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ABSTRACT

Multicore processors have now become mainstream. The difficulty of programming

these architectures to effectively tap the potential of multiple processing units is well-

known. Among several ways of addressing this issue, one of the very promising and

simultaneously hard approaches is automatic parallelization. This approach does not

require any effort on part of the programmer in the process of parallelizing a program.

The Polyhedral model for compiler optimization is a powerful mathematical frame-

work based on parametric linear algebra and integer linear programming. It provides

an abstraction to represent nested loop computation and its data dependences using

integer points in polyhedra. Complex execution-reordering, that can improve perfor-

mance by parallelization as well as locality enhancement, is captured by affine trans-

formations in the polyhedral model. With several recent advances, the polyhedral

model has reached a level of maturity in various aspects – in particular, as a powerful

intermediate representation for performing transformations, and code generation after

transformations. However, an approach to automatically find good transformations

for communication-optimized coarse-grained parallelization together with locality op-

timization has been a key missing link. This dissertation presents a new automatic

transformation framework that solves the above problem. Our approach works by

finding good affine transformations through a powerful and practical linear cost func-

tion that enables efficient tiling and fusion of sequences of arbitrarily nested loops.
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This in turn allows simultaneous optimization for coarse-grained parallelism and lo-

cality. Synchronization-free parallelism and pipelined parallelism at various levels can

be extracted. The framework can be targeted to different parallel architectures, like

general-purpose multicores, the Cell processor, GPUs, or embedded multiprocessor

SoCs.

The proposed framework has been implemented into a new end-to-end transfor-

mation tool, PLUTO, that can automatically generate parallel code from regular C

program sections. Experimental results from the implemented system show significant

performance improvement for single core and multicore execution over state-of-the-art

research compiler frameworks as well as the best native production compilers. For

several dense linear algebra kernels, code generated from Pluto beats, by a significant

margin, the same kernels implemented with sequences of calls to highly-tuned libraries

supplied by vendors. The system also allows empirical optimization to be performed

in a much wider context than has been attempted previously. In addition, Pluto can

serve as the parallel code generation backend for several high-level domain-specific

languages.
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CHAPTER 1

INTRODUCTION

Current trends in microarchitecture are towards larger number of processing ele-

ments on a single chip. Till the early 2000s, increasing the clock frequency of micro-

processors gave most software a performance boost without any additional effort on

part of the programmers, or much effort on part of compiler or language designers.

However, due to power dissipation issues, it is now no longer possible to increase clock

frequencies the same way it had been (Figure 1.1). Increasing the number of cores

on the chip has currently become the way to use the ever increasing number of tran-

sistors available, while keeping power dissipation in control. Multi-core processors

appear in all realms of computing – high performance supercomputers built out of

commodity processors, accelerators like the Cell processor and general-purpose GPUs

and multi-core desktops. Besides mainstream and high-end computing, the realm of

embedding computing cannot be overlooked. Multiprocessor System-on-Chip (MP-

SoCs) are ubiquitous in the embedding computing domain for multimedia and image

processing.
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Figure 1.1: Clock frequency of Intel processors in the past decade

End of the ILP era. Dynamic out-of-order execution, superscalar processing,

multiple way instruction issuing, hardware dynamic branch prediction and specu-

lative execution, non-blocking caches, were all techniques to increase instruction-level

parallelism (ILP), and thus improve performance for “free”, i.e., transparent to pro-

grammers and without much assistance from compilers or programming languages.

Compilers were taken for “granted” and programmers would mainly expect correct

code generated for them. In general, compiler optimizations have had a narrow audi-

ence [Rob01]. Most of the credit for improved performance would go to the architec-

ture, or to the language designer for higher productivity. However, currently, efforts

to obtain more ILP have reached a dead-end with no more ILP left to be extracted.

This is mainly because ILP works well within a window of instructions of bounded

length. Extracting a much more coarser granularity of parallelism, thread-level par-
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1. Introduction

allelism, requires looking across instructions that are possibly thousands or millions

of instructions away in the dynamic length of a program. The information that they

can be executed in parallel is obviously something that hardware does not have, or is

at least not feasible to be done by hardware alone at runtime. Analyses and trans-

formation that can achieve the above can only be performed at a high level – by a

software system like the language translator or a compiler.

Computers with multiple processors have a very long history. Special-purpose par-

allel computers like massively parallel processors (MPPs), systolic arrays, or vector

supercomputers were the dominant form of computers or supercomputers up till the

early 1990s. However, all of these architectures slowly disappeared with the arrival

of single-threaded superscalar microprocessors. These microprocessors continuously

delivered ever increasing performance without requiring any advanced parallel com-

piler technology. As mentioned before, this was due to techniques to obtain more and

more ILP and increasing clock speed keeping up with Moore’s law. Even a majority

of the supercomputers today are built out of commodity superscalar processors [Top].

Hence, due to the absence of parallelism in the mainstream for the past decade and a

half, parallel compiler and programming technology stagnated. However, with paral-

lelism and multi-core processors becoming mainstream, there is renewed interest and

urgency in supporting parallel programming at various levels – languages, compilers,

libraries, debuggers, and runtime systems. It is clear that hardware architects no

longer have a solution by themselves.
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1. Introduction

Parallelism and Locality. Besides multiple cores on a chip, caches or faster on-

chip memories and registers have been around for a long time and are likely to stay.

Often, not optimizing for locality has a direct impact on parallelization. This is

because of the fact that increasing the number of threads increases the amount of

memory bandwidth needed for the computation: the amount of available memory

bandwidth has always lagged computational power. Hence, optimizing for parallelism

and locality are the central issues in improving performance.

Difficulty of parallel programming. The difficulty of programming multi-core

architectures to effectively use multiple on-chip processing units is a significant chal-

lenge. This is due to several reasons. Writing programs with a single thread of logic is

quite intuitive and natural, and so nearly all programmers have been used to writing

sequential programs for decades. One can think of two broad approaches of tran-

sitioning from sequential programs to parallel ones: (1) proceed incrementally, i.e.,

get a basic sequential code working and then parallelize it, and (2) design and code a

parallel program from the start itself. With the former approach, manually paralleliz-

ing an application written to be sequential can be quite tedious. In some cases, the

parallelization may be non-trivial enough to be infeasible to be done by hand, or even

detect manually. The second approach goes against one of the basic philosophies of

programming which says, “pre-mature optimization is the root of all evil”. Thinking

about parallelism from the very start of the development process may make the path

to obtain a correct working version of a program itself difficult. In any case, all of

4
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the manual techniques are often not productive for the programmer due to the need

to synchronize access to data shared by threads.

Automatic Parallelization. Among several approaches to address the parallel

programming problem, one that is very promising but simultaneously very challenging

is automatic parallelization. Automatic parallelization is the process of automatically

converting a sequential program to a version that can directly run on multiple pro-

cessing elements without altering the semantics of the program. This process requires

no effort on part of the programmer in parallelization and is therefore very attractive.

Automatic parallelization is typically performed in a compiler, at a high level where

most of the information needed is available. The output of an auto-parallelizer is a

race-free deterministic program that obtains the same results as the original sequen-

tial program. This dissertation deals with compile-time automatic parallelization and

primarily targets shared memory parallel architectures for which auto-parallelization

is significantly easier. A common feature of all of the multicore architectures we have

named so far is that they all have shared memory at one level or the other.

The Polyhedral Model. Many compute-intensive applications often spend most

of their execution time in nested loops. This is particularly common in scientific

and engineering applications. The polyhedral model provides a powerful abstraction

to reason about transformations on such loop nests by viewing a dynamic instance

(iteration) of each statement as an integer point in a well-defined space called the

statement’s polyhedron. With such a representation for each statement and a precise
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characterization of inter and intra-statement dependences, it is possible to reason

about the correctness of complex loop transformations in a completely mathematical

setting relying on machinery from linear algebra and integer linear programming.

The transformations finally reflect in the generated code as reordered execution with

improved cache locality and/or loops that have been parallelized. The polyhedral

model is readily applicable to loop nests in which the data access functions and

loop bounds are affine functions (linear function with a constant) of the enclosing

loop variables and parameters. While a precise characterization of data dependences

is feasible for programs with static control structure and affine references and loop-

bounds, codes with non-affine array access functions or code with dynamic control can

also be handled, but primarily with conservative assumptions on some dependences.

The task of program optimization (often for parallelism and locality) in the poly-

hedral model may be viewed in terms of three phases: (1) static dependence analysis

of the input program, (2) transformations in the polyhedral abstraction, and (3)

generation of code for the transformed program. Significant advances were made

in the past decade on dependence analysis [Fea91, Fea88, Pug92] and code genera-

tion [AI91, KPR95, GLW98] in the polyhedral model, but the approaches suffered

from scalability challenges. Recent advances in dependence analysis and more impor-

tantly in code generation [QRW00, Bas04a, VBGC06, VBC06] have solved many of

these problems resulting in the polyhedral techniques being applied to code represen-

tative of real applications like the spec2000fp benchmarks [CGP+05, GVB+06]. These

advances have also made the polyhedral model practical in production compiler con-
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texts [PCB+06] as a flexible and powerful representation to compose and apply trans-

formations. However, current state-of-the-art polyhedral implementations still apply

transformations manually and significant time is spent by an expert to determine the

best set of transformations that lead to improved performance [CGP+05, GVB+06].

Regarding the middle step, an important open issue is that of the choice of transfor-

mations from the huge space of valid transforms. Existing automatic transformation

frameworks [LL98, LCL99, LLL01, AMP01, Gri04] have one or more drawbacks or

restrictions in finding good transformations. All of them lack a practical and scalable

cost model for effective coarse-grained parallel execution and locality as is used with

manually developed parallel applications.

This dissertation describes a new approach to address this problem of automati-

cally finding good transformations to simultaneously optimize for coarse-grained par-

allelism and locality. Our approach is driven by a powerful and practical linear cost

function that goes beyond just maximizing the number of degrees of parallelism or

minimizing the order of synchronization. The cost function allows finding good ways

to tile and fuse across multiple statements coming from sequences of arbitrarily nested

loops. The entire framework has been implemented into a tool, PLUTO, that can

automatically generate OpenMP parallel code from regular C program sections. In

this process, we also describe techniques to generate efficient tiled and parallel code,

along with a number of other optimizations to achieve high performance on modern

multicore architectures.

7



1. Introduction

Experimental results from the implemented system show very high speedups for lo-

cal and parallel execution on multicores over state-of-the-art research compiler frame-

works as well as the best native production compilers. For several linear algebra

kernels, code generated from Pluto beats, by a significant margin, the same kernels

implemented with sequences of calls to hand-tuned BLAS libraries supplied by ven-

dors. The system also leaves a lot of scope for further improvement in performance.

Thanks to the mathematical abstraction provided by the polyhedral model, Pluto

can also serve as the backend for parallel code generation with new domain-specific

frontends.

The rest of this dissertation is organized as follows. Chapter 2 provides the math-

ematical background for the polyhedral model. Chapter 3 describes our automatic

transformation framework. Chapter 4 is devoted to explaining how loop fusion is nat-

urally handled in an integrated manner in our framework. Chapter 5 describes the

implemented Pluto system along with details on parallel and tiled code generation

and complementary post-processing. Chapter 6 provides an experimental evaluation

of the framework. Conclusions and directions for future research are finally presented

in Chapter 7. Most of the content in Chapters 3 and 5, and some results from Chap-

ter 6 have been published in [BBK+08c] and [BHRS08].
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CHAPTER 2

BACKGROUND

In this chapter, we present a overview of the polyhedral model, and introduce

notation used throughout the dissertation. The mathematical background on linear

algebra and linear programming required to understand the theoretical aspects of

this dissertation is fully covered in this chapter. A few fundamental concepts and

definitions relating to cones, polyhedra, and linear inequalities have been omitted

and they can be found in [Wil93] and [Sch86]. Detailed background on traditional

loop transformations can be found in [Wol95, Ban93]. Overall, I expect the reader to

find the background presented here self-contained. [Bas04b, Gri04] are among other

sources for introduction to the polyhedral model.

All row vectors will be typeset in bold lowercase, while regular vectors are typeset

with an overhead arrow. The set of all real numbers, the set of rational numbers, and

the set of integers are represented by R, Q, and Z, respectively.

9



2.1. Hyperplanes and Polyhedra

2.1 Hyperplanes and Polyhedra

Definition 1 (Linear). A k-dimensional function f is linear iff it can expressed in

the following form:

linear function f(~v) =Mf~v (2.1)

where ~v =






v1
...
vd




 and Mf ∈ Rk×d is a matrix with k rows and d columns.

In our context, Mf is an integer matrix, i.e., Mf ∈ Zk×d

Definition 2 (Affine). A k-dimensional function f is affine iff it can expressed in

the following form:

affine function f(~v) =Mf~v + ~f0 (2.2)

where ~v =






v1
...
vd




 andMf ∈ Rk×d is a matrix with k rows and d columns, f0 ∈ Rk

is a k-dimensional vector. In all cases, we deal with affine functions with Mf ∈ Zk×d

and f0 ∈ Zk. The domain is also a set of integers: ~v ∈ Zd.

Definition 3 (Null space). The null space of an affine function f(~v) =Mf~v + ~f0 is
{

~x | f(~x) = ~0
}

.

f is a one-to-one mapping iff Mf has full column rank, i.e., if it has as many

linearly independent rows (and columns) as the number of its columns. In such a

case, the null space is 0-dimensional, i.e., trivially the vector ~0.

10



2.1. Hyperplanes and Polyhedra

Definition 4 (Affine spaces). A set of vectors is an affine space iff it is closed under

affine combination, i.e., if ~x, ~y are in the space, all points lying on the line joining ~x

and ~y belong to the space.

A line in a vector space of any dimensionality is a one-dimensional affine space.

In 3-d space, any 2-d plane is an example of a 2-d affine sub-space. Note that ‘affine

function’ as defined in (2.2) should not be confused with ‘affine combination’, though

several researchers use the term affine combination in place of an affine function.

Definition 5 (Affine hyperplane). An affine hyperplane is an n − 1 dimensional

affine sub-space of an n dimensional space.

In our context, the set of all vectors v ∈ Zn such that h.~v = k, for k ∈ Z, forms

an affine hyperplane. The set of parallel hyperplane instances correspond to different

values of k with the row vector h normal to the hyperplane. Two vectors ~v1 and ~v2

lie in the same hyperplane if h.~v1 = h.~v2. An affine hyperplane can also be viewed

as a one-dimensional affine function that maps an n-dimensional space onto a one-

dimensional space, or partitions an n-dimensional space into n−1 dimensional slices.

Hence, as a function, it can be written as:

φ(~v) = h.~v + c (2.3)

Figure 2.1(a) shows a hyperplane geometrically. Throughout the dissertation, the hy-

perplane is often referred to by the row vector, h, the vector normal to the hyperplane.

A hyperplane h.~v = k divides the space into two half-spaces, the positive half-space,

11
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φ(~x) =
k

φ(~x) ≤ k

φ φ(~x) ≥ k

(a) An affine hyperplane

for (i = 0; i < N; i++)

for (k = 0; k < N; k++)
S1

S2

for (j = 0; j < N; j++)

S1

for (j = 0; j < N; j++)
S2

for (i = 0; i < N; i++)

(b) Polyhedra (courtesy: Loopo display tool)

Figure 2.1: Hyperplane and Polyhedron

h.~v ≥ k, and a negative half-space, h.~v ≤ k. Each half-space can be represented by

an affine inequality.

Definition 6 (Polyhedron, Polytope). A polyhedron is an intersection of a finite

number of half-spaces. A polytope is a bounded polyhedron.

Each of the half-spaces provides a face to the polyhedron. Hence, the set of

affine inequalities, each representing a face, can be used to compactly represent the

polyhedron. If there are m inequalities, then the polyhedron is

{

~x ∈ Rn | A~x+~b ≥ ~0
}

where A ∈ Rm×n and ~b ∈ Rm.

12



2.1. Hyperplanes and Polyhedra

A polyhedron also has an alternate dual representation in terms of vertices, rays,

and lines, and algorithms like the Chernikova algorithm [LeV92] exist to move from

the face representation to the vertex one. Polylib [Pol] and PPL [BHZ] are two

libraries that provide a range of functions to perform various operations on polyhedra

and use the dual representation internally.

In our context, we are always interested in the integer points inside a polyhedron

since loop iterators typically have integer data types and traverse an integer space.

The matrix A and ~b for problems we will deal with also comprise only integers. So,

we always have:
{

~x ∈ Zn | A~x+~b ≥ ~0
}

(2.4)

where A ∈ Zm×n and ~b ∈ Zm.

Lemma 1 (Affine form of the Farkas lemma). Let D be a non-empty polyhedron

defined by p affine inequalities or faces

ak.~x+ bk ≥ 0, k = 1, p

then, an affine form ψ is non-negative everywhere in D iff it is a non-negative linear

combination of the faces:

ψ(~x) ≡ λ0 +

p
∑

k=1

λk (ak~x+ bk) , λ0, λ1, . . . , λp ≥ 0 (2.5)

The non-negative constants λk are referred to as the Farkas multipliers. Proof of

the if part is obvious. For the only if part, see Schrijver [Sch86]. We provide the
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main idea here roughly. The polyhedron D lies in the non-negative half-space of the

hyperplane ψ(~x). This makes sure that λ0 has to be non-negative if the hyperplane

is pushed close enough to the polytope so that it touches a vertex of the polyhedron

first without cutting the polyhedron. If a hyperplane passes through a vertex of the

polyhedron and with the entire polyhedron in its non-negative half-space, the fact that

it can be expressed as a non-negative linear combination of the faces of the polyhedron

directly follows from the Fundamental Theorem of Linear Inequalities [Sch86].

Definition 7 (Perfect loop nest, Imperfect loop nest). A set of nested loops

is called a perfect loop nest iff all statements appearing in the nest appear inside the

body of the innermost loop. Otherwise, the loop nest is called an imperfect loop nest.

Figure 2.6 shows an imperfect loop nest.

Definition 8 (Affine loop nest). Affine loop nests are sequences of imperfectly

nested loops with loop bounds and array accesses that are affine functions of outer

loop variables and program parameters.

Program parameters or structure parameters are symbolic constants that appear

in loop bounds or access functions. They very often represent the problem size. N is

a program parameter in Figure 2.1(b), while in Figure 2.2, N and β are the program

parameters.

2.2 The Polyhedral Model

The polyhedral model is a geometrical as well as a linear algebraic framework for

capturing the execution of a program in a compact form for analysis and transforma-

14
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tion. The compact representation is primarily of the dynamic instances of statements

of a program surrounded by loops in a program, the dependences between such state-

ments, and transformations.

Definition 9 (Iteration vector). The iteration vector of a statement is the vector

consisting of values of the indices of all loops surrounding the statement.

Let S be a statement of a program. The iteration vector is denoted by ~iS. An

iteration vector represents a dynamic instance of a statement appearing in a loop nest

that may be nested perfectly or imperfectly.

Definition 10 (Domain, Index set). The set of all iteration vectors for a given

statement is the domain or the index set of the statement.

A program comprises a sequence of statements, each statement surrounded by

loops in a given order. We denote the domain of a statement S by DS. When the

loop bounds and data accesses are affine functions of outer loop indices and other

program parameters, and all conditionals are statically predictable, the domain of ev-

ery statement is a polyhedron as defined in (2.4). Again, conditionals that are affine

functions of outer loop indices and program parameters are statically predictable.

Affine loop nests with static control are also called static control programs or regular

programs. These programs are readily accepted in the polyhedral model. Several of

the restrictions for the polyhedral model can be overcome with tricks or conservative

assumptions while still making all analysis and transformation meaningful. How-

ever, many pose a challenging problem requiring extensions to the model. Techniques
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developed and implemented in this thesis apply to all programs for which a polyhe-

dral representation can be extracted. All codes used for experimental evaluation are

regular programs with static control.

for ( i=0; i<N; i++)
for ( j=0; j<N; j++)
S1: A[i , j ] = A[i,j]+u1[i]∗v1[j ] + u2[i]∗v2[j ];

for (k=0; k<N; k++)
for ( l=0; l<N; l++)
S2: x[k] = x[k]+beta∗A[l,k]∗y[l ];

Figure 2.2: A portion of the GEMVER kernel

RAW

WAR

S1

S2

RAW
WAW

Figure 2.3: The data depen-
dence graph

Each dynamic instance of a statement S, in a program, is identified by its itera-

tion vector ~iS which contains values for the indices of the loops surrounding S, from

outermost to innermost. A statement S is associated with a polytope DS of dimen-

sionality mS. Each point in the polytope is an mS-dimensional iteration vector, and

i ≥ 0

j ≥ 0

−i+N − 1 ≥ 0

−j +N − 1 ≥ 0

DS1 :







1 0 0 0
0 1 0 0
−1 0 1 −1
0 −1 1 −1













i

j

N

1






≥ 0

Figure 2.4: Domain for statement S1 from Figure 2.2
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the polytope is characterized by a set of bounding hyperplanes. This is true when

the loop bounds are linear combinations (with a constant) of outer loop indices and

program parameters (typically, symbolic constants representing the problem size).

2.3 Polyhedral Dependences

Dependences. Two iterations are said to be dependent if they access the same

memory location and one of them is a write. A true dependence exists if the source

iteration’s access is a write and the target’s is a read. These dependences are also

called read-after-write or RAW dependences, or flow dependences. Similarly, if a

write precedes a read to the same location, the dependence is called a WAR depen-

dence or an anti-dependence. WAW dependences are also called output dependences.

Read-after-read or RAR dependences are not actually dependences, but they still

could be important in characterizing reuse. RAR dependences are also called input

dependences.

Dependences are an important concept while studying execution reordering since

a reordering will only be legal if does not violate the dependences, i.e., one is allowed

to change the order in which operations are performed as long as the transformed

program has the same execution order with respect to the dependent iterations.

Data Dependence Graph. The Data Dependence Graph (DDG) G = (V,E) is

a directed multi-graph with each vertex representing a statement, i.e., V = S. An

edge, e ∈ E, from node Si to Sj represents a dependence with the source and target
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i

j

l

k

S1

S2











1 0 0 0 0 0
0 −1 0 0 1 −1
0 0 1 0 0 0
0 0 0 −1 1 −1
1 0 0 −1 0 0
0 1 −1 0 0 0





















i

j

k

l

N

1











≥

=











0
0
0
0
0
0











Figure 2.5: Flow dependence from A[i][j] of S1 to A[l][k] of S2 and its dependence
polyhedron (courtesy: Loopo display tool)

conflicting accesses in Si and Sj respectively. Figure 2.3 shows the DDG for the code

in Figure 2.2.

2.3.1 Dependence polyhedron.

For an edge e, the relation between the dynamic instances of Si and Sj that are

dependent is captured by the dependence polyhedron, Pe. The dependence polyhedron

is in the sum of the dimensionalities of the source and target statement’s polyhedra

along with dimensions for program parameters. If ~s and ~t are the source and target

iterations that are dependent, we can express:

〈~s,~t〉 ∈ Pe ⇐⇒ ~s ∈ DSi,~t ∈ DSj are dependent through edge e ∈ E (2.6)

The ability to capture the exact conditions on when a dependence exists through

linear equalities and inequalities rests on the fact that there exists a affine relation

between the iterations and the accessed data for regular programs. Equalities can be
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replaced by two inequalities (‘≥ 0’ and ‘≤ 0’) and everything can be converted to

inequalities in the ≥ 0 form, i.e., the polyhedron can be expressed as the intersection

of a finite number of non-negative half-spaces. Let the ith inequality after conversion

to such a form be denoted by P i
e. For the code shown in Figure 2.2, consider the

dependence between the write at A[i][j] from S1 and the read A[l][k] in S2. The

dependence polyhedron for this edge is shown in Figure 2.5.

In the next chapter, we see that the dependence polyhedra is the most important

structure around which the problem of finding legal and good transformations centers.

In particular, the Farkas lemma (Sec. 2.1) is applied for the dependence polyhedron.

A minor point to note here is that the dependence polyhedra we see are often integral

polyhedra, i.e., polyhedra that have integer vertices. Hence, the application of Farkas

lemma for it is exact and not conservative. Even when the dependence polyhedron

is not integral, i.e., when its integer hull is a proper subset of the polyhedron, the

difference between applying it to the integer hull and the entire polyhedron is highly

unlikely to matter in practice. If need be, one can construct the integer hull of the

polyhedron and apply the Farkas lemma on it.

2.3.2 Strengths of dependence polyhedra

The dependence polyhedra are a very general and accurate representation of

instance-wise dependences which subsume several traditional notions like distance

vectors (also called uniform dependences), dependence levels, and direction vectors.

Though a similar notion of exact dependences was presented by Feautrier [Fea91] for

value-based array dataflow analysis, this notion of dependence polyhedra has only
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been sharpened in the past few years by researchers [CGP+05, VBGC06, PBCV07]

and is not restricted to programs in single assignment form nor does it require con-

version to single-assignment form. Dependence abstractions like direction vectors or

distance vectors are tied to a particular syntactic nesting unlike dependence polyhedra

which is more abstract and captures the relation between integer points of polyhedra.

One could obtain weaker dependence representations from a dependence polyhedra.

for (t=0; t<tmax; t++) {
for ( j=0; j<ny; j++)
ey [0][ j ] = t;
for ( i=1; i<nx; i++)
for ( j=0; j<ny; j++)
ey[ i ][ j ] = ey[i ][ j ] − 0.5∗(hz[i ][ j]−hz[i−1][j ]);

for ( i=0; i<nx; i++)
for ( j=1; j<ny; j++)
ex[ i ][ j ] = ex[i ][ j ] − 0.5∗(hz[i ][ j]−hz[i ][ j−1]);

for ( i=0; i<nx; i++)
for ( j=0; j<ny; j++)
hz[ i ][ j]=hz[i [ j ] −
0.7∗(ex[ i ][ j+1]−ex[i][ j]+ey[i+1][j]−ey[i ][ j ]);

}

Figure 2.6: An imperfect loop nest

0 ≤ t ≤ T − 1

0 ≤ t′ ≤ T − 1

0 ≤ i ≤ N − 1

0 ≤ j ≤ N − 1

0 ≤ i′ ≤ N − 1

0 ≤ j′ ≤ N − 1

t = t′ − 1

i = i′ − 1

j = j′

Figure 2.7: Dependence
polyhedron: S4(hz[i][j]) →
S2(hz[i− 1][j])

Another example. For the code shown in Figure 2.6, consider the flow dependence

between S4 and S2 from the write at hz[i][j] to the read at hz[i-1][j] (later time steps).

Let ~s ∈ DS4, ~t ∈ DS2, ~s = (t, i, j), ~t = (t′, i′, j′); then, Pe for this edge is shown in

Figure 2.7.
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2.4. Polyhedral Transformations

Uniform and Non-uniform dependences. Uniform dependences traditionally

make sense for a statement in perfectly nested loop nest or two statements which

are in the same perfectly nested loop body. In such cases a uniform dependence

is a dependence where the source and target iteration in question are a constant

vector distance apart. Such a dependence is also called a constant dependence and

represented as a distance vector [Wol95].

For detailed information on polyhedral dependence analysis and a good survey of

older techniques in the literature including non-polyhedral ones, the reader can refer

to [VBGC06].

2.4 Polyhedral Transformations

A one-dimensional affine transform for statement S is an affine function defined by:

φS(~i) =
(
cS1 c

S
2 . . . cSmS

) (
~iS

)
+ cS0 (2.7)

=
(
cS1 c

S
2 . . . cSmS

cS0
)
(
~iS
1

)

where c0, c1, c2, . . . , cmS
∈ Z, ~i ∈ ZmS Hence, a one-dimensional affine transform

for each statement can be interpreted as a partitioning hyperplane with normal

(c1, . . . , cmS
). A multi-dimensional affine transformation can be represented as a se-

quence of such φ’s for each statement. We use a superscript to denote the hyperplane

for each level. φk
S represents the hyperplane at level k for statement S. If 1 ≤ k ≤ d,

all the φk
S can be represented by a single d-dimensional affine function TS given by:

TS~iS =MS
~iS + ~tS (2.8)
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2.4. Polyhedral Transformations

where MS ∈ Zd×mS , ~tS ∈ Zd.

TS(~i) =








φ1
S(~i)

φ2
S(~i)
...

φd
S(~i)








=








cS11 cS12 . . . cS1mS

cS21 cS22 . . . cS2mS

...
...

...
...

cSd1 cSd2 . . . cSdmS








~iS +








cS10
cS20
...
cSd0








(2.9)

Scalar dimensions. The dimensionality of TS, d, may be greater than mS as some

rows in TS serve the purpose of representing partially fused or unfused dimensions

at a level. Such a row has (c1, . . . , cmS
) = 0, and a particular constant for c0. All

statements with the same c0 value are fused at that level and the unfused sets are

placed in the increasing order of their c0s. We call such a level a scalar dimension.

Hence, a level is a scalar dimension if the φ’s for all statements at that level are

constant functions. Figure 2.8 shows a sequence of matrix-matrix multiplies and how

a transformation captures a legal fusion: the transformation fuses ji of S1 with jk of

S2; φ3 is a scalar dimension.

Complete scanning order. The number of rows inMS for each statements should

be the same (d) to map all iterations to a global space of dimensionality d. To provide

a complete scanning order for each statement, the number of linearly independent φS’s

for a statement should be the same as the dimensionality of the statement, mS, i.e.,

TS should have full column rank. Note that it is always possible to represent any

transformed code (any nesting) with at most 2m∗
S +1 rows, where m∗

S = maxS∈SmS.

Composition of simpler transformations. Multi-dimensional affine functions

capture a sequence of simpler transformations that include permutation, skewing,
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2.4. Polyhedral Transformations

for ( i=0; i<n; i++) {
for ( j=0; j<n; j++) {
for (k=0; k<n; k++) {
S1: C[i , j ] = C[i,j ] + A[i,k] ∗ B[k,j ];
}
}
}
for ( i=0; i<n; i++) {
for ( j=0; j<n; j++) {
for (k=0; k<n; k++) {
S2: D[i , j ] = D[i,j ] + E[i,k] ∗ C[k,j ];
}
}
}

Original code

for (t0=0;t0<=N−1;t0++) {
for (t1=0;t1<=N−1;t1++) {

for (t3=0;t3<=N−1;t3++) {
C[t1,t0]=A[t1,t3]∗B[t3,t0]+C[t1,t0 ];

}
for (t3=0;t3<=N−1;t3++) {

D[t3,t0]=E[t3,t1]∗C[t1,t0]+D[t3,t0 ];
}

}
}

Transformed code

TS1
(~iS1

) =







0 1 0
1 0 0
0 0 0
0 0 1











i

j

k



+







0
0
0
0







TS2
(~iS2

) =







0 1 0
0 0 1
0 0 0
1 0 0











i

j

k



+







0
0
1
0







i.e.,

φ1
S1

= j φ1
S2

= j

φ2
S1

= i φ2
S2

= k

φ3
S1

= 0 φ3
S2

= 1
φ4
S1

= k φ4
S2

= i

Figure 2.8: Polyhedral transformation: an example
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2.4. Polyhedral Transformations

reversal, fusion, fission (distribution), relative shifting, and tiling for fixed tile sizes.

Note that tiling cannot be readily expressed as an affine function on the original

iterators (~iS), but can be once supernodes are introduced into the domain increasing

its dimensionality: this is covered in detail in a general context in Chapter 5.

Traditional transformations like unimodular transformations [Ban93, Wol95] and

non-unimodular [Ram92, LP94, Ram95] ones were applied to a single perfect loop

nest in isolation. They are therefore subsumed. Due to the presence of scalar dimen-

sions, polyhedral transformations can be used to represent or transform to any kind

of nesting structure. Also, they map iterations of statements to a common multidi-

mensional space providing the ability to interleave iterations of different statements

as desired.

One can notice a one-to-one correspondence between the A, B, Γ representation

used for URUK/WRAP-IT [GVB+06] and the one we described above, except that

we have all coefficients in Γ set to zero, i.e., no parametric shifts. The motivation

behind this will be clear in the next two chapters. The above representation for

transformations was first proposed, though in different forms, by Feautrier [Fea92b]

and Kelly et al. [Kel96], but used systematically by viewing it in terms of three

components, A, B, and Γ only recently [CGP+05, GVB+06, Vas07].

The above notation for transformations directly fits with scattering functions that

a code generation tool like CLooG [Bas04a, Clo] supports. It refers to TS as a scatter-

ing function. On providing the original statement domains, DS, along with TS, Cloog

can scan the domains in the global lexicographic ordering imposed by TS(~iS) across
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2.4. Polyhedral Transformations

all S ∈ S. The goal of automatic transformation is to find the unknown coefficients

of TS, ∀S ∈ S.

2.4.1 Why affine transformations?

Definition 11 (Convex combination). A convex combination of vectors, ~x1, ~x2,

. . . , ~xn, is of the form λ1~x1 + λ2~x2 + · · ·+ λn ~xn, where λ1, λ2, . . . , λn ≥ 0 and

∑n

i=1
λi = 1.

Informally, a convex combination of two points always lies on the line segment

joining the two points. In the general case, a convex combination of any number of

points lies inside the convex hull of those points.

The primary reason affine transformations are of interest is that affine transforma-

tions are the most general class of transformations that preserve the collinearity and

convexity of points in space, besides the ratio of distances. An affine transformation

transforms a polyhedron into another polyhedron and one stays in the polyhedral

abstraction for further analyses and most importantly for code generation. Code

generation is relatively easier and so has been studied extensively for affine trans-

formations. We now quickly show that if DS is convex, its image under the affine

function TS is also convex. Let the image be:

T (DS) =
{
~z | ~z = TS(~x), ~x ∈ D

S
}

Consider the convex combination of any two points, TS(~x) and TS(~y), of T (D
S):

λ1TS(~x) + λ2TS(~y), λ1 + λ2 = 1, λ1 ≥ 0, λ2 ≥ 0
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2.4. Polyhedral Transformations

Now,

λ1TS(~x) + λ2TS(~y) = λ1MS(~x) + λ1~tS + λ2MS(~y) + λ2~tS

= MS(λ1~x+ λ2~y) + ~tS, (∵ λ1 + λ2 = 1)

= TS(λ1~x+ λ2~y) (2.10)

Since DS is convex, λ1~x+ λ2~y ∈ D
S. Hence, from (2.10), we have:

λ1TS(~x) + λ2TS(~y) ∈ T (DS)

⇒ T (DS) is convex

If MS (the linear part of TS) has full column rank, i.e., the rank of MS is mS, TS

is a one-to-one mapping from DS to T (DS). A point to note when looking at integer

spaces instead of rational or real spaces is that not every integer point in the rational

domain that encloses T (DS) may have an integer pre-image in DS, for example,

transformations that are non-unimodular may create sparse integer polyhedra. This

is not a problem since a code generator like Cloog can scan such sparse polyhedra by

inserting modulos. Note that just like convexity, affine transformations also preserve

the ratio of distances between points. Since integer points in the original domain are

equally spaced, they are so in the transformed space too. Techniques for removal

of modulos also exist [Vas07]. Hence, no restrictions need be imposed on the affine

function TS. Sparse integer polyhedra also correspond to code with non-unit strides.

However, these can be represented with an additional dimension as long as the stride

is a constant, for eg., as {0 ≤ i ≤ n−1, i = 2k} for i going from 0 to n−1 with stride
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2.5. Putting the Notation Together

two. However, if one is interested, a more direct representation for integer points

in a polyhedron can be used [S.P00, GR07]. The term Z-polyhedron is associated

with such a representation which is the image of a rational polyhedron under an affine

integer lattice. Closure properties with such a representation under various operations

including affine image and pre-image have been proved [GR07].

2.5 Putting the Notation Together

Let us put together the notation introduced so far. Let the statements of the

program be S1, S2, . . . , Sm. Let S be the set of all statements. Let ~n be the vector

of program parameters, i.e., typically loop bounds or symbols appearing in the loop

bounds, access functions, or the statement body.

Let G = (V,E) be the data dependence graph of the original program, i.e., V = S

and E is the set of data dependence edges. eSi→Sj ∈ E denotes an edge from Si to

Sj , but we will often drop the superscript on e. For every edge e ∈ E from Si to

Sj , let the dependence polyhedron be Pe, the fact that a source iterations ~s ∈ DSi

and a target iteration ~t ∈ DSj are dependent are known through the equalities and

inequalities in the dependence polyhedron, and we express this fact by:

〈~s,~t〉 ∈ Pe ⇐⇒ ~s ∈ DSi,~t ∈ DSj are dependent through edge eSi→Sj ∈ E

(2.11)

φk
Si

denotes the affine hyperplane or function for level k for Si, 1 ≤ k ≤ d. The

set of all φk
Si
, for Si ∈ S represent the interleaving of all statement instances at level

k. TS is a d-dimensional affine function for each S as defined in (2.9). The subscript
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2.6. Legality and Parallelism

on φk is dropped when referring to the property of the function across all statements,

since all statements instances are mapping to a target space-time with dimensions

φ1, φ2, . . . , φd.

2.6 Legality and Parallelism

Dependence satisfaction. A dependence edge e with polyhedron Pe is satisfied

at a level l iff l is the first level at which the following condition is met:

∀k(1 ≤ k ≤ l − 1) : φk
Sj

(
~t
)
− φk

Si
(~s) ≥ 0

∧
φl
Sj

(
~t
)
− φl

Si
(~s) ≥ 1, 〈~s,~t〉 ∈ Pe

Legality. Statement-wise affine transformations (TS) as defined in (2.9) are legal iff

TSj
(~t)− TSi

(~s) ≻ ~0d, 〈~s,~t〉 ∈ Pe, ∀e ∈ E (2.12)

Definition 12 (Permutable band). The φs at levels p, p+1, . . . , p+ s− 1 form a

permutable band of loops in the transformed space iff

∀k (p ≤ k ≤ p+ s− 1) : φk
Sj
(~t)− φk

Si
(~s) ≥ 0, 〈~s,~t〉 ∈ Pe, e ∈ Ep (2.13)

where Ep is the set of dependences not satisfied up to level p− 1.

The above directly follows from (2.12). Loops within a permutable band can be

freely interchanged or permuted among themselves. One can see that doing so will not

violate (2.12) since dependence components for all unsatisfied dependences are non-

negative at each of the dimensions in the band. We will later find the above definition

a little conservative. Its refinement and associated intricacies will be discussed in

Section 5.4.2 of Chapter 5.
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2.6. Legality and Parallelism

Definition 13 (Outer parallel). A {φS1, φS2, . . . , φSm
} is an outer parallel hyper-

plane if and only if

φSj
(~t)− φSi

(~s) = 0, 〈~s,~t〉 ∈ Pe, ∀e ∈ E

Outer parallelism is also often referred to as communication-free parallelism or

synchronization-free parallelism.

for ( i=0; i<N; i++) {
for ( j=0; j<N; j++) {
a[ i ][ j ] = a[i ][ j−1] + 1;
}
}

j

i

N

N b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

0 1 2 3

1

2

3

Figure 2.9: Outer parallel loop, i: hy-
perplane (1,0)

for ( i=0; i<N; i++) {
for ( j=0; j<N; j++) {

a[ i ][ j ] = a[i−1][N−1−j] + 1;
}

}

j

i

N

N b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

0 1 2 3

1

2

3

Figure 2.10: Inner parallel loop, j: hy-
perplane (0,1)

Definition 14 (Inner parallel). A {φk
S1, φ

k
S2, . . . , φ

k
Sm
} is an inner parallel hyper-

plane if and only if φk
Si
(~t)− φk

Si
(~s) = 0, for every 〈~s,~t〉 ∈ Pe, e ∈ Ek, where Ek is the

set of dependences not satisfied up to level k − 1.
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2.6. Legality and Parallelism

It is illegal to move an inner parallel loop in the outer direction since the depen-

dences satisfied at loops it has been moved across may be violated at the new position

of the moved loop. However, it is always legal to move an inner parallel loop further

inside.

for ( i=0; i<N; i++) {
for ( j=0; j<N; j++) {

a[ i ][ j ] = a[i ][ j−1] + a[i−1][j ];
}

}
j

i

N

N b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

0 1 2 3

1

2

3

Figure 2.11: Pipelined parallel loop: i or j

Outer and inner parallelism is often referred to as doall parallelism. However, note

that inner parallelism requires synchronization every iteration outer to the loop.

Pipelined parallelism. Two or more loops may have dependences that have de-

pendence components along each of them can still be executed in parallel if one of

them can be delayed with respect to the other by a fixed amount. If dependence

components are non-negative along each of the dimensions in question, one just needs

a delay of one. Figure 2.11 shows a code with dependences along both i and j. How-

ever, say along i, successive iterations can start with a delay of one and continue

executing iterations for j’s in sequence. Similarly, if there are n independent dimen-

sions, at most n− 1 of them can be pipelined while iterations along at least one will
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2.6. Legality and Parallelism

be executed in sequence. Pipelined parallelism is also often referred to as doacross

parallelism. We will formalize conditions for this in a very general setting in Chap-

ter 3 since it is goes together with tiling. Code generation for pipelined parallelism is

discussed in Chapter 5.

Space-time mapping. Once properties of each row of TS are known, some of

them can be marked as space, i.e., a dimension along which iterations are executed

by different processors, while others can be marked as time, i.e., a dimension that is

executed sequentially by a single processor. Hence, TS specifies a complete space-time

mapping for S. Each of the d dimensions is either space or time. Since MS is of full

column rank, when an iteration executes and where it executes, is known. However,

in reality, post-processing can be done to TS before such a mapping is achieved.
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CHAPTER 3

Automatic Transformations for Parallelism and Locality

The three major phases of an optimizer for parallelism and locality are:

1. Static analysis: Computing affine dependences for an input source program

2. Automatic transformation: Computing the transformations automatically

3. Code generation: Generating the new nested loop code under the computed

transformations

As explained in Chapter 1, the first and last steps are currently quite stable,

while no scalable and practical approach exists for the middle step that works for

all polyhedral input or for input that the first and last steps are known to be quite

advanced for. This chapter deals with the theory for the key middle step: automatic

transformation, which is often considered synonymous with automatic parallelization.

3.1 Schedules, Allocations, and Partitions

Hyperplanes can be interpreted as schedules, allocations, or partitions, or any

other term a researcher may define based on the properties it satisfies. Saying that a
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3.2. Limitations of Previous Techniques

hyperplane is one of them implies a particular property that the new loop will satisfy

in the transformed space. Based on the properties the hyperplanes will satisfy at

various levels, certain further transformations like tiling, unroll-jamming, or marking

it parallel, can be performed. Typically, scheduling-based works [Fea92a, Fea92b,

DR96, Gri04] obtains the new set of hyperplanes as schedules and allocations, while

Lim and Lam [LL98] find them as space and time partitions.

3.2 Limitations of Previous Techniques

In this section, we briefly describe the limitations of existing polyhedral transfor-

mation frameworks in the literature. Automatic parallelization efforts in the poly-

hedral model broadly fall into two classes: (1) scheduling/allocation-based, and (2)

partitioning-based. The works of Feautrier [Fea92a, Fea92b] and Griebl [Gri04] (to

some extent) fall into the former class, while Lim and Lam’s approach [LL98, LCL99,

LLL01] falls into the second class.

3.2.1 Scheduling + allocation approaches

Schedules specify when iterations execute. A schedule can assign a time point

for every iteration, and a code generator can generate code that will scan them in

the specified order. Schedules in our context are assumed to be affine functions since

code generation in such cases has been studied extensively. Hence, serial order or

sequentiality is implicit in a schedule. For a complete coverage of scheduling for

automatic parallelization, the reader is referred to the book of Darte et al. [DRV00].
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3.2. Limitations of Previous Techniques

Briefly, a set of scheduling hyperplanes satisfy all dependences.

θSj
(~t)− θSi

(~s) ≥ 1, 〈~s,~t〉 ∈ P
e
Si→Sj

Several such θ with a given order specify a multi-dimensional schedule. Allocations

specify where iterations execute. An allocation is implicitly parallel. It can always be

coarsened, i.e., a group of iterations mapped to a particular processor since everything

that is scheduled at a time point are independent of each other. With scheduling-

allocation techniques, good schedules with the minimum number of dimensions are

first found [Fea92a, Fea92b], and then allocations are found [Fea94, DR96, GFG05].

If communication costs were to be zero or negligible when compared with compu-

tation and there were to be no memory hierarchy, clearly, just using optimal or near

optimal affine schedules would be the solution. This is obviously not the case with

any modern parallel computer architecture. Hence, reducing communication overhead

and improving locality across the memory hierarchy through tiling is needed. For the

iteration space depicted in Figure 3.2, an affine (fine-grained) schedule is given by:

θ

(
i

j

)

= 2 ∗ i+ j

Limitations. The approaches have the following limitations.

1. Using schedules and allocations does not naturally fit well with outer parallelism

and tiling, since schedules and allocations directly imply outer sequential and in-

ner parallel loops, i.e., they go hand-in-hand with inner parallelism (Figure 3.1).

The inner loops can always be readily tiled (space tiling), but they may not give
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3.2. Limitations of Previous Techniques

coarse-enough parallelism. One may try to find allocations that minimize data

movement, however, it may still require a high order of synchronization, or too

frequent synchronization.

2. They can go against locality even if the schedule gives a coarse granularity of

parallelism, since reuse will often be across the outer loops (dependences satis-

fied at outer levels) and no tiling can be done across those without modifying

the allocations. This in turn may kill all benefits of parallelization due to lim-

ited memory bandwidth. Inability to tile along the scheduling dimensions would

also affect register reuse when register tiling is done.

3. Using schedules and allocations typically leads to schedules with minimum num-

ber of schedule dimensions and maximum number of parallel loops. This misses

solutions that correspond to higher dimensional schedules. These missed sched-

ules might be sub-optimal with the typical schedule selection criteria, but still

perform better due to better tiling and coarse-grained parallelization. The

downsides of this cannot be undone.

One may try to “fix” the above problems by finding allocations with a certain

property that will allow tiling along the scheduling dimensions too [GFG05, Gri04],

but it has other undesired effects – sometimes unable to find the natural solution

primarily due to the third reason listed above. All of these will be clearer to the

reader through this chapter.
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for (t1=0; i<N; i++) {
for (t2=0; i<N; i++) {

forall (p1=0; i<N; i++) {
forall (p2=0; i<N; i++) {

S1
}
}
<barrier>;
}
}

Figure 3.1: A typical solution with scheduling-allocation

(2,1)

Figure 3.2: A fine-grained affine schedule

3.2.2 Existing partitioning-based approaches

A partitioning based approach would just use the code generator as a way to scan

the iteration space in another order and later on mark loops as parallel or sequential, or

stripmine and interchange loops at a later point. We gave an detailed background on

affine hyperplanes as partitions in Section 2.4. A key limitation of existing techniques

in this class is the absence of a way to find good partitions. Criteria based on finding
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those that maximize the number of degrees of parallelism and minimize the order

of synchronization are not sufficient to enable good parallelization. One could for

example obtain the partitioning shown in Figure 3.3 which is:

φ1(i, j) = i

φ2(i, j) = 3i+ j

(3,1)(1,0)

Figure 3.3: Affine partitioning with no cost function can lead to unsatisfactory solu-
tions

However, a desirable affine partitioning here is given by the following and shown

in Figure 3.4.

φ1(i, j) = i

φ2(i, j) = i+ j
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Figure 3.4: A good set of φs: (1,0) and (1,1)

3.3 Recalling the Notation

Let us recall the notation introduced in the previous chapter in Section 2.4 and

Section 2.5 before we introduce the new transformation framework. The statements of

the program are S1, S2, . . . , Sn. The dimensionality of Si ismSi
. S = {S1, S2, . . . , Sn}.

~n is the vector of program parameters, i.e., typically loop bounds or symbols that

appear in loop bounds, access functions, or the statement body.

G = (V,E) is the data dependence graph for the original program, and G is a

multi-graph. V = S and E is set of data dependence edges. eSi→Sj ∈ E denotes an

edge from Si to Sj , but we will often drop the superscript on e for better readability.

For every edge e ∈ E from Si to Sj, Pe is the dependence polyhedron. The fact that a

source iterations ~s ∈ Si and a target iteration ~t ∈ Sj are dependent are known through

the equalities and inequalities in the dependence polyhedron, and this is expressed
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as:

〈~s,~t〉 ∈ Pe ⇐⇒ ~s ∈ DSi,~t ∈ DSj are dependent through edge eSi→Sj ∈ E

(3.1)

All inequalities and equalities in Pe can be written as inequalities in the ≥ 0 form.

Let the LHS of each such inequality be denoted by P i
e, 1 ≤ i ≤ me.

φk
Si

denotes the affine hyperplane for level k for Si. The set of all φk
Si
, for Si ∈ S

represent the interleaving of all statement instances at level k. We drop the superscript

from the coefficients when a single statement is in question.

φS

(

~iS

)

= (c1 c2 . . . cmS
)
(

~iS

)

+ c0 (3.2)

c0, c1, c2, . . . , cmS
∈ Z, ~iS ∈ ZmS

The subscript on φk is dropped when referring to the property of the function across

all statements, since all statements instances are mapping to a target space-time with

dimensions φ1, φ2, . . . , φd. TS is a d-dimensional affine function capturing the complete

space-time transformation for statement S:

TS
(

~iS

)

=MS
~iS + ~tS

All row vectors are typeset in bold, while normal vectors are typeset with an

overhead arrow. ≻,≺ denote lexicographic comparisons. ≤,≥, <,> in the context of

vectors apply component-wise.
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3.4 Problem Statement

The goal of automatic transformation is to find the unknown coefficients of TS,

∀S ∈ S. In other words, the φ’s for all statements at each level are the unknown

we wish to find. In addition, the rows that correspond to processor space and that

correspond to sequential time should also be determined.

3.5 Legality of Tiling in the Polyhedral Model

Loop tiling [IT88, WL91b, Xue00] is a key transformation in optimizing for paral-

lelism and data locality. There has been a considerable amount of research into these

two transformations. Tiling has been studied from two perspectives – data locality

optimization and parallelization. Tiling for locality requires grouping points in an

iteration space into smaller blocks (tiles) allowing reuse in multiple directions when

the block fits in a faster memory which could be registers, L1 cache, L2 cache, or L3

cache. When execution proceeds tile by tile, reuse distances are no longer a function

of the problem size, but a function of the tile size. One can tile multiple times, once for

each level of the memory hierarchy. Tiling for coarse-grained parallelism involves par-

titioning the iteration space into tiles that may be concurrently executed on different

processors with a reduced frequency and volume of inter-processor communication: a

tile is atomically executed on a processor with communication required only before

and after execution. One of the key aspects of our transformation framework is to

find good ways of performing tiling.

40
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Figure 3.5: Tiling an iteration space

Theorem 1. {φS1
, φS2

, . . . , φSk
} is a legal (statement-wise) tiling hyperplane if and

only if the following holds true for each dependence edge eSi→Sj ∈ E:

φSj

(
~t
)
− φSi

(~s) ≥ 0,
〈
~s,~t

〉
∈ P

e
Si→Sj (3.3)

Proof. Tiling of a statement’s iteration space defined by a set of tiling hyperplanes

is said to be legal if each tile can be executed atomically and a valid total ordering

of the tiles can be constructed. This implies that there exists no two tiles such that

they both influence each other. Let {φ1
S1
, φ1

S2
, . . . , φ1

Sk
}, {φ2

S1
, φ2

S2
, . . . , φ2

Sk
} be

two statement-wise 1-d affine transforms that satisfy (3.3). Consider a tile formed

by aggregating a group of hyperplane instances along φ1 and φ2. Due to (3.3), for

any dynamic dependence, the target iteration is mapped to the same hyperplane or

a greater hyperplane than the source, i.e., the set of all iterations that are outside

of the tile and are influenced by it always lie in the forward direction along one of

the independent tiling dimensions (φ1 and φ2 in this case). Similarly, all iterations
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3.5. Legality of Tiling in the Polyhedral Model

outside of a tile influencing it are either in that tile or in the backward direction

along one or more of the hyperplanes. The above argument holds true for both

intra- and inter-statement dependences. For inter-statement dependences, this leads

to an interleaved execution of tiles of iteration spaces of each statement when code

is generated from these mappings. Hence, {φ1
S1
, φ1

S2
, . . . , φ1

Sk
}, {φ2

S1
, φ2

S2
, . . . , φ2

Sk
}

represent rectangularly tilable loops in the transformed space. If such a tile is executed

on a processor, communication would be needed only before and after its execution.

From the point of view of locality, if such a tile is executed with the associated data

fitting in a faster memory, reuse is exploited in multiple directions.✷

The above condition was well-known for the case of a single-statement perfectly

nested loops from the work of Irigoin and Triolet [IT88] (as“hT .R ≥ 0”). The above is

a generalization for multiple iteration spaces with possibly different dimensionalities

and with affine dependences, coming from code that could be nested arbitrarily.

j

i

N

N b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

0 1 2 3

1

2

3

Figure 3.6: No 2-d tiling possible
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Figure 3.7: A legal and an illegal tile

42



3.5. Legality of Tiling in the Polyhedral Model

Tiling hyperplanes at any level. Note that the legality condition as written in

(3.3) is imposed on all dependences. However, if it is imposed only on dependences

that have not been satisfied up to a certain depth, the independent φ’s that satisfy the

condition represent tiling hyperplanes at that depth, i.e., rectangular blocking (strip-

mine/interchange) at that level in the transformed program is legal. More subtleties

regarding tiled code generation will be discussed in Chapter 5.

Linearizing the legality condition. Condition (3.3) is non-linear in the unknowns

coefficients of the φs and loop index variables. The condition when expanded is:

(

c
Sj

1 , c
Sj

2 , . . . , c
Sj

m
Sj

)

~t−
(
cSi

1 , c
Si

2 , . . . , c
Si

mSi

)
~s ≥ 0, 〈~s,~t〉 ∈ P

e
Si→Sj

The affine form of the Farkas lemma (Section 2.1) can be used to linearize the

above condition. Its use for scheduling purposes was first suggested by Feautrier in

[Fea92a], before which the Vertex method [Qui87, Viv02] used to be employed. Using

the Farkas lemma, the non-linear form in the loop variables is expressed equivalently

as a non-negative linear combination of the faces of the dependence polyhedron.

(

c
Sj

1 , c
Sj

2 , . . . , c
Sj

m
Sj

)

~t−
(
cSi

1 , c
Si

2 , . . . , c
Si

mSi

)
~s ≥ 0, 〈~s,~t〉 ∈ Pe

⇐⇒

(

c
Sj

1 , c
Sj

2 , . . . c
Sj

m
Sj

)

~t−
(
cSi

1 , c
Si

2 , . . . c
Si

mSi

)
~s ≡ λe0 +

me∑

k=1

λekP
k
e , λek ≥ 0

Once this is done, the coefficients of the loop variables on the LHS and the RHS

are equated to get conditions free of the original loop variables. Application of the
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3.6. Towards Finding Good Solutions

for (t=0; t<T; t++) {
for ( i=2; i<N−1; i++) {
a[t , i ] = 0.333∗(a[t−1,i] + a[t−1,i−1]

+ a[t−1,i+1]);
}
}

Figure 3.8: 1-d Jacobi: perfectly nested

for (t = 1; t<T; t++)
for ( i=2; i<N−1; i++)
S1: b[ i ] = 0.333∗(a[i−1]+a[i]+a[i+1]);
}
for{i=2; i<N−1; i++}
S2: a[ i ] = b[i ];
}
}

Figure 3.9: 1-d Jacobi: imperfectly
nested

Farkas Lemma is done on a per-dependence basis, and the resulting constraints linear

in the coefficients of the φs are aggregated. All Farkas multipliers can be eliminated

dependence-wise, some by Gaussian elimination and the rest by Fourier-Motzkin elim-

ination [Ban93, Sch86]. Thanks to its scalability, the Farkas lemma has been used

to linearize legality constraints by nearly all polyhedral approaches in the litera-

ture [LL98, AMP01, CGP+05, PBCV07].

3.6 Towards Finding Good Solutions

Consider the perfectly-nested version of 1-d Jacobi shown in Figure 3.8 as an

example. This discussion also applies to the imperfectly nested version, but for con-

venience we first look at the single-statement perfectly nested one. The code has

three uniform dependences, (1,0), (1,1) and (1,-1) when represented as distance vec-

tors. We first describe solutions obtained by existing state of the art approaches -

Lim and Lam’s affine partitioning [LL98, LCL99] and Griebl’s space and time tiling

with Forward Communication-only placement [Gri04]. Lim and Lam define legal
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Figure 3.10: Communication volume with different valid hyperplanes for 1-d Jacobi:
shaded tiles are to be executed in parallel

time partitions which have the same property of tiling hyperplanes we described in

the previous section. Their algorithm obtains affine partitions that minimize the or-

der of communication while maximizing the degree of parallelism. Using the validity

constraint in Eqn 3.3, we obtain the constraints:

(ct, ci)

(
1
0

)

≥ 0; (ct, ci)

(
1
1

)

≥ 0; (ct, ci)

(
1
−1

)

≥ 0

i.e.,

ct ≥ 0

ci + cj ≥ 0

ci − cj ≥ 0

There are infinitely many valid solutions with the same order complexity of syn-

chronization, but with different communication volumes that may impact perfor-

mance. Although it may seem that the volume may not effect performance con-
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3.6. Towards Finding Good Solutions

sidering the fact that communication startup time on modern interconnects domi-

nates, for higher dimensional problems like n-d Jacobi, the ratio of communication

to computation increases, proportional to tile size raised to n− 1. Existing works on

tiling [SD90, RS92, Xue97] can find good or near communication-optimal tile shapes

for perfectly nested loops with constant dependences, but cannot handle arbitrarily

nested loops. For 1-d Jacobi, all solutions within the cone formed by the vectors (1, 1)

and (1,−1) are valid tiling hyperplanes. For the imperfectly nested version of 1-d Ja-

cobi, the valid cone has extremals (2, 1) and (2,−1). Lim et al.’s algorithm [LL98]

finds two valid independent solutions without optimizing for any particular criterion.

In particular, the solutions found by their algorithm (Algorithm A in [LL98]) are

(2,−1) and (3,−1) which are clearly not the best tiling hyperplanes to minimize

communication volume, though they do maximize the degree of parallelism and min-

imize the order of synchronization to O(N): in this case any valid hyperplane has

O(N) synchronization. Figure 3.10 shows that the required communication increases

as the hyperplane gets more and more oblique. For a hyperplane with normal (k, 1),

one would need (k + 1) ∗ T values from the neighboring tile.

Using Griebl’s technique [GFG05, Gri04], if coarser granularity of parallelism is

desired with schedules, the forward communication-only (FCO) constraint finds an

allocation satisfying the condition that all dependences have non-negative affine com-

ponents along it, i.e., communication will be in the forward direction. Due to this,

both the schedule and allocation dimensions become one permutable band of loops

that can be tiled. Hence, tiling along the scheduling dimensions, called time tiling
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3.7. Cost Function

is enabled. For the code in question, we first find that only space tiling is enabled

with the affine schedule being θ(t, i) = t. With a forward-communication only (FCO)

placement along (1,1), time tiling is enabled that can aggregate iterations into 2-d

tiles decreasing the frequency of communication. However, note that communication

in the processor space occurs along (1,1), i.e., two lines of the array are required.

However, using (1,0) and (1,1) as tiling hyperplanes with (1,0) as space and (1,1) as

inner time and a tile space schedule of (2,1) leads to only one line of communication

along (1,0). The approach we will present will find such a solution. We now define a

cost metric for an affine transform that captures reuse distance and communication

volume.

3.7 Cost Function

Consider the affine function δ defined as follows.

δe
(
~s,~t

)
= φSj

(
~t
)
− φSi

(~s) ,
〈
~s,~t

〉
∈ P

e
Si→Sj (3.4)

The affine function, δe(~s,~t), holds much significance. This function is also the number

of hyperplanes the dependence e traverses along the hyperplane normal. It gives us a

measure of the reuse distance if the hyperplane is used as time, i.e., if the hyperplanes

are executed sequentially. Also, this function is a rough measure of communication

volume if the hyperplane is used to generate tiles for parallelization and used as a

processor space dimension. An upper bound on this function would mean that the

number of hyperplanes that would be communicated as a result of the dependence

at the tile boundaries would not exceed this bound. We are particularly interested
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3.8. Cost Function Bounding and Minimization

if this function can be reduced to a constant amount or zero by choosing a suitable

direction for φ: if this is possible, then that particular dependence leads to a constant

or no communication for this hyperplane. Note that each δe is an affine function of

the loop indices. The challenge is to use this function to obtain a suitable objective

for optimization in a linear setting.

The constraints obtained from Eqn 3.3 above only represent validity (permutabil-

ity). We discuss below problems encountered when one tries to apply a performance

factor to find a good tile shape out of the several possibilities.

As explained in the previous sub-section, the Farkas lemma has been used to

eliminate loop variables from constraints by getting equivalent linear inequalities.

However, an attempt to minimize δe ends up in an objective function involving both

loop variables and hyperplane coefficients. For example, φ(~t) − φ(~s) could be c1i +

(c2−c3)j, where 1 ≤ i ≤ N ∧1 ≤ j ≤ N ∧ i ≤ j. One could possibly end up with such

a form when one or more of the dependences are not uniform, making it infeasible to

construct an objective function involving only the unknown coefficients of φ’s.

3.8 Cost Function Bounding and Minimization

We first discuss a result that would take us closer to the solution.

Lemma 2. If all iteration spaces are bounded, there exists an affine function in the

structure parameters, ~n, that bounds δe(~s,~t) for every dependence edge, i.e., there

exists

v(~n) = u.~n + w (3.5)

48



3.8. Cost Function Bounding and Minimization

such that

v(~n) −
(
φSj

(~t)− φSi
(~s)

)
≥ 0, 〈~s,~t〉 ∈ Pe, ∀e ∈ E (3.6)

i.e.,

u.~n+ w − δe
(
~s,~t

)
≥ 0, 〈~s,~t〉 ∈ Pe, ∀e ∈ E (3.7)

The idea behind the above is that even if δe involves loop variables, one can

find large enough constants in the row vector u that would be sufficient to bound

δe(~s,~t). Note that the loop variables themselves are bounded by affine functions of

the parameters, and hence the maximum value taken by δe(~s,~t) will be bounded by

such an affine function. Also, since u.~n+w ≥ δe(~s,~t) ≥ 0, u should either increase or

stay constant with an increase in the structural parameters, i.e., the components of u

are non-negative. The reuse distance or communication volume for each dependence

is bounded in this fashion by the same affine function.

Now, we apply the affine form of the Farkas lemma to (3.7).

u.~n + w − δe(~s,~t) ≡ λe0 +
me∑

k=1

λekP
k
e , λek ≥ 0 (3.8)

The above is an identity and the coefficients of each of the loop indices in ~i and

parameters in ~n on the left and right hand side can be gathered and equated. We now

get linear inequalities entirely in coefficients of the affine mappings for all statements,

components of row vector u, and w. The above inequalities can be at once be solved

by finding a lexicographic minimal solution with u and w in the leading position,

and the other variables following in any order, i.e., if u = (u1, u2, . . . , uk), then our
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3.8. Cost Function Bounding and Minimization

objective function is:

minimize≺ (u1, u2, . . . , uk, w, . . . , ci, . . . ) (3.9)

Finding the lexicographic minimal solution is within the reach of the Simplex algo-

rithm and can be handled by the PIP software [Fea88]. Since the structural param-

eters are quite large, we first want to minimize their coefficients. We do not lose the

optimal solution since an optimal solution would have the smallest possible values

for u’s. Though the zero vector is always a trivial solution with the above objective

function, it is avoided through constraints described in the next section.

The solution gives a hyperplane for each statement. Note that the application of

the Farkas lemma to (3.7) is not required in all cases. When a dependence is uniform,

the corresponding δe(~s,~t) is independent of any loop variables, and application of the

Farkas lemma is not required. In such cases, we just have δe ≤ w.

Avoiding the zero vector

Avoiding the zero solution statement-wise poses a challenge. In particular, to

avoid the zero vector we need:

(
cS1 , c

S
2 , . . . , c

S
mS

)
6= ~0, for each S ∈ S (3.10)

The above constraint cannot be expressed as a single convex space in the cS’s even for

a single statement. For multiple statements, the number of possibilities get multiplied.

The above difficulties can be solved at once by only looking for non-negative trans-

formation coefficients. Then, the zero solution can be avoided with the constraint of

∑mS

i=1
cSi ≥ 1, for each S ∈ S.
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3.9. Iteratively Finding Independent Solutions

Making the above practical choice leads to the exclusion of solutions that involve

loop reversals or combination of reversals with other transformations. In practice, we

do not find this to be a concern at all. The current implementation of Pluto [Plu] is

with this choice, and scales well without any evident loss of good transformations for

codes evaluated.

3.9 Iteratively Finding Independent Solutions

Solving the ILP formulation in the previous section gives us a single solution

to the coefficients of the best mappings for each statement. We need at least as

many independent solutions as the dimensionality of the polytope associated with

each statement. Hence, once a solution is found, we augment the ILP formulation

with new constraints and obtain the next solution; the new constraints ensure linear

independence with solutions already found. Let the rows ofHS represent the solutions

found so far for a statement S. Then, the sub-space orthogonal to HS [Pen55, LP94,

BRS07] is given by:

H⊥

S = I −HT
S

(
HSH

T
S

)−1
HS (3.11)

Note that H⊥
S .HS

T = 0, i.e., the rows of HS are orthogonal to those of H⊥
S . Assume

that H⊥
S has been freed of any unnecessary rows so that it forms a spanning basis for

the null space of HS. Let h
∗
S be the next row (linear portion of the hyperplane) to be

found for statement S. Let H i⊥

S be a row of H⊥
S . Then, any one of the inequalities

given by: ∀i, H i⊥

S .
~h∗S > 0, H i⊥

S .
~h∗S < 0 gives the necessary constraint to be added for

statement S to ensure that h∗S has a non-zero component in the sub-space orthogonal
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3.9. Iteratively Finding Independent Solutions

to HS and thus be linearly independent to HS. This leads to a non-convex space,

and ideally, all cases have to be tried and the best among those kept. When the

number of statements is large, this leads to a combinatorial explosion. In such cases,

we restrict ourselves to the sub-space of the orthogonal space where all the constraints

are positive, i.e., the following constraints are added to the ILP formulation for linear

independence:

∀i, H i⊥

S .h
∗
S ≥ 0 ∧

∑

i

H i⊥

Sh
∗

S ≥ 1 (3.12)

Example. For example, let us say there is one statement and that the first hyper-

plane found for it is (1, 0, 0), i.e., (ci, cj , ck) = (1, 0, 0).

HS = (1, 0, 0) H⊥

S =





0 0 0
0 1 0
0 0 1





i.e.,

H1⊥

S = (0, 1, 0) H2⊥

S = (0, 0, 1)

So, for linear independence we need to have:

cj 6= 0
∨

ck 6= 0

i.e.,

cj ≥ 1
∨

cj ≤ −1
∨

ck ≥ 1
∨

ck ≤ −1

Just forcing a positive component in the positive orthant will give a single convex

space for linear independence:

cj ≥ 0 ∧ ck ≥ 0 ∧ cj + ck ≥ 1
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3.10. Communication and Locality Optimization Unified

Note that when only the positive orthant is considered, the constraints for linear

independence for all statements form a single convex space.

The mappings found are independent on a per-statement basis. When there are

statements with different dimensionalities, the number of such independent mappings

found for each statement is equal to its domain dimensionality. Hence, no more linear

independence constraints need be added for statements for which enough independent

solutions have been found – the rest of the rows get automatically filled with zeros

or linearly dependent rows. The number of rows in the transformation matrix (MS)

is the same for each statement, consistent with our definition of TS. The depth of

the deepest loop nest in the transformed code is the same as that of the source

loop nest. Overall, a hierarchy of fully permutable bands (Def 12) is found, and a

lower level in the hierarchy will not be obtained unless ILP constraints corresponding

to dependences that have been satisfied by the parent permutable band have been

removed.

3.10 Communication and Locality Optimization Unified

From the algorithm described above, both synchronization-free and pipelined

parallelism is found. Note that the best possible solution to Eqn. (3.9) is with

(u = 0, w = 0) and this happens when we find a hyperplane that has no dependence

components along its normal, which is a fully parallel loop requiring no synchroniza-

tion if it is at the outer level, i.e., it is outer parallel. It could be an inner parallel

loop if some dependences were removed previously and so a synchronization is re-
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3.10. Communication and Locality Optimization Unified

quired after the loop is executed in parallel. Thus, in each of the steps that we find a

new independent hyperplane, we end up first finding all synchronization-free hyper-

planes; these are followed by a set of fully permutable hyperplanes that are tilable and

pipelined parallel requiring constant boundary communication (u = 0, w > 0) w.r.t

the tile sizes. In the worst case, we have a hyperplane with u > 0, w ≥ 0 resulting in

long communication from non-constant dependences. It is important to note that the

latter are pushed to the innermost level. By bringing in the notion of communication

volume and its minimization, all degrees of parallelism are found in the order of their

preference.

From the point of view of data locality, note that the hyperplanes that are used

to scan the tile space are same as the ones that scan points in a tile. Hence, data

locality is optimized from two angles: (1) cache misses at tile boundaries are mini-

mized for local execution (as cache misses at local tile boundaries are equivalent to

communication along processor tile boundaries); (2) by reducing reuse distances, we

are increasing the size of local tiles that would fit in cache. The former is due to

selection of good tile shapes and the latter by the right permutation of hyperplanes

that is implicit in the order in which we find hyperplanes.

3.10.1 Space and time in transformed iteration space.

By minimizing δe(~s,~t) as we find hyperplanes from outermost to innermost, we

push dependence satisfaction to inner loops and also ensure that no loops have neg-

ative dependences components so that all target loops can be blocked. Once this is

done, if the outer loops are used as space (how many ever desired, say k), and the
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rest are used as time (note that at least one time loop is required unless all loops

are synchronization-free parallel), communication in the processor space is optimized

as the outer space loops are the k best ones. All loops can be tiled resulting in

coarse-grained parallelism as well as better reuse within a tile. Hence, the same set

of hyperplanes are used to scan points in a tile. When space loops have dependences,

a transformation may be necessary in the outer tile space loops to get a schedule of

tiles to generate parallel code: this will be described in Chapter 5.

3.11 Examples

3.11.1 A step by step example

Figure 3.11 shows an example from the literature [DV97] with affine non-constant

dependences. We exclude the constant c0 from the transformation function as we

have a single statement. Dependence analysis produces the following dependence

polyhedra:

flow : a[i′, j′]→ a[i, j − 1] Pe1 : i
′ = i, j′ = j − 1, 2 ≤ j ≤ N, 1 ≤ i ≤ N

flow : a[i′, j′]→ a[j, i] Pe2 : i
′ = j, j′ = i, 2 ≤ j ≤ N, 1 ≤ i ≤ N, i− j ≥ 1

anti : a[j′, i′]→ a[i, j] Pe3 : j
′ = i, i′ = j, 2 ≤ j ≤ N, 1 ≤ i ≤ N, i− j ≥ 1

Note that the equalities in the dependence polyhedra can be readily used to elim-

inate variables from the constraints. In this case, u = (u1) since we have only one

parameter N .
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for ( i=0; i<N; i++) {
for ( j=1; j<N; j++) {

a[ i , j ] = a[j , i ]+a[i , j−1]
}
}

P0 P3

P3 P4P2

P3

P1

P0 P1

P1 P2

P2

P2

P4
P5

spacetime

j

i

Figure 3.11: Example: Non-uniform dependences

Dependence 1: Tiling legality constraint (3.3) gives:

(ci, cj)

(
i

j

)

− (ci, cj)

(
i′

j′

)

≥ 0, 〈i, j, i′, j′〉 ∈ Pe1

⇒ cii+ cjj − cii− cj(j − 1) ≥ 0

⇒ cj ≥ 0

Since this is a uniform dependence, the volume bounding constraint gives:

(ci, cj)

(
i

j

)

− (ci, cj)

(
i′

j′

)

≤ w, 〈i, j, i′, j′〉 ∈ Pe1

⇒ w − cj ≥ 0

Dependence 2: This is not a uniform dependence and hence the application of

Farkas Lemma for legality and bounding constraints cannot be avoided. The tiling

legality condition is given by:

(cii+ cjj)− (cij + cji) ≥ 0, 2 ≤ j ≤ N, 1 ≤ i ≤ N, i− j ≥ 1
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Applying Farkas lemma, we have:

(ci − cj)i + (cj − ci)j

≡ λ0 + λ1(N − i) + λ2(N − j)

+λ3(i− j − 1) + λ4(i− 1) + λ5(j − 2) (3.13)

λ1, λ2, λ3, λ4, λ5 ≥ 0

LHS and RHS coefficients for i, j, N and the constants are equated in (3.13) and the

Farkas multipliers are eliminated through Fourier-Motzkin (FM) variable elimination,

i.e., by equating coefficients on each side, we first obtain:

ci − cj = λ3 + λ4 − λ1

cj − ci = λ5 − λ3 − λ2

λ0 − λ3 − λ4 − 2λ5 = 0

λ1 + λ2 = 0

λ1 ≥ 0

λ2 ≥ 0

λ3 ≥ 0

λ4 ≥ 0

λ5 ≥ 0

The reader may verify that eliminating the λ’s through Gaussian elimination and

FM yields:

ci − cj ≥ 0
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Volume bounding constraint:

u1N + w − (cij + cji− cii− cjj) ≥ 0, (i, j) ∈ Pe2

Application of Farkas lemma in a similar way as above and elimination of the multi-

pliers yields:

u1 ≥ 0

u1 − ci + cj ≥ 0 (3.14)

3u1 + w − ci + cj ≥ 0

Dependence 3: Due to symmetry with respect to i and j, the third dependence

does not give anything more than the second one.

Avoiding the zero solution: As discussed in Section 3.8, the zero solution is

avoided with

ci + cj ≥ 1
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Finding the transformation. Aggregating legality and volume bounding con-

straints for all dependences, we obtain:

cj ≥ 0

w − cj ≥ 0

ci − cj ≥ 0

u1 ≥ 0

u1 − ci + cj ≥ 0 (3.15)

3u1 + w − ci + cj ≥ 0

ci + cj ≥ 1

minimize≺ (u1, w, ci, cj)

The lexicographic minimal solution for the vector (u1, w, ci, cj) = (0, 1, 1, 1). The zero

vector is a trivial solution and is avoided with ci + cj ≥ 1. Hence, we get ci = cj = 1.

Note that ci = 1 and cj = 0 is not obtained even though it is a valid tiling hyperplane

as it involves more communication: it requires u1 to be positive.

The next solution is forced to have a positive component in the subspace orthog-

onal to (1, 1) given by (3.11) as:

HS = (1, 1)

H⊥

S = I −HS(HSH
T
S )

−1HT
S =

(
1

2

−1

2
−1

2

1

2

)

We first normalize the rows of H⊥
S , then rows that are all zero and negations

of previous rows are discarded (the second row in this case) since they do not give

anything new in terms of linear independence, and ultimately we are just left with
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(1,-1). We thus have ci− cj ≥ 1. With the trade-off discussed in Sec. 3.9, we just add

ci − cj ≥ 1 for linear independence.

Adding ci− cj ≥ 1 to (3.15), the lexicographic minimal solution is (1, 0, 1, 0), i.e.,

u1 = 1, w = 0, ci = 1, cj = 0 (u1 = 0 is no longer possible). Hence, (1, 1) and (1, 0)

are the best tiling hyperplanes. The transformation is given by:

TS

(
i

j

)

=

(
1 1
1 0

)(
i

j

)

(1,1) is used as space with one line of communication between processors, and the

hyperplane (1,0) is used as time in a tile. The outer tile schedule is (2,1), obtained

by the addition of (1,1) and (1,0): this is described in more detailed in Chapter 5 in

Section 5.2.3.

This transformation is in contrast to other approaches based on schedules which

obtain a schedule and then the rest of the transformation matrix. Feautrier’s greedy

heuristic gives the schedule θ(i, j) = 2i+ j − 3 which satisfies all dependences. How-

ever, using this as either space or time does not lead to communication or locality

optimization. The (2,1) hyperplane has long dependence components along it. In

fact, the only hyperplane that has short dependences along it is (1,1). This is the

best hyperplane to be used as a space loop if the nest is to be parallelized, and is

the first solution that our algorithm finds. The (1,0) hyperplane is used as time lead-

ing to a solution with one degree of pipelined parallelism with one line per tile of

near-neighbor communication along (1,1) as shown in Figure 3.11.1. Hence, a good

schedule that tries to satisfy all dependences (or as many as possible) is not necessarily

a good loop for the transformed iteration space.
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3.11.2 Example 2: Imperfectly nested 1-d Jacobi

For the code in Figure 3.9, our algorithm obtains:

TS1

(
t

i

)

=





1 0
2 1
0 0





(
t

i

)

TS2

(
t′

j

)

==





1 0
2 1
0 0





(
t′

j

)

+





0
1
1





The resulting transformation is equivalent to a constant shift of one for S2 relative to

S1, fusion and skewing the i loop with respect to the t loop by a factor of two. The

(1,0) hyperplane has the least communication: no dependence crosses more than one

hyperplane instance along it.
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Figure 3.12: Imperfectly nested Jacobi stencil parallelization: N = 106, T = 105
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3.12 Handling Input Dependences

Input dependences need to be considered for optimization in many cases as reuse

can be exploited by minimizing them. Clearly, legality (ordering between dependent

RAR iterations) need not be preserved. We thus do not add legality constraints

(3.3) for such dependences, but consider them for the bounding objective function

(3.7). Since input dependences can be allowed to have negative components in the

transformed space, they need to be bounded from both above and below. If Pe is a

dependence polyhedron corresponding to an input (RAR) dependence, we have the

constraints:

∣
∣φSj

(
~t
)
− φSi

(~s)
∣
∣ ≤ u.~n + w, 〈~s,~t〉 ∈ Pe

i.e.,

φSj

(
~t
)
− φSi

(~s) ≤ u.~n + w
∧

φSi
(~s)− φSj

(
~t
)
≤ u.~n+ w, 〈~s,~t〉 ∈ Pe

3.13 Refinements for Cost Function

The metric we presented here can be refined while keeping the problem within ILP.

The motivation behind taking a max is to avoid multiple counting of the same set of

points that need to be communicated for different dependences. This happens when

all dependences originate from the same data space and the same order volume of

communication is required for each of them. Using the sum of max’es on a per-array

basis is a more accurate metric. Also, even for a single array, sets of points with very

less overlap or no overlap may have to be communicated for different dependences.

Also, different dependences may have source dependence polytopes of different di-
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mensionalities. Note that the image of the source dependence polytope under the

data access function associated with the dependence gives the actual set of points to

be communicated. Hence, just using the communication rate (number of hyperplanes

on the tile boundary) as the metric may not be accurate enough. This can be taken

care of by having different bounding functions for dependences with different orders of

communication, and using the bound coefficients for dependences with higher orders

of communication as the leading coefficients while finding the lexicographic minimal

solution. Hence, the metric can be tuned while keeping the problem linear.

3.14 Loop Fusion

We just give a brief overview here as Chapter 4 is devoted to discussion on how

fusion is naturally handled with our scheme. Solving for hyperplanes for multiple

statements leads to a schedule for each statement such that all statements in question

are finely interleaved: this is indeed fusion. In some cases, it might be enabled in

combination with other transformations like permutation or shifts. It is important to

leave the structure parameter ~n out of our hyperplane form in (2.8) for the above to

hold true. Leaving the parameter out allows us to control the fusion choices. Hence,

a common tiling hyperplane also represents a fused loop, and reuse distances between

components that are weakly connected can be reduced with our cost function. The

set of valid independent hyperplanes that can be iteratively found from our algorithm

for multiple statements (at a given depth) is the maximum number of loops that can

be fused at that depth. This generalization of fusion is same as the one proposed in
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[CGP+05, GVB+06] however we are able to automatically enable it in conjunction

with other transformations. All of this is the subject of Chapter 4.

3.15 Summary

Algorithm 1 Pluto automatic transformation algorithm

INPUT Data Dependence graphG = (V,E) with dependence polyhedra, Pe, ∀e ∈ E
1: Smax: statement with maximum domain dimensionality
2: for each dependence eSi→Sj ∈ E do
3: Build legality constraints: apply Farkas Lemma on φSj

(~t)− φSi
(~s) ≥ 0, under

〈~s,~t〉 ∈ Pe, and eliminate all Farkas multipliers
4: Build bounding function constraints: apply Farkas Lemma to u.~n+w−(φSj

(~t)−

φSi
(~s)) ≥ 0 under 〈~s,~t〉 ∈ Pe, and eliminate all Farkas multipliers

5: Aggregate constraints from Step 3 and Step 4 into Ce

6: end for
7: repeat
8: C = ∅
9: for each dependence edge e ∈ E do

10: C ← C ∪ Ce

11: end for
12: Compute lexicographic minimal solution with u′s coefficients in the leading

position followed by w; iteratively find independent solutions to C with linear
independence constraints (3.12) added after each solution is found

13: if no solutions were found then
14: Remove dependences between two strongly-connected components in the

GDG and insert a scalar dimension in the transformation functions of the
statements (Chapter 4)

15: end if
16: Compute Ec: dependences satisfied by solutions of Step 12/14
17: E ← E −Ec; reform the data dependence graph G = (V,E)
18: Compute H⊥

Smax
: the null space of TSmax

19: until H⊥
Smax

= 0 and E = ∅
OUTPUT The transformation function TS for each statement
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The algorithm is summarized below. Our approach can be viewed as transforming

to a tree of permutable loop nests sets or bands – each node of the tree is a good

permutable loop nest set. Step 12 of the repeat-until block in Algorithm 1 finds

such a band of permutable loops. If all loops are tilable, there is just one node

containing all the loops that are permutable. On the other extreme, if no loops are

tilable, each node of the tree has just one loop and so no tiling is possible. At least

two hyperplanes should be found at any level without dependence removal to enable

tiling. Dependences from previously found solutions are thus not removed unless

they have to be (Step 17): to allow the next permutable band to be found, and so

on. Hence, partially tilable or untilable input is all handled. Loops in each node of

the target tree can be stripmined/interchanged when there are at least two of them

in it; however, it is illegal to move a stripmined loop across different levels in the

tree. There are some intricacies involved here when moving across scalar dimensions:

they will be fully described in Chapter 5. When compared to earlier approaches that

found maximal sets of permutable loop nests [WL91a, DSV97, LCL99], ours is with

an optimization criterion (3.9) that goes beyond maximum degrees of parallelism.

Also, [WL91a, DSV97] were applicable to only perfect loop nests.

The theoretical complexity of the algorithm will be discussed in the next chapter

after the notion of fusion is sharpened.
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3.16 Comparison with Existing Approaches

Tiling and cost functions. Iteration space tiling [IT88, RS92, Xue00, WL91b] is

a standard approach for aggregating a set of loop iterations into tiles, with each tile

being executed atomically. It is well known that it can improve register reuse, improve

locality and minimize communication. Researchers have considered the problem of

selecting tile shape and size to minimize communication, improve locality or mini-

mize finish time [ABRY03, BDRR94, HS02, HCF97, HCF99, RS92, SD90, Xue97].

However, these studies were restricted to very simple codes – like single perfectly

nested loop nests with uniform dependences and/or sometimes loop nests of a par-

ticular depth. To the best of our knowledge, these works have not been extended to

more general cases and the cost functions proposed therein not been implemented to

allow a direct comparison for those restricted cases. Our work is in the direction of

a practical cost function that works for the general case (any polyhedral program or

one that can be approximated into it) as opposed to a more sophisticated function

for restricted input. With such a function, we are able to keep the problem linear,

and since sparse ILP formulations that result here are solved very quickly, we are at

a sweet-spot between cost-function sophistication and scalability to real-world pro-

grams. Note that our function does not capture tile size optimization, but the results

to be presented in Chapter 6 show that decoupling optimization of tile shapes and

sizes is a practical and very effective approach.
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Ahmed et al. Ahmed et al. [AMP00, AMP01] proposed a framework to optimize

imperfectly nested loops for locality. The approach determines the embedding for each

statement into a product space, which is then considered for locality optimization

through another transformation matrix. Their framework was among the first to

address tiling of imperfectly nested loops. However, the heuristic used for minimizing

reuse distances is not scalable as described. The reuse distances in the target space for

some dependences are set to zero (or a constant) with the goal of obtaining solutions

to the embedding function and transformation matrix coefficients. However, there is

no concrete procedure to determine the choice of the dependences and the number

(which is crucial), and how a new choice is made when no feasible solution is found.

Moreover, setting some reuse classes to zero (or a constant) need not completely

determine the embedding function or transformation matrix coefficients. Some reuse

distances may not be reducible to a constant while some may be. Exploring all

possibilities here leads to a combinatorial explosion even for simple imperfect loop

nests. Hence, a test-and-set approach for minimizing reuse distances is unlikely to

succeed for general affine dependences. With several recent polyhedral approaches, no

special embedding or sinking (conversion of an imperfect loop nest to a perfect one)

is needed; the original nesting of the code can be discarded once polyhedral domains

and dependences have been extracted. The transformation functions finally specify

the space-time mapping into a common space that Cloog efficiently scans.

Some specialized works [SL99, YKA04] also exist on tiling a restricted class of

imperfectly nested loops for locality. These works are subsumed by approaches em-
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ploying the polyhedral model. This is without any additional evident complexity in

dependence analysis, transformation computation, or code generation with the poly-

hedral tools for the input those tools handle.

Iteration space slicing [PR97, PR00] and transitive closure are techniques that

potentially go beyond affine transformations, i.e., they can partition iteration spaces

in a way that is not readily expressible with affine transformations. However, existing

slicing techniques [PR00, PR97] do not provide a solution to the key decision prob-

lems of – which array to slice and the dimension along which to slice. Besides, the

practicality of slicing for coarse-grained parallelization or computation of transitive

closure has not yet been demonstrated even for simple affine loop nests.

Loop parallelization has been studied extensively. The reader is referred to the

survey of Boulet et al. [BDSV98] for a detailed summary of earlier parallelization

algorithms – these restricted the input loop forms, like to perfect loop nests and/or

were based on weaker dependence abstractions than exact polyhedral dependences.

These include Lamport’s seminal hyperplane method [Lam74], Allen and Kennedy’s

algorithm [AK87] based on dependence levels, Wolf and Lam [WL91a], and Darte et

al. [DV97, DSV97]. Automatic parallelization efforts in the polyhedral model broadly

fall into two classes: (1) scheduling/allocation-based [Fea92a, Fea92b, Fea94, DR96,

Gri04] and (2) partitioning-based [LL98, LCL99, LLL01]. We now compare with

previous approaches from both classes.

Pure scheduling-based approaches [Fea92a, Fea92b] are geared towards finding

minimum latency schedules or maximum fine-grained parallelism, as opposed to tilabil-
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ity for coarse-grained parallelization with minimized communication and improved

locality. Clearly, on most modern parallel architectures, at least one level of coarse-

grained parallelism is desired as communication/synchronization costs matter, and so

is improving locality.

Griebl et al. Griebl [Gri04] presents an integrated framework for optimizing local-

ity and coarse-grained parallelism with space and time tiling, by enabling time tiling

as a post-processing step after a schedule is found. When schedules are used, the

inner parallel (space) loops can be readily tiled. In addition, if coarser granularity of

parallelism is desired, Griebl’s forward communication-only (FCO) constraint finds

an allocation satisfying the constraint that all dependences have non-negative affine

components along it, i.e., communication will be in the forward direction. Due to

this, both the schedule and allocation dimensions become one permutable band of

loops that can be tiled. Hence, tiling along the scheduling dimensions (time tiling)

is enabled. As shown in this chapter from a theoretical standpoint (Section 3.2.1),

fixing schedules as loops does not naturally fit well with tiling. It also adds additional

complexity to code generation. Results presented in Chapter 6 also confirm these

downsides which cannot be undone regardless of how allocations are found.

Lim and Lam. Lim and Lam’s approach [LL98, LCL99] was the first to take a par-

titioning view with affine functions. They proposed a framework that identifies outer

parallel loops (communication-free space partitions) and permutable loops (time par-

titions) with the goal of maximizing the degree of parallelism and minimizing the order
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of synchronization. They employ the same machinery to tile for locality and array

contraction [LLL01]. There are infinitely many affine transformations that maximize

the degree of parallelism and they significantly differ in performance. Whenever there

exist no communication-free partitions, their algorithm finds maximally independent

solutions to time partitioning constraints without a cost metric to pick good ones. As

shown in this chapter, without a cost function, solutions obtained even for simple in-

put may be unsatisfactory with respect to communication cost and locality. It is also

not clear how linear independence is ensured between permutable bands belonging

to different levels in the hierarchy. Lastly, their algorithm cannot enable non-trivial

fusion across sequences of loop nests that fall in different strongly-connected compo-

nents having a producer-consumer relationship: this is discussed and compared in the

next chapter.

Our approach is closer to the latter class of partitioning-based approaches. How-

ever, to the best of our knowledge, it is the first to explicitly model good ways of

tiling in the transformation framework with an objective function that is applicable

to any polyhedral program. Codes which cannot be tiled or only partially tiled are

all handled, and traditional transformations are captured. Loop fusion in conjunc-

tion with all other transformations is also captured and this is described in the next

chapter.

Semi-automatic and iterative techniques. In addition to model-based approaches,

semi-automatic and search-based transformation frameworks in the polyhedral model

also exist [KP93, KP95, CGP+05, GVB+06, PBCV07, PBCC08]. Cohen et al. [CGP+05]
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and Girbal et al. [GVB+06] proposed and developed a powerful framework (URUK

WRAP-IT) to compose and apply sequences of transformations semi-automatically.

Transformations are applied automatically, but specified manually by an expert.

A limitation of the recent iterative polyhedral compilation approaches [PBCV07,

PBCC08] is that the constructed search space does not include tiling and its inte-

gration poses a non-trivial challenge. Though our system now is fully model-driven,

empirical iterative optimization would be beneficial on complementary aspects, such

as determination of optimal tile sizes and unroll factors, and in other cases when in-

teractions with the underlying hardware and native compiler cannot be well-captured.

3.17 Scope for Extensions

Besides the refinements suggested in Section 3.13, the process for constructing

the linearly independent sub-space can be made more comprehensive. This might

be possible by adding additional decision variables. In addition, the framework can

be made to find negative coefficients for the φ′s – we avoided this to avoid the zero

vector solution easily and since the additional benefit of considering negative values

is not worth the complexity they bring in. For all the codes tried so far with the

implemented system, these practical choices have not caused a problem. The ILP

formulations on hyperplane coefficients appear to be very sparse and can benefit from

special techniques to solve them much faster [Fea06].

Index set splitting. The transformation our algorithm computes for a statement

applies to the entire domain of the statement as was extracted from the input pro-
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gram. Griebl et al. [GFL00] proposed a method to split the original iteration domains

based on dependences before space-time mappings are computed. After such a pre-

processing phase, a parallelizer may be able to find better mappings with the split

domains. Such a dependence-driven index set splitting technique is complementary

to our algorithm and could enhance the transformations computed.
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CHAPTER 4

Integrating Loop Fusion: Natural Task

In this chapter, we describe how loop fusion is naturally captured in our trans-

formation framework and how finding legal and reasonably good fusion structures is

automatically enabled.

Loop fusion involves merging a sequence of two or more loops into a fused loop

structure with multiple statements in the loop body. Sequences of producer/consumer

loops are commonly encountered in applications, where a nested loop statement pro-

duces an array that is consumed in a subsequent loop nest. In this context, fusion can

greatly reduce the number of cache misses when the arrays are large - instead of first

writing all elements of the array in the producer loop (forcing capacity misses in the

cache) and then reading them in the consumer loop (incurring cache misses), fusion

allows the production and consumption of elements of the array to be interleaved,

thereby reducing the number of cache misses. Figure 4.4 shows an example. For

parallel execution, fusion can also reduce the number of synchronizations. Hence, an

automatic transformation framework should be able to find good ways of fusion in

conjunction with other transformations.
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Loop fusion has mainly been studied in an isolated manner by the compiler op-

timization community [KM93, MS97, SM97, DH99]. Following are the limitations of

previous works.

1. Only fusion legality in isolation with other transformations

2. Usually studied fusion with shifts only

3. Simpler dependence models were employed that miss complex fusions that can

provide better performance or reduce storage requirement

Often, more complex sequence of transformations are needed that include fusion

as one of the transformations. For example, one could permute and shift to enable

fusion, and then tile (partially) fused structures. The ability of enumerate fusion

structures is also useful.

Fusion strongly interacts with tiling and parallelization. Maximal fusion often

kills parallelism, no fusion gives maximal parallelism but can lead to lesser storage

optimization or lower cache reuse. Due to complex interactions with other transfor-

mations, fusion needs to be studied in an integrated way in a compiler framework for

automatic parallelization. For example, it is common for fusion to be legal with some

loop shifts. In many scientific codes, fusion is legal after specific permutations. In

several of those cases, multiple choices exist and not all of them may be amenable to

good parallelization.

It is possible to reason about fusion and drive it completely in the polyhedral

model. Traditional literature on loop fusion states that one can distribute two loop
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nests that were originally fused if there are no “back edges”, i.e., no dependences from

the second statement to the first. Similarly, one can fuse if it does not add back edges.

These legality conditions are already captured with the standard legality constraints

in our ILP formulation on the transformation coefficients. Note that we consider all

dependences including dependences between SCCs.

Researchers have successfully represented fusion structures through affine trans-

formations: Feautrier [Fea92b], Kelly et al. [KP95, Kel96], Cohen et al and Girbal et

al [CGP+05, GVB+06]. However, there is no framework to automatically find such

transformations representing good fusions. Our framework can automatically enable

good fusion in conjunction with all other transformations. We present three differ-

ent fusion algorithms that capture the interesting fusion choices in most cases with

medium-sized loop nests.

4.1 Automatic Fusion

Let us recall again the structure of our transformation. φS for a statement was

defined as:

φS(~i) =
(
cS1 c

S
2 . . . cSmS

)
.~iS + 0.~n + cS0

where ~iS is the iterators surrounding the statement in the original program and ~n

is the vector of program parameters. φ does not have any coefficients for the pro-

gram parameters ~n. Also, note that trivial solutions are avoided (Sec. 3.8) through:

∑mS

i=1
cSi ≥ 1 for each statement. Recall also the definition of a scalar dimension,

where φk
Si

is a constant function for each Si, i.e.,
(
cS1 c

S
2 . . . cSmS

)
= 0.
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Solving for hyperplanes for multiple statements leads to a schedule for each state-

ment such that all statements in question are finely interleaved: this is indeed fusion.

The fine interleaving is due to the fact that φ does not have coefficients for the pro-

gram parameters (typically loop bounds). Hence, a common tiling hyperplane also

represents a fused loop, and reuse distances between components that are weakly

connected can be reduced with our cost function. The set of valid independent hy-

perplanes that can be iteratively found from our algorithm for multiple statements

(at a given depth) is the maximum number of loops that can be fused at that depth.

4.1.1 Implications of minimizing δ for fusion

Recall from (3.9) that φSj
(~t) − φSi

(~s) is bounded by u.~n + w and minimized at

each level iteratively after addition of linear independence constraints.

One can see that the dependence distance is minimized from (1,0,0) to (0,0,1)

after transformation and this is lexicographically the minimum. It is obtained since

solutions are found iteratively that minimize the dependence distances each level and

thus lexicographically minimize the vector of maximum dependence components.

Now, we discuss how the case of non-existence of a fused loop is handled concretely.

The code in Figure 4.3 is one example.

A program’s data dependence graph (DDG) can always be viewed as a DAG of

strongly connected components (SCCs). Let SCC(i) be the ith one in the topological

sort of the DAG of SCCs.
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for ( i=1; i<N−2; i++) {
A[i ] = 0.33∗(In[i−1]+In[i]+In[i+1]);

}
for ( i=2; i<N−3; i++) {

Out[i] = 0.33∗(A[i−1]+A[i]+A[i+1]);
}

(a) original code

for (t0=1;t0<=min(2,N−3);t0++) {
A[t0] = 0.33∗(In[1+t0]+In[t0]+In[t0−1]);
}
for (t0=3;t0<=N−3;t0++) {

A[t0] = 0.33∗(In[1+t0]+In[t0]+In[t0−1]);
Out[t0−1] = 0.33∗(A[1+t0−1]+A[t0−1]+

A[t0−1 −1]);
}

(b) Fused code

Figure 4.1: Fusion: simple example

Original Transformed
φ1
S1 = 0, φ1

S2 = 1 φ1
S1 = i, φ1

S2 = i+ 1
φ2
S1 = i, φ2

S2 = i φ2
S1 = 0, φ2

S2 = 1

Level min≺(u, w)
Original Transformed

Level 0 1 0
Level 1 0 1

Figure 4.2: Lexicographic u.~n + w reduction for fusion

Definition 15 (Cutting dependences). Two adjacent nodes in the DAG, SCC(i)

and SCC(i + 1), are considered cut at a level m iff φm
Si

= α, ∀Si ∈ SCC(k), k ≤ i,

and φm
Sj

= α + 1, ∀Sj ∈ SCC(k), k > i, where α is an integer constant.

Consider the sequence of two matrix-vector multiplies in Figure 4.1.1. Applying

our algorithm on it first gives us only one solution: φ1
S1 = i, φ1

S2 = l. This implies

fusion of the i loop of S1 and the j loop of S2. Putting the linear independence

constraint now, we do not obtain any more solutions. As per our algorithm, we now

remove the dependences satisfied by the φ1s, and this still does not yield a solution as

the loops cannot be fused further. Now, if a scalar dimension is inserted, with φ2
S1

= 0,

and φ2
S2

= 1, it will satisfy any remaining (unsatisfied) dependences between S1 and
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for ( i=0; i<N; i++) {
s = s + b[i]∗c[ i ]

}
for ( i=0; i<N; i++) {

c[ i ] = s + a[i ];
}

Figure 4.3: No fusion possible

S2. This is a cut between S1 and S2 which are SCCs in the DDG by themselves. After

the dependences are cut, φ3
S1

= j, and φ3
S2

= l can be found. The remaining unfused

loops are thus placed one after the other as shown in Figure 4.1.1. This generalization

of fusion is same as the one proposed in [CGP+05, GVB+06].

for ( i=0; i<N; i++)
for ( j=0; j<N; j++)

S1: x[ i ] = x[i]+a[i , j ]∗y[ j ];

for (k=0; k<N; k++)
for ( l=0; l<N; l++)

S2: y[k] = y[k] + a[k,l ]∗x[ l ];

for ( i=0; i<N; i++) {
for (j=0; j<N; j++) {

S1: x[ i ] = x[i]+a[i , j ]∗y[ j ];
}
for (k=0; k<N; k++) {

S2: y[k] = y[k]+a[k,i]∗x[ i ];
}

}

Figure 4.4: Two matrix vector multiplies

Now, consider a sequence of three matrix vector multiplies such as

y = Ax; z = By; w = Cz
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Together, these three loop nests do not have a common surrounding loop. How-

ever, it is possible to fuse the first two or the last two. When our algorithm is run

on all three components, no solutions are found. However, a solution is found if de-

pendences between either the first and second MVs or the second and third MVs is

cut.

4.1.2 Dependence cutting schemes

The notion of cutting dependences between SCCs exposes the choice of fusion

structures. The algorithm as described is geared towards maximal fusion, i.e., depen-

dences are cut at the deepest level (as a last resort). However, it does not restrict how

the following decision is made – which dependences between SCCs to cut when fused

loops are not found (Step 14)?. Aggressive fusion may be detrimental to parallelism

and increases the running time of the transformation framework in the presence of a

large number of statements, while separating all SCCs may give up reuse. To capture

most of the interesting cases, we use three different fusion schemes:

1. nofuse: Whenever no more common loops are found, all SCCs in the DDG are

completely separated out through a scalar dimension, i.e., dependences between

all SCCs are cut

2. smartfuse: Dependences between SCCs are cut based on the order of reuse of

the maximum dimensionality array in an SCC, i.e., SCCs with the same order

of reuse are grouped together. If solutions are still not found, SCCs with the

same order of reuse are separated based on the maximum dimensionality across
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all statement domains in an SCC. This scheme ultimately falls back to nofuse

if the above does not succeed in finding any fusable loops.

3. maxfuse: Dependences are cut very conservatively, between exactly two SCCs

at a time. The scheme falls back to smartfuse and ultimately to nofuse in the

presence of no fusion at all.

Our notion of a cut is equivalent to introducing a parametric shift to separate

loops. Loop shifting was used for parallelization and fusion with a simplified repre-

sentation of dependences and transformations by Darte et al. [DH99, DH00]. Shifting

was used for correcting illegal loop transformations by Vasilache et al. [VCP07]. Ex-

ample 4.4.4 explains how more sophisticated transformations can be enabled than

with techniques based purely on loop shifting.

The smartfuse andmaxfuse heuristics have a tendency to introduce a large number

of scalar dimensions with many of them being redundant, i.e., a continuous set of

them can be collapsed into just one scalar dimension and polyhedral operations on

such dimensions anyway are trivial. Thanks to code generation optimizations in Cloog

that remove such scalar dimensions [VBC06].

4.2 Correctness and Completeness

We now prove that Algorithm 2 terminates successfully with a legal transforma-

tion.

Theorem 2. A transformation is always found by Algorithm 2
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Algorithm 2 Pluto algorithm (with fusion heuristics)

INPUT Data Dependence graphG = (V,E) with dependence polyhedra, Pe, ∀e ∈ E
1: Smax: statement with maximum domain dimensionality
2: for each dependence e ∈ E do
3: Build legality constraints as in Algorithm 1
4: Build bounding function constraints as in Algorithm 1
5: Aggregate constraints from both into Ce

6: end for
7: if fusion heuristic is nofuse or smartfuse then
8: Cut dependences between SCCs appropriately (Section 4.1.2)
9: end if

10: repeat
11: C = ∅
12: for each dependence edge e ∈ E do
13: C ← C ∪ Ce

14: end for
15: Compute lexicographic minimal solution with u′s coefficients in the leading

position followed by w to iteratively find independent solutions to C
16: if no solutions were found then
17: Cut dependences between strongly-connected components in the GDG using

one of the cutting schemes: {nofuse, smartfuse, maxfuse}
18: end if
19: Compute Ec: dependences satisfied by solutions of Step 15 and 17
20: E ← E −Ec; reform G = (V,E)
21: Compute H⊥

Smax
: the null space of TSmax

22: until H⊥
Smax

= 0 and E = ∅
OUTPUT The transformation function TS for each statement
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Proof. We show that the termination condition (Step 22) of Algorithm 2 is always

reached. Firstly, every strongly-connected component of the dependence graph has

at least one common surrounding loop, if the input comes from a valid computation.

Hence, Step 15 is guaranteed to find at least one solution when all dependences be-

tween strongly-connected components have eventually been cut (iteratively in Step 17

whenever solutions are not found). Hence, enough linearly independent solutions are

found for each statement such that H⊥
S eventually becomes 0mS×mS

for every S ∈ V ,

i.e., HS becomes full-ranked for each statement. Now, we show that the condition

E = ∅ is also eventually satisfied. Let us consider the two groups of dependences:

(1) self-edges (or intra-statement dependences), and (2) inter-statement dependences.

Since HS becomes full-ranked and does not have a null space, all dependent iterations

comprising a self-edge are satisfied at one level or the other (since φ(~t) − φ(~s) ≥ 0

stays in the formulation till satisfaction). Now, consider an inter-statement depen-

dence from Si to Sj. If at Step 17, the dependences between Si and Sj were cut,

all unsatisfied dependences between Si and Sj will immediately be satisfied at the

scalar dimension introduced in the transformation matrices (since φSj
is set to one

and φSi
to zero). However, if Si and Sj belong to the same strongly-connected com-

ponent, then a solution will be found at Step 15, and eventually they will belong to

separate strongly-connected components and dependences between them will be cut

(if not satisfied). Hence, both intra and inter-statement dependences are eventually

satisfied, and the condition E = ∅ is met.✷

Theorem 3. The transformation found by Algorithm 2 is always legal.
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Proof. Given the proof for Theorem 2, the proof for legality is straightforward.

Since we keep φSj
(~t) − φSi

(~s) ≥ 0, 〈~s,~t〉 ∈ Pe in the formulation till eSi⇒Sj is satis-

fied, no dependence is violated. The termination condition for the repeat-until block

(Step 22) thus ensures that all dependences are satisfied. Hence, the transformations

found are always legal.✷

4.2.1 Bound on iterative search in Algorithm 2

Each iteration of the repeat-until block in Algorithm 2 incurs a call to PIP. The

number of times this block executes depends on how dependences across strongly-

connected components are handled in Step 17. Consider one extreme case when all

dependences between any two strongly-connected components are cut whenever no

solutions are found (nofuse): then, the number of PIP calls required is 2d+1 at worst,

where d is the depth of the statement with maximum dimensionality. This is because,

in the worst case, exactly one solution is found at Step 15, and the rest of the d times

dependences between all SCCs are cut (both happen in an alternating fashion); the

last iteration of the block adds a scalar dimension that specifies the ordering of the

statements in the innermost loop(s). Now, consider the other extreme case, when

dependences are cut very conservatively between SCCs; in the worst case, this would

increase the number of iterations of the block by the number of dependences in the

program.
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4.3 Theoretical Complexity of Computing Transformations

Integer linear programming is known to be NP-hard. The PIP solver employed

here uses the dual-simplex algorithm with Gomory’s cutting plane method [Sch86] to

obtain the best integer solution. The Simplex algorithm is known to have an average-

case complexity of O(n3) and is very efficient in practice, even though its worst case

complexity is exponential. In particular, it is important to note that the ILP formu-

lations that result out of affine scheduling or partitioning in the polyhedral model are

very simple and sparse, and are quickly solved. The following are the key input sizes.

n: Sum of the dimensionalities of the domains of all statements
|E|: Number of dependences (edges in the DDG)
m: Depth of the statement with maximum domain dimensionality

Our algorithms needs Θ(m) to Θ(|E|) number of calls to PIP depending on the fu-

sion heuristic. Assuming smartfuse, the theoretical complexity is typically O(n3 ∗m).

This does not yet include the complexity of building the legality and cost function con-

straints which is a one-time process proportional to the number of dependences. Elim-

ination of the Farkas multipliers is done dependence-wise, and therefore on systems

with dimensionality proportional to nesting depth. Usually, Fourier-Motzkin elimi-

nation on these systems leads to a reduction in the number of inequalities, hence, its

super-exponential theoretical complexity is of little importance for our problems. The

complexity involved in building the constraints can be written as O(|E| ∗m3), since

Θ(m) Farkas multipliers are to be eliminated from systems with (m) constraints. This
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is assuming that dependence polyhedra have (m) inequalities. Overall, the average-

case complexity appears to be O(n3 ∗m+ |E| ∗m3).

Code Number of Number of Number of Computation
statements loops dependences time

2-d Jacobi 2 6 20 0.033s
Haar 1-d 3 5 12 0.018s

LU 2 5 10 0.011s
TCE 4-index 4 20 15 0.095s
2-d FDTD 4 11 37 0.061s

Swim 57 109 633 2.8s

Table 4.1: Time to compute transformations as of Pluto version 0.3.1 on an In-
tel Core2 Quad Q6600

Table 4.3 shows the time taken compute transformations for several kernels.

4.4 Examples

We now give several examples to show non-trivial fusion structures are achieved

from our framework. The transformed code for all of these examples have automati-

cally been generated from Pluto with either the maxfuse or smartfuse heuristic.

4.4.1 Sequence of matrix-matrix multiplies

For the sequence of matrix-matrix multiplies in Figure 4.5, each of the original

loop nests can be parallelized, but a synchronization is needed after the first loop nest

is executed. The transformed loop nest has one outer parallel loop (t0), but reuse is

improved as each element of matrix C is consumed immediately after it is produced.

85



4.4. Examples

for ( i=0; i<n; i++) {
for ( j=0; j<n; j++) {
for (k=0; k<n; k++) {
S1: C[i , j ] = C[i,j ] + A[i,k] ∗ B[k,j ]
}
}
}
for ( i=0; i<n; i++) {
for ( j=0; j<n; j++) {
for (k=0; k<n; k++) {
S2: D[i , j ] = D[i,j ] + E[i,k] ∗ C[k,j ]
}
}
}

for (t0=0;t0<=N−1;t0++) {
for (t1=0;t1<=N−1;t1++) {
for (t3=0;t3<=N−1;t3++) {
C[t1 ][ t0]=A[t1][t3]∗B[t3 ][ t0]+C[t1][t0 ];
}
for (t3=0;t3<=N−1;t3++) {
D[t3 ][ t0]=E[t3][t1]∗C[t1 ][ t0]+D[t3][t0 ];
}
}
}

Transformed code

S1 S2

φ1 j j

φ2 i k

φ3 0 1
φ4 k i

Figure 4.5: Sequence of MMs

C can be contracted to a single scalar. This transformation is cannot be obtained

from existing frameworks. As per the algorithm, though φ1, φ2 fall in one permutable

band, and φ4 in another, it is still possible to create 3-d tiles for both MMs with an

optimization discussed in the next chapter.

4.4.2 Multiple statement stencils

This code (Figure 4.6) is representative of multimedia applications. The trans-

formed code enables immediate reuse of data produced by each statement at the next

statement.
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for ( i=1; i<n−1; i++) {
a1[ i ] = a0[i−1] + a0[i] + a0[i+1];
}
for ( i=1; i<n−1; i++) {
a2[ i ] = a1[i−1] + a1[i] + a1[i+1];
}
for ( i=1; i<n−1; i++) {
a3[ i ] = a2[i−1] + a2[i] + a2[i+1];
}
for ( i=1; i<n−1; i++) {
a4[ i ] = a3[i−1] + a3[i] + a3[i+1];
}
for ( i=1; i<n−1; i++) {
a5[ i ] = a4[i−1] + a4[i] + a4[i+1];
}

(a) original code

for (c1=1;c1<=min(2,n−2);c1++) {
a1[c1]=a0[1+c1]+a0[c1]+a0[c1−1];
}
for (c1=3;c1<=min(4,n−2);c1++) {
a1[c1]=a0[1+c1]+a0[c1]+a0[c1−1];
a2[c1−1]=a1[1+c1−1]+a1[c1−1]+a1[c1−1 −1];
}
for (c1=5;c1<=min(6,n−2);c1++) {
a1[c1]=a0[1+c1]+a0[c1]+a0[c1−1];
a2[c1−1]=a1[1+c1−1]+a1[c1−1]+a1[c1−1 −1];
a3[c1−2]=a2[1+c1−2]+a2[c1−2]+a2[c1−2 −1];
}
for (c1=7;c1<=min(8,n−2);c1++) {
a1[c1]=a0[1+c1]+a0[c1]+a0[c1−1];} ;
a2[c1−1]=a1[1+c1−1]+a1[c1−1]+a1[c1−1 −1];
a3[c1−2]=a2[1+c1−2]+a2[c1−2]+a2[c1−2 −1];
a4[c1−3]=a3[1+c1−3]+a3[c1−3]+a3[c1−3 −1];
}
for (c1=9;c1<=n−2;c1++) {
a1[c1]=a0[1+c1]+a0[c1]+a0[c1−1];
a2[c1−1]=a1[1+c1−1]+a1[c1−1]+a1[c1−1 −1];
a3[c1−2]=a2[1+c1−2]+a2[c1−2]+a2[c1−2 −1];
a4[c1−3]=a3[1+c1−3]+a3[c1−3]+a3[c1−3 −1];
a5[c1−4]=a4[1+c1−4]+a4[c1−4]+a4[c1−4 −1];
}

(b) Fused code

S1 S2 S3 S4 S5
φ1(i) i i+ 1 i+ 2 i+ 3 i+ 4
φ2(i) 0 1 2 3 4

Figure 4.6: Stencils involving multiple statements
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4.4.3 CCSD (T)

The code is shown in Figure 4.7. Fusion can greatly reduce the size of the arrays

here. In transformed code, both X and Y which were originally 6-d arrays, have been

contracted to scalars.

e1 = 0;
e2 = 0;

for (a=0;a<V;a++)
for (b=0;b<V;b++)
for (c=0;c<V;c++)
for (e=0;e<V;e++)
for ( i=0;i<O;i++)
for (j=0;j<O;j++)
for (k=0;k<O;k++)
for (m=0;m<O;m++)
X[a][b ][ c ][ i ][ j ][ k] = X[a][b][c ][ i ][ j ][ k] +

T2[a][b ][k ][m]∗O1[c][m][i ][ j ] + T2[c][e ][ i ][ j ]∗O2[a][b ][ e ][ k ];

for (a=0;a<V;a++)
for (b=0;b<V;b++)
for (c=0;c<V;c++)
for ( i=0;i<O;i++)
for (j=0;j<O;j++)
for (k=0;k<O;k++)
Y[a][b ][ c ][ i ][ j ][ k] = T1[c][k]∗O3[a][b ][ i ][ j ];

for a, b, c, i , j , k
e1 = e1 + X[a][b][c ][ i ][ j ][ k]∗X[a][b ][ c ][ i ][ j ][ k ];

for a, b, c, i , j , k
e2 = e2+ X[a][b ][ c ][ i ][ j ][ k]∗Y[a][b ][ c ][ i ][ j ][ k ];

Figure 4.7: CCSD (T) code
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for (c1=0; c1<=V−1; c1++) {
for (c2=0; c2<=V−1; c2++) {
for (c3=0; c3<=V−1; c3++) {
for (c4=0; c4<=O−1; c4++) {
for (c5=0; c5<=O−1; c5++) {
for (c6=0; c6<=O−1; c6++) {
Y = T1[c3][c6]∗O3[c1][c2 ][ c4 ][ c5 ];
for (c8=0; c8<=V−1; c8++) {
for (c9=0; c9<=O−1; c9++) {
X = X + T2[c3][c8][c4][c5]∗O2[c1][c2 ][ c8 ][ c6] +

T2[c1][c2 ][ c6 ][ c9]∗O1[c3][c9 ][ c4 ][ c5 ];
}
}
e1 = e1 + X∗X;
e2 = e2 + X∗Y;
}
}
}
}
}
}

Figure 4.8: CCSD (T): Pluto transformed code: maximally fused. X and Y have been
reduced to scalars from 6-dimensional arrays

4.4.4 TCE four-index transform

This is a sequence of four loop nests, each of depth five (Figure 4.9), occurring

in Tensor Contraction Expressions that appear in computational quantum chemistry

problems [CS90]. Our tool transforms the code as shown in Figure 4.10, where the

producing/consuming distances between the loops have been reduced. One of the

dimensions of arrays T1, T3 can now be contracted. There are other maximal fusion

structures that can be enumerated, but we do not show them due to space constraints.
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It is extremely tedious to reason about the legality of such a transformation manually.

With a semi-automatic framework accompanied with loop shifting to automatically

correct transformations [VCP07], such a transformation cannot be found unless the

expert has applied the right permutation on each loop nest before fusing them. In this

case, correction purely by shifting after straightforward fusion will introduce shifts at

the outer levels itself, giving up reuse opportunity.

4.4.5 GEMVER

The GEMVER kernel is a combination of outer products and matrix vector prod-

ucts. It is used for householder bidiagonalization. The BLAS version of the GEMVER

kernel from Siek et al. [SKJ08] along with the linear algebraic specification is shown

in Figure 4.11. A, B are matrices, while x, y, w, u1, v1, u2, v2 are vectors and α,

β, γ are scalars. The nested loop code is in Figure 4.12. Permuting and fusing the

first two loop nests is the key. Figure 4.13 shows the performance comparison. More

detailed results will be presented in Chapter 6.

4.5 Past Work on Fusion

Traditional works on loop fusion [KM93, MS97, SM97, QK06] are restricted in

their ability to find complex fusion structures. This is mainly due to the lack of a pow-

erful representation for dependences and transformations. Hence, the non-polyhedral

approaches typically study fusion in an manner isolated with other transformations.

This is the case for several kernels discussed in Section 4.4 and for which results will

be presented in Chapter 6.
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for (a=0; a<N; a++)
for (q=0; q<N; q++)
for (r=0; r<N; r++)
for (s=0; s<N; s++)

for (p=0; p<N; p++)
T1[a][q ][ r ][ s ] = T1[a][q][ r ][ s ] + A[p][q][ r ][ s]∗C4[p][a ];

for (a=0; a<N; a++)
for (b=0; b<N; b++)
for (r=0; r<N; r++)
for (s=0; s<N; s++)
for (q=0; q<N; q++)
T2[a][b ][ r ][ s ] = T2[a][b][ r ][ s ] + T1[a][q][ r ][ s ]∗C3[q][b ];

for (a=0; a<N; a++)
for (b=0; b<N; b++)
for (c=0; c<N; c++)
for (s=0; s<N; s++)
for (r=0; r<N; r++)
T3[a][b ][ c ][ s ] = T3[a][b][c ][ s ] + T2[a][b][ r ][ s ]∗C2[r ][ c ];

for (a=0; a<N; a++)
for (b=0; b<N; b++)
for (c=0; c<N; c++)
for (d=0; d<N; d++)
for (s=0; s<N; s++)
B[a][b ][ c ][ d] = B[a][b ][ c ][ d] + T3[a][b][c ][ s]∗C1[s ][d ];

Figure 4.9: TCE 4-index transform (original specification)
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for (c1=0;c1<=N−1;c1++) {
for (c2=0;c2<=N−1;c2++) {
for (c4=0;c4<=N−1;c4++) {
for (c5=0;c5<=N−1;c5++) {
for (c8=0;c8<=N−1;c8++) {
{T1[c1][c5 ][ c4 ][ c2]=A[c8][c5 ][ c4 ][ c2]∗C4[c8][c1]+T1[c1][c5 ][ c4 ][ c2 ];} ;
}
for (c8=0;c8<=N−1;c8++) {
{T2[c1][c8 ][ c4 ][ c2]=T1[c1][c5 ][ c4 ][ c2]∗C3[c5][c8]+T2[c1][c8 ][ c4 ][ c2 ];} ;
}
}
}
for (c4=0;c4<=N−1;c4++) {
for (c5=0;c5<=N−1;c5++) {
for (c8=0;c8<=N−1;c8++) {
{T3[c1][c4 ][ c5 ][ c2]=T2[c1][c4 ][ c8 ][ c2]∗C2[c8][c5]+T3[c1][c4 ][ c5 ][ c2 ];} ;
}
for (c8=0;c8<=N−1;c8++) {
{B[c1][c4 ][ c5 ][ c8]=T3[c1][c4 ][ c5 ][ c2]∗C1[c2][c8]+B[c1][c4 ][ c5 ][ c8 ];} ;
}
}
}
}
}

Figure 4.10: Transformed TCE code (tiling and parallelization is not shown): T1,
T3 can be contracted to scalars, while T2 and B to a 2-d array and a 3-d array
respectively

B = A+ u1v
T
1 + u2v

T
2

x = βBTy + z

w = αBx

dcopy(m ∗ n, A, B, 1);
dger(m, n, 1.0, u1, 1, v1 , 1, B, m);
dger(m, n, 1.0, u2, 1, v2 , 1, B, m);
dcopy(n, z, x, 1);
dgemv(’T’, m, n, beta, B, m, y, 1, 1.0, x, 1);
dgemv(’N’, m, n, alpha, B, m, x, 1, 0.0, w, 1);

(b) BLAS version

Figure 4.11: The GEMVER kernel
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for ( i=0; i<N; i++)
for (j=0; j<N; j++)

B[i ][ j ] = A[i ][ j ] + u1[i]∗v1[j ] + u2[i]∗v2[j ];

for ( i=0; i<N; i++)
for (j=0; j<N; j++)

x[ i ] = x[i ] + beta∗ B[j][ i ]∗y[ j ];

for ( i=0; i<N; i++)
x[ i ] = x[i ] + z[i ];

for ( i=0; i<N; i++)
for (j=0; j<N; j++)

w[i ] = w[i] + alpha∗ B[i][ j ]∗x[ j ];

Figure 4.12: GEMVER nested loop code
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Figure 4.13: GEMVER performance: preview (detailed results in Chapter 6)
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Darte et al. [DSV97, DH00] study fusion with parallelization, but only in com-

bination with shifting. Our work on the other hand enables fusion in the pres-

ence of all polyhedral transformations like permutation and skewing. Megiddo and

Sarkar [MS97] proposed a way to perform fusion for an existing parallel program by

grouping components in a way that parallelism is not disturbed. Decoupling paral-

lelization and fusion clearly misses several interesting solutions that would have been

captured if the legal fusion choices were itself cast into their framework.

Siek et al. [SKJ08] built a domain specific compiler for dense linear algebra ker-

nels; parallelization has not yet been reported by the authors. In comparison, our

framework applies to all polyhedral input that encompass linear algebra kernels, and

parallelization issues are all naturally handled in an integrated fashion. Darte [Dar00]

studies the complexity of several variations of the loop fusion problem. The cutting

choice that arises in our algorithm is of exponential complexity in the number of SCCs

if one wishes to try all possibilities and choose the best based on our cost function or

any other cost model. None of our heuristics explore all possible choices, but just the

ones that seem to be interesting.

Affine scheduling-based approaches are geared towards finding minimum latency

schedules or maximum fine-grained parallelism. However, a schedule specifying maxi-

mum parallelism need not finely interleave operations of different statements. Hence,

works based on such schedules [BF03, Gri04] do not readily enable fusion.

Lim et al.’s [LCL99] affine partitioning algorithm, like our algorithm, would al-

low maximal fusion within an SCC. However, their algorithm does not enumerate or
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4.5. Past Work on Fusion

present a choice of fusion structures across SCCs as they treat each SCC indepen-

dently. Some treatment of optimizing across two neighboring SCCs exists [LCL99]

using constraints for near-neighbor communication, but the approach as presented is

a test-and-set approach and is not automatable in general. Also, whether it is within

an SCC or across SCCs, the choice of the partitions would have the same downsides as

those described in Section 3.16 whenever communication-free partitions do not exist.

For the same reasons, their framework for array contraction [LLL01] though may be

successful in contracting arrays whenever it independent partitions can be found, it

cannot be employed when storage along an array dimension can be shrunk to a small

constant. Due to minimization of δes, our algorithm can enable that.

Ahmed et al. [AMP01] proposed a framework to tile imperfectly nested loops for

locality. Their embedding functions can also capture fusion. However, limitations

of their reuse distance minimization heuristic discussed in detail in Section 3.16 will

have a direct impact on the ability to find good fusions. Also, there is no procedure

to expose fusion structure choices, as is possible with our cutting schemes.

The URUK/WRAP-IT framework [CGP+05, GVB+06] can be used to manually

specify fusion and its legality can be checked. With the automatic correction scheme

proposed by Vasilache et al. [VCP07], any illegal fusion can be corrected by intro-

ducing shifts, at multiple levels if needed. However, this cannot enable, for eg., a

permute and fuse, unless the expert specifying the transformation provides the right

permutation to start with.
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In this chapter, we proposed three different fusion heuristics that cover the diver-

sity in choice of available fusion structures for loop nest sequences of medium size.

Detailed experimental results are presented in Chapter 6. Overall, to the best of

our knowledge, ours is the first work to treat fusion in an integrated manner in a

transformation framework for automatic parallelization.
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CHAPTER 5

The PLUTO Parallelization System

In this chapter, we first provide an overview of the new end-to-end parallelization

system that we developed. Then, issues involved in generation of actual tiled and par-

allel code are discussed. Lastly, some complementary post-processing transformations

are discussed.

5.1 Overview of PLUTO

The transformation framework described in Chapter 3 and Chapter 4 has been

implemented into a tool, PLUTO [Plu]. Figure 5.1 shows the entire tool-chain. We

used the scanner, parser and dependence tester from the LooPo project [Loo]. We

used PipLib 1.3.6 [PIP, Fea88] as the ILP solver to find lexicographic minimal solu-

tion for 3.9. Note that the parametric functionality of PIP is not utilized, so any ILP

solver can be used here. Cloog 0.14.1 [Clo] was used for code generation. The trans-

formation framework takes as input, polyhedral domains and dependence polyhedra

from LooPo’s dependence tester, computes transformations and provides it to Cloog.
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5.1. Overview of PLUTO

Compilable OpenMP parallel code is finally output after some post-processing on the

Cloog code.

LooPo’s dependence tester can provide flow, anti, output, and input dependences.

However, if techniques to remove false dependences are applied, our framework can

work with those reduced set of dependences too. The removal of transitively covered

dependences is desired but not necessary, and techniques for the same exist [VBGC06,

Vas07]. LooPo’s tester employs the PIP library [Fea88] to test for the existence of an

integer solution to a system of linear equalities and inequalities. In addition, it can also

compute the last conflicting access for a given dependence that is expressed through

an affine function called the h-transformation, which gives the last source iteration

as a function of the target iteration, i.e., ~s = he(~t). The equalities representing the

h-transformation are included in the dependence polyhedron. The h-transformation

is meaningful for all but the anti-dependences (Chapter 5.2.2 of [Gri04]). For RAW

and WAW dependences, providing the h-transformation can be viewed as freeing

transitive dependences from a given dependence polyhedron.

A brief description of CLooG. The affine functions, φ or TS, are called scattering

functions in the specification of Cloog. Cloog [Clo, Bas04a] can scan a union of poly-

hedra, and optionally, under a new global lexicographic ordering specified as through

scattering functions. Scattering functions are specified statement-wise, and the legal-

ity of scanning the polyhedron with these dimensions in the particular order should

be guaranteed by the specifier – an automatic transformation system in our case.

The code generator does not have any information on the dependences and hence, in
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5.2. Tiled Code Generation under Transformations

the absence of any scattering functions would scan the union of the statement poly-

hedra in the global lexicographic order of the original iterators (statement instances

are interleaved). Cloog uses Quilleré separation [QRW00] with several improvements

made by Bastoul [Bas04a]. Its operations are based on PolyLib [Wil93, Pol], which

in turn uses the Chernikova algorithm [LeV92]) to move between the vertex form of

a polyhedron and its face form [Wil93]. The Chernikova algorithm is guaranteed to

give an irredundant set of linear inequalities from the vertex form. The code gener-

ated is more efficient than that by older code generators based on Fourier-Motzkin

variable elimination like Omega Codegen [KPR95] or LooPo’s internal code genera-

tor [GLW98, Gri04]). Also, code generation time and memory utilization are much

lower [Bas04a] besides making it feasible for cases it was earlier thought not to be.

Such a powerful and efficient code generator is essential in conjunction with the trans-

formation framework we developed. When tiling is expressed with the transformations

we compute, generating code is a challenging task. In particular, Cloog’s ability to

optimize control for user-desired levels (-f/-l options) – trading code size with condi-

tional depth control make code generation feasible in the presence of a large number

of statements or under complex transformations for coarse-grained parallelization.

5.2 Tiled Code Generation under Transformations

In this section, we describe how tiled code is generated from transformations found

by the algorithm in the previous chapter. This is an important step in generation of

high performance code.
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5.2. Tiled Code Generation under Transformations

5.2.1 Syntactic tiling versus tiling scattering functions

Before proceeding further, we differentiate between using the term ‘tiling’ for, (1)

modeling and enabling tiling through a transformation framework (as was described

in the previous chapter), (2) final generation of tiled code from the hyperplanes found.

Both are generally referred to as tiling. Our approach models tiling in the transfor-

mation framework by finding affine transformations that make rectangular tiling in

the transformed space legal. The hyperplanes found are the new basis for the loops

in the transformed space and have special properties that have been detected when

the transformation is found – e.g. being parallel, sequential or belonging to a band

of loops that can now be rectangularly tiled. Hence, the transformation framework

guarantees legality of rectangular tiling in the new space. The final generation of

tiled loops can be done in two ways broadly, (1) directly through the polyhedral code

generator itself in one pass itself, or (2) as a post-pass on the abstract syntax tree

generated after applying the transformation. Each has its merits and both can be

combined too.

For transformations that possibly lead to imperfectly nested code, tiling the scat-

tering functions is a natural way to get tiled code in one pass through the code gen-

erator. Consider the code in Figure 5.2.2(a) for example. If code is generated by just

applying the transformation first, we get code shown in Figure 5.2.2(b). Even though

the transformation framework obtained two tiling hyperplanes, the transformed code

in Figure 5.2.2(b) has no 2-d perfectly nested kernel, and tiling it syntactically is

illegal (fully distributing the two statements is also legal). The legality of syntactic
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5.2. Tiled Code Generation under Transformations

tiling or unroll/jam (for register tiling) of such loops cannot be reasoned about in the

target AST easily since we are typically out of the polyhedral model once we obtain

the loop nests. We describe in the next section how tiled code can be obtained in

one pass through the code generator by just updating the domains and scattering

functions without knowing anything about the AST. For example, for the code in

Figure 5.2.2(a), 2-d tiled code generated would be as shown in Figure 5.3.

5.2.2 Tiles under a transformation

Our approach to tiling is to specify a modified higher dimensional domain and

specify transformations for what would be the tile space loops in the transformed

space. Consider a very simple example: a two-dimensional loop nest with original

iterators: i and j. Let the transformation found be c1 = i, and c2 = i + j, with c1,

c2 constituting a permutable band; hence, they can be blocked leading to 2-d tiles.

We would like to obtain target code that is tiled rectangularly along c1 and c2. The

domain supplied to the code generator is a higher dimensional domain with the tile

shape constraints like that proposed by Ancourt and Irigoin [AI91]; but the scatterings

are duplicated for the tile space too. ‘T’ subscript is used to denote the corresponding

tile space iterator. The tile space and intra tile loop scattering functions are specified
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5.2. Tiled Code Generation under Transformations

as follows. The new domain is given by:

0 ≤ i ≤ N − 1

0 ≤ j ≤ N − 1

0 ≤ i− 32iT ≤ 31

0 ≤ (i+ j)− 32(iT + jT ) ≤ 31

The scattering function is given by: (c1T , c2T , c3T , c1, c2, c3) = (iT , iT + jT , i, i+ j)

Algorithm 3 Tiling for multiple statements under transformations

INPUT Hyperplanes comprising a tilable band of width k: φi
S, φ

i+1

S , . . . , φi+k−1

S ; orig-
inal domains (DS), transformations (TS), tile sizes: τi, τi+1, . . . , τi+k−1

1: /* Update the domains */
2: for each statement S do
3: for each φj

S = f j(~iS) + f0 do
4: Increase the domain (DS) dimensionality by creating supernodes for all orig-

inal iterators that appear in φj
S

5: Let the supernode iterators be ~iT
6: Add the following two constraints to DS:

τj ∗ f
j(~iTS

) ≤ f j(~iS) + f
j
0

f j(~iS) + f
j
0 ≤ τj ∗ f

j(~iTS
) + τj − 1

7: end for
8: end for
9: /* Update the transformation functions */

10: for each statement S do
11: Add k new rows to the transformation of S at level i
12: Add as many columns as the number of supernodes added to DS in Step 4
13: for each φj

S = f j(~iS) + f
j
0 , j = i, . . . , i+ k − 1 do

14: Create a supernode: φj
TS

= f j(~iTS
)

15: end for
16: end for
OUTPUT Updated domains (DS) and transformations (TS)
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5.2. Tiled Code Generation under Transformations

The higher-dimensional tile space loops are referred to as supernodes in the de-

scription. iT , jT are supernodes in the original domain, while c1T , c2T are supernodes

in the transformed space. We will refer to the latter as scattering supernodes. With

this, we formally state the algorithm to update the domains and transformations

(Algorithm 3).

Theorem 4. The set of scattering supernodes, φi
TS
, φi+1

TS
, . . . , φi+k−1

TS
obtained from

Algorithm 3 satisfy the tiling legality condition (3.3)

Since, φj
S, i ≤ j ≤ i + k − 1 satisfy (3.3) and since the supernodes step through

an aggregation of parallel hyperplane instances, dependences have non-negative com-

ponents along the scattering supernode dimensions too. This holds true for both

intra and inter-statement dependences. {φj
TS1
, φ

j
TS2
, . . . , φ

j
TSn
} thus represent a com-

mon supernode dimension in the transformed space with the same property as that

of {φj
S1
, φ

j
S2
, . . . , φ

j
Sn
}. ✷

Figure 5.2.2 shows tiles for imperfectly nested 1-d Jacobi. Note that tiling it

requires shifting S2 by one and skewing the space loops by a factor of two with

respect to time, as opposed to skewing by a factor of one that is required for the

single-assignment perfectly nested variant in Figure 5.2.2(a). The update statement

causes the increase in skewing factor. Figure 5.3 shows the tiled code. One can

notice a 2-d perfectly nested hotspot in the code which corresponds to the so-called

full tiles shown in Figure 5.2.2. Such a perfectly nested hotspot stands out in the

imperfectly nested code. Further optimizations like register tiling can be performed

on this portion of the code syntactically. Alternatively, separation of such a full tile
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5.2. Tiled Code Generation under Transformations

can be accomplished with much more compact code by modifying the code generator

itself [KRSR07].

Example: 3-d tiles for LU The transformation obtained for the LU decomposi-

tion code shown in Figure 5.7 is:

TS1 :





c1
c2
c3



 =





1 0
0 1
1 0





(
k

j

)

TS2 :





c1
c2
c3



 =





1 0 0
0 0 1
0 1 0









k

i

j





Hyperplanes c1, c2 and c3 are identified as belonging to one tilable band. The

domains are specified as:

S1 S2
0 ≤ k ≤ N − 1 0 ≤ k ≤ N − 1

k + 1 ≤ j ≤ N − 1 k + 1 ≤ i ≤ N − 1
k + 1 ≤ j ≤ N − 1

0 ≤ k − 32kT ≤ 31 0 ≤ k − 32kT ≤ 31
0 ≤ j − 32jT ≤ 31 0 ≤ i− 32iT ≤ 31

0 ≤ j − 32jT ≤ 31

The scattering functions for S1 and S2 are given by:

TS1 : (c1T , c2T , c3T , c1, c2, c3) = (kT , jT , kT , k, j, k)

TS2 : (c1T , c2T , c3T , c1, c2, c3) = (kT , jT , iT , k, j, i)

Note that tile sizes for c1 and c3 need to be the same since they correspond to the

same dimension in the original domain of S1. The tiled code after applying the

parallelization technique described in the next sub-section is shown in the next chapter

(Figure 6.8).

Tiling multiple times. The same tiling hyperplanes can be used to tile multiple

times (due to Theorem 4), for registers, L1, L2 caches, and for parallelism, and the
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5.2. Tiled Code Generation under Transformations

for (t=0; t<T; t++) {
for ( i=2; i<N−1; i++) {
b[ i ] = 0.333∗(a[i−1] + a[i] + a[i+1]);
}
for ( j=2; j<N−1; j++){
a[ j ] = b[j ];
}
}

(a) Original code

for (c1=0;c1<=T−1;c1++) {
b[2]=0.333∗(a[1+2]+a[2]+a[2 −1]);
for (c2=2∗c1+3;c2<=2∗c1+N−2;c2++) {

b[−2∗c1+c2] = 0.333∗(a[1+−2∗c1+c2]+
a[−2∗c1+c2]+a[−2∗c1+c2−1]);

a[−2∗c1+c2−1]=b[−2∗c1+c2−1];
}
a[N−2]=b[N−2];

}

(b) Transformed (before tiled code generation)
context N >= 5

Ts1

(
t

i

)

=





1 0
2 1
0 0





(
t

i

)

Ts2

(
t

j

)

=





1 0
2 1
0 0





(
t

j

)

+





0
1
1





φ2

φ1

N+2*T+1

T φ3 b b b b b b b b b b b b

b b b b b b b b b b b b

b b b b b b b b b b b b

b b b b b b b b b b b b

b b b b b b b b b b b b

b b b b b b b b b b b bbc bc bc bc bc bc bc bc bc bc bc bc

bc bc bc bc bc bc bc bc bc bc bc bc

bc bc bc bc bc bc bc bc bc bc bc bc

bc bc bc bc bc bc bc bc bc bc bc bc

bc bc bc bc bc bc bc bc bc bc bc bc

bc bc bc bc bc bc bc bc bc bc bc bc

b Instances of S1
bc Instances of S2
rs A tile

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1

2

3

4

Indexing base changed to (1,1) for convenient display

(c) Tiles in the transformed space

Figure 5.2: Imperfectly nested Jacobi stencil: tiling
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for (t0=0;t0<=floord(T,1024);t0++) {
for (t1=max(0,ceild(2048∗t0−1021,1024));

t1<=min(floord(n+2∗T,1024),floord(2048∗t0+n+2046,1024));t1++) {
if ((t0 <= floord(1024∗t1−n,2048)) && (t1 >= ceild(n+2,1024))) {
if (−n%2 == 0) {
{a[n−1]=b[1+n−1]+b[n−1 −1]+b[n−1];} ;

}
}
for (t2=max(max(ceild(1024∗t1−n+1,2),1024∗t0),1);
t2<=min(min(min(512∗t1−2,1024∗t0+1023),floord(1024∗t1−n+1023,2)),T);t2++) {
for (t3=1024∗t1;t3<=2∗t2+n−1;t3++) {
{b[−2∗t2+t3]=a[−2∗t2+t3]∗a[1+−2∗t2+t3]+a[−2∗t2+t3−1];} ;
{a[−2∗t2+t3−1]=b[1+−2∗t2+t3−1]+b[−2∗t2+t3−1 −1]+b[−2∗t2+t3−1];} ;
}
{a[n−1]=b[1+n−1]+b[n−1 −1]+b[n−1];} ;
}
for (t2=max(max(512∗t1−1,1024∗t0),1);

t2<=min(min(1024∗t0+1023,floord(1024∗t1−n+1023,2)),T);t2++) {
{b[2]=a[2]∗a[1+2]+a[2 −1];} ;
for (t3=2∗t2+3;t3<=2∗t2+n−1;t3++) {
{b[−2∗t2+t3]=a[−2∗t2+t3]∗a[1+−2∗t2+t3]+a[−2∗t2+t3−1];} ;
{a[−2∗t2+t3−1]=b[1+−2∗t2+t3−1]+b[−2∗t2+t3−1 −1]+b[−2∗t2+t3−1];} ;
}
{a[n−1]=b[1+n−1]+b[n−1 −1]+b[n−1];} ;
}
for (t2=max(max(1,1024∗t0),ceild(1024∗t1−n+1024,2));

t2<=min(min(1024∗t0+1023,T),512∗t1−2);t2++) {
for (t3=1024∗t1;t3<=1024∗t1+1023;t3++) {
{b[−2∗t2+t3]=a[−2∗t2+t3]∗a[1+−2∗t2+t3]+a[−2∗t2+t3−1];} ;
{a[−2∗t2+t3−1]=b[1+−2∗t2+t3−1]+b[−2∗t2+t3−1 −1]+b[−2∗t2+t3−1];} ;
}
}
for (t2=max(max(max(512∗t1−1,1),1024∗t0),ceild(1024∗t1−n+1024,2));

t2<=min(min(512∗t1+510,1024∗t0+1023),T);t2++) {
{b[2]=a[2]∗a[1+2]+a[2 −1];} ;
for (t3=2∗t2+3;t3<=1024∗t1+1023;t3++) {
{b[−2∗t2+t3]=a[−2∗t2+t3]∗a[1+−2∗t2+t3]+a[−2∗t2+t3−1];} ;
{a[−2∗t2+t3−1]=b[1+−2∗t2+t3−1]+b[−2∗t2+t3−1 −1]+b[−2∗t2+t3−1];} ;
}
}
}
}

Figure 5.3: Imperfectly nested Jacobi: tiled code (context: N ≥ 4)
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legality of the same is guaranteed by the transformation framework. The scattering

functions are duplicated for each such level as it was done for one level. Such a

guarantee is available even when syntactic tiling is to be done as a post-pass on a

perfectly nest band in the target AST.

5.2.3 Pipelined parallel code generation

Once the algorithm in Sec. 5.2.2 is applied, outer parallel or inner parallel loops

can be readily marked parallel (for example with OpenMP pragmas). However, unlike

scheduling-based approaches, since we find tiling hyperplanes and the outer ones are

used as space, one or more of the space loops may have dependences along them.

Tiles created from an outermost band of tiling hyperplanes are to be scheduled ap-

propriately.

Algorithm 4 Code generation for tiled pipelined parallelism

INPUT Given that Algorithm 3 has been applied, a set of k (statement-wise) su-
pernodes in the transformed space belonging to a tilable band: φ1

TS
, φ2

TS
, . . . , φk

TS

1: To extract m (< k) degrees of pipelined parallelism:
2: /* Update transformation functions */
3: for each statement S do
4: Perform the following unimodular transformation on only the scattering su-

pernodes: φ1
T → φ1

T + φ2
T + · · ·+ φm+1

T

5: Mark φ2
T , φ

3
T , . . . , φ

m+1

T as parallel
6: Leave φ1

T , φ
m+2

T , . . . , φk
T as sequential

7: end for
OUTPUT Updated transformation functions and scatterings
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P1

P0

(1,1)
(1,0)

Figure 5.4: Tile wavefront along (2,1)

Treating pipelined parallelism as inner parallelism: For pipelined parallel

codes, our approach to generate coarse-grained (tiled) shared memory parallel code

is as described in Figure 4. Once the technique described in the previous section is

applied to generate the tile space scatterings and intra-tiled loops, dependence com-

ponents are non-negative direction along each of the tiling hyperplanes. Hence, the

sum φ1
T +φ

2
T + · · ·+φ

p+1

T satisfies all affine dependences satisfied by φ1
T , φ

2
T , . . . , φ

p+1

T ,

and gives a legal schedule of tiles. Since the transformation is only on the tile space, it

preserves the shape of the tiles. Communication still happens along boundaries of φ1,

φ2, . . . , φp, thus preserving benefits of the optimization performed by the bounding

function approach. Moreover, performing such a unimodular transformation on the

tile space introduces very less additional code complexity.

In contrast, obtaining an affine (fine-grained) schedule and then enabling time

tiling would lead to shapes different from above our approach. The above technique of
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5.2. Tiled Code Generation under Transformations

for ( i=1; i<N; i++) {
for (j=1; j<N; j++) {
a[ i , j ] = a[i−1,j] + a[i , j−1];
}
}

Figure 5.5: Original (sequential) code

for (c1=−1;c1<=floord(N−1,16);c1++) {
#pragma omp parallel for shared(c1,a) private(c2,c3,c4)

for (c2=max(ceild(32∗c1−N+1,32),0);
c2<=min(floord(16∗c1+15,16),floord(N−1,32)); c2++){

for (c3=max(1,32∗c2);c3<=min(32∗c2+31,N−1); c3++) {
for (c4=max(1,32∗c1−32∗c2); c4<=min(N−1,32∗c1−32∗c2+31); c4++) {

S1(c2,c1−c2,c3,c4) ;
}

}
< implied barrier >

}
}

Figure 5.6: Shared memory parallel code generation example: a coarse-grained tile
schedule
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adding up 1-d transforms resembles that of [LL98] where (permutable) time partitions

are summed up for maximal dependence dismissal; however, we do this in the tile

space as opposed to for finding a schedule that dismisses all dependences.

Figure 5.6 shows a simple example with tiling hyperplanes (1,0) and (0,1). Our

scheme allows clean generation of parallel code without any syntactic treatment. Al-

ternate ways of generating pipelined parallel code exist that insert special post/notify

or wait/signal directives to handle dependences in the space loops [LCL99, Gri04],

but, these require syntactic treatment. Note that not all degrees of pipelined paral-

lelism need be exploited. In practice, a few degrees are sufficient; using several could

introduce code complexity with diminishing return.

for (k=0; k<N; k++) {
for (j=k+1; j<N; j++) {

a[k ][ j ] = a[k][ j ]/a[k ][ k ];
}
for ( i=k+1; i<N; i++) {

for ( j=k+1; j<N; j++) {
a[ i ][ j ] = a[i ][ j]−a[i ][ k]∗a[k ][ j ];

}
}

}

Figure 5.7: LU decomposition (non-pivoting) form

5.2.4 Example 1: Imperfectly nested stencil.

The transformation computed by Algorithm 1 is as follows.
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



c1
c2
c3



 = TS1

(
t

i

)

=





1 0
2 1
0 0





(
t

i

)

+





0
0
0









c1
c2
c3



 = TS2

(
t

j

)

=





1 0
2 1
0 0





(
t

j

)

+





0
1
1





The transformation is updated to the following for generation of locally tiled code.

TS1









tT
iT
t

i

1









=









1 0 0 0 0
2 1 0 0 0
0 0 1 0 0
0 0 2 1 0
0 0 0 0 0

















tT
iT
t

i

1









TS2









tT
jT
t

j

1









=









1 0 0 0 0
2 1 0 0 0
0 0 1 0 0
0 0 2 1 1
0 0 0 0 1

















tT
jT
t

j

1









After applying Algorithm 4, the transformation for generation of parallelized and

locally tiled code will be the following with the second hyperplane marked parallel.

TS1









tT
iT
t

i

1









=









3 1 0 0 0
2 1 0 0 0
0 0 1 0 0
0 0 2 1 0
0 0 0 0 0

















tT
iT
t

i

1









TS2









tT
jT
t

j

1









=









3 1 0 0 0
2 1 0 0 0
0 0 1 0 0
0 0 2 1 1
0 0 0 0 1

















tT
jT
t

j

1









(5.1)

5.2.5 Example 2: LU

For the LU decomposition code in Fig. 5.7, we show how the transformations are

updated to obtain one degree or two degrees of pipelined parallelism. The transfor-
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mations for S1 and S2, after the tiling for 1-d pipelined parallelism is expressed, are

the following with c2 being marked OpenMP parallel.

TS1 :











c1
c2
c3
c4
c5
c6











=











1 1 0 0
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1
0 0 1 0

















kT
jT
k

j







TS2 :











c1
c2
c3
c4
c5
c6











=











1 0 1 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0





















kT
iT
jT
k

i

j











If one wishes to extract two degrees of pipelined parallelism, the transformation

would be the following, with loops c2 and c3 are marked OpenMP parallel.

TS1 :











c1
c2
c3
c4
c5
c6











=











2 1 0 0
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1
0 0 1 0

















kT
jT
k

j







TS2 :











c1
c2
c3
c4
c5
c6











=











1 1 1 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0





















kT
iT
jT
k

i

j










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5.3 Preventing Code Expansion in Tile Space

The overhead of floor and ceil operations as well as conditionals in the tile-space

loops (at the outer levels) is insignificant. Hence, we would like to have compact code

at the outer level while allowing code expansion in the intra-tile loops to decrease

control complexity. This improves performance while keeping the code size under

control.

Using the default options with tiling specified as described leads to significant

code expansion since the transformed space we are tiling is a shifted and skewed

space. Preventing any code expansion at all leads to an if condition in the innermost

loop, resulting in very low performance. However, optimizing only the intra-tile loops

for control is very effective. It also avoids large numbers in the intermediate operations

performed by code generators, that could possibly lead to PolyLib exceptions for large

tile sizes or deep loop nest tiling. Table 5.1 shows the sensitivity in performance for

the code in Figure 5.2.2.

Cloog options Code size Codegen Execution Improvement
(lines) time time over ‘icc -fast’

Full code expansion 2226 1.84s 2.57s 2.7x
Only intra-tile expansion 40 0.04s 1.6s 4.3x

No code expansion 15 0.01s 17.6s 0.39x

Table 5.1: Performance sensitivity of L1-tiled imperfectly nested stencil code with
Cloog options: N = 106, T = 1000, tile dimensions: 2048× 2048
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5.4 Tilability Detection and Parallelism Detection

Our algorithm naturally transforms to hierarchy of tilable loop nest sets. The

outermost band can be taken and used for coarse-grained parallelization using the

scheme proposed in Sec. 5.2.3.

5.4.1 AST-based versus scattering function-based

Currently, all parallelism and tilability detection in Pluto is done on a (global)

scattering function basis as opposed to being done on the transformed AST. The

former is easier to implement from within the transformation framework without

making any changes to the code generator and was the only reason to do so. When

the AST is split using a scalar dimension, a particular inner φk for a statement may be

parallel while the one for another need not be. However, if the analysis is done for all

the dependences (intra-statement and inter-statement), it would lead to conservative

detection. The way inner and outer parallel hyperplanes were defined in Def 14 and

Def 13 was at a “global” level. The same holds for tiling too, but is not as important

as the concern described in the next sub-section.

Once φs are known, directions of the affine dependences components can be com-

puted on a scattering function basis, i.e., one can compute for each edge e and a given
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5.4. Tilability Detection and Parallelism Detection

dimension k of the scattering function:

0 : φk
Sj
(~t)− φk

Si
(~s) = 0, 〈~s,~t〉 ∈ Pe

+ :
(

φk
Sj
(~t)− φk

Si
(~s) ≥ 0, 〈~s,~t〉 ∈ Pe

)

∧ ¬
(

φk
Sj
(~t)− φk

Si
(~s) = 0, 〈~s,~t〉 ∈ Pe

)

− :
(

φk
Sj
(~t)− φk

Si
(~s) ≤ 0, 〈~s,~t〉 ∈ Pe

)

∧ ¬
(

φk
Sj
(~t)− φk

Si
(~s) = 0, 〈~s,~t〉 ∈ Pe

)

⋆ : Neither of +,−, or 0

The above can be computed very easily with calls to PIP [Fea88] since φs are already

known.

5.4.2 Intricacies in detecting tilable bands

Just tiling the bands is conservative in many cases. All previous frameworks

that transform to a hierarchy of permutable loop nests [WL91a, DSV97, LCL99]

suggest such tiling. We discuss some intricacies using a kernel from a real application.

Consider the imperfectly nested doitgen kernel shown in Figure 5.8. It can be viewed

as an in-place matrix-matrix multiplication.

The transformation found with Pluto’s maxfuse is as follows.

S1: (φ1, φ2, φ3, φ4, φ5) = (r, q, 0, p, 0)

S2: (φ1, φ2, φ3, φ4, φ5) = (r, q, 1, p, s)

S3: (φ1, φ2, φ3, φ4, φ5) = (r, q, 2, p, 0)

The direction vectors based on the affine dependence components can now be

written as:
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5.4. Tilability Detection and Parallelism Detection

for (r=0; r<N; r++) {
for (q=0; q<N; q++) {

for (p=0; p<N; p++) {
sum[r][q ][ p] = 0;
for (s = 0; s< N; s++) {

sum[r][q ][p] = sum[r][q][p] + A[r][q ][ s]∗C4[s ][p ];
}

}
for (p=0; p<N; p++) {

A[r ][ q ][ p] = sum[r][q ][p ];
}

}
}

Figure 5.8: Doitgen (original code)

Dependence Affine component direction
S1 → S2 (0, 0,+, 0,+)
S2 → S2 (0, 0, 0, 0,+)
S1 → S3 (0, 0,+, 0, 0)
S2 → S3 (0, 0,+, 0,−)
S2 → S2 (0, 0, 0, 0,+)
S2 → S3 (0, 0,+,−,−)
S1 → S2 (0, 0,+, 0,+)
S2 → S2 (0, 0, 0, 0,+)

Standard tiling based on identifying hierarchies of tilable bands would treat (φ1,φ2)

as one band and (φ4,φ5) as another. Note that φ3 is a scalar dimension. So the tiled

space for S2 would be given by:

(rT , qT , r, q, 1, pT, sT, p, s)

The above does not create true 4-d tiles for S2. However, the surprising good tiling

here is given by:
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5.4. Tilability Detection and Parallelism Detection

S1: (rT , qT , 0, pT , 0, r, q, p, 0)
S2: (rT , qT , 1, pT , sT , r, q, p, s)
S3: (rT , qT , 2, pT , 0, r, q, p, 0)

Here, it is legal to move the two outer loops all the way inside since the dependences

that have negative components on φ4 and φ5 are satisfied at the scalar dimension

φ3. Hence, we have an additional consideration of ignoring negative directions for

dependences that have been satisfied at a scalar dimension, since the scalar dimension

can be preserved at the third level even in the tiled code. This “trick” is very useful in

tiling several codes that would otherwise come out as untilable or not tilable with any

good benefit. Pluto’s detection can take care of the above. The tiled code is shown in

Figure 5.9. Figure 5.10 compares the performance of the transformed code with the

version written with BLAS calls. More detailed performance results are presented in

Chapter 6.

It would also be useful to note that the following tiling would be illegal as some

values of A will been overwritten before they are finished using.

S1: (rT, qT, 0, pT, 0, r, q, 0, p, 0)
S2: (rT, qT, 0, pT, sT, r, q, 1, p, s)
S3: (rT, qT, 0, pT, 0, r, q, 2, p, 0)

In this case, the scalar dimension has no longer been preserved and has been consid-

ered as part of the tilable band violating the inter-statement dependences between

S2 and S3.

Besides doitgen, the sequence of matrix-matrix multiplies and the TCE 4-index

transform examples presented in Section 4.4 are other codes for which tilability de-

tection is improved with the above enhancement.
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5.4. Tilability Detection and Parallelism Detection

lb1=0;
ub1=floord(N−1,4);
#pragma omp parallel for shared(lb1,ub1) private(t0,t1,t2,t3,t4,t5,t6,t7,t8,t9)
for (t0=lb1; t0<=ub1; t0++) {
for (t1=0;t1<=floord(N−1,8);t1++) {
for (t3=0;t3<=floord(N−1,31);t3++) {
for (t5=max(0,4∗t0);t5<=min(N−1,4∗t0+3);t5++) {
for (t6=max(0,8∗t1);t6<=min(N−1,8∗t1+7);t6++) {
for (t9=max(0,31∗t3);t9<=min(N−1,31∗t3+30);t9++) {
{sum[t5][t6 ][ t9]=0;} ;
}
}
}
}
for (t3=0;t3<=floord(N−1,31);t3++) {
for (t4=0;t4<=floord(N−1,8);t4++) {
for (t5=max(0,4∗t0);t5<=min(N−1,4∗t0+3);t5++) {
for (t6=max(0,8∗t1);t6<=min(N−1,8∗t1+7);t6++) {
for (t8=max(0,8∗t4);t8<=min(N−1,8∗t4+7);t8++) {
for (t9=max(0,31∗t3);t9<=min(N−1,31∗t3+30);t9++) {
{sum[t5][t6 ][ t9]=A[t5][t6 ][ t8]∗C4[t8][ t9]+sum[t5][t6 ][ t9 ];} ;
}
}
}
}
}
}
for (t3=0;t3<=floord(N−1,31);t3++) {
for (t5=max(0,4∗t0);t5<=min(N−1,4∗t0+3);t5++) {
for (t6=max(0,8∗t1);t6<=min(N−1,8∗t1+7);t6++) {
for (t9=max(0,31∗t3);t9<=min(N−1,31∗t3+30);t9++) {
{A[t5][t6 ][ t9]=sum[t5][t6 ][ t9 ];} ;
}
}
}
}
}
}

Figure 5.9: Doitgen tiled code (register tiling and vector pragmas not shown)
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Figure 5.10: Doitgen performance on an Intel Core 2 Quad: preview
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5.5 Setting Tile Sizes

With our approach, tile sizes can be set in a decoupled manner as the shapes have

been captured with TS. Pluto currently uses very rough thumb rules based on array

dimensionalities to set tile sizes. In addition, custom tile sizes can be forced by the

user easily through a separate file. By decoupling tile shape and size optimization,

not only is the transformation framework’s objective function kept linear, but also is

the possibility of employing stronger cost models to determine tile sizes for locality

opened. Techniques to efficiently count integer points in parametrized polytopes exist:

[VSB+07] is the state-of-the-art approach that employs Barvinok’s rational functions

for this purpose and has been implemented into a library. It is straightforward to

obtain the polyhedra corresponding to the points in the data space that are touched

by a tile [BBK+08b]. Once this is done and the cache sizes are known, [VSB+07]

may be used to deduce tile sizes. We intend to explore the effectiveness of such an

approach.

Tile sizes for parallelism. The OpenMP“parallel for”directive(s) typically achieves

block distribution of iterations of tile space loops among processor cores. Hence,

whenever there is outer parallelism or pure inner parallelism, there is no special need

to compute another set of tile sizes for parallelism, unless one wants to schedule

tiles in a block cyclic manner. However, just performing block distribution is bet-

ter for inter-tile reuse. Execution on each core is thus a sequence of L2 tiles or

L1 tiles if no L2 tiling is done. However, whenever no synchronization-free paral-
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lelism exists, tile sizes for parallelism affect pipelined startup cost, load balance, and

the number of synchronizations. There is a trade-off between the former two and

the latter. This problem has been studied extensively, but for very restrictive in-

put [ABRY03, BDRR94, HS02, HCF97, HCF99, SD90]. Clearly, the right tile sizes

here are a function of the problem size and the number of processors, and leaving tile

sizes as parameters in the final generated code is necessary for any scheme to succeed.

The approach we described in this chapter is for fixed tile sizes, and extension to

parametric ones [RKRS07] is needed. Meanwhile, just setting conservative (smaller)

L2 tile sizes or not performing L2 tiling for smaller problem sizes seems to be a reason-

able approach in practice. This avoids load imbalance and may incur higher number

of synchronizations than the optimal solution, but is not likely to be a big issue since

coarse-enough parallelism has already been achieved making it a case of diminishing

return. Given the large size of L2 caches on current processors, for small problem

sizes, L2 tiling should be disabled with Pluto to prevent load imbalance. This can

also be easily automated in future by generating multiple versions of code conditional

on structure parameter sizes.

5.6 Post-processing Transformations

We have integrated an annotation-driven system, Orio [Ori, NHG07], to perform

syntactic transformations on the code generated from Cloog as a post-processing.

These include register tiling, unrolling, and unroll-jamming. The choice of loops to

perform these transformations on is specified by Pluto’s core transformation mod-
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ule, and hence legality is guaranteed. The tool Orio itself has no information on

dependences.

5.6.1 Unroll-jamming or register tiling

Trivially, the innermost loop can always be unrolled since doing so does not change

the execution order. A loop can be unrolled and jammed iff it can be made the inner-

most loop, i.e., if it can be stripmined and the point loop can be made the innermost

one. Now, a hyperplane can be made the innermost loop if all the dependences it

satisfies have non-negative components on the inner hyperplanes. One can see that

unroll-jamming a particular loop can affect the unroll-jamming at inner levels. To

avoid all of these pathologies and to come up with a clean condition, we simply focus

on consecutive sets of loops. Unroll-jamming a consecutive set of loops is the same

as register tiling, since it can be viewed as tiling and unrolling the intra-tile loops.

Hence, the legality of tiling a band of loops is same as the legality of unroll-jamming

them. The following conditions seem to be adequate and powerful:

1. A parallel loop at any level (inner parallel or outer parallel) can always be

unroll-jammed

2. The innermost band of permutable loops can always be unroll-jammed

Recall that our cost function pushes hyperplanes carrying higher reuse to inner levels.

This goes well with register tiling the innermost band of permutable loops when

there are multiple bands in the hierarchy. Orio [Ori, NHG07] can perform syntactic

unrolling or unroll-jamming of specified loops, rectangular or non-rectangular, and
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Pluto uses it for that purpose on the output of Cloog. The syntactic register tiling

accomplished by Orio is same in effect when compared to [KRSR07, JLF02], although

code from the scheme of Kim et al.[KRSR07] will be more compact. We chose to use

Orio as it is annotation-driven and can be readily integrated with Pluto without the

need to modify Cloog.

5.6.2 Intra-tile reordering and aiding auto-vectorization

Due to the nature of our algorithm, even within a local tile (L1) that is executed

sequentially, the intra-tile loops that are actually parallel do not end up being outer

in the tile (Sec. 3.10): this goes against vectorization of the transformed source for

which we rely on the native compiler. However, we know that it is always legal

to move a parallel loop inside (Def 14). As a consequence, a parallel loop at any

level can be stripmined, the corresponding point loop moved innermost and left for

auto-vectorization by the native compiler. Pluto generated code is complex enough

to hinder a native compiler’s dependence analysis leading to assumed vector depen-

dences. So, with ICC for example, we use the ignore vector dependence pragma

(ivdep) [Int] to mark the loop for vectorization.

In the current implementation of Pluto, a loop that is moved in and marked for

vectorization as described above is not unrolled for two reasons: (1) we find that it

interferes with its vectorization by the compiler (for eg. with Intel’s C compiler),

and (2) the loop is parallel and so the only possible reuse along it is due to input

dependences. Hence, for a code like matrix-matrix multiplication in the standard ijk

form, where i and j are parallel, and ijk is one tilable band, we obtain:
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After tiling: (iT , jT , kT , i, j, k)

After inner movement for vectorization: (iT , jT , kT , i, k
︸︷︷︸

8×8

, j).

Then, register tiling is done for i and k while j will be auto-vectorized by the compiler.

Similar reordering is possible to improve spatial locality that is not considered by

our cost function due to the latter being fully dependence-driven. Characterizing spa-

tial locality for affine accesses is easy and well known [WL91b]. Bastoul et al. [BF03]’s

approach of computing chunking functions is particularly well-suited to find a better

execution order for a local tile to improve spatial reuse. Note that the tile shapes or

the schedule in the tile space is not altered by such post-processing.

5.7 Related Work on Tiled Code Generation

Code generation under multiple affine mappings was first addressed by Kelly et

al. [KPR95]. Significant advances relying on new algorithms and mathematical ma-

chinery were made by Quilleré et al. [QRW00] and by Bastoul [Bas04a], resulting in a

powerful open-source code generator, Cloog [Clo]. Our tiled code generation scheme

uses Ancourt and Irigoin’s [AI91] classic approach to specify domains with fixed tile

sizes and shape information, but combines it with Cloog’s support for scattering

functions to allow generation of tiled code for multiple domains under the computed

transformations.

Goumas et al. [GAK02] reported an alternate tiled code generation scheme to

Ancourt and Irigoin’s [AI91]) to address the inefficiency involved in using Fourier-
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Motzkin elimination – however, this is no longer an issue as the state-of-the-art uses

efficient algorithms [QRW00, Bas04a] based on PolyLib [Wil93, Pol].

Techniques for parametric tiled code generation [RKRS07, KRSR07] were recently

proposed for single statement domains for which rectangular tiling is valid. These

techniques complement our system very well and we intend to explore their integra-

tion. There are two clear benefits in the context of our system. Firstly, empirical

tuning can be done much faster since code need not be generated each time for a

particular set of tile sizes. Secondly, big numbers in the intermediate computations

of Cloog can be avoided. When large tile sizes are used with multiple levels of tiling,

the numbers can sometimes grow big enough to cross 64-bit boundaries.

Regarding generation of pipelined parallel code, existing techniques [LCL99, Gri04]

insert or propose the use of special post/notify or wait/signal directives to handle

dependences in the space loops. Our scheme does not require any additional syn-

chronization primitives or any syntactic treatment. This is achieved by transforming

the tile space to translate pipelined parallelism into doall parallelism. Hence, only

OpenMP pragmas are sufficient with our scheme.
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CHAPTER 6

EXPERIMENTAL EVALUATION

This chapter presents the experimental evaluation of the Pluto automatic paral-

lelization system, the design to implementation of which were described in the previ-

ous three chapters. The performance for several kernels is compared to the existing

state-of-the-art from the research literature as well as to that of best native compilers

and highly tuned vendor-supplied libraries where applicable.

6.1 Comparing with previous approaches

Several previous papers on automatic parallelization have presented experimen-

tal results. However, significant jumps were made in the process of going from the

compiler framework to evaluation. A direct comparison is difficult since the im-

plementations of those approaches (with the exception of Griebl’s) is not available;

further most previously presented studies did not use an end-to-end automatic im-

plementation, but performed manual code generation based on solutions generated

by a transformation framework, or by picking solutions from a large space of solu-

tions characterized. In addition, a common missing link in the chain was the lack of
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6.1. Comparing with previous approaches

a powerful and efficient code generator like Cloog, which has only recently become

available.

In assessing the effectiveness of our system, we compare performance of the gen-

erated code with that generated by production compilers, as well as undertaking a

best-effort fair comparison with previously presented approaches from the research

community. The comparison with other approaches from the literature is in some

cases infeasible because there is insufficient information for us to reconstruct a com-

plete transformation (e.g. [AMP01]). For others [LL98, LCL99, LLL01], a complete

description of the algorithm allows us to manually construct the transformation; but

since we do not have access to an implementation that can be run to determine the

transformation matrices, we have not attempted an exhaustive comparison for all the

cases.

The current state-of-the-art with respect to optimizing code has been semi-automatic

approaches that require an expert to manually guide transformations. As for scheduling-

based approaches, the LooPo system [Loo] includes implementations of various poly-

hedral scheduling techniques including Feautrier’s multi-dimensional time scheduler

which can be coupled with Griebl’s space and FCO time tiling techniques. We

thus provide comparison for some number of cases with the state of the art – (1)

Griebl’s approach that uses Feautrier’s schedules along with Forward-Communication-

Only allocations to enable time tiling [Gri04], and (2) Lim-Lam’s affine partition-

ing [LL98, LCL99, LLL01]. For both of these previous approaches, the input code

was run through our system and the transformations were forced to be what those
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6.2. Experimental Setup

approaches would have generated. Hence, these techniques get all benefits of Cloog

and our fixed tile size code generation scheme.

6.2 Experimental Setup

Three different processor architectures are used for the results in this section.

1. Intel Core 2 Quad Q6600 quad-core CPU clocked at 2.4 GHz (1066 MHz

FSB) with a 32 KB L1 D cache, 8MB of L2 cache (4 MB shared per core pair),

and 2 GB of DDR2-667 RAM, and running Linux kernel version 2.6.22 (x86-64)

2. AMD Opteron 2218 dual-core CPUs (2-way SMP) clocked at 2.6 GHz with

a 64 KB L1 cache and 1 MB L2 cache, running Linux kernel version 2.6.18

(x86-64)

3. AMD Phenom x4 9850 quad-core clocked at 2.5 GHz with a 64 KB L1 data

cache, 512 KB private L2 cache per core, and a 2 MB shared L3 cache, running

Linux kernel version 2.6.25 (x86-64)

ICC 10.0, Intel’s C compiler, is used to compile the base codes as well as the source-

to-source transformed codes; it was run with ‘-fast’ (-openmp for parallelized code);

the ‘-fast’ option turns on -O3, -ipo, -static, -no-prec-div on x86-64 processors – these

options also enable auto-vectorization in icc. Whenever gcc is used, it is GCC 4.1.1

with options “-O3” (-fopenmp for parallelized code). The OpenMP implementation

of icc supports nested parallelism – this is needed for exploiting multiple degrees of

pipelined parallelism when they exist. For easier presentation and analysis, local tiling
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6.3. Imperfectly Nested Stencils

for most codes is done for the L1 cache, with equal tile sizes used along all dimensions;

they were set empirically (without any comprehensive search) and agreed with the

cache size quite well. In all cases, the optimized code for our framework was obtained

automatically in a turn-key fashion from the input source code. When comparing with

approaches of Lim/Lam and Griebl, the same tile sizes were used for each approach

and they appeared to be good ones. The OpenMP “parallel for” directive(s) achieves

the distribution of the blocks of tile space loop(s) among processor cores. Hence,

execution on each core is a sequence of L1 or L2 tiles. Analysis is more detailed for

the first example which is simpler.

6.3 Imperfectly Nested Stencils

The original code, code optimized by our system without tiling, and optimized

tiled code were shown in Figure 5.2.2. The performance of the optimized codes are

shown in Figure 6.3. Speedup’s ranging from 4x to 7x are obtained for single core

execution due to locality enhancement. The parallel speedups are compared with

Lim/Lam’s technique (Algorithm A in [LL98]) which finds (2,-1), (3,-1) as the max-

imally independent time partitions. These do minimize the order of synchronization

and maximize the degree of parallelism (O(N)), but any legal independent time par-

titions would have one degree of pipeline parallelism.

With scheduling-based techniques, the schedules found by LooPo’s Feautrier sched-

uler are 2t and 2t+1 for S1 and S2, respectively (note that this does not imply fusion).

An FCO allocation here is given by 2t + i, and this enables time tiling. Just space
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6.4. Finite Difference Time Domain

tiling in this case does not expose sufficient parallelism granularity and an inner space

parallelized code has very poor performance. This is the case with icc’s auto paral-

lelizer; hence, we just show the sequential run time for icc in this case. Figure 6.3

shows L1 cache misses with each approach for a problem size that completely fits in

the L2 cache. Though Griebl’s technique incurs considerably lesser cache misses than

Lim-Lam’s, the schedule introduces non-unimodularity leading to modulo comparison

in inner loops; it is possible to remove the modulo through an advanced technique

using non-unit strides [Vas07] that Cloog does not implement yet. Our code incurs

two times lesser number of cache misses than Griebl’s and nearly 50 times lesser cache

misses than Lim/Lam’s scheme. Note that both Lim-Lam’s and our transformation

in this case are unimodular and hence have the same number of points in a tile for a

given tile size. Comparison with gcc is provided in Figure 6.2(b) (gcc used to compile

all codes) to demonstrate that the relative benefits of our source-to-source system will

be available when used in conjunction with any sequential compiler.

6.4 Finite Difference Time Domain electromagnetic kernel

FDTD code is as shown in Figure 6.4. ex, ey represent electric fields in x and

y directions, while hz is the magnetic field. The code has four statements - three

of them 3-d and one 2-d and are nested imperfectly. Our transformation framework

finds three tiling hyperplanes (all in one band - fully permutable). The transformation

represent a combination of shifting, fusion and time skewing. Parallel performance

results shown are for nx = ny = 2000 and tmax = 500. L1 and L2 tile sizes were
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set automatically using rough thumb rules based on dimensionality of arrays involved

and vectorization considerations. Results are shown in Figure 6.5. With polyhedral

scheduling-based techniques, the outer loop is identified as the sequential schedule

loop and the inner loops are all parallel – this is also the transformation applied by

icc’s auto parallelizer. This does not fuse the inner loops, and synchronization has to

be done every time step.

With our approach, all three dimensions are tiled (due to a relative shift followed

by a skew), the loops are fused, and each processor executes a 3-d tile (which itself is

a sequence of 3-d L2 tiles) before synchronization. Multi-core results exhibit highly

super-linear speedups. We have two degrees of pipelined parallelism here – to exploit
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6.4. Finite Difference Time Domain

for (t=0; t<tmax; t++) {
for ( j=0; j<ny; j++) {
ey [0][ j ] = exp(−t1);
}

for ( i=1; i<nx; i++) {
for ( j=0; j<ny; j++) {
ey[ i ][ j ] = ey[i ][ j ] −

coeff1∗(hz[ i ][ j]−hz[i−1][j ]);
}
}

for ( i=0; i<nx; i++) {
for ( j=1; j<ny; j++){
ex[ i ][ j ] = ex[i ][ j ]
− coeff1∗(hz[ i ][ j]−hz[i ][ j−1]);
}
}

for ( i=0; i<nx; i++) {
for ( j=0; j<ny; j++) {
hz[ i ][ j ] = hz[ i ][ j ] −

coeff2∗(ex[ i ][ j+1]−ex[i][ j ]
+ey[i+1][j]−ey[i ][ j ]);

}
}
}
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Figure 6.4: 2-d Finite Difference Time Domain: original code and the statement-wise
transformation
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6.4. Finite Difference Time Domain
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Figure 6.6: 2-D FDTD on an 8-way Power5 SMP

both, a tile space wavefront of (1,1,1) is needed; however, to exploit one, we just

need a wavefront of (1,1,0) (Section 5.2.3) leading to simpler code. Note that two

degrees of parallelism are only meaningful when the number of cores is not a prime

number. The slight drop in performance for N = 4000 for the sequential case is due

to sub-optimal L2 cache tile sizes.

6.5 LU Decomposition

Three tiling hyperplanes are found – all belonging to a single band of permutable

loops. The first statement though lower-dimensional is naturally sunk into a a 3-

dimensional fully permutable space. Thus, there are two degrees of pipelined paral-

lelism. Exploiting both degrees of pipelined parallelism requires a tile wavefront of
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6.5. LU Decomposition

for (k=0; k<N; k++) {
for ( j=k+1; j<N; j++) {

a[k ][ j ] = a[k][ j ]/a[k ][ k ];
}
for ( i=k+1; i<N; i++) {

for ( j=k+1; j<N; j++) {
a[ i ][ j ] = a[i ][ j]−a[i ][ k]∗a[k ][ j ];

}
}

}

Figure 6.7: LU decomposition (non-pivoting) form

(1,1,1) while exploiting only one requires (1,1,0). The code for the latter is likely to be

less complex, however, has a lesser computation to communication ratio. Performance

results on the quad core machine are shown in Figure 6.9. The GFLOPs is computed

using an operation count of 2N3

3
. Tiling was done for both L1 and L2 caches. The

transformation was shown in detail in Sections 5.2.2 and 5.2.3. The second hyperplane

(0,1,0) which is the original j loop is also inner parallel. It is thus moved innermost

only in the L1 tile to assist compiler auto-vectorization (Section 5.6.2).

With scheduling-based approaches, the schedules will be: θS1(k, i, j) = 2k and

θS2
(k, i, j) = 2k + 1. In this case, time tiling is readily enabled by choosing a simple

allocation along i and j since such an allocation has non-negative dependence compo-

nents though non-uniform. Again, like the Jacobi code, the code complexity appears

to make the schedule-based transformation perform poorly for a single thread. As for

ICC, we find that it does not parallelize this code.
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6.5. LU Decomposition

for (t0=−1;t0<=floord(9∗N−17,128);t0++) {
lb1=max(max(ceild(8∗t0−63,72),0),ceild(16∗t0−N+2,16));
ub1=min(floord(N−1,128),floord(16∗t0+15,16));

#pragma omp parallel for shared(t0,lb1,ub1) private(t1,t2,t3,t4,t5)
for (t1=lb1; t1<=ub1; t1++) {

for (t2=max(ceild(8∗t0−8∗t1−105,120),ceild(8∗t0−8∗t1−7,8));
t2<=floord(N−1,16);t2++) {

if (t0 == t1+t2) {
for (t3=max(0,16∗t2);t3<=min(min(16∗t2+14,N−2),128∗t1+126);t3++) {
for (t5=max(t3+1,128∗t1);t5<=min(N−1,128∗t1+127);t5++) {
a[t3 ][ t5]=a[t3 ][ t5]/a[t3 ][ t3 ];
}
for (t4=t3+1;t4<=min(16∗t2+15,N−1);t4++) {
for (t5=max(t3+1,128∗t1);t5<=min(N−1,128∗t1+127);t5++) {
a[t4 ][ t5]=a[t4 ][ t5]−a[t4 ][ t3]∗a[t3 ][ t5 ];
}
}
}
}
for (t3=max(0,16∗t0−16∗t1);

t3<=min(min(16∗t2−1,16∗t0−16∗t1+15),128∗t1+126);t3++) {
for (t4=16∗t2;t4<=min(N−1,16∗t2+15);t4++) {
for (t5=max(128∗t1,t3+1);t5<=min(N−1,128∗t1+127);t5++) {
a[t4 ][ t5]=a[t4 ][ t5]−a[t4 ][ t3]∗a[t3 ][ t5 ];
}
}
}
if ((−t0 == −t1−t2) &&

(t0 <= min(floord(16∗t1+N−17,16),floord(144∗t1+111,16)))) {
for (t5=max(16∗t0−16∗t1+16,128∗t1);t5<=min(N−1,128∗t1+127);t5++) {
a[16∗t0−16∗t1+15][t5]=

a[16∗t0−16∗t1+15][t5]/a[16∗t0−16∗t1+15][16∗t0−16∗t1+15];
}
}
}

}
}

Figure 6.8: LU decomposition parallelized code (register tiling, L2 tiling, and vector
pragmas not shown); context: N ≥ 2
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Figure 6.9: LU performance
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6.6. Matrix Vector Transpose

6.6 Matrix Vector Transpose

for ( i=0; i<N; i++) {
for ( j=0; j<N; j++) {
x1[ i ] = x1[i] + a[i ][ j ]∗y1[j ];
}
}

for ( i=0; i<N; i++) {
for ( j=0; j<N; j++) {
x2[ i ] = x2[i] + a[j ][ i ]∗y2[j ];
}
}

(a) Original code

for (t0=0;t0<=N−1;t0++) {
for (t1=0;t1<=N−1;t1++) {

x1[t0] = x1[t0] + a[t0 ][ t1]∗y1[t1 ];
x2[t1] = x2[t1] + a[t0 ][ t1]∗y2[t0 ];

}
}

(b) Transformed

TS1
:

(
t0
t1

)

=

(
1 0
0 1

)(
i

j

)

TS2 :

(
t0
t1

)

=

(
0 1
1 0

)(
i

j

)

Figure 6.10: Matrix vector transpose

The MVT kernel is a sequence of two matrix vector transposes as shown in Fig-

ure 6.10 (a). It is encountered inside a time loop in Biconjugate gradient. The

only inter-statement dependence is a non-uniform read/input on matrix A. The cost

function bounding (3.7) leads to minimization of this dependence distance by fusion

of the first MV with the permuted version of the second MV. As a result, the δe

for this dependence becomes 0 for both t0 and t1). This however leads to loss of

synchronization-free parallelism, since, in the fused form, each loop satisfies a de-
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6.6. Matrix Vector Transpose
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Figure 6.11: MVT performance on a quad core: N=8000

pendence. However, since these dependences have non-negative components, parallel

code can be generated corresponding to one degree of pipelined parallelism.

Existing techniques, even if they consider input dependences, cannot automatically

fuse the first MV with the permuted version of the second MV. Note that each of

the matrix vector multiplies is one strongly connected component. Hence, previous

approaches are only able to extract synchronization-free parallelism from each of the

MVs separately with a barrier between the two, giving up reuse on array A. Figure 6.11

shows the results for a problem size N = 8000. Note that both the optimized versions

were tiled for the L1 cache. Fusion of ij with ij does not exploit reuse on matrix A,
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6.7. 3-D Gauss-Seidel successive over-relaxation

whereas the code that our tool comes up with performs best – it fuses ij with ji, tiles

it and exploits a degree of pipelined parallelism.

6.7 3-D Gauss-Seidel successive over-relaxation

for (t=0; t<=T−1; t++) {
for ( i=1; i<=N−2; i++) {

for ( j=1; j<=N−2; j++) {
a[ i ][ j ] = (a[i−1][j−1] + a[i−1][j ] + a[i−1][j+1]

+ a[i ][ j−1] + a[i ][ j ] + a[i ][ j+1]
+ a[i+1][j−1] + a[i+1][j ] + a[i+1][j+1])/9.0;

}
}

}

MS =





1 0 0
1 1 0
2 1 1





Figure 6.12: 3-d Seidel code (original) and transformation

The Gauss-Seidel computation (Figure 6.12) allows tiling of all three dimensions

after skewing. The transformation our tool obtains skews the first space dimension

by a factor of one with respect to time, while the second one by a factor of two

with time and one with respect to the previous space dimension. The transformation

is also shown in Figure 6.12. Two degrees of pipelined parallelism can be extracted

subsequently after creating 3-d tiles. Figure 6.13 shows the performance improvement

achieved with 2-d pipelined parallel space as well as 1-d: the latter is better in practice

mainly due to simpler code. Again, icc is unable to parallelize this code. The GFLOPs

performance is on the lower side since unroll-jamming of non-rectangular loops is not
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6.7. 3-D Gauss-Seidel successive over-relaxation
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Figure 6.13: 3-D Gauss Seidel on Intel Q6600: Nx = Ny = 2000; T = 1000
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6.8. DGEMM

yet supported. Also, this code is not readily vectorized since none of intra-tile loops

are fully parallel.

6.8 DGEMM

We now compare the Pluto generated code for DGEMM with several highly-tuned

libraries. The purpose of this comparison is to see how far Pluto code is from the

machine peak and the factors responsible for this gap. Figure 6.15 shows that the

Pluto code is within 1.5 to 2x of vendor-supplied BLAS. The difference appears to be

mainly due to the performance left on the table by the auto-vectorization performed

on transformed Pluto code by ICC. Merging this gap is the subject of one of the

threads of future work discussed briefly in the next chapter.

6.9 Experiments with Fusion-critical Codes

We now show the benefits of the techniques proposed in Chapter 4 by evaluating

codes for which performing loop fusion in conjunction with other transformations

is important. Some comparisons include a version of the benchmark written with

vendor supplied libraries. On the Intel Core 2 machine, we used the Intel Math Kernel

Library (MKL) 10.0 that includes a multithreaded implementation of the Basic Linear

Algebra Software (BLAS) routines highly optimized for Intel processors. Similarly,

for the AMD machines, the AMD Core Math Library (ACML) version 4.1 was used.
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6.9. Experiments with Fusion-critical Codes

6.9.1 GEMVER

The GEMVER kernel is a combination of outer products and matrix vector prod-

ucts. It is used for householder bidiagonalization. The BLAS version of the GEMVER

kernel from Siek et al. [SKJ08] along with the linear algebraic specification is shown

in Figure 6.16. The nested loop code is in Figure 6.17. Permuting and fusing the

first two loop nests is the key optimization to reduce cache misses. Pluto’s fusion

algorithm is able to cut between the second and third statement, and the third and

fourth statement. The fused code is automatically tiled for caches and registers too.

The parallel loop inside the L1 tile is made the innermost for vectorization as de-

scribed in Section 5.6.2. Figures 6.9.1, 6.18, and 6.20 show performance results on

three different architectures. The performance is relatively lower on the Opteron as

ICC does not vectorize Pluto generated code or the original code for this architecture,

while the version written with ACML is naturally a hand-vectorized one.

B = A+ u1v
T
1 + u2v

T
2

x = βBTy + z

w = αBx

dcopy(m ∗ n, A, B, 1);
dger(m, n, 1.0, u1, 1, v1 , 1, B, m);
dger(m, n, 1.0, u2, 1, v2 , 1, B, m);
dcopy(n, z, x, 1);
dgemv(’T’, m, n, beta, B, m, y, 1, 1.0, x, 1);
dgemv(’N’, m, n, alpha, B, m, x, 1, 0.0, w, 1);

Figure 6.16: GEMVER (high-level specification)
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for ( i=0; i<N; i++)
for ( j=0; j<N; j++)

B[i ][ j ] = A[i][ j ] + u1[i]∗v1[j ] + u2[i]∗v2[j ];

for ( i=0; i<N; i++)
for ( j=0; j<N; j++)

x[ i ] = x[i ] + beta∗ B[j][ i ]∗y[ j ];

for ( i=0; i<N; i++)
x[ i ] = x[i ] + z[i ];

for ( i=0; i<N; i++)
for ( j=0; j<N; j++)

w[i ] = w[i] + alpha∗ B[i][ j ]∗x[ j ];

Figure 6.17: Nested loops for GEMVER
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Figure 6.19: GEMVER on Intel Core 2 Quad
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6.9.2 Doitgen

The Doitgen kernel is part of MADNESS [MAD], a scientific simulation frame-

work in many dimensions using adaptive multiresolution methods in multiwavelet

bases [MAD]. The computation is quite similar to matrix-matrix multiplication and

is shown in Figure 6.21. The kernel is special in that it involves small problem sizes

and is called repeatedly from higher level routines. Figure 6.23 and Figure 6.24

show significantly higher performance with Pluto over the same kernel written with

BLAS library calls. Register tiling of the imperfect loop nest is responsible for most

of the improvement here for the smaller problem sizes. The tiled code is shown in

Figure 6.22. Creating 4-d tiles for this code involves an intricacy described in Sec-

tion 5.4.2. Previous approaches [WL91a, LCL99, AMP01] that just tile every band

of permutable loops in a hierarchy will be unable to create 4-d tiles for the second

statement.

6.10 Analysis

All the above experiments show very high speedups with our approach, both for

single thread and multicore parallel execution. The performance improvement is very

significant over production compilers as well as state-of-the-art from the research

community. Speedup ranging from 2x to 5x are obtained over previous automatic

transformation approaches in most cases, while an order of 10x improvement is ob-

tained over native production compilers. Linear to super-linear speedups are seen for

almost all compute-intensive kernels considered here due to optimization for locality
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for (r=0; r<N; r++) {
for (q=0; q<N; q++) {

for (p=0; p<N; p++) {
sum[r][q ][ p] = 0;
for (s = 0; s< N; s++) {

sum[r][q ][p] = sum[r][q][p] + A[r][q ][ s]∗C4[s ][p ];
}

}
for (p=0; p<N; p++) {

A[r ][ q ][ p] = sum[r][q ][p ];
}

}
}

Figure 6.21: Doitgen

as well as parallelism. To the best of our knowledge, such speedup’s have not been

reported by any automatic compiler framework as general as ours.

Hand-parallelization of many of the examples we considered here is extremely

tedious and not feasible in some cases, especially when time skewed code has to be

pipelined parallelized; this coupled by the fact that the code has to be tiled for at

least for one level of local cache, and a 2-d pipelined parallel schedule of 3-d tiles

is to be obtained makes manual optimization very complex. The performance of

the optimized stencil codes through our system is already in the range of that of

hand optimized versions reported in [KDW+06]. Also, for many of the codes, a

simple parallelization strategy of exploiting inner parallelism and leaving the outer

loop sequential (i.e., no time tiling) hardly yields any parallel speedup (Figure 6.5(b),
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lb1=0;
ub1=floord(N−1,4);
#pragma omp parallel for shared(lb1,ub1) private(t0,t1,t2,t3,t4,t5,t6,t7,t8,t9)
for (t0=lb1; t0<=ub1; t0++) {
for (t1=0;t1<=floord(N−1,8);t1++) {
for (t3=0;t3<=floord(N−1,31);t3++) {
for (t5=max(0,4∗t0);t5<=min(N−1,4∗t0+3);t5++) {
for (t6=max(0,8∗t1);t6<=min(N−1,8∗t1+7);t6++) {
for (t9=max(0,31∗t3);t9<=min(N−1,31∗t3+30);t9++) {
{sum[t5][t6 ][ t9]=0;} ;
}
}
}
}
for (t3=0;t3<=floord(N−1,31);t3++) {
for (t4=0;t4<=floord(N−1,8);t4++) {
for (t5=max(0,4∗t0);t5<=min(N−1,4∗t0+3);t5++) {
for (t6=max(0,8∗t1);t6<=min(N−1,8∗t1+7);t6++) {
for (t8=max(0,8∗t4);t8<=min(N−1,8∗t4+7);t8++) {
for (t9=max(0,31∗t3);t9<=min(N−1,31∗t3+30);t9++) {
{sum[t5][t6 ][ t9]=A[t5][t6 ][ t8]∗C4[t8][ t9]+sum[t5][t6 ][ t9 ];} ;
}
}
}
}
}
}
for (t3=0;t3<=floord(N−1,31);t3++) {
for (t5=max(0,4∗t0);t5<=min(N−1,4∗t0+3);t5++) {
for (t6=max(0,8∗t1);t6<=min(N−1,8∗t1+7);t6++) {
for (t9=max(0,31∗t3);t9<=min(N−1,31∗t3+30);t9++) {
{A[t5][t6 ][ t9]=sum[t5][t6 ][ t9 ];} ;
}
}
}
}
}
}

Figure 6.22: Doitgen tiled code (register tiling and vector pragmas not shown)
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Figure 6.1(b)). Scheduling-based approaches that do not perform time tiling, or

production compilers’ auto-parallelizers perform such parallelization.

As mentioned before, tile sizes were not optimized through any extensive search or

a model. Also, Orio does not yet support unroll-jamming for non-rectangular iteration

spaces: this impacted the performance for LU and Gauss-Seidel. Using models for

tile size selection, with some amount of empirical search, in a manner decoupled

with the pure model-driven scheme presented is a reasonable approach to take this

performance higher. For simpler codes like matrix-matrix multiplication, this latter

phase of optimization, though very simple and straightforward when compared to the

rest of our system, brings most of the benefits.

As for fusion for long sequences, it is almost clear that finding the highest perform-

ing parallel code taking into account fusion, tiling, and storage optimization needs

some kind of iterative techniques. However, finding reasonably good fusion structures

for loop nests with up to a handful of statements can be achieved purely through

models and heuristics. Interactions with the hardware (mainly prefetching) create

more complications and the best transformation is often architecture-specific. Pres-

ence or the lack of explicit copying also has an impact. Hence, a study of fusion has

to be revisited once automatic explicit copying is implemented into Pluto.
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CHAPTER 7

CONCLUSIONS AND FUTURE DIRECTIONS

In this dissertation, we presented the theory, design, and implementation of an

automatic polyhedral program optimization system that can optimize sequences of

arbitrarily-nested loops simultaneously for coarse-grained parallelism and locality.

The framework has been fully implemented into a tool, Pluto, to generate OpenMP

parallel code from regular C program sections automatically. Experimental results

show significantly higher performance for single core and parallel execution on multi-

cores, when compared with production compilers as well as state-of-the-art research

approaches. In many cases, the parallelization performed through Pluto is infeasible

to obtain by hand. A beta release of the Pluto system including all codes used for

experimental evaluation in this dissertation are available at [Plu].

Past studies on loop fusion were done in an isolated fashion not integrated with

other transformations for parallelization and locality optimization. We showed how

our approach can come up with non-trivial fusions and presented three different fusion

algorithms that cover the interesting cases. For several linear algebra kernels, code

generated from Pluto beats, by a significant margin, the same kernel implemented
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with a sequence of calls to BLAS routines linked with hand-tuned vendor supplied

libraries.

Domain-specific frontends. The transformation system built here is not just ap-

plicable to C or Fortran code, but to any input language from which polyhedral com-

putation domains can be extracted and analyzed. Since our entire transformation

framework works in the polyhedral abstraction, only the frontend and the depen-

dence tester needs to be adapted to accept a new language. It could be applied for

example to very high-level languages or domain-specific languages to generate high-

performance parallel code. Designing new domain-specific frontends for Pluto can be

done easily. Corequations [Cor] already is one such high-level language which accepts

equations as input – a natural way to represent many scientific calculations. Pluto

can directly benefit such languages by serving as their backend optimizer.

Iterative compilation and auto-tuning. The Pluto system leaves a lot of flex-

ibility for future optimization, through iterative and empirical approaches. For very

long sequences of loop nests, it appears clear that iterative compilation is needed to

find the best fusion structure, mainly because the best choice for the fusion structure

along with all other transformations and optimizations appears to be complex to be

captured in a model. Integration of polyhedral iterative [PBCV07, PBCC08] and our

pure model-driven approach is thus promising. Orthogonally, tuning parameters such

as tile sizes and unroll factors, for which we currently do not have a sophisticated

model is a necessity. The Orio auto-tuner [Ori, NHG07] recently developed at the
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Argonne National Labs already provides a solution by providing auto-tuning capabil-

ities on top of Pluto as one of its features. Model-driven empirical optimization and

automatic tuning approaches (e.g., ATLAS [WD98, WPD00]) have been shown to be

very effective in optimizing single-processor execution for some regular kernels like

matrix-matrix multiplication [WPD00, YLR+03]. There is interest in developing ef-

fective empirical tuning approaches for arbitrary input kernels. Pluto can enable such

model-driven or guided empirical search to be applied to arbitrary affine programs,

in the context of both sequential and parallel execution.

Memory optimization. The integration of false dependence removal techniques [Fea91,

PW92, MAL93, TP94, BCC98, KS98] and subsequent memory optimization after

transformation is a useful component of an optimizer for imperative languages. Pro-

grammers typically tend to use the same storage for each iteration of a loop intro-

ducing a number of false dependences that hinder parallelization. Removing all false

dependences can cause a storage bloat, and hence the need to optimize storage after

parallelization. These techniques have been studied well [RW97, SCFS98, CDRV97,

Coh99, TVSA01, DSV05, QR00, ABD07]. Storage optimization techniques that are

schedule dependent like that of Alias et al. [ABD07] are the natural solution to opti-

mize storage after Pluto determines the transformation. No existing system integrates

such storage optimization techniques into an automatic parallelizer yet.

More real-world applications. The application of polyhedral techniques to true

real-world programs is still a significant challenge mainly due to the lack of techniques
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to handle irregular and non-affine programs, procedures, and dynamic control. Mak-

ing interprocedural dependence analysis work in conjunction with polyhedral static

analysis is now interesting to explore given that all the links have been put together

for optimization of regular codes. Availability of a robust full-fledged frontend to

extract polyhedra is a necessary step. There are currently efforts to bring the poly-

hedral model to production compilers like GCC [PCB+06]. The availability of such

infrastructure is crucial for further progress. In addition, hybrid static-cum-dynamic

approaches are promising to explore. [RPR07], for example, uses dynamic techniques

to aid static analysis to enable parallelization that cannot be performed statically

alone. However, such techniques have not been studied in conjunction with the poly-

hedral model.

Vector intrinsics. For most kernels evaluated in Chapter 6, there is a significant

amount of performance that is left unexploited, even though Pluto generated code

provides high speedup. Figure 6.15 gives some indication. The quality of auto-

vectorization performed by the compiler on the polyhedral transformed code appears

to be one primary reason for this gap. Usage of vector intrinsics and automatically

mapping polyhedral computation to vector intrinsics is a very challenging problem.

This is even more crucial with several architectures employing wider vector architec-

tures on the horizon [AVX]. Spiral [SPI, PMJ+05] is one domain-specific project that

employs such vector intrinsics to generate highly optimized implementations of digital

signal processing algorithms.
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More target architectures. The framework presented in this dissertation is ap-

plicable to any parallel architecture as long as at least one degree of coarse-grained

parallelism is desired: this is the case with almost all modern parallel computers.

Some works have used Pluto to map programs to GPGPUs [BBK+08a] with addi-

tional optimizations like explicit copying for scratchpad memories [BBK+08b] as well

as considerations to avoid bank conflicts for SIMD threads. Similarly, the Cell proces-

sor, and embedded multiprocessor chips are also good targets. In addition to shared

memory architectures, techniques presented are in a form that would also distributed

memory automatic parallelization to be addressed incrementally: the incremental step

being the efficient generation of message passing code.

Concluding remarks. The Polyhedral model is about two decades old now. With

a practical and scalable approach for automatic transformation, all the missing links

have been put together for end-to-end automatic parallelization of input that the

polyhedral model can readily handle – affine loop nests with static control. There are

several codes that fall into this category, parallelization and optimization for which

will benefit a large number of users: [CS90, MAD] are just two examples. One can

now conclude that polyhedral techniques are very effective for these domains and

are the best way to obtain the highest performance parallel code with no effort on

part of the programmer. The possibility of extension to more general code is now

feasible and interesting to be tried. Thanks to the mathematical abstraction, the

techniques are applicable to new languages or domain-specific languages. The problem
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of auto-parallelization has always been considered a mountain, but mountains can be

approximated by polyhedra.
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affine combination, 11
affine function, 10

affine hyperplane, 11
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affine schedule, 33
affine space, 11

affine transformation, 21
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anti dependence, 17

automatic parallelization, 5

Cloog, 99
communication-free parallelism, 29

convex combination, 25

data dependence graph, 17

ddg, 17
dependence, 17

dependence cutting, 76
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dependence satisfaction, 28
doacross parallelism, 30

doall parallelism, 30
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Farkas lemma (affine form), 13

Farkas multipliers, 13

FCO, 46
flow dependence, 17

forward communication-only, 46
fusion, 73

h-transformation, 99

half-space, 11
hyperplane, 11

imperfect loop nest, 14

index set, 15
inner parallel, 29

input dependence, 17
iteration vector, 15

linear, 10
linear function, 10

linear independence, 51
loop fusion, 73

loop tiling, 40
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non-uniform dependence, 21

null space, 10

orthogonal subspace, 51
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output dependence, 17

permutable band, 28

pipelined parallelism, 30
PLUTO, 97

polyhedral model, 14
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polytope, 12

program parameters, 14
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scalar dimension, 22
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uniform dependence, 21

unroll and jam, 123
unrolling, 123

z-polyhedra, 27

175


