
Path sensitive cache analysis using cache miss

paths

Kartik Nagar and Y N Srikant

Indian Institute of Science,
Bangalore, India.

{kartik.nagar, srikant}@csa.iisc.ernet.in

Abstract. Cache analysis plays a very important role in obtaining pre-
cise Worst Case Execution Time (WCET) estimates of programs for
real-time systems. While Abstract Interpretation based approaches are
almost universally used for cache analysis, they fail to take advantage of
its unique requirement: it is not necessary to find the guaranteed cache
behavior that holds across all executions of a program. We only need the
cache behavior along one particular program path, which is the path with
the maximum execution time. In this work, we introduce the concept of
cache miss paths, which allows us to use the worst-case path information
to improve the precision of AI-based cache analysis. We use Abstract In-
terpretation to determine the cache miss paths, and then integrate them
in the IPET formulation. An added advantage is that this further allows
us to use infeasible path information for cache analysis. Experimentally,
our approach gives more precise WCETs as compared to AI-based cache
analysis, and we also provide techniques to trade-off analysis time with
precision to provide scalability.

1 Introduction

Real time systems need a safe estimate of the execution time of a program,
which should never be exceeded by any of the program’s actual runs. Modern
architectures use caches, out-of-order pipelines and all kinds of speculation to
make programs run faster, and this has a significant impact on their execution
times. The Worst Case Execution Time (WCET) of a program on a particular
architecture is defined as the maximum execution time of the program across all
its possible runs on that architecture. Ideally, we would like to find this WCET,
but theoretically, it is not possible. Timing analysis techniques try to find an
upper bound on the WCET of programs. Since the scheduler in a real-time
system is likely to assign computational resources such as the processor to a
program for the entire duration of its estimated WCET, it is desirable that the
upper bound be as close as possible to the actual WCET to avoid wastage.

Caches have a major impact on execution time of programs, because of the
huge difference in cache access latency and main memory latency in current
architectures. The execution time of a memory-accessing instruction can change
by a factor of 100, depending on whether the access hits the cache or goes to the

2 Kartik Nagar, Y N Srikant

main memory. Cache analysis techniques try to find the accesses in a program
which will hit the cache, so that the cache latency can be used for those accesses
while finding the WCET.

The cache behavior of an instruction depends on the sequence of accesses
made to the cache by the program before the instruction, which in turn depends
on the program path taken to reach the instruction. Since we want to find the
WCET, we would be interested only in the worst-case (WC) program path,
which is the program path with the maximum execution time. If the WC path
is known, then this information can be used to determine the accurate cache
behavior of the accesses along it. However, this results in a ‘boot-strapping’
problem, because to find the WC path, we must know its execution time, which
requires knowledge of the cache hits along the path. But, cache hits along the
worst-case path cannot be accurately estimated unless we know the path leading
to the cache accesses.

One way to solve this problem is to find the accesses which hit the cache
irrespective of the program path taken to reach them. This is the approach taken
by the almost universally used Abstract Interpretation (AI) based cache analysis
[1], which finds the guaranteed cache hits in a program. All the accesses which are
not guaranteed to hit the cache are classified as misses, and the resulting hit-miss
classification is used to determine the latency of memory-accessing instructions.
Once the execution time of each individual instruction is determined, the Implicit
Path Enumeration Technique (IPET) [2] can be used to find the worst-case path
in the program. IPET generates an Integer Linear Program (ILP), whose optimal
solution encodes the worst-case path.

In our work, we target those accesses which will hit the cache along the
worst-case path, but not necessarily along all other paths. To do this, we inte-
grate a limited amount of cache analysis into the IPET formulation, thus taking
advantage of the knowledge about the worst-case path to classify certain cache
accesses. We propose the concept of cache miss paths of an access, which are

simply those program paths along which the access will suffer a cache miss. We
concentrate on the accesses which are not classified as hit by AI-based cache
analysis, and find the cache miss paths of these accesses. We then integrate the
miss paths into the IPET formulation to ensure that a cache access will be con-
sidered a miss only if the worst-case path contains a miss path of the access.
Previously, we have used a similar concept of cache hit paths, to determine the
effect of shared cache interference on cache hits [6].

There are many advantages of integrating cache analysis into the IPET for-
mulation. Most of the imprecision of AI-based cache analysis stems from the
fact it requires an access to hit the cache along all paths leading to the access.
However, an access can be safely classified as hit, if it experiences a cache hit
along the worst-case path. This will only happen if the worst-case path does not
contain a miss path of the access.

Moreover, some programs have infeasible paths, which generally take the
form of conflicting basic blocks, which will never be executed together. Informa-
tion about infeasible paths can be obtained separately using abstract execution

Path sensitive cache analysis using cache miss paths 3

[3], SMT solvers [5], model checking [7], etc. and is part of the program flow anal-
ysis stage. This stage generally occurs before timing analysis, and is primarily
used to determine the program CFG, loop bounds, etc. A number of works have
integrated infeasible path information into the IPET formulation, ensuring that
infeasible paths will be ignored while finding the worst-case path in the program
([4], [5]). Since we integrate cache miss paths into the IPET formulation, our
approach will have the added advantage of utilizing infeasible path information
for cache analysis. Previous works ([7], [8]) have shown that substantial pre-
cision improvement in the WCET can be achieved by utilizing infeasible path
information during cache analysis.

Experimentally, we found that our approach gave lower WCETs for 9 out of
27 Mälardalen benchmarks [15], as compared to AI-based cache analysis, with an
average precision improvement of 22.54 % and with negligible increase in analysis
time. Another advantage of our analysis is that it subsumes persistence analysis,
which is used to classify accesses inside loops as First-Miss. Since our approach
adds some portion of cache analysis to the IPET formulation and thus increases
the size of the generated ILP and hence the time required to solve it, we also
provide two methods to control the analysis time. Since the number of extra
variables/constraints added to the ILP depend on the size and total number
of cache miss paths, we allow user-controlled upper bounds on these values.
We experimented with different bounds, and found that substantial precision
improvement can be obtained even with very low bounds on the size of cache
miss paths. We also propose a CEGAR-like strategy which introduces cache miss
paths of accesses into the ILP one access at a time, by selecting the cache access
which suffers a hit along the worst case path, but has the maximum number of
cache misses in the ILP. This allows us to stop the refinement of the WCET
at any iteration of the CEGAR loop, and thus trade-off precision with analysis
time.

2 Related Work

Few works have looked at the impact of infeasible paths on cache analysis ([7],
[8]). However, none of these works have directly integrated cache analysis with
the IPET formulation. In [7], the authors instrument the code by introducing
variables to count the number of cache misses suffered by accesses which are
not classified as Hit by AI-based analysis, and then use model checking to verify
assertions on these variables. This approach requires code instrumentation, and is
also known to have very high analysis time [8]. There is no way to reuse infeasible
path information, which may already have been determined separately during
the program flow analysis stage. Moreover, no information about the worst-case
path is used to refine the cache analysis, and hence the approach will work only
when there are actual infeasible paths (and model checking can identify them).

[8] modifies the AI-based approach for cache analysis, by annotating cache
states with logic formulae, corresponding to the partial path along which the
cache state would be realized. However, their work can only handle limited types

4 Kartik Nagar, Y N Srikant

of infeasible paths. In particular, they only consider a maximum of two conflicting
basic blocks, and because of their abstract lattice, the conflicting basic blocks
must be close to each other in the program CFG (there cannot be more than
one join between two conflicting basic blocks). Moreover, they also ignore the
worst-case path information and consider only the impact of infeasible paths on
cache analysis.

There have also been previous efforts in performing complete cache analysis
using the ILP-based IPET formulation, most notably, the CSTG-based approach
proposed by Lee et al. [9]. In this work, the authors first generate the cache state
transition graph (CSTG), whose nodes are all possible cache states generated
during execution, and edges show the transition between the cache states. Integer
variables are introduced in the IPET ILP for all the edges in the CSTG, and
these variables are then used to provide an upper bound on the number of
hits experienced by accesses. However, as has been noted by [10], this approach
introduces an exponentially large number of variables, and significantly increases
the size of the ILP, rendering it non-practical even for small programs.

In our approach, we also introduce new variables for a cache access and their
miss paths, but only for those accesses which are not classified as Hit by the AI-
based cache analysis. In [9], the authors essentially find cache hit paths in the
CSTG, constrain the number of cache hits using the variables in the CSTG, and
then link these variables with the basic block counts in the CFG. In our case,
we directly find the cache miss paths in the CFG, using an AI-based approach,
and hence do not need to generate the CSTG.

3 Foundations

Caches store a small subset of main memory closer to the processor, and pro-
vide fast access to its contents. To take advantage of spatial locality of memory
accesses, all data transfer between the main memory and cache takes place in
equal-sized chunks called memory blocks (or cache blocks). To enable fast lookup,
caches are further divided into cache sets. For an A−way set associative cache,
each cache set can contain maximum of A cache blocks. Given an access to a
cache block, the cache subsystem first finds the unique cache set containing the
accessed cache block, searches for it among the (at most) A cache blocks in the
cache set, and if it is not present, brings it from the main memory.

Since the total number of cache blocks mapped to a cache set will usually be
much greater than the associativity (A), the cache replacement policy decides
which cache block should be evicted, if the cache set is full and a new cache block
has to be brought in. The Least Recently Used (LRU) policy orders all cache
blocks in a cache set according to their most recent accesses, and evicts the cache
block which was accessed farthest in the past. We will assume LRU replacement
policy in our work. We also assume a timing anomaly-free architecture.

Must Analysis [1] for caches produces abstract cache states at each program
point, which contains those cache blocks which are guaranteed to be in the actual
cache at the program point across all executions of the program. It is used to

Path sensitive cache analysis using cache miss paths 5

classify accesses as cache hits. Similarly, May analysis produces abstract cache
states which contain cache blocks which may be present in the actual cache
during some execution. It is used to classify accesses as cache misses.

4 Cache miss paths

To keep things simple, we will now assume a single-level instruction cache. How-
ever, our approach can in general be applied to any level in a multi-level instruc-
tion cache hierarchy. First we formally define cache miss paths.

Given an instruction a which accesses the cache block m mapped to cache
set s, a path π in the CFG of the program is called a cache miss path of a if

1. π ends with instruction a and has no other accesses to m other than a, and
2. either the number of distinct cache blocks mapped to s and accessed by

instructions in π is equal to A+ 1 (where A is the cache associativity), or π
begins from the start of the program.

m1 m2

m3

m1

a1 a2

a3

a4

Fig. 1.

Note that there are only two possible ways
that an instruction a can suffer a cache miss:
the accessed cache block m has not been
brought into the cache at all from the start
of the program, or it was brought but then
evicted before a. Both these scenarios are cap-
tured in the definition of cache miss path.
If miss path π begins from the start of the
program, then since a is the only instruction
which accesses m, m will not be brought into
the cache along the path π, before a. Other-
wise, if π contains accesses to A + 1 distinct
cache blocks, then the instructions of π before
a must have accessed A distinct cache blocks
different from m. Hence, by the time a is ex-
ecuted, m is guaranteed to be not present in
the cache. Since the cache miss paths consider
both the reasons for a cache miss, this shows
that an access suffers a cache miss if and only
if execution passes through a miss path of the
access.

Consider the example program in Figure 1, which shows four cache accesses
a1, a2, a3, a4, accessing cache blocks m1,m2,m3,m1 respectively. Assume the
cache has an associativity of 2, and also assume that m1,m2,m3 map to the
same cache set. Let us concentrate on the access a4, which accesses cache block
m1, and consider the program paths leading to this access.

The path ⊲ − a2 − a3 − a4 begins from the start of the program, and does
not access m1 until a4. Hence, this is a cache miss path of a4. On the other
hand, the path a1 − a3 − a4 begins with an access to m1, and accesses only 2

6 Kartik Nagar, Y N Srikant

distinct cache blocks. Execution along this path will result in a cache hit for a4,
and hence it is not a cache miss path. The path a4 − a3 − a4 lies entirely within
the loop, and is again not a cache miss path, as it accesses only 2 distinct cache
blocks. Hence, a4 does not have a cache miss path entirely within the loop, and
so is guaranteed to be a cache hit for all iterations except the first. In addition,
it will be a cache hit in the first iteration if the worst-case path passes through
a1.

The miss path of an access can be determined by traversing backward in the
CFG starting from the access and keeping track of the cache blocks encountered
along different paths. If the number of distinct cache blocks encountered along
a path (without encountering the accessed cache block) becomes greater than
cache associativity, the path can be deemed as a miss path and further accounting
of cache blocks along the path can be stopped. On the other hand, if the accessed
cache block itself is encountered on a path, then such paths can be discarded,
as they cannot become cache miss paths of the access. For accesses inside loops,
we may have to take the back-edges (in the reverse direction) more than once
to find all cache miss-paths.

5 AI formulation

We use Abstract Interpretation to find the cache miss paths of accesses. We
concentrate only on those accesses which are not classified as Hit by the AI-based
Must analysis, or Miss by May cache analysis. Let Acc be the set of all cache
accesses made by the program. Since cache accesses are made by the instructions
in a program, we use the terms ‘access’ and ‘instruction’ interchangeably . Let
AccNC be the set of accesses not classified as Hit or Miss (AccNC ⊆ Acc).
Accesses in AccNC will have at least one cache-miss path. Each cache-miss path
π can be viewed as a set of accesses which satisfies the required properties (it
is not necessary to keep track of their sequence, because if all instructions in a
miss path of an access are executed, then irrespective of their order of execution,
the access will suffer a miss). We use the special symbol ⊣ to indicate that the
cache-miss path has ended, which means that it has accessed A+1 distinct cache
blocks, and no new accesses should be added to it. Hence π ∈ P(Acc ∪ {⊣}).
(P(S) denotes the powerset of S).

m

a:

Q

P

Fig. 2.

An access can have multiple cache-miss paths, and hence
we maintain a set of miss paths for every access in AccNC . Our
abstract lattice is the set of functions F = {f |f : AccNC →
P(P(Acc ∪ {⊣}))}. For f1, f2 ∈ F , we say that f1 4 f2 if
and only if ∀a ∈ AccNC , f1(a) ⊆ f2(a). This is the standard
power-set lattice formulation, with the join being defined as
point-wise union: (f1 ⊔ f2)(a) = f1(a) ∪ f2(a).

We now define the transfer function. Let cb(a) and cs(a)
denote the cache block and cache set accessed by instruction
a respectively. Given a set of instructions, π, dist blocks(π) gives the number
of distinct cache blocks accessed by instructions in π. Hence, dist blocks(π) =

Path sensitive cache analysis using cache miss paths 7

|{cb(a)|a ∈ π}|. The direction of the analysis will be backward, assigning an
empty set of cache-miss paths initially for all accesses in AccNC . Since all miss-
paths of an access end with the access itself, as soon as an access in AccNC is
encountered, the collection of its miss-paths will begin. As shown in Figure 2,
suppose instruction a accesses cache blockmmapped to cache set s. The transfer
function TPQ for this instruction takes as input function fP ∈ F , and outputs
function fQ:

fQ(a
′) =















































{{a}} ∪ {π : π ∈ fP (a)∧ ⊣∈ π}, if a = a′,

{π : π ∈ fP (a
′)∧ ⊣∈ π}, else if m = cb(a′)

{π ∪ {a} : π ∈ fP (a
′)∧ ⊣6∈ π ∧ dist blocks(π ∪ {a}) ≤ A}

∪{π ∪ {a,⊣} : π ∈ fP (a
′)∧ ⊣6∈ π ∧ dist blocks(π ∪ {a}) > A}

∪{π : π ∈ fP (a
′)∧ ⊣∈ π},

else if cs(a) = cs(a′)

fP (a
′) otherwise

First, we consider the miss paths of the access a itself (if a ∈ AccNC). We
add the singleton path {a} to start the collection of miss paths of a, while any
existing paths of a which have been already been ended are retained. An existing
path of a will be present in fP (a) when a is inside a loop, and it has already been
encountered once during an earlier AI iteration. If an existing path of a has not
ended, then it would have accessed at most A distinct cache blocks (including
m). The access a will bring m to the cache, but there would not be enough cache
blocks in this path to evict m before the next access by a. Such a path will never
be a cache-miss path of a, and hence must be discarded.

In the second case, we consider the paths of those instructions a′ which access
the same cache block m. Since this is a backward analysis, any existing path of
a′ which reaches a would indicate that there is a path from a to a′. Since a

brings cache block m into the cache, any path from a to a′ will be a cache miss
path only if there are enough cache blocks accessed on it to evict m. In this
case, only the existing paths which have already been ended will be retained,
while all other paths of a′ will be discarded. This is because any path which
has already been ended would have accessed A + 1 distinct cache blocks, or A

distinct cache blocks other than m. Hence, m would have been evicted by the
time a′ is executed. On the other hand, any path which has not been ended will
not have accessed enough cache blocks to evict m.

In the third case, we consider the paths of instruction a′ which access a
different cache block cb(a′), mapped to the same cache set cs(a). In this case,
cache block m will conflict with cb(a′) and therefore the access a should be added
to any existing path of a′. In addition, if the number of distinct cache blocks
accessed along a path (after adding a) becomes greater than A, such a path
would now become a cache-miss path and hence can be ended. Also, miss paths
which have already ended are retained without any modification. Finally, in the
last case, paths of instructions which do not access the cache set cs(a) are not
modified.

8 Kartik Nagar, Y N Srikant

It is easy to see that the transfer function is monotonic, as it operates sep-
arately on every path of a cache access. It either adds a new path, discards
existing paths or adds new accesses to a path, but this depends solely on the
properties of the access or the path itself. We also give a formal proof in Section
7. Moreover, the abstract lattice F is finite, and hence termination of the analy-
sis is guaranteed. All the cache-miss paths of accesses in AccNC will be gathered
at the start of the program in the fixpoint solution.

6 ILP formulation

Table 1. Notation

Symbol Explanation

yi Integer variable storing the execution count of basic block bi

xij Integer variable storing the total number of cache misses suffered
by instruction aij

xπ
ij Integer variable storing the number of cache misses of

instruction aij along cache-miss path π

wij Integer variable storing the execution count of edge between
basic blocks bi and bj

ei Execution time of basic block bi assuming NC-instructions
as cache hits

cp Cache miss penalty

We now integrate the cache-miss paths into the IPET formulation [2]. We
introduce new integer variables for every access in AccNC , as well as for each
cache-miss path of these accesses. The number of cache misses suffered along
a cache-miss path will be constrained by the execution counts of the accesses
along the path.

Let b1, . . . , bn be the basic blocks of the program, and let ai1, . . . , aili be the
instructions in bi which are not classified (NC) as Hit or Miss. Table 1 contains
all the notations used in the ILP. Note that ei is the estimated execution time
of bi obtained by using the AI-based cache hit-miss classification, and assuming
cache hit latency for all instructions classified as NC. Let BB(a) denote the
index of the basic block containing instruction a.

We first give a brief description of the IPET formulation. For each basic
block bi, yi stores the execution count of this basic block on the worst-case path.
For an edge between basic blocks bi and bj in the CFG, the variable wij stores
the number of times execution passes from bi to bj on the worst case path. The
objective is to find the worst-case path, i.e. the execution counts of basic blocks
which maximizes the execution time of the program. The execution counts are
constrained by the program structure, which basically places the restriction that
the number of times execution enters a basic block (through an incoming edge
in the CFG) must be the same as the number of times execution leaves the basic

Path sensitive cache analysis using cache miss paths 9

block (through an outgoing edge), and this will also be the execution count of
the basic block. Hence, the sum of the w variables for all incoming edges to a
basic block will be the same as the sum of w variables for all outgoing edges.
Following is our proposed ILP, which is based on the IPET formulation:

Maximize

n
∑

i=1

(eiyi +

li
∑

j=1

cpxij) (1)

subject to

∀i, yi =
∑

j∈pred(bi)

wji =
∑

k∈succ(bi)

wik (2)

∀i∀j, xij ≤ yi (3)

∀i∀j, xij ≤
∑

all miss paths π of aij

xπij (4)

∀i∀j∀π where π is a miss path of xij, π = {aπ1, aπ2, . . . , aπk}

xπij ≤ yBB(aπ1) (5)

...

xπij ≤ yBB(aπk)

Loop Constraints ...

Infeasible path constraints ...

The product eiyi is the contribution of bi to the execution time of the pro-
gram, assuming that all NC-instructions are cache hits. The variable xij accounts
for the cache misses suffered by access aij . Each cache miss causes an additional
execution time of cp. Hence, the objective function is the sum of the total exe-
cution times of all basic blocks on the worst-case path (Equation 1). Equation 2
encodes the flow constraint for each basic block. The maximum number of misses
suffered by an access will be the execution count of the basic block containing
the access, and this gives a trivial upper bound on xij (Equation 3). For each
miss path π of aij , the variable xπ

ij counts the number of misses suffered by aij
along π.

For aij to experience a miss along miss path π, all the accesses in the miss-
path should happen. Hence, xπ

ij is upper-bounded by the execution counts of
all the basic blocks which contain the instructions present in π (Equation 5
onwards). If an access has multiple cache miss paths, then it can suffer a miss
along any of its miss paths. Moreover, for an access inside a loop, multiple cache-
miss paths of the access may be executed (for example, in different iterations).
Hence, the total number of misses suffered by an access (xij) is bounded by
the sum of its xπ

ij variables (Equation 4). Since the two notions of an access
suffering a cache miss, and its cache-miss path being executed are equivalent,
and the AI-based approach will determine all the cache miss paths, the above
ILP is guaranteed to account for all the cache misses suffered by an access.

10 Kartik Nagar, Y N Srikant

In addition to loop constraints, which will bound the execution count of loop
headers, infeasible path constraints can also be provided in the above ILP. An
infeasible path generally takes the form of a set of conflicting basic blocks, which
will never be executed together. The constraints will place an upper bound on
the sum of the execution counts (yi) of conflicting basic blocks. By appending
them to the above ILP, we not only guarantee that the worst case path will not
contain the infeasible path, but also that no cache miss will be caused due to it.
If the cache miss path of an access is infeasible, then the contribution of cache
misses along such a path would become zero.

Multi-level cache hierarchy: Our technique can be applied at any level
in a multi-level cache hierarchy. To apply the technique at level x in a cache
hierarchy with L levels, Acc will consist of all accesses which may reach level x,
while AccNC will consist of accesses which are not classified as Hit at level x. The
AI-based approach to find the cache miss paths can be directly applied, except
that a miss-path of an access can be discarded in the transfer function, only
when there is a guaranteed access to the same cache block, and the miss-path
has not ended. Similarly, the same ILP formulation can also be used, except that
the cache miss penalty (cp) of an access will now depend on whether it hits any
cache level beyond x, or if it has to go to the main memory.

7 Scalability

Previous approaches [9] at integrating cache analysis into the IPET formulation
have struggled with the exponential increase in the size of the ILP due to the
addition of extra variables and constraints. However, these approaches did not
perform any prior cache analysis, and hence relied solely on the ILP for the hit-
miss classification of all cache accesses made by the program. In our case, we are
weeding out the cache accesses classified as Hit or Miss by the AI-based cache
analysis, and only rely upon the ILP for the remaining accesses.

However, we are also introducing extra variables for each cache-miss path
of NC accesses, and extra constraints for each basic block present in a cache-
miss path. In general, the number of cache miss paths, and their sizes can be
exponentially large in the size of the program. Even though a cache-miss path
will access at most A+1 distinct cache blocks, this does not place any restrictions
on its size, as multiple instructions could access the same cache block. Hence, we
propose two changes in the original AI-formulation to limit the size of generated
cache-miss paths and hence the size of the final ILP. We note that this is main

advantage of using cache miss paths, as more abstractions can be used to speed

up the analysis time, at the cost of precision, but without jeopardizing the safety

requirements of cache analysis. There could be other ways in which cache miss
paths can be combined/ignored without under-estimating the number of cache
misses, to tradeoff precision with analysis time.

We first modify the transfer function to limit the size of each miss-path to
a maximum threshold (T). For miss path π of access a, let |π| denote its size,
i.e., the number of accesses present in π, excluding the access a. Referring back
to the original transfer function defined in Section 5, an access a was added to

Path sensitive cache analysis using cache miss paths 11

a miss-path of access a′ if they accessed different cache blocks mapped to the
same cache set and the miss-path had not ended. In the new transfer function,
we will add a new access to an existing miss-path only if the size of the expanded
miss-path does not exceed T . A miss-path will be ended when its size reaches
T , even though the number of distinct cache blocks accessed on the path may
not have reached A + 1. The following equation shows the only change in the
transfer function TPQ of an access a, proposed in Section 5:

fQ(a
′) =



















{π ∪ {a} : π ∈ fP (a
′)∧ ⊣6∈ π ∧ dist blocks(π ∪ {a}) ≤ A ∧ |π ∪ {a}| < T }

∪{π ∪ {a,⊣} : π ∈ fP (a
′)∧ ⊣6∈ π ∧ (dist blocks(π ∪ {a}) > A ∨ |π ∪ {a}| = T)}

∪{π : π ∈ fP (a
′)∧ ⊣∈ π}

if cb(a) 6= cb(a′) and cs(a) = cs(a′)

The new transfer function ends a miss-path either when its size becomes
equal to the threshold, or if it accesses more than A distinct cache blocks. Note
that there is no restriction on the threshold T , and it can take any value. It is
possible that paths determined using above restriction may not actually be cache
miss paths. However, we will not lose any actual cache miss paths, because if
the length of any actual miss path is greater than T , then its sub-path of length
T will be considered as a miss-path by the analysis. This is safe in the context
of the ILP as well, since an upper bound on the number of cache misses along
a miss path, obtained using the entire path, will be smaller than the upper
bound obtained using only its sub-path. Hence, we will only be overestimating
the number of misses along the shortened miss-path.

m1

m

m1

m2

a

a1

a2

a3

P

Fig. 3.

The analysis will lose precision with lower
values of T , as more paths which access less
than A + 1 distinct cache blocks may be
treated as cache miss-paths, and the upper
bound on the number of cache misses along
the more shortened paths will also not be
precise. In our experiments, we were able to
achieve good precision by setting T to be twice
the cache associativity. By limiting the maxi-
mum size of cache-miss path, we also decrease
the number of cache-miss paths of an access.

The other modification is made to the join
in the abstract lattice. In the original formu-
lation, at the join points, we simply took the
union of the incoming miss paths for every
cache access. However, some miss paths may
be entirely contained in other miss paths, and
in such a scenario, it is safe to discard the
larger miss paths, if they access the same number of distinct cache blocks as the
smaller miss paths present inside them.

12 Kartik Nagar, Y N Srikant

For example, consider the program fragment shown in Figure 3 which shows
cache accesses a, a1, a2 and a3 all accessing the same cache set. Assume that the
cache associativity is 2. We concentrate on the miss paths of the access a to cache
blockm. While finding the fixpoint (in the backward direction), at program point
P , we will get two different paths of a, π1 = {a3, a} and π2 = {a2, a3, a}. Clearly
π1 ⊆ π2, and both paths access the same number of distinct cache blocks. In
this case, it is safe to discard π2 during the join, because if π2 were to eventually
become a cache miss-path by adding some accesses (for example, by adding a1),
then the same accesses will also make π1 a cache miss-path. Moreover, in the
ILP formulation, xπ1

a ≥ xπ2

a . Hence, the contribution of cache misses along π2

will be accounted for by the path π1.
Experimentally, we have found that such scenarios occur very often in bench-

marks, and using the modified join can substantially decrease the number of
miss-paths. Moreover, this also has a positive impact on the ILP, as we will
not count the same cache miss multiple times along different miss paths. In the
example, the access a suffer a cache miss along both the miss paths {a1, a3, a}
and {a1, a2, a3, a}. In actual execution, a will only suffer one cache miss, but
if we did not discard π2, then we would have counted two misses along both
the miss-paths in the ILP. We now give a formal definition of the join. Given
f1, f2 ∈ F , we define f1 ⊔ f2 as follows:

∀a ∈ AccNC , (f1 ⊔ f2)(a) = (f1(a) ∪ f2(a)) \ {π ∈ (f1(a) ∪ f2(a)) : |π| < T − 1

∧ (∃π′ ∈ (f1(a) ∪ f2(a)) \ {π}, (π
′ ⊆ π)

∧ (dist blocks(π) = dist blocks(π′)))}

From the pointwise union of miss paths from f1 and f2, we remove those miss
paths which contain less than T − 1 accesses and for which a sub-path accessing
the same number of distinct cache blocks is also present in the union. Note that
both the miss path which is being removed and its subpath will also access the
same set of cache blocks. The ordering relation 4 in the lattice F now becomes:
f1 4 f2 ⇔ ∀a ∈ AccNC , ∀π ∈ f1(a), if |π| ≥ T − 1, then π ∈ f2(a), and if
|π| < T − 1 then ∃π′ ∈ f2(a), π

′ ⊆ π and dist blocks(π) = dist blocks(π′).
To see why the new transfer function remains monotonic with the new join,

let us define a relation on the miss paths, ⊑. For π1, π2 ∈ 2Acc∪{⊣}, π1 ⊑ π2 ⇔
π1 = π2 ∨ (|π1| < T − 1∧π2 (π1 ∧dist blocks(π1) = dist blocks(π2)). Then, for
f1, f2 ∈ F , f1 4 f2 ⇔ ∀a ∈ AccNC , ∀π1 ∈ f1(a), ∃π2 ∈ f2(a), such that π1 ⊑ π2.

To prove that the new transfer function TPQ is monotonic, we have to show
that if f1 4 f2, then TPQ(f1) 4 TPQ(f2). Assume that the access a′ happens

between program points Q and P . Let TPQ(fx) = f̂x, x = 1, 2. We have to show

that ∀a ∈ AccNC , ∀π
′
1 ∈ f̂1(a), ∃π

′
2 ∈ f̂2(a), such that π′

1 ⊑ π′
2.

Now, for π′
1 ∈ f̂1(a), π′

1 would have been obtained from some π1 ∈ f1.
Otherwise, π′

1 = {a}, which is the singleton miss-path added when a = a′. In

this case, {a} would be present in f̂2(a) as well.
The transfer function will add the new access a′ and possibly end the miss-

path to obtain π′
1 ∈ f̂1(a) from π1. We know that there exists π2 ∈ f2(a) such

Path sensitive cache analysis using cache miss paths 13

that π1 ⊑ π2. Suppose π1 = π2, then π1 ∈ f2(a). Hence, π
′
1 ∈ f̂2(a). For the

original transfer function and join defined in Section 5, this proof will be sufficient
to prove that TPQ is monotonic.

On the other hand, suppose |π1| < T − 1, and ∃π2 ∈ f2(a) such that π2 (π1

and dist blocks(π1) = dist blocks(π2). Since |π1| < T − 1, even if the transfer
function adds the new access a′ to π1, its length will not reach the threshold
T . Let π′

2 ∈ f̂2(a) be the miss-path obtained from π2. Since |π2| < |π1|, adding
a new access to π2 will also not violate the threshold. Also, if π′

1 = π1 ∪ {a′},
then π′

2 = π2 ∪{a′}, because both π1 and π2 access the same number of distinct
cache blocks. Similarly, if π′

1 = π1 ∪ {a′,⊣} then π′
2 = π2 ∪ {a′,⊣}. This shows

that π′
2 (π′

1, with dist blocks(π′
1) = dist blocks(π′

2). Hence, π
′
1 ⊑ π′

2.

8 Experimental Results

We have implemented our approach for path sensitive cache analysis in the
Chronos framework [14]. Chronos performs AI-based Must and May cache anal-
ysis, and classifies cache accesses as one of Hit, Miss, or NC. In addition, Chronos
also provides the option of performing persistence cache analysis to further im-
prove the classification of NC-cache accesses to Persistent (PS). We use lp solve

to solve the generated ILPs. Our experiments were conducted on a 4-core Intel
i5 CPU with 4 GB memory.

If a cache access is classified as PS, then the accessed cache block will never
get evicted during execution. This means that such accesses can experience at
most one cache miss. PS classification is very useful for accesses inside loops,
where the first iteration will bring the accessed block into the cache, and the
block will stay in the cache for subsequent iterations. In our terminology, it would
mean that the access has a cache-miss path which begins outside the loop, but
has no cache-miss path entirely within the loop itself. Hence, our approach can
identify persistent cache accesses, and make persistence analysis redundant.

For the experiments, we assume a 1 KB L1 instruction cache with block size
32 bytes and associativity 4. The L1 hit latency is 1 cycle, while the miss latency
is 30 cycles. We use Must and May cache analysis as our baseline cache analysis.
We apply our approach for all NC-accesses. We restrict the threshold value (i.e.
the maximum miss-path length) to 8 (twice the cache associativity). Further, if
the number of cache miss paths of an access exceeds 100, then we ignore all the
miss-paths and simply classify the access as a cache miss. We experimented on 27
benchmarks from the Mälardalen WCET benchmark suite [15], and found that
our approach was able to improve the WCET estimate for 9 benchmarks, with
an average precision improvement of 22.54 %, compared to the WCET obtained
using the baseline cache analysis.

Some of the precision improvement would be due to persistent cache blocks,
and to find their contribution, we compare the WCETs obtained using Persis-
tence analysis with our approach. Figure 4 compares the precision improvement
obtained by performing persistence analysis and the improvement obtained using

14 Kartik Nagar, Y N Srikant

bsort100 cover expint lms crc fft ndes qurt ud
0

10

20

30

40

50

60

Benchmarks

P
er

ce
nt

ag
e

Im
pr

ov
m

en
t

Persistence Analysis
Our Approach

Fig. 4. Graph showing percentage improvement of WCET obtained using (1) Persis-
tence analysis and (2) Our approach, over baseline cache analysis

our approach. It can be seen that our approach gives higher precision improve-
ment for 8 out of the 9 benchmarks, and is very close to persistence analysis
for cover. Our approach works better because apart for identifying persistent
accesses, it also takes into account the worst-case path information while classi-
fying accesses as cache misses. Note that this precision improvement is obtained
without adding any infeasible path information.

The total time taken to determine the WCET (including the time to solve
the ILP) was less than 1 second for all 27 benchmarks except nsichneu and
statemate. For statemate, the AI analysis took 3.16 seconds, while solving the
ILP required 0.6 seconds. For nsichneu, the AI analysis took 63.87 seconds,
while solving the ILP required 3 seconds. For both these benchmarks, neither
persistence analysis nor our approach showed any precision improvement. For
most of the accesses in nsichneu, the number of cache miss paths were greater
than 100, and hence these accesses were classified as cache misses. Note that
nsichneu has a large number of program paths.

In general, there is no correlation between the effectiveness of our approach,
and factors such program size, number of accesses, number of program paths,
etc. However, in almost all the benchmarks programs where our approach was
successful, there were accesses inside loops which had small number of cache miss
paths, whose classification was refined by our approach. If an access has large
number of cache miss paths, then it is highly likely that the worst-case path
will contain one of them, and such accesses will not benefit from our approach.
As the program size increases, the number of cache accesses will also increase,
which in turn will increase size of the ILP and the time required to solve it. It is
not necessary to find the cache miss paths of all accesses which are classified as
NC. Accesses which are more likely to affect the WCET (for example, accesses
inside loops) can be selected for miss-path based analysis, while the rest of the
accesses can be simply considered as cache misses.

Path sensitive cache analysis using cache miss paths 15

CEGAR-like approach: To test the effectiveness of our approach when
applied only on selected cache accesses, we used a strategy similar to Coun-
terexample guided Abstraction refinement (CEGAR) [12]. We start with IPET
ILP (with no cache miss path information) and solve it to obtain the worst-case
(WC) path. Then we determine the actual cache states along this path, to find
the accesses which were considered as cache misses in the ILP but actually hit
the cache along the WC path. Among such accesses, we pick the access with
the maximum number of cache misses in the ILP (this is the counter-example),
and find the cache miss paths of this access. This is equivalent to an abstraction
refinement for this access, as we will now take into account its cache behavior
along different paths. These miss paths are then integrated into the (current)
ILP to find the new WCET (and possibly the new WC path), and the process
is repeated again in the next iteration.

Since the selected cache access was actually hitting the cache along the WC
path (of that iteration), no cache miss path of the access will be contained in
the WC path. Hence, by integrating the cache miss path information of this
access into the ILP, we would be forcing the ILP to either classify the access
as a hit, or to find a new WC path which contains a miss path of the access.
The new WCET is guaranteed to be less than or equal to the previous WCET.
At each iteration, the size of the ILP will increase, as new cache miss path
information will be added (note that the miss path information added during
earlier iterations is retained). An important advantage of this approach is that
the refinement process can be stopped at any time, and the WCET that was
obtained after the last completed iteration can be safely used.

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

Number of Iterations

P
re

c
is

io
n

 I
m

p
ro

v
e

m
e

n
t

(i
n

 %
)

bsort100
cover
crc
expint
fft
lms
ndes
qurt
ud

Fig. 5. Graph showing precision improvement in WCET obtained at different iterations
of our CEGAR-like approach, over baseline cache analysis

Figure 5 shows the precision improvement in WCET of 9 benchmarks over
the baseline cache analysis, obtained after different number of iterations of the
above approach, ranging from 1 to 10. Most of the benchmarks start showing
lower WCETs from the first iteration itself, with increasing precision improve-
ment as the number of iterations increase. For 5 benchmarks, the maximum

16 Kartik Nagar, Y N Srikant

precision improvement is achieved within 10 iterations, while the other bench-
marks continue to show precision improvement after the first 10 iterations. This
demonstrates that our approach is useful even when applied to limited number
of cache accesses, if they are selected appropriately.

Note that we continue to use a threshold of 8 on the size of cache miss
paths. The above strategy is motivated by a similar CEGAR-like strategy used
for WCET estimation in [13], in which the accesses for abstraction refinement
are selected in a similar manner. However, for the refinement itself, [13] uses
AI-based Must and May cache analysis on the cache set containing the selected
access. Hence, the information about the worst-case path is still ignored during
the refinement process.

Decreasing the threshold: Restricting the length of the miss paths is an-
other avenue for trading off precision with analysis time, since this will decrease
both the time required to find the miss paths and the size of the ILP. We exper-
imented with different thresholds for the maximum miss path length, noting the
number of extra variables in the final ILP (as compared to the ILP generated
by IPET), and the precision improvement of WCET. Table 2 shows the preci-
sion improvement in WCET, and the extra number of variables, for each of the
9 benchmarks of Figure 4, with different threshold values, ranging from 1 to 8.
Note that in this experiment, we find and integrate miss paths of all NC-accesses
into the ILP.
Table 2. Effect of different thresholds of miss path length on size of ILP and WCET

Benchmark Precision Improvement (%) Extra variables
Threshold = Threshold =

1 2 4 8 1 2 4 8

bsort100 0.42 0.42 0.42 0.42 8 8 8 8

cover 52.41 52.41 50.49 55.78 15 15 23 12

expint 13.66 40.9 40.9 40.9 22 24 25 25

lms 0 3.82 3.82 11.45 33 34 37 26

crc 0 0 4.25 4.67 186 231 472 576

fft 2 3.2 22.48 33.3 211 230 255 259

ndes 0.7 0.7 6.1 17.3 312 316 543 574

qurt 9.7 9.7 19.38 25.28 329 328 366 500

ud 5 5 5 20.6* 323 390 972 897*

Concentrating on the precision improvement, it is interesting to see that even
with low thresholds, several benchmarks show considerable precision improve-
ment. With a threshold of 2 (half the cache associativity), all benchmarks except
crc experience non-zero precision improvement, while for a threshold value equal
to the cache associativity, all benchmarks show improvement. For all the bench-
marks, the maximum precision improvement is obtained at the highest threshold
value (8). The caveat with increasing the maximum miss path length is the in-

Path sensitive cache analysis using cache miss paths 17

crease in the size of the ILP. For most of the benchmarks, the maximum number
of extra variables are added at the maximum threshold. Note that for these
benchmarks, the number of added variables is still small enough for lp solve to
solve it very fast.

For some benchmarks, (e.g. cover, lms) the number of variables decrease on
increasing the threshold value from 4 to 8. The reason is that some of the miss
paths determined with a threshold of 4 would not be actual cache miss paths,
but the analysis does not recognize this due to the restriction on length. Once
the allowable length is increased, the analysis will be able to determine this, and
discard them, thus decreasing the number of variables. It should be noted that
for the benchmark nsichneu, for a threshold of upto 4, all the accesses had less
than 100 miss paths. The number of extra variables in the ILP for nsichneu

with a threshold of 4 were 2832, with 52 seconds required to compute the miss
paths, and 4 seconds required to solve the ILP (970 extra variables were required
for thresholds of 1 and 2). In general, the above results suggest that by lowering
the threshold on the length of miss-paths, the size of the ILP can be controlled.
Also, even with a low threshold, it is possible to improve the precision of the
WCET using our approach.

While we have not experimented with the impact of infeasible paths on cache
analysis, we note that previous techniques which integrate infeasible path infor-
mation into the IPET ILP ([4], [5]) can be directly applied on our modified ILP
which has cache miss path information added to it. We have only concentrated
on instruction caches, because although it is possible to use cache miss paths for
data caches with few modifications, it may not have the same impact on improv-
ing the precision. Address analysis for data caches is highly imprecise, and may
only estimate a set of cache blocks (instead of a single cache block) accessed by
an instruction. Hence, while finding cache miss paths, we may quickly exceed A

distinct cache blocks, which may result in short and imprecise miss paths.

9 Conclusion

In this work, we have presented a new approach to cache analysis which does not
completely rely on Abstract interpretation, but instead uses AI to obtain path-
sensitive information about cache accesses, in the form of cache miss paths. This
information is then integrated into the IPET ILP, thus allowing us to take advan-
tage of the worst-case path information and find the cache behavior of accesses
along this path. Since our AI-based analysis is path-sensitive to a limited ex-
tent, to control the size of the ILP, we also provide user-defined thresholds and a
CEGAR-like approach to trade-off analysis time with precision. Experimentally,
our approach provides lower WCETs for 9 out of 27 Mälardalen benchmarks,
with an average precision improvement 22.5 %, with a negligible increase in anal-
ysis time. Our approach also provides the opportunity to use already available
infeasible path information for cache analysis.

18 Kartik Nagar, Y N Srikant

10 Acknowledgements

This work was supported by Microsoft Corporation and Microsoft Research India
under the Microsoft Research India PhD Fellowship Award. We would also like
to thank the anonymous reviewers for their suggestions.

References

1. Ferdinand, C., Wilhelm, R.: Efficient and precise cache behavior prediction for real-
time systems. In: Real-Time Systems 17(2-3), 131-181 (1999)

2. Li, Y.T.-S., Malik, S., Wolfe, A.: Efficient microarchitecture modeling and path
analysis for real-time software. In: 16th IEEE Real-Time Systems Symposium, 1995,
pp.298-307, 1995

3. Gustafsson, J., Ermedahl, A., Sandberg, C., Lisper, B.: Automatic Derivation of
Loop Bounds and Infeasible Paths for WCET Analysis Using Abstract Execution.
In: 27th IEEE Real-Time Systems Symposium, 2006, pp.57-66, Dec. 2006

4. Engblom, J., Ermedahl, A.: Modeling complex flows for worst-case execution time
analysis. In: 21st IEEE Real-Time Systems Symposium, 2000, pp.163-174, 2000

5. Blackham, B., Liffiton, M., Heiser, G.: Trickle:automated infeasible path detection
using all minimal unsatisfiable subsets. In : 20th IEEE Real-time and Embedded
Technology and Applications Symposium, 2014

6. Nagar, K., Srikant, Y N.: Precise shared cache analysis using optimal interference
placement. In : 20th IEEE Real-time and Embedded Technology and Applications
Symposium, 2014

7. Chattopadhyay, S., Roychoudhury, A.: Scalable and Precise Refinement of Cache
Timing Analysis via Model Checking. In: 32nd IEEE Real-Time Systems Sympo-
sium, 2011 , pp.193-203, 2011

8. Banerjee, A., Chattopadhyay, S., Roychoudhury, A.: Precise micro-architectural
modeling for WCET analysis via AI+SAT. In: 19th IEEE Real-Time and Embedded
Technology and Applications Symposium, 2013, pp.87-96, 2013

9. Li, Y.T.-S., Malik, S., Wolfe, A.: Cache modeling for real-time software: beyond
direct mapped instruction caches. In: 17th IEEE Real-Time Systems Symposium,
1996, pp.254-263, 1996

10. Wilhelm, R.: Why AI + ILP Is Good for WCET, but MC Is Not, Nor ILP Alone.
In: Bernhard, S., Giorgio, L. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 309-322.
Springer, Berlin Heidelberg (2004)

11. Bach Khoa Huynh, Lei Ju, Roychoudhury, A.: Scope-Aware Data Cache Analysis
for WCET Estimation. In : 17th IEEE Real-Time and Embedded Technology and
Applications Symposium, pp.203-212, 2011

12. Clarke, R., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided ab-
straction refinement for symbolic model checking. In : J. ACM 50, 5 (September
2003), pp. 752-794, 2003

13. Cerny, P., Henzinger, T., Radhakrishna, A.: Quantitative abstraction refinement.
In : Proceedings of the 40th annual ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages (POPL), pp.115-128, 2013

14. Li, X., Liang, Y., Mitra, T., Roychoudhury, A.: Chronos: A Timing Analyzer for
Embedded Software. In : Science of Computer Programming, 69 (1-3), pp. 56-67
(2007).

15. WCET Projects / Benchmarks, http://www.mrtc.mdh.se/projects/wcet/

benchmarks.html

