sum of the weights of the edges along every path

is unique) [6]. During program execution, the profiler accumulates weights along the edges

and updates an array entry that corresponds to this path identifier. Unfortunately, for

functions with a large number of paths, allocating an array entry for all program paths is

prohibitively expensive, if not infeasible. Consequently, path profiler implementations are

forced to use a hash table to record path information for such functions. Although using a

hash table is space efficient as programs typically execute only a small subset of all possible

paths, it incurs significantly higher execution time overhead as compared to updating an

array entry. Previous work has shown that hash tables account for a significant fraction

of the overhead attributable to path profiling [25].

To address this problem, we propose preferential path profiling (PPP), a novel path

profiling scheme that efficiently profiles arbitrary subsets of paths, which we refer to as

interesting paths. Our algorithm can be viewed as a generalization of the Ball-Larus algo-

rithm, which forms the core of all existing path profiler implementations. As mentioned

earlier, the Ball-Larus algorithm assigns weights to the edges of a given CFG such that the

sum of the weights of the edges along each path through the CFG is unique. Our algo-

rithm generalizes this notion to a subset of paths; it assigns weights to the edges such that

the sum of the weights along the edges of the interesting paths is unique. Furthermore,

our algorithm attempts to achieve a minimal and compact encoding of the interesting

paths; such an encoding significantly reduces the overheads of path profiling by eliminat-

ing expensive hash operations during profiling. In addition, our profiling scheme separates

interesting paths from other paths and is able to classify paths during program execution.

19

3.2. Preliminaries 20

The ability to classify paths is important for many applications such as residual path pro-

filing. Interestingly, we find that both the Ball-Larus algorithm and PPP are essentially a

form of arithmetic coding [42,52], a technique commonly used for universal data compres-

sion. We make use of this connection to prove an optimality result for the compactness of

path numbering produced by PPP.

This chapter makes the following contributions. First, we describe a new algorithm,

called preferential path profiling (PPP), for compactly numbering arbitrary path subsets

that improves upon Ball-Larus numbering (Section 3.3). Next, we propose a low-overhead

interprocedural path profiling scheme based on PPP in Section 3.4. We present an exper-

imental evaluation of our PPP implementation that demonstrates it incurs significantly

lower overhead as compared to Ball-Larus profiling (Section 3.6). In Section 3.5, we

show that the PPP algorithm can be naturally adapted to perform intra-procedural and

inter-procedural residual path profiling. Our experiments demonstrate that residual path

profiling provides valuable quantitative information on the effectiveness of software test-

ing.

3.2 Preliminaries

In this section, we briefly describe the Ball-Larus algorithm for profiling acyclic, intra-

procedural paths through a control flow graph (CFG) of a program and motivate our

problem using a simple example.

3.2.1 Definitions

For the purposes of profiling acyclic, intra-procedural paths (henceforth referred to as

paths), each procedure in the program is represented as a directed acyclic graph (DAG).

Each DAG is a graph G = (V,E, s, t), where V represents nodes or basic blocks in the

procedure, E is the set of edges between nodes and the nodes s and t are the start and

exit nodes representing function entry and exit. The maps src(e) and dest(e) denote the

source and destination nodes respectively of an edge e. For every node v ∈ V , out(v)

denote the set of edges emanating from v in G, and succ(v) represents all the immediate

successor nodes of v. An acyclic, intra-procedural path p is a sequence of nodes from s to

t. The function paths(G) refers to all acyclic, intra-procedural paths in G. The function

pathsG(e) : E → 2paths(G) represents all paths in G that traverse an edge e. Conversely,

the function edges : P → 2E maps every path p in G to the set of edges that belong to p.

An assignment of weights to the edges of G is represented as a map W : E → Z. The

relation pathid : P → Z maps each path to a path identifier, and is defined as follows.

pathid(p) def=
∑

e∈edges(p)

W (e)

3.2. Preliminaries 21

procedure computeBLIncrements (G)

Assume:

(a) G = (V,E, s, t) is a DAG.

(b) W : E → Z is an empty map.

Returns: The map W defined for all edges such that every path in G is assigned a unique

weight.

1: Nt := 1;

2: for all nodes v ∈ V in reverse topological order do

3: Nv := 0;

4: for all edges e ∈ out(v) do

5: W (e) := Nv;

6: Nv := Nv +Ndest(e);

7: end for

8: end for

Figure 3.1: The Ball-Larus Algorithm.

3.2.2 Ball-Larus Profiling

The Ball-Larus profiling scheme works over the control flow graph representation of

each procedure in the program. The analysis involved in the profiling scheme is modular

because control flow across procedure boundaries is ignored. Hence, each procedure in

the program is analyzed independently. Furthermore, since the goal is to profile acyclic

paths only, the profiling scheme converts the control flow graph into a DAG, ignoring all

control flow across loop boundaries. The conversion from the control flow graph to a DAG

involves the following simple steps.

1. Identify loop back-edges in the control flow graph.

2. For each loop back-edge from node v to v′, add an edge from s to v and an edge

from v′ to t.

3. Remove all loop back-edges from the control flow graph.

Note that the resulting DAG retains all acyclic, intra-procedural paths in the original

control-flow graph and all these paths begin at the start node s and end at the exit

node t. Once the DAG (say G) has been constructed, the Ball-Larus algorithm assigns

weights to the edges of G such that for every path p ∈ paths(G), pathid(p) is unique,

and is equal to a number between 0 and N − 1, where N = |paths(G)|. The algorithm

computeBLIncrements, shown in Figure 3.1, performs one bottom-up pass through G and

processes its nodes in reverse topological order. With each node v, the algorithm associates

3.2. Preliminaries 22

Figure 3.2: Assignment of weights to edges using the Ball-Larus algorithm

procedure computePathIdentifier (G, W, p)

Assume:

(a) G = (V,E, s, t) is a DAG.

(b) The map W : E → Z.

(c) A path p is a sequence of nodes through G.

Returns: The path identifier for the path p

1: return
∑

e∈edges(p)W (e);

Figure 3.3: Computing the Ball-Larus identifier of a path from an edge assignment.

a count Nv that indicates the number of paths from v to the exit node t (Line 5). At each

node, the computeBLIncrements traverses the list of successor nodes and assigns weights

to the corresponding outgoing edges. This algorithm is based on a simple idea stated in

the following lemma [6].

Lemma 3.2.1 Let G = (V,E, s, t) be a DAG. The number of paths from any node v in G

to the exit node t is equal to the sum of the number of paths from each of v’s successor

nodes to t.

Figure 3.2 illustrates how computeBLIncrements uses this invariant to compute an

edge assignment. Assume that the algorithm is processing node a with two successors b

and c that have Nb and Nc paths to the exit node t. Also assume that these paths have

already been assigned identifiers from 0 to Nb− 1 and Nc− 1 respectively. The algorithm

assigns a weight 0 to the edge (a, b), and a weight Nb to the edge (a, c). This ensure that

the paths from a to t are assigned identifers from 0 to Nb +Nc - 1, which is also equal to

Na − 1 (from Lemma 3.2.1). In general, the weight assigned to an edge is equal to the

sum of the number of paths from all previously processed successor nodes to t (Line 6).

The Ball-Larus path profiler instruments the edges of the CFG with instructions to

increment a counter by the weight assigned to the edge. When the instrumented program

executes, it simulates the procedure computePathIdentifier (Figure 3.3). When a path

terminates, the value in the counter represents the path that just executed and can be

used for book-keeping.

3.2. Preliminaries 23

Figure 3.4: Motivating example for PPP. (a) A DAG G with 6 paths with edges numbered

using the Ball-Larus algorithm. (b) G with edges having only PPP assigned numbers for

three interesting paths I = {sacdt, sact, sbct}. (c) G with edges assigned two numbers, a

PPP number and a Ball-Larus number (in parenthesis). The path array is accessed using

the PPP counter.

3.2.3 An illustrative example

We start with an example that illustrates a drawback of the Ball-Larus profiling scheme,

and also shows how our profiler works on this example. Consider the function in Fig-

ure 3.4(a). The DAG G in Figure 3.4(a) is obtained from the CFG of the function. This

figure also shows the weights assigned by the Ball-Larus algorithm to edges of G. Note

that the sum of the weights of edges along every path from the start node s to the final

node t is unique, and all paths are allocated identifiers from 0 to N − 1, where N is the

total number of paths from s to t. If N is reasonably small (less than some threshold value

T), the profiler can allocate an array of counters of size N , and track path frequencies

by indexing into the array using the path identifier and incrementing the corresponding

counter. However, the number of potential paths in a procedure can be arbitrarily large

(exponential in the number of nodes in the graph) and allocating a counter for each path

can be prohibitively expensive, even infeasible in many cases. Path profilers overcome this

problem by using a hash table of counters instead of an array, relying on the observation

that only a small number of paths are traversed during any given execution. Therefore, a

combination of a suitably sized hash table and a good hash function almost always guar-

antees the absence of conflicts. In the current example, if T was set to 4, the Ball-Larus

profiler would use a hash table since there are 6 paths from s to t.

Let us assume that we are interested in profiling only a subset I = {sacdt, sact, sbct}
(interesting paths) of paths. The Ball-Larus identifiers for the paths sacdt, sact, sbct

are 0, 1 and 5 respectively. This means that one would have to allocate a hash table

even though there are only 3 paths of interest. In such a scenario, it would be ideal if

3.3. Preferential Path Profiling 24

we could compute an edge assignment that allocates identifiers 0, 1 and 2 to these paths

and identifiers > 2 to the other paths. In Section 3.3, we show that computing an edge

assignment W and a number β such that (a) ∀p ∈ I, pathid(p) ≤ β, and (b) ∀p 6∈ I,

pathid(p) > β is not always feasible. Therefore, we relax the constraints on this problem

by eliminating condition (b) (which is a condition over uninteresting paths), and ask the

question if it is possible to label the edges in G such that the paths in the set I have

path identifiers in {0, 1, 2}. Figure 3.4(b) shows that such an assignment of weights to

edges indeed exists, and this is precisely the assignment computed by the preferential

path profiling PPP algorithm described in Section 3.3. Therefore, our profiler incurs lower

overheads since we now can use an array to track frequencies instead of a hash table. Note

that while the interesting paths sacdt, sact, sbct have been assigned unique identifiers

from 0 to 2, the uninteresting paths sabct and sbcdt alias with the interesting paths sacdt

and sact respectively. We resolve these “aliases” using Ball-Larus path identifiers, which

are unique for every path. In PPP, edges are annotated with a second weight computed

using the Ball-Larus algorithm (these weights are shown in parentheses in Figure 3.4(c)).

The profiler also stores the Ball-Larus identifiers of all interesting paths along with their

counters. The occurrence of an interesting path can be detected by comparing the Ball-

Larus identifier computed during the traversal with the Ball-Larus identifier stored in the

array – a match indicates that an interesting path was just traversed and vice versa. For

example, when the uninteresting path sbcdt (PPP identifier is 2 and Ball-Larus identifier

is 4) occurs, before incrementing the count at index 2 in the path array, the Ball-Larus

identifier at index 2 is compared with the Ball-Larus identifier of sbcdt – since they are

different, the profiler infers that this path is not interesting (or it might be a residual path

not exercised by the test suite) and takes necessary action.

3.3 Preferential Path Profiling

We will now address the problem of encoding arbitrary subsets of paths over a DAG

G = (V,E, s, t). Informally, we wish to compute an edge assignment that allows us to

uniquely identify paths as well as differentiate interesting paths from the uninteresting

ones. First, consider the possibility of finding an edge assignment that separates interesting

and uninteresting paths using a number β ∈ Z≥0.

Lemma 3.3.1 (Separation of paths) Given a DAG G = (V,E, s, t) and a set of interesting

paths I ⊆ paths(G), a map W : E → Z that satisfies the following conditions may not

always exist.

1. uniqueness: ∀p, q ∈ I, pathid(p) 6= pathid(q).

2. perfect numbering: ∀p ∈ I, 0 ≤ pathid(p) < |I|.

3.3. Preferential Path Profiling 25

Figure 3.5: A counterexample for separation of paths.

3. separation: ∀p 6∈ I, pathid(p) ≥ |I|.

Proof: Consider the simple DAG in Figure 3.5. Assume that we are interested in

profiling paths sacet and sbcdt. Assume that there exists an edge assignment W that

satisfies all conditions in the lemma. Let w, x, y and z represent the cumulative weights

of the sub-paths sac, sbc, cdt and cet respectively. From condition 2, we have w + z < 2

and x+ y < 2, and from condition 3, it follows that w+ y ≥ 2 and x+ z ≥ 2. This implies

that

x+ y + w + z < 4

x+ y + w + z ≥ 4

which is a contradiction and the lemma follows.

This result is also related to the notion of linear separability and the XOR problem in

pattern classification [21]. Specifically, finding an edge assignment that separates inter-

esting paths from the others corresponds to the problem of finding a linear surface that

separates a set of patterns, where each pattern has been classified into one of two classes.

In practice, we find separating arbitrary sets of interesting and uninteresting paths is

almost always infeasible, primarily due to the presence of many shared edges. We therefore

simplify the problem by relaxing condition 3. Edge assignments that cause the interesting

paths to alias with the uninteresting paths are acceptable as long as the interesting paths

are assigned minimal unique identifiers. As described in Section 3.2.3, a second counter

that computes the Ball-Larus identifiers of all paths can be used to resolve the aliases.

This relaxation allows us to reason about interesting paths only, an aspect critical to the

solution we propose. However, it turns out the even this simplified problem may not have

a perfect solution as the following lemma indicates.

Lemma 3.3.2 (Perfect edge assignment) Given a DAG

3.3. Preferential Path Profiling 26

Figure 3.6: A counterexample for perfect edge assignment.

G = (V,E, s, t) and a set of interesting paths I ⊆ paths(G), a map W : E → Z that

satisfies the following conditions may not always exist.

1. uniqueness: ∀p, q ∈ I, pathid(p) 6= pathid(q),

2. perfect numbering: ∀p ∈ I, 0 ≤ pathid(p) < |I|.

Proof: Consider the graph in Figure 3.6. Say we are interesting in profiling the

paths sadft, sadgt, sbdet, sbdgt, scdet, and scdft. For simplicity, we represent the sum of

the edges along the sub-paths sad, sbd, scd, det, dft and dgt as u, v, w, x, y and z. Consider

the sum of the identifiers of all these paths.

sum = (u+ y) + (u+ z) + (v + x)

+(v + z) + (w + x) + (w + y)

= 2(u+ v + w + x+ y + z)

Hence, the sum of the path identifiers of these paths is necessarily even. However, for a

perfect assignment, these paths must be allocated identifiers between 0 and 5. Since the

sum of numbers from 0 to 5 is odd, we conclude that a perfect edge assignment for this

graph and set of interesting paths does not exist.

Since a perfect edge assignment for interesting paths may not always exist, even an

optimal edge assignment may induce a path assignment with “holes” in the interval of

path identifiers. In light of this lemma, we restate our problem as follows.

Problem A (Optimal Edge Assignment): Given a DAG G = (V,E, s, t) and a set of interesting

paths I ⊆ paths(G), compute an edge assignment W : E → Z that satisfies the following

conditions.

1. uniqueness: ∀p, q ∈ I, pathid(p) 6= pathid(q),

3.3. Preferential Path Profiling 27

2. compactness: The compactness measure δ defined by

δ
def=

(maxp∈I pathid(p)−minp∈I pathid(p)) + 1
|I|

is minimized.

It is easy to see that δ ≥ 1. A perfect edge assignment W induces a δ = 1. Lemma

3.3.2 shows that a solution with δ = 1 does not always exist. Hence solutions with lower

values of δ are preferred. We find that for arbitrary graphs and arbitrary set of paths, even

characterizing the optimal δ seems to be a hard problem. In the next section, we propose

an algorithm that computes an edge assignment that attempts to minimize δ, and later

prove an optimality result for this algorithm by establishing a connection with arithmetic

coding.

3.3.1 The Preferential Path Profiling Algorithm

The preferential path profiling (PPP) algorithm is a generalization of the Ball-Larus algo-

rithm with the added capability of biasing the edge assignment towards an arbitrary set

of interesting paths. Before we describe the algorithm, we introduce some notation and

state some of the key observations that the algorithm is based on.

Let G = (V,E, s, t) be a DAG, and let I ⊆ paths(G) be a set of interesting paths. Con-

sider a node v ∈ V and an edge e ∈ out(v). Let pathsI(e) represents the set of interesting

paths that traverse the edge e. Let prefix (p, e) denote the sequence of nodes from s to

src(e) along the path p. Then prefix I(e) denotes the set of all prefixes {prefix (p, e)}p∈I .

Given a pair of interesting paths p, p′ ∈ I, lcp(p, p′) represents the longest common prefix

of p and p′ in G. Note that lcp(p, p′) is trivially the start node s if p and p′ are edge

disjoint. We define the critical node for a pair of interesting paths p and p′ as follows.

critical(p, p′) def= the last node in lcp(p, p′)

For any pair of paths, the critical node is unique since the longest common prefix is

uniquely defined. For example, in Figure 3.7, node a is the critical node for paths p1 and

p2, whereas node b is the critical node for paths p1 and p3. Again, the critical node for a

set of paths is trivially the start node s if the set of paths are edge disjoint in G.

We also define a map pid : I → Z to track partial identifiers allocated to paths during

the execution of an edge assignment algorithm. Assuming that all edges are initialized

with a weight ⊥ (this denotes the undefined value), the partial identifier of a path is

defined as follows.

pid(p) =
∑

e∈edges(p)∧W (e) 6=⊥

W (e)

From the statement of Problem A, we note that an edge assignment must simultane-

ously satisfy two constraints i.e. uniqueness and compactness of path identifiers. We now

3.3. Preferential Path Profiling 28

Figure 3.7: Critical nodes for pairs of paths.

describe how PPP satisfies these constraints.

Uniqueness. We first define an invariant that any algorithm computing an edge assign-

ment by processing nodes in reverse topological order must satisfy in order to ensure that

all interesting paths are allocated unique identifiers1.

Lemma 3.3.3 (Invariant for uniqueness) Consider a node v being processed by the algo-

rithm. If v is the critical node for any pair of interesting paths p and p′, then p and p′

should be assigned different partial identifiers after the node v has been processed.

Proof: Follows from the definition of critical nodes, and the fact that the algorithm

assigns weights to edges in reverse topological order.

The PPP algorithm computes an edge assignment that attempts to achieve the most

compact path numbering (low δ) that maintains this invariant at every node. However, to

make the algorithm simpler and more amenable for analysis (Chapter 4), PPP makes the

following approximation. Instead of explicitly checking the partial identifiers of paths at

a critical node, PPP works over intervals of path identifiers. Given an edge e, the interval

inte,q represents the range of partial identifiers allocated to all interesting paths through

1A similar invariant based on suffixes can be defined if the algorithm were to perform a top-down

traversal, processing nodes in topological order

3.3. Preferential Path Profiling 29

e that have a prefix q. Formally,

inte,q = [min(pid(p) | p ∈ pathsI(e) ∧ prefix(p, e) = q),

max(pid(p) | p ∈ pathsI(e) ∧ prefix(p, e) = q)]

At every node, PPP computes an interval inte,q for every (edge, prefix) pair and assigns

weights to the edges to maintain the following invariant.

Lemma 3.3.4 (Invariant for uniqueness over intervals) Consider a node v being processed

by PPP. Assume that a prefix q induces a set of intervals Sv,q = {inteq|e ∈ out(v)} on

the outgoing edges of v. To ensure uniqueness, the intervals in Sv,q should not overlap

after v has been processed. Furthermore, this condition must hold for every prefix q ∈
∪e∈out(v)prefix I(e).

Proof: It is easy to see that if a prefix q induces an interval at two or more outgoing

edges of a node v, then v is the critical node for all paths p with the prefix q. By pre-

venting overlap between all such intervals for a given prefix, PPP automatically ends up

separating all paths with prefix q for which node v is critical. If this condition is satisfied

for all prefixes, all interesting paths for which node v is critical are distinguished and hence

the Lemma 3.3.3 is satisfied.

Compactness. With the uniqueness constraint taken care of, we now describe how

PPP ensures compactness. At any node v ∈ V , consider the set of intervals Sv,q =

{[mini,maxi]i∈[1,k]} (where k = |out(v)|) induced on edges e1, e2 . . . ek by a prefix q. If q

is the only valid prefix at v, PPP uses compaction to compute a minimal edge assignment

W (ei)i∈[1,k] which ensures that these intervals do not overlap. To achieve compaction,

each W (ei) is computed as follows:

W (ei) =
∑

j∈[1,(i−1)]

(maxj −minj + 1)−mini (3.1)

= cisi−1 −mini (3.2)

where cisi−1 represents the cumulative interval size of all intervals induced on previous

edges. However, this simple compaction method cannot be used if multiple prefixes induce

intervals on the outgoing edges of a node. In such situations, PPP performs a join operation

over the intervals at all edges with two or more intervals. The join operation computes the

weights induced by different prefixes on the edge and conservatively assigns a weight equal

to the maximum amongst all these weights. Due to the join, interesting paths associated

with all but one of the prefixes will be assigned a weight higher than what is required to

separate its intervals, creating holes in the path numbering. However, it is easy to see that

this choice of weight leads to the most compact numbering feasible.

3.3. Preferential Path Profiling 30

Figure 3.8: The assignment of weights to edges under four scenarios

Figure 3.9: The effect of using the join operator to conservatively assign weights to edges.

(a) Intervals induced by the prefixes before the join, and (b) effective intervals after the

join.

Figure 3.8 illustrates the scenarios PPP deals with. In Figure 3.8(a), all interesting

paths through the node a have the same prefix q1 and traverse the edge e2 (represented

by the shaded region). Since the interval inte2,q1 is the only interval in the set Sa,q1 ,

no overlap between intervals exist and the invariant for uniqueness (Lemma 3.3.4) is

trivially satisfied. A similar situation occurs in Figure 3.8(b), where paths through the

edges do not share any prefixes. The interval sets Sa,q1 and Sa,q2 are singletons and no

conflicts occur. Figure 3.8(c) represents a scenario where the interesting paths induce two

intervals for the prefix q1. PPP uses Equation 3.1 to compute weights and ensures that

these intervals do not overlap. Finally, Figure 3.8(d) illustrates the scenario where the

interesting paths through edges e1 and e2 share prefixes q1 and q2. Figure 3.9 illustrates

the effect of a join on two sets of intervals induced by prefixes q1 and q2. Since we need a

larger weight (say w computed by Equation 3.1) to separate intervals induced by prefix q1
(as compared to the weight w′ required to separate intervals induced by prefix q2), PPP

assigns w to e2, leading to a hole in the interval for the prefix q2.

Figure 3.10 describes the PPP algorithm in detail. For each node v ∈ V and each

3.3. Preferential Path Profiling 31

outgoing edge e ∈ out(v), the algorithm iterates over all prefixes and computes the begin-

ning of the interval inte,q (mine,q at Line 5). It uses an auxiliary map cis to determine

the cumulative interval size of intervals through previously processed outgoing edges of

v with the prefix q (as per Equation 3.1) and computes the weight induced by q on the

edge (Line 7). Finally, the join operation (Lines 10 and 11) selects the maximum over

the weights induced by each prefix and assigns this weight to the edge. After the edge is

assigned a weight, PPP updates the partial identifiers of all paths through the edge and

also computes the new cis(q) for the next iteration on this edge.

In summary, at every node v ∈ V , computePPPIncrements recursively merges inter-

vals of each prefix q into the most compact single interval intv,q. At the start node s,

this interval defines the range of identifiers allocated to the interesting paths. The time

complexity of PPP is O(E × P), where E is the number of edges and P is the number of

interesting paths.

3.3.2 Example

We now walk-through an example illustrating how the PPP algorithm works. Consider

the DAG in Figure 3.4; say we are interested in profiling paths sacdt, sact and sbct. The

following steps trace the manner in which PPP assigns weights to edges of the DAG. Step

ij denotes that at step i, PPP processes node j.

Step 1t Initialize the partial identifiers of all paths to 0 and cumulative interval sizes of

all prefixes to 0.

Step 2d Node d is not a critical node for any pair of paths since it has only one outgoing

edge. The prefix sacd induces an interval [0, 0] on the edge (d, t). Since cis(sacd) = 0,

W ((d, t)) = 0− 0 = 0.

Step 3c Node c is a critical node for paths sacdt and sact. Say the edge (c, d) is processed

first. Both prefixes sac and sbc induce an interval [0, 0] on this edge. Hence PPP

assigns a weight W ((c, d)) = 0 − 0 = 0 to this edge. PPP updates the map cis as

follows: cis(sac) = 1 and cis(sbc) = 1. PPP then processes the edge (c, t). The

prefix sbc induces an interval [0, 0] on this edge. Since cis(sbc) = 1, PPP assigns a

weight W ((c, t)) = 1 − 0 = 1 The partial identifiers of paths sact and sbct are also

updated to 1.

Step 4b Node b has one outgoing edge (b, c). The prefix sb induces an interval [1, 1] on

this edge. PPP assigns a weight W ((b, c)) = 0−1 = −1 to this edge since cis(sb) = 0.

The partial identifier of the path sbct is now updated to 1 +−1 = 0.

Step 5a Node a has two outgoing edges but only the edge (a, c) has interesting paths

through it. The prefix sa induces an interval [0, 1] at this edge. PPP assigns a

3.3. Preferential Path Profiling 32

procedure ComputePPPIncrements (G)

Assume:

(a) G = (V,E, s, t) is a DAG.

(b) a map pathsI : E → 2P .

(c) pid : P → Z≥0 initialized to 0 for all interesting paths.

(d) cis :prefix→ Z≥0, initialized to 0 for all prefixes of interesting paths.

Returns: A edge assignment W : E → Z.

1: for all nodes v ∈ V in reverse topological order do

2: for all edges e ∈ out(v) s.t. e ∈ edges(p) for some p ∈ I do

3: for all prefix q ∈prefix I(e) do

4: // compute the beginning of the interval inte,q
5: mine,q := min{pid(p) | p ∈ pathsI(e) and prefix (p, e) = q};
6: //compute weight induced by prefix q

7: weightq := cis(q)−mine,q;

8: // the join: compute the maximum weight

9: if (W (e) = ⊥||W (e) < (weightq)) then

10: W (e) := weightq;

11: end if

12: end for

13: // update partial identifers of all paths through e

14: for all paths p ∈ pathsI(e) do

15: pid(p) := pid(p) +W (e);

16: end for

17: for all prefixes q ∈prefix (e) do

18: //determine new cumulative interval size for prefix q

19: cis(q) := max{pid(p) | p ∈ pathsI(e) and prefix (p, e) = q} + 1;

20: end for

21: end for

22: end for

Figure 3.10: The preferential path profiling (PPP) algorithm for computing an edge as-

signment for a set of interesting paths.

weight W ((a, c)) = 0− 0 = 0 to the edge.

Step 6s Node s has two outgoing edges with three paths, all sharing a common prefix s.

This prefix induces an interval [0,1] at the edge (s, a) and the interval [0, 0] at the edge

(s, b). PPP processes the edge (s, a) first and assigns a weight W ((s, a)) = 0− 0 = 0

to the edge. PPP updates cis(s) = 1 + 1 = 2. Next, PPP processes the edge (s, b).

3.4. Interprocedural Preferential Path Profiling (IPPP) 33

Since cis(s) = 2, the edge (s, b) is assigned a weight W ((s, b)) = 2 − 0 = 2. The

partial identifier of the path sbct is also updated to 2.

At termination, the interesting paths sacdt, sact and sbct are allocated identifiers 0, 1 and

2 respectively.

3.3.3 Discussion

In summary, PPP attempts to achieve a compact path numbering by (1) only numbering

the edges required to distinguish interesting paths, and (2) computing the smallest weights

such that the interesting paths are assigned unique identifiers. Our experiments suggest

that PPP achieves good compactness measures for a vast majority of the procedures, even

when a large number of interesting paths are specified. However, despite its best efforts,

PPP does not always achieve the best possible compactness measure. Figure 3.11 illustrates

one scenario in which PPP fails to assign an optimal numbering although such a numbering

clearly exists. Consider the graph G1 and assume that PPP has assigned identifiers to a

set of interesting paths. Also assume that the interval of allocated identifiers contains

two holes of size k1 and k2 respectively. As shown in the figure, we can construct a new

graph G and select a set of interesting paths such that there exists an edge assignment

which achieves the δ = 1. Here, G is obtained via a parallel composition of three graphs

G1, G2 and G3 such that |paths(G2)| = k1 and |paths(G3)| = k2. Furthermore, the set of

interesting paths now includes all paths through G1 and G2. An optimal numbering for

this set of interesting paths is obtained by assigning a weight I1 to the edge (s, s2) and

I2 to the edge (s, s3), filling up the holes in the interval of graph G1. However, PPP fails

to compute such assignments since we restrict ourselves to the class of solutions where

edge intervals do not overlap. As we show in the next chapter, this constraint allows us

to establish an optimality condition by making a connection with arithmetic coding.

3.4 Interprocedural Preferential Path Profiling (IPPP)

Modern software development has embraced modular programming, which increases the

number of procedures in a program. As a result, many interesting program behaviors span

across procedure boundaries and intra-procedural testing and profiling techniques may not

suffice. Unfortunately, although inter-procedural analysis, profiling and testing techniques

are desirable, they have traditionally been associated with high runtime overhead. For

instance, inter-procedural path profiling is extremely expensive [33, 48]. These high over-

heads have limited the use of inter-procedural techniques even in testing environments

where cost is usually not a prime concern. We propose to perform a simplified version of

inter-procedural path profiling that has significantly lower overheads.

3.4. Interprocedural Preferential Path Profiling (IPPP) 34

Figure 3.11: Figure illustrating a scenario in which PPP assigns a sub-optimal numbering

but an optimal numbering clearly exists.

3.4.1 Preliminary Definitions

We define a few terms to facilitate the exposition of our technique.

Subpath: A subpath is an acyclic, intra-procedural path that terminates at procedure

calls, in addition to loop back edges and function returns.

Whole Program Path (WPP): The whole program path is the entire sequence of subpaths

generated during a given execution of a program. The WPP precisely characterizes

the entire control flow behavior of the program [30].

Interprocedural Path Segment (IPS): An inter-procedural path segment is a sequence of

subpaths that can be generated using the following grammar

P → (P | (P) | PP | 〈f, p〉

where ‘(’ denotes a function call, ‘) represents a return, and 〈f, p〉 represents the

execution of a subpath p in the function f . Intuitively, an IPS is similar to the

traditional notion of inter-procedurally valid paths [33], except that it does not

necessarily start with a call to the main function.

3.4.2 Specifying Interesting IPSs

To perform inter-procedural preferential path profiling, we first need to specify interesting

inter-procedural path segments (IPSs). While the whole program path (WPP) is a valid

(though very large) IPS, for efficiency reasons we constrain the set of IPSs that can be

specified. We define a depth k IPS as one that spans at most k procedure calls. For a

given value of k (programmer specified), the set of IPSs exercised can be easily extracted

3.4. Interprocedural Preferential Path Profiling (IPPP) 35

Figure 3.12: IPPP example. (a) Interesting inter-procedural path originating infoo(),

passes through the function bar(), before returning to foo(). (b) After function inlining,

this path becomes an intra-procedural path in the supergraph foo s().

from the WPP. For instance, consider the follow substring of a WPP:

(〈f1, p1〉(〈f2, p2〉(〈f3, p3〉(〈f4, p4〉〈f4, p5〉〈f4, p6〉)〈f3, p7〉
(〈f5, p8〉)〈f3, p9〉)〈f2, p10〉)

Here, the paths p1, p2, p3 and p7 terminate on procedure calls. For k = 1, the set of

valid IPSs is

1. 〈f1, p1〉(〈f2, p2〉

2. 〈f2, p2〉(〈f3, p3〉

3. 〈f3, p3〉(〈f4, p4〉

4. 〈f3, p7〉(〈f5, p8〉)〈f3, p9〉

Note that IPS 4 includes the subpath executed after returning from procedure f5. Also,

IPS 3 does not extend to the subpath 〈f4, p5〉 because the path p4 ends at a loop back edge

and our current implementation does not profile paths that span across loop boundaries.

3.4.3 Profiling Interesting IPSs

Much like PPP, inter-procedural preferential path profiling (IPPP) achieves low overhead

by exploiting knowledge about interesting paths. Given a set of inter-procedural paths for

which profiling information is required, we proceed in two stages. First, assuming that

the number of inter-procedural path segments (IPSs) that most consumers of profiles are

3.4. Interprocedural Preferential Path Profiling (IPPP) 36

interested in is small, we transform the inter-procedural path segment profiling problem

into an intra-procedural path profiling problem using function inlining. This results in a

set of supergraphs that are used for analysis and instrumentation. Second, since these

supergraphs are likely to contain a large number of acyclic intra-procedural paths, we

use PPP to compactly number interesting paths in the supergraphs, which correspond

to interesting IPSs in the original graphs. This compact numbering avoids the use of

hash tables required by traditional path profiling techniques, and consequently reduces

the overhead of IPS profiling. We provide an overview of IPPP with an example shown in

Figure 3.12. Consider two functions foo() and bar() as shown in Figure 3.12(a). Assume

we are interested in profiling a single IPS that originates in function foo() and passes

through bar(). In this simple scenario, the function bar() is inlined into foo() as shown

in Figure 3.12(b). The inlining transformation leads to the creation of a supergraph

foo s(), in which the IPS has an intra-procedural equivalent. Standard intra-procedural

path profiling techniques can now be applied to such supergraphs to profile these paths.

However, the supergraphs created using this function inlining transformation are likely

to contain a significantly larger number of intra-procedural paths. This leads to two

problems.

• First, in several cases where an array would have been sufficient for book-keeping,

path profiling will be forced to use a hash table, resulting in increased runtime

overheads.

• Second, in situations where the number of paths increases beyond a threshold (for

example, 232), certain paths in the graphs must be truncated leading to a loss of

precision [6].

We address both of these problems. First, we use PPP to compactly number interesting

paths in the supergraph. Since the number of interesting IPSs is likely to be a small subset

of all possible IPSs, PPP, which provides strong guarantees about compact numbering [49],

will almost always be able to use an array instead of a hash table for tracking paths. Sec-

ond, we address the problem of loss of precision due to truncation by avoiding truncating

edges traversed by interesting IPSs. Consequently, interesting IPSs are profiled precisely

and efficiently.

3.4.4 IPPP Algorithm

This section informally describes our algorithm for profiling interesting inter-procedural

path segments (IPSs). Figure 3.13 provides an overview of the technique.

1. Input: A set of CFGs and a set S of interesting depth k-limited IPSs.

3.4. Interprocedural Preferential Path Profiling (IPPP) 37

Figure 3.13: Overview of the inter-procedural preferential path profiling scheme.

2. Identify inlining sites: Based on the paths in set S, identify the set of call sites for

inlining. For each IPS 〈f1, p1〉(〈f2, p2〉, . . . , consider all the subpaths that terminate

at a procedure call. All such procedure call sites are identified and marked.

3. Mark all edges traversed by IPSs: Assign a globally unique identifier to all IPSs.

Traverse all edges along each IPS and mark the edges with the corresponding IPS

identifier. Edges that participate in multiple IPSs will have multiple IPS identifiers

associated with them. This labelling serves two purposes. First, it helps create a

mapping between an IPS in the original collection of CFGs and its corresponding

intra-procedural equivalent in the transformed supergraph (see step 6). Second, it

marks these edges as non-candidates for truncation, if truncation is necessary (see

step 5).

4. Supergraph construction: Create supergraphs as shown in Figure 3.12(b) by combin-

ing the CFGs of individual procedures as determined in step 2.

5. Ball-Larus numbering: Assign Ball-Larus numbers to all paths in each supergraph.

Ensure that edges traversed by IPSs as marked in step 3 are not truncated. After

this step, each path in a supergraph is assigned a unique identifier.

6. Identify interesting IPSs: From the Ball-Larus numbering and the IPS edge informa-

tion computed in step 3, obtain the Ball-Larus identifiers of interesting IPSs.

7. Drive PPP: Use the Ball-Larus identifier of interesting IPSs computed in Step 6 as

input to the PPP algorithm.

3.4.5 Avoiding Inlining through Code Duplication

IPPP uses procedure inlining to convert an inter-procedural path profiling problem to an

intra-procedural one. In IPPP, each procedure is effectively duplicated as many times as

the number of unique contexts it occurs in the set of input IPSs. However, this approach

may not scale if the number and/or depth of IPSs in the input specification is large or the

3.4. Interprocedural Preferential Path Profiling (IPPP) 38

Figure 3.14: An example that illustrates an IPPP approach based on function replication

that avoids increase in code size due to inlining-based IPPP.

IPS passes through procedures with large bodies. While our current implementation uses

selective inlining, an alternative is to duplicate the code.

We now describe the approach based on procedure duplication using an example. Con-

sider the program in Figure 3.14. The program consists of three functions, foo1(), foo2()

and bar(x). Both foo1() and foo2() have calls to bar(x). Assume that the input to IPPP

consists of two inter-procedural path segments that pass through both call sites. As per

the approach described in the previous section, we would inline a copy of bar(x) in foo1()

and in foo2() (the original copy of bar(x) remains). If the resulting increase in code size

is not acceptable, IPPP creates a second copy of the procedure bar(x) (say bar dup(x))

and shares it across multiple contexts as shown in Figure 3.14. Here, we only inline the

procedure bar into foo1() and foo2() for the purpose of analysis and compute an assign-

ment of weights to the edges of bar dup(x) independently in each context. We then map

these weights back to the original edges of bar dup(x). Each edge of bar dup(x) is now

associated with as many weights as the number of unique contexts (say N). Next, we add

N counter variables as arguments to the procedure bar dup(x), one for each context, to

obtain bar dup(x, cnt1, cnt2, . . . , cntN). We also modify the respective call sites in each

context to pass the current value of the Ball-Larus and/or PPP counter as an argument to

3.5. Residual Path Profiling (RPP) 39

the duplicated procedure, as shown in Figure 3.14. The edges of bar dup(x, cnt1, cnt2) are

instrumented to increment all counter variables as and when required. These increment

operations are usually inexpensive and are unlikely to have an adverse effect on perfor-

mance, at least for a moderate number of contexts. Finally, before returning from the

procedure bar dup(x, cnt1, cnt2, . . . , cntN), we save the state of all counter variables so

that they can be retrieved by the respective callers. In this way, both the Ball-Larus and

PPP algorithms can be extended to the inter-procedural case without an excessive increase

in code size.

3.4.6 Discussion

The key enabling insight that avoids an exponential blowup in code size due to inlining

and code duplication is that the inlining decisions are based on concrete Ball-Larus path-

profiles from a regression test suite. Typically, a test suite exercises only a small fraction of

all possible inter-procedural-paths. Our experiments (Section 3.6) show that the code size

increase for IPPP is only 22% higher on average than standard intra-procedural Ball-Larus

PP. Recursion is handled as we are only interested in IPSs of limited depth. Function

pointers are handled by doing context-sensitive inlining from concrete Ball-Larus path

profiles and using runtime-checks for validation.

3.5 Residual Path Profiling (RPP)

Residual path profiling identifies the set of paths executed by deployed software that

were not tested during software development [38]. This section describes how we perform

residual profiling for intra-procedural and inter-procedural paths.

3.5.1 Intra-procedural Residual Path Profiling

RPP for intra-procedural paths is fairly straightforward and proceeds in two stages. First,

a program is instrumented for path profiling with the Ball-Larus technique and run with its

test suite inputs. The Ball-Larus identifiers of intra-procedural paths that were executed

are recorded. Next, the same program is instrumented with PPP with the recorded Ball-

Larus paths marked as interesting paths and this version of the program is deployed to

gather real usage profiles, perhaps as part of a beta testing phase. When an untested

path is executed, either its PPP identifier will exceed the size of the array used to track

paths or its Ball-Larus identifier will not match the one recorded in the array entry (see

Figure 3.4(c)). In this way, untested paths are detected and recorded during actual usage

of deployed software.

3.5. Residual Path Profiling (RPP) 40

Figure 3.15: Residual path profiling for IPPPs. (a) Profile executed paths on test suite

inputs using the Ball-Larus scheme. (b) Inline functions to convert executed IPSs to intra-

procedural paths and re-execute on test inputs. (c) Use path profile from (b) to drive PPP

and run program with field inputs to detect untested paths.

3.5.2 Inter-procedural Residual Path Profiling

We can use the inter-procedural preferential path profiling (IPPP) technique described

in Section 3.4 to perform residual profiling of inter-procedural paths. First, we need to

specify the set of interesting IPSs that should be profiled to the IPPP algorithm. This is

done by performing whole program path (WPP) profiling on the test suite inputs. Given

a user specified value for k, we can identify all exercised depth-k constrained IPSs from

the WPP. These depth-k IPSs are used as input to the IPPP algorithm. This generates

a new binary ready for deployment. Running this binary produces a list of paths that

are exercised in the current run but were not exercised by the test suite. The Ball-Larus

identifiers of these untested paths can be used to generate the set of untested IPSs [6].

Alternative scheme for Inter-procedural Residual Path Profiling

An alternative technique that does not require the use of WPP profiles is illustrated in

Figure 3.15. Our experimental results reported in Section 3.6 use this technique for inter-

procedural residual path profiling. The scheme proceeds in three stages.

Stage I: The program is profiled on its test suite inputs to identify all acyclic, intra-

procedural paths that were exercised (Figure 3.15(a)). The Ball-Larus technique is

3.6. Experimental evaluation 41

used to perform path profiling.

Stage II: The path profile from Stage I is used to identify all call sites that can occur on

a depth-k IPS. Note that this is an overapproximation of the set of call sites that

would have been identified given a WPP profile. These call sites are inlined and a new

binary, instrumented to collect Ball-Larus path profiles, is generated. As a result of

inlining, all depth-k IPSs exercised by the test suite inputs appear as intra-procedural

paths in the new binary. This binary is then instrumented to collect Ball-Larus path

profiles and rerun on the test suite inputs. The path profile generated effectively

assigns unique Ball-Larus identifiers to all depth-k IPSs exercised. Figure 3.15(b)

illustrates this process.

Stage III: The path profile generated in the previous step along with the transformed bi-

nary serve as inputs to the PPP algorithm as shown in Figure 3.15(c). This generates

a new binary suitable for deployment, where all depth-k IPSs that were exercised

by the test suite inputs are marked as interesting paths. When this binary is exe-

cuted on field inputs the untested paths reported correspond to depth-k IPSs (and

intra-procedural paths) not exercised by the test suite.

3.5.3 Discussion

Testing large software is a resource constrained activity. Consequently, the priority is

to test most frequently exercised behaviors across all users (not a single user). RPP

accomplishes this by recording all untested paths exercised. This information can be

aggregated across users to determine priorities. A scheme that only records frequent

untested paths would miss rare untested paths that all/most users execute.

3.6 Experimental evaluation

We have implemented the preferential path profiling algorithm using the Scale compiler

infrastructure [32] and Phoenix, Microsoft’s C/C++ compiler [35]. A few key features of

our implementation are listed below.

• Representing paths and prefixes. While a user is free to specify the set of interesting

paths in several ways, we choose to represent the interesting paths using their Ball-

Larus identifiers. Similarly, we represent a prefix using the cumulative sum of the

Ball-Larus weights along the edges of the prefix. It is easy to see that this sum is

unique for each prefix leading to a given node.

• Register usage. Unlike traditional path profiling, preferential path profiling requires

two registers, one for PPP counts and one for Ball-Larus counts. Our experiments

3.6. Experimental evaluation 42

suggests that the use of two registers instead of one does not add to the overheads

of profiling

• Counter optimizations. All counter placement optimizations [6] used in the Ball-

Larus algorithm also apply to the PPP counter. These include reducing the number

of initialization and increment operations by placing weights only on the edges that

do not belong to a maximal spanning tree of the DAG, pushing counter initialization

downwards along the edges of the DAG and merging the initializations with the first

increments. In our implementation, we ensure that both PPP and Ball-Larus counter

updates occur on the same edges.

• Hash table usage policy. The default Ball-Larus profiler is configured to use a hash

table instead of an array when the total number of paths through the procedure

exceeds a threshold. For our experiments, we configured our profiler to switch to a

hash table when the number of paths exceeds 2500. In this scenario, our profiler uses

a hash table with 700 elements. However, the policy for hash table use in preferential

path profiling depends on the specific scenario in which the profiler is used. For

instance, in residual path profiling, where the goal is to detect the occurrence of

untested (uninteresting) paths, a hash table may never be used, even when the PPP

identifers allocated to the tested (interesting) paths are large. Here, the profiler

implementation may decide to ignore all tested paths with PPP identifiers greater

than a threshold, in essence treating them as untested paths. As a result, a few

of the tested paths may appear as untested during program execution. Such false

positives may be acceptable since PPP ensures that interesting paths are assigned

compact numbers. In addition, they can be easily weeded out off-line. A policy that

switches to using hash tables when the PPP identifiers are large may also be used in

other applications. Although our implementation supports both modes, we report

our results using the former policy.

• Additional checks. Before indexing the path array using PPP identifiers, our profiler

must check for an underflow/overflow, which can result when an uninteresting path

occurs. Our experiments suggest that these additional checks do not add to the cost

of preferential profiling since they are highly biased and easy to predict.

We evaluated our profiler implementation using benchmarks from the SPEC CPU2000

suite. We first simulated a realistic preferential profiling scenario. We collected a path

profile of the benchmarks using the Ball-Larus profiler for the standard reference input. We

then assumed that all paths exercised during the reference run were interesting (including

procedures where several hundred paths were exercised). These were fed to the preferential

profiler, which generated a new instrumented binary. Binaries obtained from the Scale

3.6. Experimental evaluation 43

Figure 3.16: Overheads of preferential path profiling.

compiler were run to completion using the SPEC reference input on an 800Mhz Alpha

21264 processor with 512MB RAM running Digital OSF 4.0. Each binary was executed

5 times and the minimum of the execution times (measured using hardware cycle counts)

was used for comparison.

Figure 3.16 shows the percentage overheads of the two schemes relative to execution

time of the un-instrumented binary on the Alpha. We find that Ball-Larus profiling incurs

an average overhead of 50% with a maximum of 132%. On the other hand, the preferential

path profiler incurs an average overhead of 15%, with a maximum of 26% (186.crafty.

We attribute the low profiling overheads of PPP to (a) elimination of expensive hash

operations, and (b) judicious allocation of counters for profiling (the size of the counter

array is proportional to the number of interesting paths and not the number of potential

paths). It is therefore not surprising that PPP achieves significant performance benefits for

benchmarks (such 188.ammp, 179.art and 186.crafty) in which hot functions have a large

number of potential paths but only a small number of these paths are typically exercised.

PPP does not have a significant impact for benchmarks like 175.vpr and 164.gzip where

the hot functions have a small number of potential paths to begin with. For benchmark

183.equake, profiling reduces execution time when compared to an unprofiled binary; we

attribute this anomaly to secondary micro-architectural effects.

Although reflected in the overheads, the real efficacy of the preferential profiling algo-

rithm lies in the compactness measure δ that it achieves. We illustrate the compactness

measure achieved by our algorithm in Figure 3.17, which plots the size of the interval

allocated to interesting paths vs. the number of interesting paths for procedures from

programs in the SPEC CPU2000 benchmark suite. As aforementioned, all paths exercised

during one reference run were selected as interesting paths. The figure suggests that our

profiling scheme achieves a δ close to 1 for a vast majority of the procedures, although the

value tends to increase for procedures with a large number of paths (100-300). We also

3.6. Experimental evaluation 44

Figure 3.17: δ values achieved by preferential path profiling.

Figure 3.18: Ratio of the δ values obtained using the Ball-Larus algorithm and PPP (on

a log scale).

found a very small number of cases with δ > 10 (not shown in this figure), most of them

in the benchmark crafty, a chess program known to have complex control flow.

To further illustrate the benefits of PPP, we compared the δ values obtained using the

Ball-Larus profiling with the δ values obtained using PPP. Figure 3.18 illustrates the ratio

of the delta values (on a log scale). As expected, the identifiers assigned to the interesting

paths by the Ball-Larus algorithm are disproportionately larger than the number of paths

typically traversed by programs.

3.6. Experimental evaluation 45

Figure 3.19: Runtime overheads of inter-procedural path profiling.

3.6.1 Inter-procedural Preferential Path Profiling (IPPP)

To evaluate our IPPP scheme, we labeled all depth 1 inter-procedural path segments (i.e.,

all IPSs that span a single procedure call boundary) exercised by the SPEC train inputs as

interesting IPSs and produced an instrumented binary that profiles these inter-procedural

paths. This binary was then run on the ref inputs. Since we perform selective inlining

to convert IPSs into intra-procedural paths, we can also profile these paths with the Ball-

Larus technique.

Figure 3.19 shows the overhead of these techniques on some of the SPEC benchmarks

(the Scale compiler does not successfully compile all SPEC benchmarks, even without

our path profiling). The Ball-Larus scheme incurs high overheads that range from 70%

to 180% with an average of 125%. With the exception of 256.bzip2, which incurs an

overhead of 52%, IPPP achieves reasonably low overhead with an average of 26%. For four

of the six benchmarks the overhead is less than 20%. This overhead may be low enough to

permit residual profiling of IPSs during beta software testing of many interactive desktop

applications, such as web browsers, email clients, and productivity software, where the

slowdown is possibly below human perception threshold on fast modern machines.

IPPP is able to achieve significantly lower overheads as compared to inter-procedural

Ball-Larus profiling because it is able to compactly number interesting IPSs and avoid

using a hash table for recording path information. Figure 3.20, which plots the size of the

interval allocated to interesting paths versus the number of interesting paths for functions

in the SPEC benchmarks, substantiates this claim. For almost all procedures this ratio is

very close to 1, indicating almost perfect compaction.

3.6.2 Intra-procedural Residual Path Profiling

As discussed earlier, the goal of residual path profiling is to identify paths that are exercised

in the field but were not exercised by any test in the program’s test suite. To evaluate

3.6. Experimental evaluation 46

B
en

ch
m

ar
k

#
u

n
te

st
ed

p
at

h
s

%
u

n
te

st
ed

p
at

h
s

%
fr

eq
of

u
n

te
st

ed

p
at

h
s

#
fu

n
cs

w
it

h

u
n

te
st

ed

p
at

h
s

#
u

n
te

st
ed

ed
ge

s

#
fu

n
cs

w
it

h

u
n

te
st

ed

ed
ge

s

#
u

n
te

st
ed

p
at

h
s

in
fu

n
cs

w
it

h
n

o

u
n

te
st

ed
ed

ge
s

%
u

n
te

st
ed

p
at

h
s

in
fu

n
cs

w
it

h
n

o

u
n

te
st

ed
ed

ge
s

16
4.

gz
ip

80
7.

2
0.

0
6

3
2

77
96

.3

17
5.

vp
r

27
4

20
.9

0.
0

29
14

7
22

13
4.

7

17
9.

ar
t

13
2

50
.0

47
.2

12
13

0
10

6
4.

5

18
1.

m
cf

3
1.

2
0.

0
3

8
1

2
66

.7

18
3.

eq
u

ak
e

1
0.

5
0.

0
1

0
0

1
10

0

18
8.

am
m

p
11

7
22

.5
0.

0
4

2
1

11
4

97
.4

19
7.

p
ar

se
r

61
2

13
.0

0.
0

61
21

1
29

27
3

44
.6

25
6.

b
zi

p
2

39
8

45
.1

0.
0

13
81

10
26

6.
5

30
0.

tw
ol

f
29

5
11

.3
0.

0
36

43
18

11
7

39
.7

P
C

ga
m

e-
1

97
0

19
.8

1.
5

13
9

24
8

81
50

2
51

.8

P
C

ga
m

e-
2

35
31

16
.5

0.
6

24
8

38
4

14
3

89
8

25
.4

A
ve

ra
ge

58
3

18
.9

4.
5

50
.2

11
4.

3
28

.8
18

4.
5

48
.9

T
ab

le
3.

1:
U

n
te

st
ed

in
tr

a-
pr

o
ce

d
u

ra
l

p
at

h
in

fo
rm

at
io

n
ob

ta
in

ed
fr

om
re

si
d

u
al

p
at

h
pr

ofi
lin

g.

3.6. Experimental evaluation 47

Figure 3.20: Compact numbering achieved by IPPP for several functions from programs in

the SPEC CPU2000 suite.

Figure 3.21: Comparison of runtime overheads of Ball-Larus and intra-procedural RPP.

the efficacy of PPP for residual path profiling, we used the train inputs provided with

the SPEC benchmarks. First, the Ball-Larus path profiler was used to collect profiles of

the benchmarks on their train inputs. The paths profiled become the interesting paths

that are input to the preferential path profiler (PPP). PPP generated a new instrumented

binary which was then run on the benchmarks reference input. Paths that were exercised

only by the ref input are reported as untested paths.

We also included a Microsoft shared source game called MechCommander and another

Microsoft game in this study. We compiled these games using the Phoenix implementation

of our path profiler. We played these games several times for a duration of 5-10 minutes

and assumed that paths exercised in these runs were tested. We then played the games

for a much longer duration, assuming that this run was a run in the field.

Figure 3.21 reports the overhead of performing intra-procedural RPP for the scenario

3.6. Experimental evaluation 48

Benchmark
#untested

paths

%untested

paths

%freq of

untested

paths

175.vpr 300 21.1 0.0

179.art 199 77.4 57.5

181.mcf 3 1.1 0.0

183.crafty 3262 63.5 0.0

188.ammp 123 21.5 1.4

256.bzip2 949 58.3 0.1

Average 314.8 35.9 11.8

Table 3.2: Untested IPS information obtained from inter-procedural residual path profiling.

described above relative to Ball-Larus profiling.The overhead numbers for the PC games

represent percentage reduction in frame rate as a result of profiling. The overhead numbers

(average of 13%) are in line with those in Figure 3.16. The numbers are lower because in

this residual profiling scenario, we use train inputs to generate interesting paths while the

earlier experiment used the ref inputs for this purpose. The numbers for the PC games are

especially impressive as these are cutting-edge, resource intensive programs and indicate

that RPP can be used in deployed software, at least during beta software testing.

We also performed residual edge profiling and compare the results against RPP. The

results are shown in Table 3.1. Many of the SPEC benchmark ref inputs are merely larger

size versions of the train inputs. Despite this, the data indicates that the ref inputs exercise

many more paths. The execution frequency contribution of these paths show that, with

the exception of 179.art, which exercised new hot paths, these untested paths are rarely

executed. The comparison between untested paths and untested edges is striking. For

these benchmarks, a significant number of untested paths occurred in functions which

reported no new untested edges. These paths would go undetected with residual edge

profiling and demonstrate the advantage of RPP. Even for untested paths that exercise

new edges, inferring the path from the edge profile is not always possible. The PC games,

which are significantly larger than the SPEC benchmarks, show similar results. For both

games, the longer scenario exercises a large number of rarely executed untested (by the

shorter scenario) paths. Many of these paths do not include any new edges.

3.6.3 Inter-procedural Residual Path Profiling

We performed a similar experiment to that described in Section 3.6.2, except that we

labeled all depth-1 inter-procedural path segments exercised by the SPEC train inputs as

interesting IPSs and then ran the IPPP generated binary on the benchmarks ref input.

Table 3.2 reports the results. Comparing entries from Table 3.2 with Table 3.1 for a few

3.6. Experimental evaluation 49

Benchmark
#untested

paths

%untested

paths

%freq of

untested

paths

176.gcc-200 2670 4.6 0.3

176.gcc-scilab 2635 4.5 0.3

176.gcc-expr 723 1.2 0.0

179.gcc-166 2034 3.5 0.0

179.gcc-integrate 238 0.4 0.0

256.bzip2-graphic 249 6.1 0.0

256.bzip2-source 520 12.8 0.0

256.bzip2-program 49 1.2 0.0

175.vpr-place 175 1.6 0.0

175.vpr-route 30 0.3 0.0

Average 932 3.6 0.1

Table 3.3: Untested intra-procedural path information obtained using a more robust test suite.

of the benchmarks, it can be seen that IPPP exposes a larger number of untested paths.

3.6.4 Residual Path Profiling Simulation

We performed an experiment much like the one described in Section 3.6.2 for residual

path profiling of intra-procedural path except that we use a larger number of train and ref

inputs to simulate a residual profiling scenario. We use the MinneSPEC input suite along

with the SPEC test and train inputs as representative of the test suite. The results are

shown in Table 3.3. It is interesting to note that even though a large number of paths are

exercised by the train inputs for these programs, we are able to detect a significant number

of new paths on the ref inputs which essentially characterize the “deployed” behaviors of

these programs.

3.6.5 Code Size Increase

Apart from the runtime overheads of tracking paths, path profiling schemes (Ball-Larus

and PPP) also increase the size of the program binary. The reasons for the code bloat are

two-fold: (a) instrumentation placed along edges of functions and at the end of every path,

(b) space allocated to path counter tables and auxiliary structures. Table 3.4 shows the

increase in code size (number of times relative to the unprofiled binary) caused by both

the intra-procedural profiling schemes for a set of benchmarks programs. On average, the

Ball-Larus profiling scheme increases the code size by a factor of 3.21. The increase in code

size due to PPP is slightly lower at 3.03, primarily because a more compact numbering

reduces the amount of space that must be allocated for the path counter tables. Note that

3.6. Experimental evaluation 50

Benchmark Ball-Larus PPP

188.ammp 3.25 3.40

179.art 4.57 4.71

186.crafty 3.67 2.83

256.bzip2 2.60 2.40

197.parser 2.26 1.71

300.twolf 2.71 2.52

PC Game 1 5.41 5.00

PC Game 2 4.60 4.57

175.vpr 3.38 3.38

164.gzip 3.27 3.22

181.mcf 1.23 1.20

183.equake 1.56 1.44

Average 3.21 3.03

Table 3.4: Increase in code size due to Ball-Larus and PPP intra-procedural profiling.

Benchmark Ball-Larus IPPP

175.vpr 6.91 5.00

179.art 4.83 3.67

181.mcf 4.40 3.80

188.ammp 5.52 4.81

256.bzip2 6.62 5.38

186.crafty 3.71 3.44

Average 5.33 4.35

Table 3.5: Increase in code size due to Ball-Larus and inter-procedural path profiling.

PPP does not always result in smaller binaries, as illustrated by the 188.ammp benchmark.

This is not surprising because in several cases where the Ball-Larus scheme would use a

smaller (700 elements) but more expensive hash table, PPP enables the profiler to use a

much faster but perhaps larger array (upto 2500 elements).

We also measured the increase in code size caused by the inter-procedural versions of

the path profiling schemes. One might have anticipated a significant increase in code size

compared to intra-procedural profiling because of inlining. As shown in Table 3.5, this

turns out to be true for Ball-Larus inter-procedural profiling scheme, which increases code

size by a factor of 5.33. However, the code bloat due to IPPP is significantly lower because

inlining is restricted to call-sites along a small set of interesting paths. The average increase

in code size is 4.35, which is close to the increase in code size due to intra-procedural path

profiling. These results show that the increase in code size due to IPPP is much lower

than expected and does not limit the applicability of inter-procedural path profiling any

more than the intra-procedural profiling schemes.

Chapter 4

Path Profiling - an information

theoretic perspective

In this chapter, we give an information theoretic characterization of the preferential path

profiling algorithm. We begin by introducing the notion of arithmetic coding and context

modeling. We then show that the Ball-Larus path profiling algorithm is a special instance

of arithmetic coding. After drawing this connection, we reformulate Problem A described

in Section 3.3 so that it is more amenable to analysis, and provide a theoretical analysis

of our algorithm for preferential path profiling.

4.1 Arithmetic Coding

Arithmetic coding [16, 42, 52] is a well-known universal, lossless compression technique

that achieves close-to-optimal compression rates. Much like other compression schemes,

arithmetic coding relies on the observation that in any given input stream, a small num-

ber of characters/substrings are likely to occur frequently. Arithmetic coding achieves

compression by encoding these frequently occuring characters/substrings using a smaller

number of bits. An arithmetic coder uses a probability model to identify frequent charac-

ters. In the simplest of cases, the probability model D is an assignment of probabilities

to characters of the input alphabet Σ and is easily obtained from the frequency counts of

characters in a representative string.

An arithmetic coder encodes strings into a single positive number less than 1. To

compute this number, the arithmetic coder maintains a range or an interval, which is set

of [0, 1) at the beginning of the coding process. As each symbol of the input string is

processed, the coder iteratively narrows the range based on the probability of the symbol.

After the last symbol is read, any number within the resulting range uniquely represents

the input string. Moreover, this number can be uniquely decoded to create the exact

stream of symbols that went into its construction. We illustrate the encoding an decoding

51

4.1. Arithmetic Coding 52

Symbol Probability Range

a 0.2 [0, 0.2)

b 0.3 [0.2, 0.5)

c 0.1 [0.5, 0.6)

d 0.2 [0.6, 0.8)

e 0.1 [0.8, 0.9)

! 0.1 [0.9, 1)

Table 4.1: A sample probability model for the alphabet Σ = {a, b, c, d, e, !}.

process by way of an example (adapted from [52]).

Example 4.1.1 Let Σ = {a, b, c, d, e, !} be the finite alphabet, and let a fixed model that

assigns probabilities to symbols from Σ be as shown in Table 4.1. Suppose we wish to

send the message bacc!. Initially, both the encoder and the decoder know that the range

is [0, 1). After seeing the first symbol b the encoder narrows it down to [0.2, 0.5) (this is

the range that the model allocates to symbol b). For the second symbol a, the interval is

further narrowed to one-fifth of itself, since a has been allocated [0, 0.2). Thus the new

interval is [0.2, 0.26). After seeing the first c the narrowed interval is [0.23, 0.236), and after

seeing the second c the new interval is [0.233, 0.2336). Finally on seeing !, the interval is

[0.23354, 0.2336); knowing this to be the final range, the decoder can immediately deduce

that the first character was b. Now the decoder simulates the action of the encoder,

since the decoder knows that the interval [0.2, 0.5) belonged to b, the range is expanded

to [0.2, 0.26). Continuing this way, the decoder can completely decode the transmitted

message. It is not really necessary for the decoder to know both ends of the range produced

by the encoder. Instead, a single number in the range (say 0.23355 in our example) will

suffice.

Note that the ranges for any probability model (for example, the one in Table 4.1)

are non-intersecting; this condition is critical for arithmetic coding to work. If the ranges

associated with the input symbols were intersecting, two or more strings could map to the

same interval and the decoder has no way of distinguishing these strings.

From the discussion, it should be clear that for arithmetic coding to be effective, the

frequency of occurrence of characters in the input string must be skewed and the skew

must be accurately reflected in the probability model. In other words, better compression

rates are achieved if the model makes accurate predictions about the nature of the input

string. We now describe a technique known as finite context modeling, which is commonly

used to obtain more accurate probability models.

4.2. The Ball-Larus algorithm and Arithmetic coding 53

Finite context modeling. In a finite context scheme, the probabilities of each symbol

are calculated based on the context the symbol appears in. In its traditional setting,

the context is just the symbols that have been previously encountered. The order of the

model refers to the number of previous symbols that make up the context. One way of

compressing data is to make a single pass over the symbols to be compressed (to gather

statistics) and then encode the data in a second pass. The statistics collected are the

relative frequencies of occurrences of the respective symbols. These relative frequencies

are then used to encode/decode the symbol as explained in earlier. Essentially, the model

in this setting consists of a set of tables for every possible context up to size k for any order

k model. Each context is a state and each entry corresponding to a symbol frequency

is indicative of its probability of occurrence in that context. An optimal model is one

that represents the best possible statistics for the actual data that is to be compressed.

Unfortunately, computing an optimal model in general is undecidable [29].

It can be shown that arithmetic coding achieves optimal compression for a given prob-

ability model D [16]. Specifically, if X is a random variable representing events over a set

X with a probability distribution D, then the average number of bits required to encode

any event from X using arithmetic coding is equal to the entropy of D which is defined as

follows.

H(D) def= −
∑
x∈X

P(X = x) log2 |P(X = x)|

Note: H(D) is the binary entropy function, and P(X = x) is the probability of the event

X = x.

Note: In order to achieve optimal overall compression of data, the model must be an

optimal model for that data.

Example 4.1.2 For the modelD described in Table 4.1, the entropyH(D) = −P(a) log2 |P(a)|−
P(b) log2 |P(b)| − P(c) log2 |P(c)| − P(d) log2 |P(d)| − P(e) log2 |P(e)| − P(!) log2 |P(!)| =
−(0.2 log2 |0.2|+ 0.3 log2 |0.3|+ 0.1 log2 |0.1|+ 0.2 log2 |0.2|+ 0.1 log2 |0.1|+ 0.1 log2 |0.1|) =

2.45 bits.

4.2 The Ball-Larus algorithm and Arithmetic coding

We now show that the Ball-Larus profiling algorithm is in fact an instance of arithmetic

coding for paths through a DAG G = (V,E, s, t). We first note that both path numbering

and arithmetic coding have similar objectives i.e. to compactly and uniquely encode strings

from an input alphabet. In path numbering, the input alphabet is the set of edges through

a DAG and the input strings are paths through the DAG. We also find that the process

of assigning weights to the edges of the DAG corresponds to the process of computing

4.2. The Ball-Larus algorithm and Arithmetic coding 54

procedure computeBLModel (G)

Assume:

(a) G = (V,E, s, t) is a DAG.

(b) ∀v ∈ V , a map D : E → [0, 1] that is initially undefined.

Returns: a model D such that ∀v ∈ V,
∑

e∈out(v)D(e) = 1.

1: Nt := 1;

2: for all nodes v ∈ V in reverse topological order do

3: Nv :=
∑

e∈out(v)Ndest(e);

4: for all edges e ∈ out(v) do

5: D(e) := Ndest(e)/Nv;

6: end for

7: end for

Figure 4.1: The Ball-Larus algorithm as a model computation process.

a probability model. However, unlike arithmetic coding where computing an optimal

model is undecidable in general, an optimal model for paths through a DAG can in fact be

computed for the following reasons: (a) the set of strings that can occur is known a priori ;

this is precisely the set of all paths through the DAG, and (b) the order in which edges can

occur in paths is determined by the structure of the graph, which is also known a priori.

Based on these observations, we derive a model computation procedure for paths through

a DAG that is equivalent to the Ball-Larus algorithm. The procedure computeBLModel,

shown in Figure 4.1, takes a DAG G as an input and assigns a probability D(e) to every

edge e in the graph. The resulting model is a finite context model, where the context of

an edge is its source node and the probability assigned to an edge is the probability of the

edge being traversed given that the source node has been reached. One can easily verify

that ∀v ∈ V ,

∑
e∈out(v)

D(e) = 1

For every path p ∈ paths(G), the probability P(p) induced by the model D is defined as

follows.

P(p) def=
∏

e∈edges(p)

P(e)

It also follows that for every p ∈ paths(G), P(p) = 1/N , where N = |paths(G)| and

therefore, ∑
p∈paths(G)

P(p) = 1

Denote by DG, the probability distribution over the set paths(G) – it follows immediately

4.2. The Ball-Larus algorithm and Arithmetic coding 55

Figure 4.2: Example for the procedure computeBLModel.

Symbol Probability Range

e1

e2

2/3

1/3

[0, 2/3)

[2/3, 1)

e3

e4

1/2

1/2

[0, 1/2)

[1/2, 1)

e5 1 [0, 1)

e6

e7

1/2

1/2

[0, 1/2)

[1/2, 1)

e8 1 [0, 1)

Table 4.2: The Ball-Larus probability model DG for the graph G computed by compute-

BLModel

that the entropy H(DG) is equal to log2 |N |.

Example 4.2.1 Consider the graph G shown in Figure 4.2. The model D computed by

the procedure computeBLModel is given in Table 4.2.

We will now describe the procedure pathEncoder that takes a path p ∈ paths(G), the

model D computed by computeBLModel and N = |paths(G)| as input, and computes

its Ball-Larus identifier. This is the analogous to the procedure computePathIdentifier in

Section 3.2.2.

Since arithmetic coding is optimal [16], that is, it achieves the entropy of the input

model, pathEncoder (which is an arithmetic coder) is also optimal. We will make this

connection explicit in the following example.

Example 4.2.2 Consider the graph G shown in Figure 4.2. Let D be the model com-

puted by the procedure computeBLModel as given in Table 4.2. For an input path sbcdt,

4.2. The Ball-Larus algorithm and Arithmetic coding 56

procedure pathEncoder (p, D, N)

Assume:

G = (V,E, s, t) is a DAG and p = (v1, . . . , vk) ∈ paths(G), {vi ∈ V }1≤i≤k.

Returns: path identifier for p.

1: in := [0, N);

2: for all i = 1 to k − 1 do

3: e := (vi, vi+1);

4: [x, y) := in;

5: n := y − x;

6: let [r, r′) be the range for e defined by D;

7: in := [x+ brnc, x+ dr′ne);
8: end for

9: [x,) := in;

10: return x;

Figure 4.3: The coding algorithm that takes a model D and path p ∈ paths(G) as input,

and returns the path identifier or the encoding for p.

pathEncoder(sbcdt, DG, N) works as follows. We have N = 6, and the algorithm starts by

assigning in := [0, 6). The first edge encountered along this path is e2, and therefore the

interval in is set to [4, 6). After seeing the next edge e5, pathEncoder chooses the same

interval in = [4, 6). For the next edge e6, the interval is narrowed down to in = [4, 5),

and finally for the last edge e8, the interval is set to in = [4, 5). Therefore, pathEncoder

returns 4 as the path identifier for the path sbcdt. Note that this is precisely the Ball-Larus

identifier for this path as is evident from Figure 3.4.

4.2.1 The PPP algorithm and Arithmetic Coding

In Section 3.3.1, we descibed an algorithm that compactly numbers a subset of interesting

paths I ⊆ paths(G) through a DAG G. We now show that the PPP algorithm is equivalent

to an arithmetic coding scheme that uses a maximal context model for encoding paths

through a DAG. As described in Section 3.3.1, the procedure computePPPIncrements

computes for every pair (e, q), e ∈ E, q ∈ prefix(p, e), an interval inte,q that represents

the range of partial identifiers of interesting paths through e. At every node v ∈ V , these

intervals are used to compute the weights associated with the outgoing edges of v. It can

be shown that this procedure is equivalent to computing a finite context model with the

prefixes as the context. Consider the simple case of a node v with two outgoing edges e1
and e2. Assume that a single prefix q induces intervals inte1,q and inte2,q on the edges

e1 and e2 respectively. Define cisv,q = inte1,q + inte2,q. Also define p = inte1,q

cisv,q
. Then the

4.3. Analysis of the PPP algorithm 57

model Dv,q at node v can be defined as follows.

Symbol Probability Range

e1 p [0, p)

e2 1− p [p, 1)

Computing the model is more involved when multiple prefixes induce intervals on the out-

going edges of a node. The problem arises because each outgoing edge may be associated

with multiple probabilites, one for each valid prefix at node v. However, unlike traditional

context models, an edge in the DAG cannot be associated with mutiple probabilites. We

overcome this problem by using the join operator (defined in Section subsec:pppalgo?)

to compute a conservative approximation of the individual models (which we refer to as

Dv). Due to the join, certain edges may be assigned smaller probabilites than required.

Consequently, the number of bits required to encode interesting paths through those edges

may increase. The final model DG is a combination of all models Dv, v ∈ V .

Finally, we note that the process of computing the PPP identifier for an interesting

path p ∈ I corresponds to calling the procedure pathEncoder with parameters p, DG and

N = |ints,s| assigned to the start node s ∈ V .

Example 4.2.3 Consider the graph G shown in Figure 4.2. Let the set of interesting

paths be I = {sacdt, sact, sbct}. Then the probability model DG computed by computePP-

PIncrements is shown in Table 4.3. For the input path sact, pathEncoder(sact, DG, N)

works as follows. We have N = 3, and the algorithm starts by assigning in = [0, 3). The

first edge encountered along this path is e1 (model = Ds,s), and therefore the interval in is

set to [0, 2). After seeing the next edge e4 (model = Da,sa), pathEncoder chooses the same

interval in = [0, 2). For the next edge e7 (model = Dc,sac), the interval is narrowed down

to in = [1, 2), and therefore pathEncoder returns 1 as the path identifier for the path sact.

Note that this is precisely the PPP identifier for this path as is evident from Figure 3.4.

This characterization of PPP as a model computer and encoder of paths works due to

the fundamental invariant that the intervals in PPP do not overlap (this follows from

Lemma 3.3.4).

4.3 Analysis of the PPP algorithm

The Ball-Larus algorithm computes an edge weight assignment such that δ (the objective

function for Problem A) is equal to 1. Therefore, it is an optimal algorithm for those problem

A instances for which the interesting paths are all the paths, that is I = paths(G). In

coding terms, this corresponds to saying that all paths in the graph are equally likely (and

4.3. Analysis of the PPP algorithm 58

Model Symbol Probability Range

Ds,s
e1

e2

2/3

1/3

[0, 2/3)

[2/3, 1)

Da,sa
e3

e4

0

1

empty

[0, 1)

Db,sb e5 1 [0, 1)

Dc,sac
e6

e7

1/3

2/3

[0, 1/3)

[1/3, 1)

Dc,sbc
e6

e7

1/3

2/3

[0, 1/3)

[1/3, 1)

Dd,sacd e8 1 [0, 1)

Table 4.3: The PPP probability model DG for the graph G computed by computePPPIn-

crements.

there is no bias towards any set of paths) – from the previous section, the entropy for such

a distribution (say D) is equal to log2 |paths(G)| ⇒ paths(G) = 2H(D).

In the previous section, we also saw that the procedure computePPPIncrements com-

putes a probability model for a DAG G and a set of interesting paths I ⊆ paths(G).

Intuitively, this corresponds to computing a probability distribution that is biased to-

wards the interesting paths over the uninteresting ones. Since PPP essentially mimics

an arithmetic coder, the total number of bits required to represent the set of paths dis-

tributed according to the model D is equal to the entropy H(D) ⇒ the interval size that

PPP computes is equal to d2H(D)e. Therefore, the compactness that PPP achieves is 2H(D)

|I| ,

and this is parameterized over how “precise” the model D is. In Theorem 4.3.1, we show

that this model D computed by computePPPIncrements is indeed optimal. We now state

a variant of Problem A and prove that PPP computes the optimal solution to this problem.

Problem B (Optimal Edge Assignment): Given a DAG G = (V,E, s, t) and a set of interesting

paths I ⊆ paths(G), compute an edge assignment W : E → Z that satisfies the following

conditions.

1. uniqueness: ∀p, q ∈ I, pathid(p) 6= pathid(q),

2. compactness: The compactness measure γ defined by

γ
def=

2H(D)

|I|

is minimized, where D is any probability distribution on paths(G) induced by a

model DG.

4.3. Analysis of the PPP algorithm 59

We now state and prove the main result in our analysis.

Theorem 4.3.1 Given a DAG G = (V,E, s, t) and a set I ⊆ paths(G), the procedure

computePPPIncrements computes the optimal solution to Problem B.

Proof: From the discussion in Section 4.2.1, it follows that the PPP algorithm com-

putes maximal context models DG for a given set of interesting paths through DAGs.

These models are the most precise context models because they use the largest context

possible. Since the models DG are optimal, γ = 2H(Dp)

|I| (where Dp is the probability model

over paths(G) induced by DG) is also optimal (this follows from the optimality of the

pathEncoder procedure, which essentially mimics an arithmetic coder), and the theorem

follows.

From Section 3.3.3, it is clear that any algorithm (such as PPP) that maintains the invari-

ant stated in Lemma 3.3.4 will not be able compute an optimal δ. On the other hand, our

experiments described in Section 3.6 also indicate that the objective function γ minimized

by our algorithm is close to the minimal δ (the objective function for Problem A) for most

graphs and their associated interesting paths, and the interval size is small enough for the

path profiler to use an array to track interesting paths.

Chapter 5

A Programmable Hardware Path

Profiler

5.1 Introduction

In the previous chapter, we proposed a new software technique for profiling paths which

reduces the overheads of path profiling from 50% to 15% on average. These overheads are

similar to most point profiling techniques and likely to be acceptable for most applications

of profiling. However, there exists a class of applications where even 15% overheads may

not be acceptable. In runtime environments like Java, aggressive compilers often use

profiles collected during the execution of a program to drive profile-based optimizations

[?]. In most cases, the expected performance benefits of online optimizations are in the

same ranage as the overheads of path profiling. Hence, most runtime systems either prefer

not using path profiles or use sampling technqiues [4] to reduce the overheads of path

profiling at the cost of profile accuracy. Software based path profiling techniques are also

not suitable when the objective is to track micro-architectural metrics such as cache misses

and branch mispredictions with paths [1]. In such a scenario, Heisenberg’s uncertainity

principle applies. The instrumentation introduced by path profiling (both code and data)

can influence micro-architectural metrics significantly. As a result, accurately tracking

these metrics with paths is hard.

In this chapter, we propose a programmable, non-intrusive hardware-based path de-

tection and profiling scheme that overcomes these limitations. Figure 5.1 illustrates the

components of the proposed profiling hardware. At the heart of the hardware profiler is

a path detector that uses a path stack to detect paths by monitoring the stream of

retiring branch instructions emanating from the processor pipeline during program exe-

cution. The path detector can be programmed to detect various types of paths and track

architectural events that occur along the paths. The detector generates a stream of path

descriptors, which is available to all interested hardware/software entities.

60

5.1. Introduction 61

Figure 5.1: Components of the Hardware Path Profiling Infrastructure.

The second component of the hardware profiling infrastructure is a Hot Path Table

(HPT), a compact hardware structure that processes the stream of path descriptors gen-

erated by the path detector. The HPT is designed to collect accurate hot path profiles,

irrespective of the type of path being profiled, the duration of profiling and the architec-

tural metric associated with paths. The success of a moderately-sized HPT in capturing

accurate path profiles is attributed to locality exhibited by program paths i.e. programs

typically traverse a small fraction of the numerous feasible acyclic, intra-procedural paths.

And as illustrated in Figure 5.2, a small set of hot paths within the set of traversed paths

dominates program execution. These properties continue to hold when paths are associ-

ated with architectural events such as L2 cache misses or branch mis-predictions (Figure

5.2(b)).

As previously mentioned, the path detector can track one of several architectural events

that occur along paths. Events are tracked using instruction event counters associated

with every instruction in the processor pipeline. In such cases, the HPT generated profile

identifies paths that caused a significant fraction of those events, enabling context-sensitive

bottleneck analysis and optimization. The generic nature of instruction event counters and

our path-based event tracking mechanism can be further exploited by associating paths

with more complex metrics. As an illustration, we associate paths with a power metric

that provides an accurate estimate of the power consumption caused by instructions along

each path in the cache hierarchy, a task hard to emulate using software profilers.

Our results indicate that our path profiler virtually eliminates the space and time

overheads incurred by software path profilers. Moreover, the profiles collected in hardware,

although lossy, are sufficiently accurate for program optimizers that can usually tolerate

a small loss in profile accuracy. In offline environments, the hardware path profile can be

serialized to a file at program completion for later use by a static program optimizer. Our

profiler is all the more effective in online environments, where path profiles representative

of the current program behavior can be obtained by enabling the profiler for short intervals

of time. The availability of accurate profiles at low overheads helps the dynamic compiler

5.1. Introduction 62

Figure 5.2: (a) Cumulative distribution of dynamic instructions along acyclic, intra-

procedural paths. (b) Average cumulative distribution of path frequencies, L2 cache misses

and branch mis-predictions along paths. The top 100 paths account for more than 80%

of the dynamic instructions and a high percentage of L2 cache misses and branch mis-

predictions in the SPEC CPU2000 programs studied.

generate optimized code efficiently and quickly, increasing the number of optimization

opportunities exploited.

The rest of the chapter is organized as follows. In Section 5.2, we describe how different

types of paths can be represented and detected in hardware. We propose extensions to the

processor’s event detection logic that enable the tracking of various architectural metrics

along paths in Section 5.3. Section 5.4 discusses the design of the Hot Path Table, the

hardware structure that collects hot path profiles. Section 5.5 evaluates the path profiling

infrastructure.

5.2. Representing and Detecting Paths in Hardware 63

Figure 5.3: Distribution of dynamic instructions according to the length of Ball-Larus

paths they execute along. Paths with at most 16 branches account for over 90% of program

execution in most programs.

5.2 Representing and Detecting Paths in Hardware

Paths have traditionally been represented by the sequence of indices/addresses of basic

blocks that fall along the path. However, this representation is expensive to maintain

in hardware. In our profiler, a path is uniquely represented by a path descriptor which

consists of (1) the path’s starting instruction address, (2) the length of the path in terms

of the number of branch instructions along the path, and (3) a set of branch outcomes, one

for each branch along the path1). This representation is compact and expressive enough

to describe all types of paths.

The hardware version of the path descriptor does have a limitation; it can accom-

modate only a predetermined, fixed number of branches per path. Our path detection

hardware overcomes this limitation by splitting paths if their length exceeds this thresh-

old. Figure 5.3 shows the distribution of dynamic instructions according to the length of

Ball-Larus paths they are executed along for programs from the SPEC CPU2000 bench-

mark suite. We observe that paths of length less than 16 branch instructions account for

over 90% of dynamic instructions in most programs. For the rest of this study, we assume

a path descriptor representation that allows paths to grow up to 32 branch instructions,

large enough to accommodate a majority of Ball-Larus paths and extended paths without

splitting.

The hardware profiler uses a hardware path stack to detect paths. Each entry on the

path stack consists of a path descriptor, an 8-bit path event counter, a path extension

counter and other path specific information. The path profiler receives information per-

1This bit is set to 1 for unconditional branches.

5.2. Representing and Detecting Paths in Hardware 64

taining to every retiring branch instruction from the processor pipeline via a branch queue,

which serves to decouple the processor pipeline from the path profiler. Every branch read

from the branch queue is decoded and classified as a call, a return, an indirect branch,

a forward branch or a backward branch. The profiler then performs one or more of the

following operations on the path stack depending on the type of branch being processed:

• path stack push : Pushes a new entry on the path stack with the starting address

field of the path descriptor set to the target address of the branch being processed.

All other fields of the new entry are reset to zero.

• path stack pop : Pops the current entry on top-of-stack and makes it available to all

interested entities.

• path stack update : Updates the entry on top-of-stack with information about the

branch being processed. The update involves incrementing the length of the path,

updating the branch outcomes and incrementing the event counter. During update,

if the length of the path on top-of-stack exceeds the predefined threshold value, the

profiler logic pops the entry and pushes a new entry for a path beginning from the

target of the current branch.

• path stack update count : Increments the event counter associated with the path

descriptor on top-of-stack without updating the path length or outcomes. This

operation is used if it is desired that branches like calls and returns should not be

explicitly recorded in the path.

The mapping between the branch type and set of operations to be performed is specified

by the programmer in a Path Profiler Control Register (PPCR). However, the following

restrictions on the mapping apply. For any branch, either one of path stack update or

path stack update count can be performed. Also, the order in which operations are per-

formed is fixed, viz path stack update/path stack update count followed by path stack pop

and path stack push. These restrictions notwithstanding, the hardware path profiler can

be programmed to detect several types of paths.

Detecting acyclic, intra-procedural paths: The branch type−profiler operations

mapping shown in Table 5.1 enables the profiler to detect a variant of Ball-Larus paths

that terminate on backward branches. Path entries are pushed on calls and popped on

returns. On a forward branch, the path descriptor on the top-of-stack is updated with

information about the branch. The path entry on top-of-path stack is updated and ter-

minated on all backward branches. Paths are also terminated on indirect branches since

such branches can have several targets. These profiler operations ensure that there exists

exactly one entry on the path stack for every active procedure, and that the path stack

grows and shrinks in the same way as stack frames on the program’s runtime stack. Each

entry on the path stack records the Ball-Larus path that the corresponding procedure is

5.2. Representing and Detecting Paths in Hardware 65

Branch type update update-count pop push

call ×
√

×
√

return ×
√ √

×
forward

√
× × ×

backward
√

×
√ √

indirect
√

×
√ √

Table 5.1: Branch type−profiler operation mapping for detecting Ball-Larus paths

Figure 5.4: The control flow graph, path descriptors and a sequence of Ball-Larus paths

and extended loop paths detected for a sample execution of a procedure. Blocks S and C do

not end with branches and block A ends with an unconditional jump to B. All other blocks

end with conditional branches.

currently traversing. Figure 5.4 shows a control flow graph, the set of Ball-Larus path

descriptors and a sequence of Ball-Larus paths generated by the path stack for a sample

procedure.

Detecting extended paths: In order to detect extended paths, the path stack supports a

path extension counter with every entry on the path stack. The programmer is required to

specify the following options via the PPCR: (1) the type of extended paths that should be

profiled i.e. paths spanning across procedure boundaries or those that extend beyond loop

boundaries, and (2) a maximum extension count that indicates the number of procedure

calls or backward branches that the path is allowed to span across. The mapping shown

in Table 5.1 is reused.

When programmed to detect extended paths, the path detector processes forward and

indirect branches in the usual manner. However, the operations performed on backward

branches, calls and returns are qualified by the value of the extension counter of the

path stack entry on top-of-stack. If the profiler is programmed to detect paths that span

5.2. Representing and Detecting Paths in Hardware 66

Branch type update update-count pop push

call ×
√ √ √

return ×
√ √ √

forward
√

× × ×
backward

√
×

√ √

indirect
√

×
√ √

Table 5.2: Branch type-Profiler operation mapping for detecting paths for a Whole Program

Path.

compute dcache_access_power;
num_dcache_ports = 2;
if (num_dcache_access) {
 if (num_dcache_access <= num_dcache_ports)
 total_dcache_power += dcache_access_power;
 else
 total_dcache_power +=
 (num_dcache_access/num_ports)

* dcache_access_power;
}

(a) Cycle level power model

compute dcache_access_cost;
num_dcache_ports = 2;
if (num_dcache_access) {
 if (num_dcache_access == 1)
 apportion_cost = dcache_access_cost;
 else
 apportion_cost = dcache_access_cost / 2;
 distribute apportion_cost to num_dcache_access instructions;
}

(b) Apportioning logic

Figure 5.5: (a) A power model that computes power consumption in L1 dcache and (b)

corresponding apportioning logic that assigns costs to instructions that simultaneously ac-

cess L1 dcache. Here, both dcache access power and dcache access cost are computed a

priori; these are constants for a specific process technology.

across loop boundaries and a backward branch is encountered, the path on top-of-stack is

allowed to expand if the corresponding extension counter value is less than the maximum

extension count. In such a scenario, only the path stack update operation is performed and

the extension counter is incremented. When the extension counter reaches the maximum

count specified via the PPCR, the default set of operations are performed i.e the path is

terminated. Figure 5.4 illustrates a set of extended loop paths detected and a sequence of

paths recorded by the profiler for the given control flow graph.

When the profiler is tracking paths that span across procedure boundaries and a call

instruction is encountered, the path on top-of-stack is terminated only if the extension

counter value is equal to the maximum. Otherwise, the path is allowed to expand and

the extension counter incremented. Conversely, paths are allowed to expand on proce-

dure returns if the extension counter value is non-zero. Each return also decrements the

extension counter. This set of actions generates path descriptors that represent inter-

procedural paths through the program. It is important to note that with our profiler,

the time complexity of detecting extended paths is similar to the complexity of detecting

acyclic, intra-procedural paths.

Detecting paths for a Whole Program Path: The basic element of a Whole Program

5.3. Associating architectural metrics with paths 67

Path (WPP) is a variant of the Ball-Larus path that also terminates at call instructions.

A WPP is formed by compressing the sequence of such paths. Our profiler, configured

using the mapping shown in Table 5.2, simplifies the process of constructing the WPP by

generating the path sequence at low overhead and complexity. While processing a call,

the profiler performs a path stack pop and terminates the current path before pushing a

new entry on the stack. Similarly, the profiler performs a path stack pop followed by a

path stack push on every return. Path descriptors generated by the path stack are fed

to a software WPP profiler running as a separate thread, which compresses the sequence

online and constructs the WPP.

Path stack consistency: For the path profiler to work correctly, the path stack must be

maintained in state consistent with the program’s execution. This requires special handling

of certain events such as exceptions and setjmp/longjmp operations. The handlers for such

events must repair the path stack, typically by popping entries of the path stack or purging

the stack. Further, path stack overflows can occur due to the fixed size of the path stack.

Implementations have the choice of handling overflows either by ignoring older entries on

the stack, or by allowing the stack to grow into a region of memory specially allocated

by the OS for the program being profiled. We find that a 32-entry path stack eliminates

overflows for most of the programs we studied; we assume a path stack of this length for

the rest of this study.

5.3 Associating architectural metrics with paths

Existing software-based path profilers are designed to track the frequency with which

each path is traversed. However, future analysis tools and optimizations are likely to

be interested in path-wise profiles of other metrics such as cache misses, branch mis-

predictions and pipeline stalls. Such profiles are important because the paths of interest

to an optimizer could differ significantly depending on the metric associated with paths.

For example, our studies using benchmarks from the SPEC CPU2000 suite have shown

that path profiles for various architectural and power metrics have only small percentage

of information in common with a path-frequency profile (25% for a branch misprediction

profile, 32% for a L2 cache profile and 62% for a power profile) [50]. These results justify

the need for flexible profiling schemes that can capture program behavior across different

architectural metrics.

Extending existing profiling schemes to associate architectural metrics with paths is

complicated due to the intra-procedural nature of paths and perturbation effects of the in-

strumented code [1]. However, our hardware path profiler can perform this task accurately

and non-intrusively since precise information regarding all architectural events is directly

5.3. Associating architectural metrics with paths 68

available to the profiler. To track the occurrence of such events, each instruction in the

processor pipeline is annotated with an event counter (an extension of per instruction tag

in [46]). An instruction’s event counter is incremented every time the instruction causes

an architectural event of type X specified via the PPCR. When an instruction commits,

the value in the instruction’s event counter is used to update a block event counter main-

tained at the commit stage of the pipeline. The block event counter value is passed to

the path profiler along with every committing branch, which in turn updates the event

counter associated with the path on top-of-stack. When a path is popped off the path

stack, its event counter value represents the number of events of type X that occurred

along the path. The block event counter is itself reset after every branch instruction.

A limitation of this scheme is that architectural events caused by non-committing,

speculative instructions are not accounted for since the profiler monitors committing in-

structions only. Apart from this anomaly, the profiler is capable of associating any archi-

tectural event with paths, thereby enabling precise path-based performance monitoring

and bottleneck analysis.

Associating power consumption metrics with paths: Virtually all existing hard-

ware profiling schemes are focused towards detecting and aggregating data pertaining to

performance-related architectural events. While this was also the case with the initial

design of our profiling scheme, we were subsequently interested in exploring possible reuse

of the proposed hardware in tracking metrics related to power consumption. Our goal

was to associate program paths with a count that provides an estimate of the power con-

sumption caused by instructions along the path in a specific processor component/set of

components. Such profiles enable power-aware compilers to identify and focus on regions

of code that account for a significant fraction of the power consumption. Such profiles

can also assist a programmer in analyzing the impact of traditional compiler/architectural

optimizations on power consumption in specific regions of the program.

Our power profiling scheme assumes the availability of an accurate power model for

each processor component of interest, parameterized by the component configuration and

one or more architectural events. The power model is used to assign a relative cost to

each architectural event related to the component. The cost associated with an event

indicates the power consumed by the occurrence of the event relative to the event with

the lowest consumption. For instance, the relative costs of accesses to each level of the

cache hierarchy are derived from a power model for caches parameterized by the cache

configuration and number of accesses. Since an instruction cache access typically consumes

the lowest power, the costs of other events are relative to the instruction cache access.

Once costs are assigned to all events, the event detection logic associated with each

component is extended to apportion the event cost to instructions that cause the events.

5.4. Collecting Hot Path Profiles 69

For simple analytical models, this translates to logic that increments the event counters of

all event-causing instructions by an amount equal to the cost of the event. More complex

cycle-level models can be implemented using logic that dynamically computes the appor-

tioned cost based on online information. Figure 5.5 illustrates one such dynamic power

model for the L1 data cache [10] and the corresponding apportioning logic implementa-

tion. Here, the actual power consumption and the apportioned cost are determined based

on the number of simultaneous data cache accesses in each cycle and the number of ports

available.

Note that our implementation of the power models assumes a constant activity factor,

a significant parameter in power models for components such as caches, buses and register

files. Rounding off errors during the process of computing relative costs, approximations

in the apportioning logic and the loss of information due to non-committing but power

consuming instructions also introduce inaccuracies. However, our results suggest that

although these factors cause discrepancies in the total power estimates, their impact on

the quality of hot path profiles is minimal. We evaluate the effectiveness of our profiling

scheme in collecting power specific profiles in Section 5.5.

5.4 Collecting Hot Path Profiles

Much of the execution time overhead incurred by existing path profiling techniques is at-

tributed to the hash-and-update operation performed when a path terminates [25]. This

overhead can be reduced if the hash table that stores the path profile is maintained in hard-

ware. Such a hardware implementation must be capable of generating a profile accurate

enough to drive path-based optimizations without a loss in their effectiveness. Addition-

ally, the quality of the profile must be independent of the duration of profiling and the

metric associated with paths.

We evaluated several hardware profiler design configurations and next describe a sim-

ple, low overhead path collection scheme that meets these requirements. The path col-

lection mechanism is based on a hardware structure called the Hot Path Table (HPT)

illustrated in Figure 5.6. Each entry in the HPT consists of a path descriptor and a 32-bit

accumulator. The HPT receives a sequence of path descriptors and associated counts from

the path stack. An index into the HPT is computed from the fields of each incoming path

descriptor. If a corresponding entry is found in HPT, the accumulator is incremented

by the count associated with the incoming path. If the lookup fails, an entry from the

indexed HPT entry set is selected for replacement and initialized with information about

the incoming path descriptor.

The HPT design parameters that determine the effectiveness of the hot path collection

scheme include the HPT size and associativity, the replacement policy and the indexing

5.4. Collecting Hot Path Profiles 70

Figure 5.6: The Hot Path Table that collects hot path profiles. The HPT is indexed using

bits from the incoming path’s address, length and branch outcomes.

Processor core Out-of-Order issue of up to 4 instructions per cycle, 128 entry reorder

buffer, 64 entry LSQ, 16 entry IFQ

Functional units 4 integer ALUs, 2 integer MULT/DIV units, 4 floating-point units and

2 floating-point MULT/DIV units

Memory hierarchy 32KB direct mapped L1 instruction and data caches with 32 byte blocks

(1 cycle latency) , 512KB 4-way set associative unified L2 cache (10

cycle latency), 100 cycle memory latency

Branch predictor Combined: 12-bit (8K entry) gshare/(8K entry) bimodal predictor with

1K meta predictor, 3 cycle branch mis-prediction latency, 32 entry

return address stack, 2K entry, 4-way associative BTB

Table 5.3: Baseline Processor Model

5.5. Experimental Evaluation 71

Parameter Low High

Number of HPT entries 128 2048

HPT associativity 2 32

HPT indexing scheme Bits from path starting address XOR(Bits from path starting ad-

dress, path length, branch out-

comes)

L2 cache size 256KB 2048KB

L2 cache associativity 1 8

Branch predictor 2K entry, 2-level predictor Hybrid with 8K entry bimodal, 2K

entry 2-level and 8K entry metat-

able

Table 5.4: Parameters considered during experiments based on Plackett-Burman design to

determine an effective HPT configuration. The corresponding low and high values are also

listed.

function. Our initial experiments indicate that LRU replacement, which is oblivious to

the frequency of access of entries, does not capture and retain information about an

adequate fraction of paths. The Least Frequently Used (LFU) policy serves the purpose of

retaining frequently used entries. However, the execution time overheads of implementing

LFU (log n for an n-way associative structure) have prevented its use in other cache

structures. In the context of the HPT, a moderately expensive replacement policy does

not have a significant impact on the overall execution time because (1) the HPT does

not lie on the processor’s critical path and (2) HPT updates are relatively infrequent

(once for every path) and HPT replacements even less frequent. Our experiments with

different hotness criteria and HPT configurations reveal that the LFU replacement policy

outperforms others without a significant increase in execution time overheads. Moreover,

an implementation of LFU for the HPT does not incur additional space overheads since

frequency information is available in counters associated with every HPT entry. For the

rest of the chapter, we assume an HPT implementation that uses LFU replacement. We

discuss the impact of HPT size, associativity and indexing scheme on profile accuracy and

profiler overheads in Section 5.5.

5.5 Experimental Evaluation

The success of a profiling technique can be measured by the accuracy of the profile,

implementation costs and overheads of profiling. In this section, we evaluate our hardware

path profiler on these counts.

• We explore the impact of various profiler design parameters on profile accuracy

5.5. Experimental Evaluation 72

by comparing hardware generated profiles with a complete profile obtained using an

infinitely large HPT. We compare profiles using the overlap percentage metric [4,18],

which indicates the percentage of information common to the profiles. Our results

show that average profile accuracy of 88% is obtained using an HPT that occupies

approximately 7KB of real estate.

• We assess the quality of hardware generated profiles in a real-world application by

using the profiles to drive superblock formation in the gcc compiler. We find that

performance benefits of superblock scheduling driven by HPT generated path profiles

are similar to those obtained using a complete path profile.

• We evaluate the use of our profiler in gathering profiles where paths are associated

with architectural metrics such as L2 cache misses, branch mis-predictions and a

metric that estimates power consumption in the cache hierarchy.

• Using a cycle-accurate superscalar processor simulator, we find that the execution

time overheads of our profiling scheme are low (0.6% on average), enabling the use

of the profiler in cost-sensitive environments.

5.5.1 Experimental Methodology

We performed simulation experiments using 12 programs from the SPEC CPU2000 bench-

mark suite gcc, gzip, mcf, parser, vortex, bzip2, twolf, perlbmk, art, equake, mesa and

ammp. We extended SimpleScalar [12], a processor simulator for the Alpha ISA, with an

implementation of our hardware path profiler. The baseline micro-architectural model of

the processor is shown in Table 5.3.

Due to simulation time constraints, overlap percentages in Section 5.5.2 are reported

from simulations of 15 billion instructions for alpha binaries precompiled at peak settings,

running on their reference inputs. We validated our simulation methodology using com-

plete runs of as many of the programs as possible, finding an average deviation of 6%

from the reported values. We extended the gcc compiler (version 3.4) with a path-based

superblock formation pass. Execution times for complete runs of superblock scheduled bi-

naries optimized at level -O2 were obtained using the hardware cycle counter on an Alpha

AXP 21264 processor under the OSF V4.0 operating system. Profiling overheads reported

in Section 5.5.3 are estimated using out-of-order processor simulations for complete runs

of the programs with the MinneSPEC inputs [28].

5.5.2 Quality of Hardware Path Profiles

We use two metrics, the complete overlap percentage and the dynamic overlap percentage

to quantify the accuracy of hardware generated profiles. The complete overlap percentage

is obtained when profiling is enabled for the entire duration of program execution. To

assess profile accuracy under conditions where the profiler is activated for short durations

5.5. Experimental Evaluation 73

Figure 5.7: Complete overlap percentages for various profiler configurations when profiling

path frequencies, L2 cache misses and branch mis-predictions.

during program execution, we define the dynamic overlap percentage as the average of

overlap percentages computed for path profiles over non-overlapping 100 million instruc-

tion execution windows.

We performed a simulation study using Plackett-Burman experimental design [40, 54]

to identify a path profiler configuration that realizes our design goals. Table 5.4 lists the

input parameters we used in this design with their low and high values. We also conducted

Plackett-Burman experimental studies where metrics other than path frequency − number

of L2 cache misses and number of branch mis-predictions − are associated with paths. Our

results show that the HPT size, HPT associativity and the HPT indexing scheme are the

three most important profiler parameters [50]. On the other hand, the cache and branch

predictor related parameters are of significantly less importance. This leads us to conclude

that the hardware profile accuracy is unaffected by the underlying architecture. With these

less important parameters eliminated, we next performed a full factorial study with HPT

size, associativity and the indexing scheme as parameters. Our experiments reveal that an

HPT indexing function that XORs bits from the path’s starting address with path length

and branch outcomes outperforms other functions we evaluated [50]. We use this indexing

function in the rest of the study.

Figure 5.7 shows the complete overlap percentages for four HPT configurations. When

profiling path frequencies, the best average complete overlap percentage of 88% is ob-

tained using a 512 entry, 4-way set associative HPT. The overlap percentage with this

configuration is 96% when the metric associated with paths is L2 cache misses. We at-

tribute the higher coverage to the observation that L2 cache misses are concentrated along

5.5. Experimental Evaluation 74

path execu-
tion count

L2 cache
misses

branch mis-
predictions

50

60

70

80

90

100
256:4

256:8

512:4

512:8

av
er

ag
e

dy
na

m
ic

 o
ve

rl
ap

 (
%

)

Figure 5.8: Average dynamic overlap percentages for various profiler configurations when

profiling path frequencies, L2 cache misses and branch mis-predictions.

a smaller number of paths and exhibit more pronounced locality than paths themselves.

On the other hand, the average complete overlap percentage dips to 78.4% when branch

mis-predictions are profiled, a reflection of the fact that branch mis-predictions are usually

distributed over a larger number of paths. Certain programs (gcc, perl, twolf) have lower

overlap percentages since the working set of paths in these programs is large (Figure 5.2),

making it harder for a hardware structure of limited size to capture a high fraction of exe-

cution. We also find that a further increase in HPT size leads to additional improvements

in overlap percentages, although the gains taper off for HPTs with over 2048 entries [50].

The impact of HPT configuration on dynamic overlap percentages is summarized in

Figure 5.8. Notice that the dynamic overlap percentages are higher than their static

counterparts. This is to be expected since the dynamic overlap percentage is computed

using path profiles collected over short time durations. For the 512 entry, 4-way set

associative HPT, we obtain average dynamic overlap percentages of 95.5%, 98% and 91.2%

when profiling path frequencies, L2 cache misses and branch mis-predictions respectively.

Although the overlap percentage metric quantifies profile accuracy, it says little about

the performance impact of using a less than complete profile in a real world application.

We obtain a direct assessment of the quality of hardware generated paths profiles by using

them to drive superblock scheduling [23] in the gcc compiler. Our implementation of the

path-based superblock formation pass identifies hot traces using path profiles followed

by tail duplication, superblock enlargement and loop unrolling using heuristics similar to

those used in [23]. The path-based superblock scheduler improves execution time by an

average 9.3%, with a maximum of 14% over the baseline (-O2 optimized, traditional local

scheduling).

Figure 5.9 shows the execution times of optimized program binaries that use path

profiles generated by different HPT configurations. Program execution time is reported

relative to that of a binary executable generated using a complete path profile. Observe

that the difference between execution times is 0.12% on the average with a maximum

of 2.2%. For certain benchmarks, superblock scheduling using hardware-generated path

profiles performs marginally better than scheduling using complete profiles; this behavior

5.5. Experimental Evaluation 75

gc
c

gz
ip

m
cf

vo
rte

x ar
t

eq
ua

ke
bz

ip2

Ave
ra

ge

60

70

80

90

100 512:4

512:8

re
la

tiv
e

ex
ec

ut
io

n
tim

e
(%

)

Figure 5.9: Execution times of binaries superblock-scheduled using path profiles from two

HPT configurations normalized against the execution time of a binary scheduled using a

complete path profile.

gc
c

gz
ip

m
cf

pa
rs

er

vo
rte

x

pe
rlb

m
k
tw

olf

bz
ip2

m
es

a

am
m

p ar
t

eq
ua

ke

Ave
ra

ge
0

10

20

30

40

50

60

70

80

90

100

BL Paths

Extended Loop

Extended Call

co
m

pl
et

e
ov

er
la

p
(%

)

Figure 5.10: Accuracy of complete extended path profiles collected using the hardware path

profiler. Paths extend across one backward branch/procedure call.

is attributed to secondary cache and branch prediction effects. On the whole, a minor

change in average execution time indicates that hardware path profiles are comparable in

quality to and can be used instead of complete path profiles.

Quality of extended path profiles: Next, we evaluate the effectiveness of the hardware

profiler in collecting extended path profiles. Figure 5.10 shows the complete overlap per-

centages for extended paths that span across one backward branch and those that extend

beyond one procedure call for a 512-entry, 4-way associative HPT. The average overlap

percentages for such paths are 78.35% and 84.10% respectively. The reduction in overlap

percentages when compared to a BL path profile is due to the increase in the number of

unique paths traversed. It remains to be seen whether the reduced profile accuracy can

be tolerated by real-world applications.

Quality of path-wise power profiles: Unlike other architectural metrics, the quality

of path-wise power profiles cannot be assessed in isolation of the power models used to

5.5. Experimental Evaluation 76

gc
c

gz
ip

m
cf

pa
rs

er

vo
rte

x

pe
rlb

m
k
tw

olf

bz
ip2

m
es

a

am
m

p ar
t

eq
ua

ke

Ave
ra

ge
0

10

20

30

40

50

60

70

80

90

100

256:4

256:8

512:4

512:8

co
m

pl
et

e
ov

er
la

p
(%

)

Figure 5.11: Accuracy of complete path-wise power profiles for various HPT configurations,

obtained using an analytical model for power consumption in the cache hierarchy.

estimate power consumption in various components. In this section, we first determine

whether the choice of a power model has an influence on the nature of path profiles.

Our evaluation uses power consumption in the cache hierarchy as the metric associated

with paths, primarily because a significant fraction of the overall power consumption is

attributed to the caches [10]. Of the several candidate power models for caches [10,26,27],

we chose two, an analytical power model from Kadayif et al [26] and a cycle level power

model used by the Wattch power simulator [10]. The analytical model was used to compute

the relative costs of hits and misses at each level of cache. Apportioning logic similar to

Figure 5.5 was designed for the Wattch power model and integrated into a cycle-accurate

processor simulator.

A comparison of the path-wise power profiles obtained using the two power models

shows a strong similarity in the relative ordering of paths in the profiles despite differences

in the absolute value of the associated power metric. This observation suggests that for

caches, the analytical model identifies hot paths as well as the accurate cycle-level power

model. Figure 5.11 illustrates the impact of various HPT configurations on the accuracy of

path-wise power profiles generated using the analytical power model. An average complete

overlap percentage of 82.9% is obtained using a 512 entry, 4-way associative HPT. Further

investigations into the relative quality of these profiles and their impact on power-aware

compiler optimizations are left for future work.

5.5.3 Profiling Overheads

Using the hardware path profiler during program execution can lead to degraded per-

formance if the profiler does not service branch instructions faster than their rate of

retirement. To study this, we incorporated our path profiler into a cycle-accurate super-

scalar processor pipeline simulator. Profiler operations are assigned latencies proportional

5.5. Experimental Evaluation 77

gc
c

gz
ip

m
cf

pa
rs

er

vo
rte

x ar
t

eq
ua

ke
bz

ip2
m

es
a

am
m

p

pe
rlb

m
k
tw

olf

Ave
ra

ge
-2.00

-1.00

0.00

1.00

2.00

3.00

4.00

5.00

6.0010.63 13.98 7.20 7.98 14.83 27.52 8.04

No Queue

1

2

4

ex
ec

ut
io

n
tim

e
ov

er
he

ad
 (

%
)

Figure 5.12: Execution time overheads incurred due to the hardware profiler while profiling

BL paths for various branch queue sizes.

to the amount of work involved in carrying out those operations: the path stack push,

path stack update and path stack update count operations are assessed a latency of one

cycle whereas the latency of a path stack pop is one cycle plus the latency of updating the

HPT. Since the HPT uses a LFU based replacement policy, an HPT miss incurs a cost of

log(n) cycles, where n is the associativity of the HPT. The latency of processing a branch

is the sum of latencies of the profiler operations performed while processing the branch.

If a retiring branch finds the branch queue full, the commit stage stalls and no further

instructions are committed until the stalling branch can be accommodated in the branch

queue.

The execution time overheads incurred while collecting a BL path profile using a 512-

entry, 4-way set associative HPT for various branch queue sizes are shown in Figure 5.12.

We observe that a 4-entry branch queue sufficiently buffers the profiler from the pipeline

and reduces average execution time overheads from 8.04% to 0.6%. This also represents

a sharp drop from the typical 30-45% overheads incurred by the Ball-Larus path profiling

scheme [6]. Moreover, profiling overheads remain unchanged even when the profiler is

configured to collect otherwise expensive extended paths. Our experiments ignore the

overheads of transferring the HPT generated profile (approximately 6KB in size) to user

memory. Even conservative estimates of this overhead (a few thousands of cycles) are

negligible when compared to the execution time of the program.

Chapter 6

Conclusions and Future Work

6.1 Conclusions

Understanding a program’s runtime behavior and ensuring that its actual behavior is in

tune with the expected behavior is critical to the program’s utility and effectiveness. In

this thesis, we consider the problem of characterizing a program’s control flow behavior,

an aspect of program behavior that drives several dynamic program analysis techniques.

The thesis focuses on path profiling, a profiling technique which attempts to characterize

a program’s control flow behavior by tracking paths exercised in a given execution.

Although paths have proven to be a powerful and pragmatic program abstraction, the

widespread use of path profiling has been restricted due to the lack of efficient techniques

for profiling paths. This is specially true in environments where the cost of program

profiling must be kept to a bare minimum, necessitating the use of cheaper but less accurate

control flow profiling techniques such as basic block and edge profiling. In this thesis, we

propose two efficient path profiling schemes that overcome these problems and enable the

use of path profiling in a wide variety of environments.

First, we present preferential path profiling, a new technique that profiles a specified

subset of all program paths with very low overhead. Preferential path profiling labels the

paths of interest compactly using a novel numbering scheme. This compact path num-

bering allows our implementation to use array based counters instead of hash table-based

counters for gathering path profiles and significantly reduces execution time overhead (av-

erage of 14% compared to 50% overheads incurred by the Ball-Larus profiling scheme).

By drawing parallels between arithmetic coding and path numbering we establish an op-

timality result for our compact path numbering scheme. We also show that preferential

path profiling can be extended to capture inter-procedural paths using selective procedure

inlining.

Apart from reducing profiling overheads, preferential path profiling has the ability to

classify paths during execution. In other words, preferential path profiling can dynamically

78

6.2. Future directions 79

classify a path that has just occurred into one of two pre-determined classes. We find that

this feature is extremely useful in applications like residual path profiling, where we are

interested in identifying all paths executed by the deployed software that were untested

during software development. Because of its low overheads, preferential path profiling

enables residual profiling on deployed systems. Information generated by residual path

profiling can be used to assess and improve the effectiveness of test suites, which are

usually designed with little information about a program’s actual usage.

This thesis also proposes and evaluates a hardware path detection and profiling scheme

that is capable of generating high quality hot path profiles with minimal space and time

overheads. The profiler derives its flexibility from a generic path representation and a

programmable interface that allows various types of paths to be profiled and several archi-

tectural metrics to be tracked along paths using the same hardware. These characteristics

enable the use of the profiler in a host of static and dynamic optimization systems.

6.2 Future directions

6.2.1 Algorithmic extensions

In Chapter 3, we started by defining the problem of finding an assignment of weights to

the edges of a given DAG such that a given set of interesting paths are assigned unique

identifiers and that these identifiers are separated from the identifiers of uninteresting

paths. Using a counter-example, we proved that this problem is unsolvable in general and

relaxed the requirement that the edge assignment should separate the interesting and the

uninteresting paths as long as uniqueness and compactness were satisfied. However, there

may be several other ways of relaxing the problem. For instance, while the finding an

edge assignment that perfectly separates paths is hard, it may be possible to find edge as-

signments that approximately separates the interesting paths from the uninteresting ones.

An approximate edge assignment may classify a few uninteresting paths as interesting (or

vice versa), resulting in false positives (or false negatives). However, such assignments

eliminate the need for a second counter and may be acceptable in certain scenarios as long

as the number of wrongly classified paths is small.

In Chapter 4, we prove that the edge assignment generated using PPP is optimal in

the information-theoretic sense. However, the assignment may not be combinatorially op-

timal, as illustrated by the discussion following Section 3.3. In our attempt to find the

combinatorially optimal solution and compare the solutions generated by PPP, we formu-

lated our problem as an ILP problem. Given a DAG and a set of interesting paths (which

we identified by running the program with a test input), we expressed the requirements

for uniqueness and compactness as constraints in ILP and used an off-the-shelf ILP solver.

The variables in these constraints represent the weights assignment to edges of the DAG

6.2. Future directions 80

and the goal of the ILP solver was to minimize the difference between the minimum and

the maximum identifier allocated to an interesting path while ensuring that each of the

interesting paths is assignment a unique identifier. The ILP solver was able to find optimal

solutions when the problem size was small (small number of interesting paths and edges

in the DAG). For larger problem sizes (more than 20 interesting paths), the solver did

not terminate for a few days. We conclude that the ILP approach to finding the optimal

solution does not scale. Other techniques for finding the optimal solution are left for future

work.

6.2.2 Applications of PPP

Bug isolation

We have already shown that PPP is naturally suited for residual path profiling. We observe

that if a program fails, some of the paths exercised in the failing run but not exercised

by a test suite are likely to be the root cause of bugs. If used with a rigorous test suite,

PPP can be seen as a dynamic version of the bug isolation technique proposed by Ball

et al [7]. Similarly, using paths in general and untested paths in particular can improve

the precision and efficiency of statistical bug isolation techniques like co-operative bug

isolation (CBI) [31], which have traditionally used individual predicates as predictors for

bugs.

Improving test effectiveness

Efficient path profiling techniques have a significant role to play in improving the efficiency

of testing. Path profiles can help prioritize test cases in regression testing. Test cases that

exercise paths along which code has been modified are more likely to uncover bugs than

other paths. These test cases can be assigned a higher priority in the testing cycle. If

a modified program passes these high priority tests, chances of regression are less likely.

PPP can also be used for eliminating redundant test cases simply by detecting whether a

given test case exercises any paths that have not be exercised by other test cases.

6.2.3 Applications of HPP

We believe that the availability of semantically rich and detailed path information in

hardware opens the doors to several architectural optimizations. For instance, we have

proposed a phase detection scheme [50] that accurately detects phase changes using the

sequence of acyclic, intra-procedural paths generated by our hardware profiler. Our tech-

nique detects subtle phase changes missed by existing phase detection schemes that rely

on basic block profiles. Our phase detector can identify phase changes that occur when

6.2. Future directions 81

the set of paths exercised by the program changes but the set of basic blocks remains the

same. In other words, the program starts exercising the same fragments of code differently.

Possible avenues for future work include the use of hot path information in improving

the performance of trace caches and pre-computing memory reference addresses for cache

pre-fetching. In addition, our low-overhead path profiling techniques can be applied to

perform more informed compiler optimizations driven by real-usage path-profiles. These

profiles can be also used to check hotness assumptions made by in-house optimization.

They could also be used for security applications where certain program behaviors need

to be restricted based on runtime criteria.

Bibliography

[1] Glenn Ammons, Thomas Ball, and James R. Larus. Exploiting Hardware Perfor-

mance Counters with Context Sensitive Profiling. In Proceedings of the SIGPLAN

Conference on Programming Languages Design and Implementation (PLDI), pages

85–96, 1997.

[2] Glenn Ammons and James R. Larus. Improving Data-flow Analysis with Path Pro-

files. In Proceedings of the SIGPLAN Conference on Programming Language Design

and Implementation (PLDI), pages 72–84, 1998.

[3] T. Apiwattanapong and Mary Jean Harrold. Selective path profiling. In Workshop. on

Program Analysis for Software Tools and Engineering (PASTE), pages 35–42, 2002.

[4] Matthew Arnold and Barbara Ryder. A Framework for Reducing the cost of Instru-

mented Code. In Proceedings of the ACM SIGPLAN Conference on Programming

Languages Design and Implementation (PLDI), pages 168–179, June 2001.

[5] Thomas Ball and James Larus. Programs follow paths. Technical Report MSR-TR-

99-01, Microsoft Research, 1999.

[6] Thomas Ball and James R. Larus. Efficient Path Profiling. In Proceedings of the 29th

Annual International Symposium on Microarchitecture (MICRO), pages 46–57, 1996.

[7] Thomas Ball, Mayur Naik, and Sriram Rajamani. From Symptom to Cause: Localiz-

ing Errors in Counterexample Traces. In Proceedings of the International Symposium

on Principles of Programming Languages (POPL), pages 97–105, 2003.

[8] Michael Bond and Kathryn McKinley. Continuous path and edge profiling. In Inter-

national Symposium on Microarchitecture (MICRO), 2005.

[9] Michael Bond and Kathryn McKinley. Practical path profiling for dynamic optimizers.

In International Symposium on Code Generation and Optimization (CGO), pages

205–216, 2005.

82

Bibliography 83

[10] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: A Framework for

Architectural-Level Power Analysis and Optimizations. In Proceedings of the Annual

International Symposium on Computer Architecture (ISCA), pages 83–94, 2000.

[11] B. Bruegge and P. Hibbard. Generalized Path Expressions: A High Level Debugging

Mechanism. Journal of Systems and Software, 3(4):265–276, 1983.

[12] Doug Burger, Todd M. Austin, and Steve Bennett. Evaluating Future Micropro-

cessors: The SimpleScalar Toolset. Technical Report CS-TR-96-1308, University of

Wisconsin-Madison, 1996.

[13] Trishul Chilimbi, Aditya Nori, and Kapil Vaswani. Quantifying the Effectiveness of

Testing via Residual Path Profiling. In Proceedings of the International Symposium

on Foundations of Software Engineering (FSE), September 2007.

[14] Lori A. Clarke, Andy Podgurski, Debra J. Richardson, and Steven J. Zeil. A Com-

parison of Dataflow Path Selection Criteria. In Proceedings of the 8th International

Conference on Software Engineering (ICSE), pages 244–251, 1985.

[15] Thomas M. Conte, Burzin Patel, Kishore N. Menezes, and J. Stan Cox. Hardware-

Based Profiling: An Effective Technique for Profile-Driven Optimization. Interna-

tional Journal of Parallel Programming, pages 187–206, Vol 24, No. 2, April 1996.

[16] T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley &

Sons, Inc., N. Y., 1991.

[17] Jeffery Dean, James E. Hicks, Carl A. Waldspurger, William E. Weihl, and George

Chrysos. ProfileMe: Hardware Support for Instruction-Level Profiling on Out-of-

Order Processors. In Proceedings of the Annual International Symposium on Mi-

croarchitecture (MICRO), pages 292–302, December 1997.

[18] P. T. Fellar. Value Profiling for Instructions and Memory Locations. CS98-581,

University of California, San Diego, April 1998.

[19] Rajiv Gupta, David A. Berson, and Jesse Z. Fang. Path Profile Guided Partial

Dead Code Elimination using Predication. In Proceedings of the 1998 International

Conference on Parallel Architectures and Compilation Techniques (PACT), page 246,

November 1997.

[20] Rajiv Gupta, David A. Berson, and Jesse Z. Fang. Path Profile Guided Partial

Redundancy Elimination Using Speculation. In Proceedings of the 1998 International

Conference on Computer Languages (ICCL), page 230, 1998.

Bibliography 84

[21] Simon Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall PTR,

2nd edition, 1998.

[22] Timothy Heil and James E Smith. Relational Profiling: Enabling Thread-Level Par-

allelism in Virtual Machines. In Proceedings of the 33rd Annual IEEE/ACM Inter-

national Symposium on Microarchitecture (MICRO), pages 281–290, December 2000.

[23] Wen W. Hwu and Scott A. Mahlke. The Superblock: An Effective Technique for

VLIW and Superscalar Compilation. The Journal of Supercomputing, pages 7(1–

2):229–248, May 1993.

[24] Quinn Jacobson, Eric Rotenberg, and James E. Smith. Path-Based Next Trace Predic-

tion. In Proceedings of the International Symposium on Microarchitecture (MICRO),

pages 14–23, 1997.

[25] Rahul Joshi, Michael D. Bond, and Craig B. Zilles. Targeted Path Profiling: Lower

Overhead Path Profiling for Staged Dynamic Optimization Systems. In Proceedings

of the International Symposium on Code Generation and Optimization (CGO), pages

239–250, March 2004.

[26] I. Kadayif, T. Chinoda, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, and A. Sivasub-

ramaniam. vEC: Virtual Energy Counters. In Proceedings of Workshop on Program

Analysis for Software Tools and Engineering (PASTE), pages 28–31, 2001.

[27] M. B. Kamble and K. Ghose. Analytical Energy Dissipation Models for Low Power

Caches. In Proceedings of the International Symposium on Low Power Electronics

and Design, 1997.

[28] AJ KleinOsowski and David J. Lilja. MinneSPEC: A New SPEC Benchmark Work-

load for Simulation-Based Computer Architecture Research. Computer Architecture

Letters, 2002.

[29] A. Kolmogorov. Three approaches to the quantitative definition of information. Prob.

Peredach Inform, 1(1):3–11, 1965.

[30] James R. Larus. Whole Program Paths. In Proceedings of the ACM SIGPLAN

Conference on Programming Language Design and Implementation, pages 259–269,

1999.

[31] Ben Liblit, Mayur Naik, Alice X. Zheng, Alex Aiken, and Michael Jordan. Scalable

Statistical Bug Isolation. In Proceedings of the International Symposium on Program-

ming Language Design and Implementation (PLDI), June 2005.

Bibliography 85

[32] K. S. McKinley, J. Burrill, M. D. Bond, D. Burger, B. Cahoon, J. Gibson,

J. E. B. Moss, A. Smith, Z.Wang, and C. Weems. The Scale compiler. http://ali-

www.cs.umass.edu/Scale, 2005.

[33] D. Melski and T. W. Reps. Interprocedural path profiling. In Proceedings of the 8th

International Conference on Compiler Construction (CC), pages 47–62, 1999.

[34] Matthew C. Merten, Andrew R. Trick, Christopher N. George, John C. Gyllenhaal,

and Wen mei W. Hwu. A Hardware-Driven Profiling Scheme for Identifying Program

Hot Spots to Support Runtime Optimization. In Proceedings of the 26th International

Symposium on Computer Architecture (ISCA), pages 136–147, June 1999.

[35] Microsoft Phoenix Compiler. http://research.microsoft.com/phoenix, 2007.

[36] Ravi Nair. Dynamic path-based branch correlation. In Proceedings of the Annual

International Symposium on Microarchitecture (MICRO), pages 15–23, 1995.

[37] S. J. Patel and S. S. Lumetta. rePLay: A Hardware Framework for Dynamic Opti-

mization. IEEE Transactions on Computers, June 2001.

[38] C. Pavlopoulou and M. Young. Residual test coverage monitoring. In Proceedings

of the 21st international conference on Software engineering (ICSE), pages 277–284,

1999.

[39] Erez Perelman, Trishul Chilimbi, and Brad Calder. Variational path profiling. In

Parallel Architectures and Compilation Techniques ’05 (PACT), pages 7–16, 2005.

[40] R. Plackett and J. Burman. The Design of Optimal Multifactorial Experiments.

Biometrika, Vol 33, Issue 4:305–325, June 1956.

[41] Thomas Reps, Thomas Ball, Manuvir Das, and James Larus. The Use of Program

Profiling for Software Maintainance with Applications to the Year 2000 Problem. In

Proceedings of the International Symposioum on Foundations of Software Engineering

(FSE), pages 432–449, 1997.

[42] J. Rissanen and G. G. Langdon. Arithmetic coding. IBM J. Res. Develop., 23(2):149–

162, 1979.

[43] Eric Rotenberg, Steve Bennett, and Jim Smith. Trace Cache: a Low Latency Ap-

proach to High Bandwidth Instruction Fetching. In Proceedings of the 28th Interna-

tional Symposium on Microarchitecture (MICRO), 1996.

[44] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas An-

derson. Eraser: a Dynamic Data Race Detector for Multithreaded Programs. ACM

Transactions on Computuing Systems, 15(4):391–411, 1997.

Bibliography 86

[45] Michael D. Smith. Overcoming the Challenges of Feedback-directed Optimization. In

ACM SIGPLAN Workshop on Dynamic and Adaptive Compilation and Optimization

(Dynamo 2000), pages 1–11, 2000.

[46] Brinkley Sprunt. Pentium 4 Performance Monitoring Features. IEEE Micro, pages

22(4):72–82, July-August 2002.

[47] Sun Microsystems Inc. UltraSPARC User’s Manual, 1997.

[48] Sriram Tallam, Xiangyu Zhang, and Rajiv Gupta. Extending Path Profiling across

Loop Backedges and Procedure Boundaries. In Proceedings of the International Sym-

posium on Code Generation and Optimization (CGO), pages 251–262, March 2004.

[49] Kapil Vaswani, Aditya Nori, and Trishul Chilimbi. Preferential path profiling: Com-

pactly numbering interesting paths. In ACM SIGPLAN Conference on Principles of

Programming Languages (POPL), pages 351–362, 2007.

[50] Kapil Vaswani, Mattew J. Thazhuthaveetil, and Y. N. Srikant. Representing, Detect-

ing and Profiling Paths in Hardware. Technical Report IISc-CSA-TR-2004-7, Indian

Institute of Science, May 2004.

[51] Kapil Vaswani, Matthew J. Thazhuthaveetil, and Y. N. Srikant. A Programmable

Hardware Path Profiler. In Proceedings of the International Symposium on Code

Generation and Optimization (CGO), March 2005.

[52] I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic coding for data compression.

Communications of the ACM, 30(6):520–540, 1987.

[53] Toshiaki Yasue, Toshio Suganuma, Hideaki Komatsu, and Toshio Nakatani. Struc-

tural Path Profiling: An Efficient Online Path Profiling Framework for Just-In-Time

Compilers. In International Conference on Parallel Architectures and Compilation

Techniques (PACT), Sept-Oct 2003.

[54] Joshua Yi, David Lilja, , and Douglas Hawkins. A Statistically Rigorous Approach for

Improving Simulation Methodology. In Proceedings of the International Symposium

on High Performance Computer Architecture (HPCA), February 2003.

[55] C. Young and M. D. Smith. Better Global Scheduling Using Path Profiles. In Proceed-

ings of the 30th International Symposium on Microarchitecture (MICRO), November

1998.

[56] C Young and M. D. Smith. Static correlated branch prediction. ACM Transactions

on Programming Languages and Systems (TOPLAS), 21(5):1028–1075, 1999.

Bibliography 87

[57] Craig Zilles and Gurindar Sohi. A Programmable Co-processor for Profiling. In

Proceedings of the 7th International Symposium on High Performance Computer Ar-

chitecture (HPCA), pages 241–253, January 2001.

